
Assistant Professor
Department of Computer Science Shyama Prasad

Mukherji College for Women
University of Delhi

Reema Thareja

Revised First Edition

Programming in

CS 8251 Programming in C
As per Anna University R17 syllabus

© Oxford University Press India. All rights reserved.

Oxfo
rd

Univ
ers

ity
 P

res
s

3
Oxford University Press is a department of the University of Oxford.

It furthers the University’s objective of excellence in research, scholarship,
and education by publishing worldwide. Oxford is a registered trade mark of

Oxford University Press in the UK and in certain other countries.

Published in India by
Oxford University Press

22 Workspace, 2nd Floor, 1/22 Asaf Ali Road, New Delhi 110002

© Oxford University Press 2018, 2020

The moral rights of the author/s have been asserted.

First published in 2018
Revised first edition published in 2020

All rights reserved. No part of this publication may be reproduced, stored in
a retrieval system, or transmitted, in any form or by any means, without the

prior permission in writing of Oxford University Press, or as expressly permitted
by law, by licence, or under terms agreed with the appropriate reprographics

rights organization. Enquiries concerning reproduction outside the scope of the
above should be sent to the Rights Department, Oxford University Press, at the

address above.

You must not circulate this work in any other form
and you must impose this same condition on any acquirer.

ISBN-13: 978-0-19-012655-1
ISBN-10: 0-19-012655-8

Typeset in Times New Roman
by Pee-Gee Graphics, New Delhi

Printed in India by

Cover illustration: Alok Rawat

For product information and current price, please visit www.india.oup.com

Third-party website addresses mentioned in this book are provided
by Oxford University Press in good faith and for information only.

Oxford University Press disclaims any responsibility for the material contained therein.

© Oxford University Press India. All rights reserved.

Oxfo
rd

Univ
ers

ity
 P

res
s

Notes

These elements highlight the important
terms and concepts discussed in each
chapter.

Comprehensive Coverage

The book provides comprehensive
coverage of C programming constructs.

Points to Remember

A list of key topics at the end of
each chapter helps readers to
revise all the important concepts
explained in the chapter.

Note
The printf and return statements have been indented
or moved away from the left side. This is done to make the
code more readable.

Introduction to
Programming

Arrays

Introduction to C Strings

Decision Control and
Looping Statements

Pointers

Functions Files

12 Programming in C

POINTS TO REMEMBER

∑ A computer has two parts—computer hardware which
does all the physical work and computer soft are which
tells the hardware what to do and how to do it.

∑ A program is a set of instructions that are arranged in
a sequence to guide a computer to find a solution for a
given problem. The process of writing a program is called
programming.

∑ Computer soft are is wri� en by computer programmers
using a programming language.

∑ Application soft are is designed to solve a particular
problem for users.

∑ System soft are represents programs that allow the
hardware to run properly. It acts as an interface between
the hardware of the computer and the application
soft are that users need to run on the computer.

∑ The key role of BIOS is to load and start the operating
system. The code in the BIOS chip runs a series of tests
called POST (Power On Self Test) to ensure that the system
devices are working correctly. BIOS is stored on a ROM
chip built into the system.

∑ Utility soft are is used to analyse, configu e, optimi e,
and maintain the computer system.

∑ A compiler is a special type of program that transforms
source code wri� en in a programming language (the
source language) into machine language comprising of
just two digits—1s and 0s (the target language). The
resultant code in 1s and 0s is known as the object code.

∑ Linker is a program that combines object modules to form
an executable program.

∑ A loader is a special type of program that copies programs

from a storage device to main memory, where they can be
executed.

∑ The fourth generations of programming languages
are: machine language, assembly language, high-level
language, and very high-level language.

∑ Machine language is the lowest level of programming
language that a computer understands. All the instructions
and data values are expressed using 1s and 0s.

∑ Assembly language is a low-level language that uses
symbolic notation to represent machine language
instructions

∑ Third-generation languages are high-level languages in
which instructions are wri� en in statements like English
language statements. Each instruction in this language
expands into several machine language instructions

∑ Fourth-generation languages are non-procedural
languages in which programmers define only what they
want the computer to do, without supplying all the details
of how it has to be done.

∑ Programs wri� en using monolithic programming
languages such as assembly language and BASIC consist
of global data and sequential ode.

∑ In procedural languages, a program is divided into
subroutines th t can access global data.

∑ Structured programming employs a top-down approach
in which the overall program is broken down into separate
modules.

∑ Object-oriented programming treats data as a criti al
element in the program development and restricts its
fl w freely around the system.

EXERCISES

Fill in the Blanks
1. ________ tells the hardware what to do and how to do

it.
2. The hardware needs a ________ to instruct what has to

be done.
3. The process of writing a p ogram is called _______.
4. ________ is used to write computer soft are.

5. ________ transforms the source code into binary
language.

6. ________ allows a computer to interact with additional
hardware devices such as printers, scanners, and video
cards.

7. ________ helps in coordinating system resources and
allows other programs to execute.

∑ New data and functions can be easily added as and when
required.

∑ Follows a bottom-up approach for problem solving.

In the forthcoming chapters, we are going to study C
programming language which supports both procedural as
well as structured programming.

Features of the Book

Programming Examples

As many as 250 C programs are
included, which demonstrate the
applicability of the concepts learned.

1. Find out the output of the following program.
#include <stdio.h>
int main()
{

int a, b;
printf("\n Enter two four digit numbers : ");
scanf("%2d %4d", &a, &b);
printf("\n The two numbers are : %d and
%d", a, b);

return 0;

}

Output
Enter two four digit numbers : 1234 5678
The two numbers are : 12 and 34

© Oxford University Press India. All rights reserved.

Oxfo
rd

Univ
ers

ity
 P

res
s

Programming Tip:
If you do not place
a parenthesis a� er
‘main’, a compiler
error will be
generated.

Programming Tips

These elements educate readers about
common programming errors and how
to resolve them.

GLOSSARY
Glossary

All chapters provide a list of key
terms along with their definitions for
a quick recapitulation of important
terms learned.

Case Studies

Select chapters are followed by case
studies that show how C can be used
to create programs demonstrating
real-life applications.

Programming Exercises

1. Write a program which deletes all duplicate elements from
the array.

2. Write a program that tests the equality of two one-
dimensional arrays.

3. Write a program that reads an array of 100 integers. Display
all pairs of elements whose sum is 50.

We have learnt the basics of programming in C language
and concepts to write decision-making programs, let us
now apply our learning to write some useful programs.

ROMAN NUMERALS
Roman numerals are written as combinations of the seven
letters. These letters include:

I = 1 C = 100

V = 5 D = 500

X = 10 M = 1000

L = 50

Case Study 1:
Chapters 2 and 3

C
Roman Numeral Table

1 I 14 XIV 27 XXVII 150 CL
2 II 15 XV 28 XXVIII 200 CC
3 III 16 XVI 29 XXIX 300 CCC
4 IV 17 XVII 30 XXX 400 CD
5 V 18 XVIII 31 XXXI 500 D
6 VI 19 XIX 40 XL 600 DC
7 VII 20 XX 50 L 700 DCC
8 VIII 21 XXI 60 LX 800 DCCC
9 IX 22 XXII 70 LXX 900 CM

10 X 23 XXIII 80 LXXX 1000 M
11 XI 24 XXIV 90 XC 1600 MDC

Programming Exercises

Numerous exercises at the end
of every chapter test the readers’
understanding of the concepts
learned.

© Oxford University Press India. All rights reserved.

Oxfo
rd

Univ
ers

ity
 P

res
s

Preface

C is one of the most popular and successful programming
languages of all time and considered to be the origin of
all modern-day computer languages. Many of the popular
cross-platform programming languages, such as C++,
Java, Python, Objective-C, Perl, and Ruby, and scripting
languages, such as PHP, Lua, and Bash, borrow syntaxes
and functions from C.
 C is also used for programming embedded micropro-
cessors and device drivers. As many embedded systems
do not support C++, learning to develop programs using
a strict C, without advanced C++ features, is critical for
many applications including interface to hardware.
 Thus, studying C provides a good foundation to learn
advanced programming skills such as object-oriented
programming, event-driven programming, multi-thread
programming, real-time programming, embedded pro-
gramming, network programming, parallel programming,
other programming languages, as well as new and emerg-
ing computing paradigms such as grid computing and
cloud computing.

ABOUT THE BOOK
Programming in C is designed to serve as a textbook for
the first year engineering students of Anna University.
This book is developed as per the latest syllabus (2017) of
affiliated colleges.
 This book explains the fundamental concepts of the
C programming language and shows a step-by-step
approach of how to apply these concepts for solving real-

world problems. Unlike existing textbooks on C which
concentrate more on theory, this book focuses on its
applicability angle by providing numerous programming
examples and a rich set of programming exercises at the
end of each chapter.
 The salient features of the book include:
 ∑ Lucid style of presentation that makes the concepts

easy to understand
 ∑ Plenty of illustrations to support the explanations,

which help clarify the concepts in a clear manner
 ∑ Programming tips in between the text educating

readers about common programming errors and how
to avoid them

 ∑ Notes highlighting important terms and concepts
 ∑ Numerous programs that have been tested and

executed
 ∑ Glossary of important terms at the end of each

chapter for recapitulation of the important concepts
learnt

 ∑ Comprehensive exercises at the end of each chapter
to facilitate revision

 ∑ Case studies containing programs that harness the
concepts learnt in chapters

CONTENT AND COVERAGE
The book is organized into 11 chapters.
Chapter 1 provides an introduction to computer software.
It also provides an insight into different programming
paradigms, programming languages and the generations
through which these languages have evolved.

© Oxford University Press India. All rights reserved.

Oxfo
rd

Univ
ers

ity
 P

res
s

viii Preface

Chapter 2 discusses the building blocks of the C
programming language. The chapter discusses keywords,
identifiers, basic data types, constants, variables, and
operators supported by the language. Annexure 1 shows
the steps to write, compile, and execute a C program in
Unix, Linux, and Ubuntu environments.
Chapter 3 explains decision control and iterative statements
as well as special statements such as break statement,
control statement, and jump statement.
Case Study 1 includes two programs which harness the
concepts learnt in Chapters 2 and 3.
Chapter 4 deals with declaring, defining, and calling
functions. The chapter also discusses the storage classes
as well as variable scope in C. The chapter ends with the
important concept of recursive functions and a discussion
on the Tower of Hanoi problem. Annexure 2 discusses
how to create user-defined header files.
Chapter 5 focuses on the concept of arrays, including
one-dimensional, two-dimensional, and multidimensional
arrays. Finally, the operations that can be performed on
such arrays are also explained.
Case Study 2 provides an introduction to sorting and
various sorting techniques such as bubble sort, insertion
sort, and selection sort.
Chapter 6 discusses the concept of strings which are also
known as character arrays. The chapter not only focuses on
operations that can be used to manipulate strings but also
explains various operations that can be used to manipulate
the character arrays.
Chapter 7 presents a detailed overview of pointers, pointer
variables, and pointer arithmetic. The chapter also relates
the use of pointers with arrays, strings, and functions. This
helps readers to understand how pointers can be used to
write better and efficient programs. Annexure 3 explains
the process of deciphering pointer declarations.
Case Study 3 includes a program which demonstrates how
pointers can be used to access and manipulate strings.
Chapter 8 introduces two user-defined data types. The
first is a structure and the second is a union. The chapter

includes the use of structures and unions with pointers,
arrays, and functions so that the inter-connectivity between
the programming techniques can be well understood.
Annexure 4 provides an explanation about bit fields and
slack bytes.

Chapter 9 explains how data can be stored in files. The
chapter deals with opening, processing, and closing of files
though a C program. These files are handled in text mode
as well as binary mode for better clarity of the concepts.

Chapter 10 discusses the concept of pre-processor
directives. The chapter includes small program codes that
illustrate the use of different directives in a C program.
Annexure 5 provides an introduction to data structures.

Chapter 11 discusses linked list which is a preferred data
structure when memory needs to be allocated dynamically
for the data. The chapter gives the techniques to insert and
delete data from linked lists.

Case Study 4 shows how a telephone directory can be
implemented using C.

The book also provides two appendices. Appendix A
includes additional C programs, and Appendix B provides
answers to objective questions.

ACKNOWLEDGMENTS
The mammoth task of writing this book required the help
and support of many individuals. Fortunately, I have
had the wholehearted support of my family and friends.
I would like to specially thank my father Mr Janak Raj
Thareja and mother Mrs Usha Thareja, my brother Pallav,
and sisters Kimi and Rashi who are a source of abiding
inspiration and divine blessings for me. I am especially
thankful to my son Goransh who has been very patient and
cooperative in letting me realize my dreams.
 Finally, I would like to thank the editorial team at
Oxford University Press India for their help and support.

ReemaThareja

© Oxford University Press India. All rights reserved.

Oxfo
rd

Univ
ers

ity
 P

res
s

ixDetailed Contents

Brief Contents

Features of the Book iv
Companion Online Resources for Instructors and Students vi
Preface vii
Detailed Contents xi
Road Map to Syllabus xv

1. Introduction to Programming 1
2. Introduction to C 15
3. Decision Control and Looping Statements 60
4. Functions 108
5. Arrays 137
6. Strings 183
7. Pointers 216
8. Structure, Union, and Enumerated Data Types 262
9. Files 293

 10. Preprocessor Directives 328
 11. Linked Lists 347
Appendix A: Additional C Programs 367
Appendix B: Answers to Objective Questions 372

© Oxford University Press India. All rights reserved.

Oxfo
rd

Univ
ers

ity
 P

res
s

 2.4.1 Source Code Files 19
 2.4.2 Header files 19
 2.4.3 Object Files 20
 2.4.4 Binary Executable Files 20
 2.5 Compiling and Executing C Programs 20
 2.6 Using Comments 21
 2.7 C tokens 22
 2.8 Character Set in C 22
 2.9 Keywords 22
 2.10 Identifiers 23
 2.10.1 Rules for Forming Identifier Names 23
 2.11 Basic Data Types in C 23
 2.11.1 How are Float and Double Stored? 24
 2.12 Variables 25
 2.12.1 Numeric Variables 25
 2.12.2 Character Variables 25
 2.12.3 Declaring Variables 25
 2.12.4 Initializing Variables 25
 2.13 Constants 26
 2.13.1 Integer Constants 26
 2.13.2 Floating Point Constants 26
 2.13.3 Character Constants 27
 2.13.4 String Constants 27
 2.13.5 Declaring Constants 27
 2.14 Input/Output Statements in C 27
 2.14.1 Streams 27
 2.14.2 Formatting Input/Output 28
 2.14.3 printf() 28
 2.14.4 scanf() 31
 2.14.5 Examples of printf/scanf 33
 2.14.6 Detecting Errors During Data Input 35
 2.15 Operators in C 35

1. Introduction to Programming 1
 1.1 Introduction to Computer Software 1
 1.2 Classification of Computer Software 2
 1.2.1 System Software 2
 1.2.2 Application Software 5
 1.3 Programming Languages 5
 1.4 Generation of Programming Languages 6
 1.4.1 First Generation: Machine Language 6
 1.4.2 Second Generation: Assembly

Language 7
 1.4.3 Third Generation Programming

Languages 7
 1.4.4 Fourth Generation: Very High-level

Languages 8
 1.4.5 Fifth Generation Programming

Languages 8
 1.5 Programming Paradigms 9
 1.5.1 Monolithic Programming 9
 1.5.2 Procedural Programming 10
 1.5.3 Structured Programming 10
 1.5.4 Object-oriented Programming (OOP) 11

2. Introduction to C 15
 2.1 Introduction 15
 2.1.1 Background 15
 2.1.2 Characteristics of C 16
 2.1.3 Uses of C 17
 2.2 Structure of a C Program 17
 2.3 Writing the First C Program 18
 2.4 Files Used in a C Program 19

Detailed Contents

Features of the Book iv
Companion Online Resources for
Instructors and Students vi

Preface vii
Brief Contents ix
Road Map to Syllabus xv

© Oxford University Press India. All rights reserved.

Oxfo
rd

Univ
ers

ity
 P

res
s

xii Detailed Contents

 2.15.1 Arithmetic Operators 35
 2.15.2 Relational Operators 37
 2.15.3 Equality Operators 38
 2.15.4 Logical Operators 38
 2.15.5 Unary Operators 38
 2.15.6 Conditional Operator 40
 2.15.7 Bitwise Operators 41
 2.15.8 Assignment Operators 42
 2.15.9 Comma Operator 43
 2.15.10 Sizeof Operator 43
 2.15.11 Operator Precedence Chart 43
 2.16 Type Conversion and Typecasting 49
 2.16.1 Type Conversion 49
 2.16.2 Typecasting 50
 Annexure 1 59

3. Decision Control and Looping
Statements 60

 3.1 Introduction to Decision Control Statements 60
 3.2 Conditional Branching Statements 60
 3.2.1 if Statement 60
 3.2.2 if–else Statement 62
 3.2.3 if–else–if Statement 64
 3.2.4 Switch Case 68
 3.3 Iterative Statements 72
 3.3.1 while loop 72
 3.3.2 do-while Loop 75
 3.3.3 for Loop 78
 3.4 Nested Loops 81
 3.5 Break and Continue Statements 90
 3.5.1 break Statement 90
 3.5.2 continue Statement 91
 3.6 goto Statement 92
Case Study 1: Chapters 2 and 3 104

4. Functions 108
 4.1 Introduction 108
 4.1.1 Why are functions needed? 108
 4.2 Using Functions 109
 4.3 Function Declaration/Function Prototype 110
 4.4 Function Definition 111
 4.5 Function Call 111
 4.5.1 Points to Remember While Calling

Functions 112
 4.6 Return Statement 113
 4.6.1 Using Variable Number of Arguments 113
 4.7 Passing Parameters to Functions 114
 4.7.1 Call by Value 114
 4.7.2 Call by Reference 115

 4.8 Scope of Variables 118
 4.8.1 Block Scope 118
 4.8.2 Function Scope 119
 4.8.3 Program Scope 119
 4.8.4 File Scope 120
 4.9 Storage Classes 120
 4.9.1 auto Storage Class 120
 4.9.2 register Storage Class 121
 4.9.3 extern Storage Class 122
 4.9.4 static Storage Class 122
 4.9.5 Comparison of Storage Classes 123
 4.10 Recursive Functions 123
 4.10.1 Greatest Common Divisor 125
 4.10.2 Finding Exponents 125
 4.10.3 Fibonacci Series 126
 4.11 Types of Recursion 126
 4.11.1 Direct Recursion 126
 4.11.2 Indirect Recursion 126
 4.11.3 Tail Recursion 126
 4.11.4 Linear and Tree Recursion 127
 4.12 Tower of Hanoi 127
 4.13 Recursion Versus Iteration 129
Annexure 2 136

5. Arrays 137
 5.1 Introduction 137
 5.2 Declaration of Arrays 138
 5.3 Accessing the Elements of an Array 139
 5.3.1 Calculating the Address of Array

Elements 139
 5.3.2 Calculating the Length of an Array 140
 5.4 Storing Values in Arrays 140
 5.4.1 Initializing Arrays during Declaration 140
 5.4.2 Inputting Values from the Keyboard 141
 5.4.3 Assigning Values to Individual

Elements 141
 5.5 Operations on Arrays 141
 5.5.1 Traversing an Array 142
 5.5.2 Inserting an Element in an Array 147
 5.5.3 Deleting an Element from an Array 149
 5.5.4 Merging Two Arrays 151
 5.5.5 Searching for a Value in an Array 153
 5.6 Passing Arrays to functions 156
 5.7 Two-dimensional Arrays 159
 5.7.1 Declaring Two-dimensional Arrays 159
 5.7.2 Initializing Two-dimensional Arrays 161
 5.7.3 Accessing the Elements of Two-

dimensional Arrays 161
 5.8 Operations on Two-dimensional Arrays 164
 5.9 Passing Two-dimensional Arrays to

Functions 167

© Oxford University Press India. All rights reserved.

Oxfo
rd

Univ
ers

ity
 P

res
s

xiiiDetailed Contents

 5.9.1 Passing a Row 167
 5.9.2 Passing an Entire 2D Array 168
 5.10 Multidimensional Arrays 170
 5.11 Sparse Matrices 171
 5.11.1 Array Representation of Sparse

Matrices 172
 5.12 Applications of Arrays 173
 Case Study 2: Chapter 5 178

6. Strings 183
 6.1 Introduction 183
 6.1.1 Reading Strings 185
 6.1.2 Writing Strings 185
 6.1.3 Summary of Functions Used to

Read and Write Characters 186
 6.2 Suppressing Input 187
 6.2.1 Using a Scanset 187
 6.3 String Taxonomy 188
 6.4 Operations on Strings 189
 6.4.1 Finding the Length of a String 189
 6.4.2 Converting Characters of a String into

Upper Case 190
 6.4.3 Converting Characters of a String into

Lower Case 191
 6.4.4 Concatenating Two Strings to Form

a New String 191
 6.4.5 Appending a String to Another String 192
 6.4.6 Comparing Two Strings 192
 6.4.7 Reversing a String 193
 6.4.8 Extracting a Substring from Left 194
 6.4.9 Extracting a Substring from Right

of the String 195
 6.4.10 Extracting a Substring from the

Middle of a String 195
 6.4.11 Inserting a String in Another String 196
 6.4.12 Indexing 197
 6.4.13 Deleting a String from the Main

String 197
 6.4.14 Replacing a Pattern with Another Pattern in

a String 198
 6.5 Miscellaneous String and Character

Functions 199
 6.5.1 Character Manipulation Functions 199
 6.5.2 String Manipulation Functions 199
 6.6 Arrays of Strings 205

7. Pointers 216
 7.1 Understanding the Computer’s Memory 216

 7.2 Introduction to Pointers 217
 7.3 Declaring Pointer Variables 218
 7.4 Pointer Expressions and Pointer Arithmetic 220
 7.5 Null Pointers 224
 7.6 Generic Pointers 225
 7.7 Passing Arguments to Function Using

Pointers 225
 7.8 Pointers and Arrays 226
 7.9 Passing an Array to a Function 230
 7.10 Difference Between Array Name and Pointer 231
 7.11 Pointers and Strings 232
 7.12 Arrays of Pointers 235
 7.13 Pointers and 2D Arrays 237
 7.14 Pointers and 3D Arrays 239
 7.15 Function Pointers 240
 7.15.1 Initializing a Function Pointer 240
 7.15.2 Calling a Function Using a Function

Pointer 240
 7.15.3 Comparing Function Pointers 241
 7.15.4 Passing a Function Pointer as an Argument

to a Function 241
 7.16 Array of Function Pointers 241
 7.17 Pointers to Pointers 242
 7.18 Memory Allocation in C Programs 243
 7.19 Memory Usage 243
 7.20 Dynamic Memory Allocation 243
 7.20.1 Memory Allocations Process 244
 7.20.2 Allocating a Block of Memory 244
 7.20.3 Releasing the Used Space 245
 7.20.4 To Alter the Size of Allocated

Memory 245
 7.21 Drawbacks of Pointers 247
Annexure 3 256
 Case Study 3: Chapters 6 and 7 259

8. Structure, Union, and Enumerated
Data Types 262

 8.1 Introduction 262
 8.1.1 Structure Declaration 262
 8.1.2 Typedef Declarations 264
 8.1.3 Initialization of Structures 264
 8.1.4 Accessing the Members of a

Structure 265
 8.1.5 Copying and Comparing Structures 265
 8.2 Nested Structures 268
 8.3 Arrays of Structures 269
 8.4 Structures and Functions 271
 8.4.1 Passing Individual Members 271
 8.4.2 Passing the Entire Structure 271
 8.4.3 Passing Structures Through Pointers 274

© Oxford University Press India. All rights reserved.

Oxfo
rd

Univ
ers

ity
 P

res
s

xiv Detailed Contents

8.5 Self-referential Structures 279
8.6 Unions 279

8.6.1 Declaring a Union 279
8.6.2 Accessing a Member of a Union 280
8.6.3 Initializing Unions 280

8.7 Arrays of Union Variables 281
8.8 Unions Inside Structures 281

 8.9 Structures Inside Unions 282
 8.10 Enumerated Data Type 282

8.10.1 enum Variables 283
8.10.2 Using the Typedef Keyword 284
8.10.3 Assigning Values to Enumerated

Variables 284
8.10.4 Enumeration Type Conversion 284
8.10.5 Comparing Enumerated Types 284
8.10.6 Input/Output Operations on Enumerated

Types 284
Annexure 4 291

9. Files 293
9.1 Introduction to Files 293

9.1.1 Streams in C 293
9.1.2 Buffer Associated with File Stream 294
9.1.3 Types of Files 294

9.2 Using Files in C 295
9.2.1 Declaring a File Pointer Variable 295
9.2.2 Opening a File 295
9.2.3 Closing a File Using fclose() 297

9.3 Read Data From Files 297
9.3.1 fscanf() 297
9.3.2 fgets() 298
9.3.3 fgetc() 299
9.3.4 fread() 299

9.4 Writing Data to Files 300
9.4.1 fprintf() 300
9.4.2 fputs () 302
9.4.3 fputc () 302
9.4.4 fwrite () 302

9.5 Detecting the End-of-file 303
9.6 Error Handling During File Operations 304

9.6.1 clearerr() 304
9.6.2 perror() 305

9.7 Accepting Command Line Arguments 305
9.8 Functions for Selecting a Record Randomly 319

9.8.1 fseek() 319
9.8.2 ftell() 321
9.8.3 rewind () 321

9.8.4 fgetpos () 322
9.8.5 fsetpos () 322

 9.9 remove () 323
 9.10 Renaming the File 323
 9.11 Creating a Temporary File 323

10. Preprocessor Directives 328
 10.1 Introduction 328
 10.2 Types of Preprocessor Directives 328
 10.3 #define 329

10.3.1 Object-like Macro 329
10.3.2 Function-like Macros 330
10.3.3 Nesting of Macros 331
10.3.4 Rules for Using Macros 331
10.3.5 Operators Related to Macros 331

 10.4 #include 332
 10.5 #undef 333
 10.6 #line 333
 10.7 Pragma Directives 334
 10.8 Conditional Directives 336

10.8.1 #ifdef 336
10.8.2 #ifndef 336
10.8.3 #if Directive 337
10.8.4 #else Directive 337
10.8.5 #elif Directive 337
10.8.6 #endif Directive 338

 10.9 Defined Operator 338
 10.10 #error directive 339
 10.11 Predefined Macro Names 339
Annexure 5 343

11. Linked Lists 347
 11.1 Introduction 347
 11.2 Linked Lists Versus Arrays 348
 11.3 Memory Allocation and Deallocation for a Linked

List 349
 11.4 Different Types of Linked Lists 350
 11.5 Singly Linked Lists 351

11.5.1 Traversing a Singly Linked List 351
11.5.2 Searching for a Value in a Linked

List 351
11.5.3 Inserting a New Node in a Linked

List 352
 Case Study 4: Chapters 8, 9, and 11 363

Appendix A: Additional C Programs 367
Appendix B: Answers to Objective Questions 372

© Oxford University Press India. All rights reserved.

Oxfo
rd

Univ
ers

ity
 P

res
s

Introduction to
Programming

1

1.1 INTRODUCTION TO COMPUTER
SOFTWARE

When we talk about a computer, we actually mean two
things (Figure 1.1):
∑ First is the computer hardware that does all the physical

work computers are known for.
∑ Second is the computer software that commands the

hardware what to do and how to do it.

Computer system

Computer hardware Computer software

System software Application software

Figure 1.1 Parts of a computer system

 If we think of computer as a living being, then
the hardware would be the body that does things like
seeing with eyes and lifting objects with hands, where-
as the software would be the intelligence which helps

in interpreting the images that are seen by the eyes and
instructing the arms how to lift objects.
 Since computer hardware is a digital machine, it can
only understand two basic states: on and off. Computer
software was developed to make efficient use of this
binary system which is used internally by all computers to
instruct the hardware to perform meaningful tasks.
 The computer hardware cannot think and make
decisions on its own. So, it cannot be used to analyse
a given set of data and find a solution on its own. The
hardware needs a software (a set of programs) to instruct
what has to be done. A program is a set of instructions that
are arranged in a sequence to guide a computer to find
a solution for a given problem. The process of writing a
program is called programming.
 Computer software is written by computer programmers
using a programming language. The programmer writes a
set of instructions (program) using a specific programming
language. Such instructions are known as the source code.
Another computer program called a compiler is used
which transforms the source code into a language that
the computer can understand. The result is an executable
computer program, which is another software.
 Examples of computer software include:
∑ Computer games which are widely used as a form of

entertainment.

∑  Hardware ∑  System soft are ∑  Compiler, interpreter, linker, loader
∑  Application so� are ∑  Generation of p ogramming languages ∑  Machine language
∑  Assembly language ∑  Monolithic programming ∑  Structured programming
∑  Procedural programming ∑  Object-oriented programming

Takeaways

© Oxford University Press India. All rights reserved.

Oxfo
rd

Univ
ers

ity
 P

res
s

2 Programming in C

∑ Driver software which allows a computer to interact
with hardware devices such as printers, scanners, and
video cards.

∑ Educational software which includes programs and
games that help in teaching and providing drills to help
memorize facts. Educational software can be diversely
used—from teaching computer-related activities like
typing to higher education subjects like Chemistry.

∑ Media players and media development software that are
specifically designed to play and/or edit digital media
files such as music and videos.

∑ Productivity software is an older term used to denote
any program that allows users to be more productive
in a business environment. Examples of such software
include word processors, database management utilities,
and presentation software.

∑ Operating system software which helps in coordinating
system resources and allows execution of other
programs. Some popular operating systems are
Windows Vista, Mac OS X, and Linux.

1.2 CLASSIFICATION OF COMPUTER
SOFTWARE

Computer software can be broadly classified into two
groups: system software and application software.

∑ System software [according to Nutt, 1997] provides
a general programming environment in which
programmers can create specific applications to suit their
needs. This environment provides new functions that are
not available at the hardware level and performs tasks
related to execution of application programs.

 System software represents programs that allow the
hardware to run properly. System software is transparent
to the user and acts as an interface between the hardware
of the computer and the application software that users
need to run on the computer. Figure 1.2 illustrates the
relationship between application software, system
software, and hardware.

∑ Application software is designed to solve a particular
problem for users. It is generally what we think of when
we say the word ‘computer programs’. Examples of
application software include spreadsheets, database
systems, desktop publishing systems, program
development software, games, web browsers, among

others. Simply put, application software represents
programs that allow users to do something besides
simply running the hardware.

Application programs (games, spreadsheets,
word processors, database, web browsers)

System Software (operating system)

Computer Hardware
(printer, mouse, scanner, keyboard, CPU, disk)

User 1 User 2 User N

Figure 1.2 Relationship b tween hardware, system
soft are, and application so� are

1.2.1 System Software
System software is software designed to operate the
computer hardware and to provide and maintain a platform
for running application software.
 The most widely used system software are discussed in
the following sections:

Computer BIOS and Device Drivers
The computer BIOS and device drivers provide basic
functionality to operate and control the hardware connected
to or built into the computer.
 BIOS or Basic Input/Output System is a de facto
standard defining a firmware interface. BIOS is built into
the computer and is the first code run by the computer
when it is switched on. The key role of BIOS is to load
and start the operating system.
 When the computer starts, the first function that BIOS
performs is to initialize and identify system devices such
as the video display card, keyboard and mouse, hard disk,
CD/DVD drive, and other hardware. In other words, the
code in the BIOS chip runs a series of tests called POST
(Power On Self Test) to ensure that the system devices are
working correctly.
 BIOS then locates software held on a peripheral device
such as a hard disk or a CD, and loads and executes that
software, giving it control of the computer. This process is
known as booting.

© Oxford University Press India. All rights reserved.

Oxfo
rd

Univ
ers

ity
 P

res
s

3Introduction o Programming

 BIOS is stored on a ROM chip built into the system and
has a user interface like that of a menu (Figure 1.3) that
can be accessed by pressing a certain key on the keyboard
when the computer starts. The BIOS menu can enable the

user to configure hardware, set the system clock, enable or
disable system components, and most importantly, select
which devices are eligible to be a potential boot device
and set various password prompts.

Figure 1.3 BIOS menu

 To summarize, BIOS performs the following functions:

∑ Initializes the system hardware
∑ Initializes system registers
∑ Initializes power management system
∑ Tests RAM
∑ Tests all the serial and parallel ports
∑ Initializes CD/DVD drive and hard disk controllers
∑ Displays system summary information

Operating System
The primary goal of an operating system is to make
the computer system (or any other device in which it is
installed like a cell phone) convenient and efficient to use.
An operating system offers generic services to support
user applications.

 From users’ point of view the primary consideration
is always the convenience. Users should find it easy to
launch an application and work on it. For example, we
use icons which give us clues about applications. We
have a different icon for launching a web browser, e-mail
application, or even a document preparation application.
In other words, it is the human–computer interface which
helps to identify and launch an application. The interface
hides a lot of details of the instructions that perform all
these tasks.
 Similarly, if we examine the programs that help us in using
input devices like keyboard/mouse, all the complex details of
the character reading programs are hidden from users. We
as users simply press buttons to perform the input operation
regardless of the complexity of the details involved.
 An operating system ensures that the system resources
(such as CPU, memory, I/O devices) are utilized efficiently.

© Oxford University Press India. All rights reserved.

Oxfo
rd

Univ
ers

ity
 P

res
s

4 Programming in C

For example, there may be many service requests on a web
server and each user request needs to be serviced. Moreover,
there may be many programs residing in the main memory.
Therefore, the system needs to determine which programs
are currently being executed and which programs need to
wait for some I/O operation. This information is necessary
because the programs that need to wait can be suspended
temporarily from engaging the processor. Hence, it is
important for an operating system to have a control policy
and algorithm to allocate the system resources.

Utility Software
Utility software is used to analyse, configure, optimize, and
maintain the computer system. Utility programs may be
requested by application programs during their execution
for multiple purposes. Some of them are as follows:

∑ Disk defragmenters can be used to detect computer files
whose contents are broken across several locations on
the hard disk, and move the fragments to one location in
order to increase efficiency.

∑ Disk checkers can be used to scan the contents of a hard
disk to find files or areas that are either corrupted in some
way, or were not correctly saved, and eliminate them in
order to make the hard drive operate more efficiently.

∑ Disk cleaners can be used to locate files that are
either not required for computer operation, or take up
considerable amounts of space. Disk cleaners help users
to decide what to delete when their hard disk is full.

∑ Disk space analysers are used for visualizing the disk
space usage by getting the size for each folder (including
subfolders) and files in a folder or drive.

∑ Disk partitions utilities are used to divide an individual
drive into multiple logical drives, each with its own file
system. Each partition is then treated as an individual
drive.

∑ Backup utilities can be used to make a copy of all
information stored on a disk. In case a disk failure
occurs, backup utilities can be used to restore the entire
disk. Even if a file gets deleted accidentally, the backup
utility can be used to restore the deleted file.

∑ Disk compression utilities can be used to enhance the
capacity of the disk by compressing/decompressing the
contents of a disk.

∑ File managers can be used to provide a convenient
method of performing routine data management
tasks such as deleting, renaming, cataloguing, moving,
copying, merging, generating, and modifying data sets.

∑ System profilers can be used to provide detailed
information about the software installed and hardware
attached to the computer.

∑ Anti-virus utilities are used to scan for computer viruses.
∑ Data compression utilities can be used to output a file

with reduced file size.
∑ Cryptographic utilities can be used to encrypt and

decrypt files.
∑ Launcher applications can be used as a convenient

access point for application software.
∑ Registry cleaners can be used to clean and optimize the

Windows operating system registry by deleting the old
registry keys that are no longer in use.

∑ Network utilities can be used to analyse the computer’s
network connectivity, configure network settings, check
data transfer, or log events.

∑ Command line interface (CLI) and Graphical user
interface (GUI) can be used to make changes to the
operating system.

Compiler, Interpreter, Linker, and Loader

Compiler It is a special type of program that transforms
the source code written in a programming language (the
source language) into machine language comprising just
two digits, 1s and 0s (the target language). The resultant
code in 1s and 0s is known as the object code. The object
code is the one which will be used to create an executable
program.
 Therefore, a compiler is used to translate source code
from a high-level programming language to a lower level
language (e.g., assembly language or machine code).
 If the source code contains errors then the compiler will
not be able to perform its intended task. Errors resulting
from the code not conforming to the syntax of the
programming language are called syntax errors. Syntax
errors may be spelling mistakes, typing mistakes, etc.
Another type of error is logical error which occurs when
the program does not function accurately. Logical errors
are much harder to locate and correct.
 The work of a compiler is simply to translate human
readable source code into computer executable machine
code. It can locate syntax errors in the program (if any)
but cannot fix it. Until and unless the syntactical errors
are rectified the source code cannot be converted into the
object code.

© Oxford University Press India. All rights reserved.

Oxfo
rd

Univ
ers

ity
 P

res
s

5Introduction o Programming

Interpreter Like the compiler, the interpreter also
executes instructions written in a high-level language.
Basically, a program written in a high-level language can
be executed in any of the two ways. First by compiling
the program and second, to pass the program through an
interpreter.
 While the compiler translates instructions written in
high-level programming language directly into the machine
language, the interpreter, on the other hand, translates
the instructions into an intermediate form, which it then
executes. This clearly means that the interpreter interprets
the source code line by line. This is in striking contrast with
the compiler which compiles the entire code in one go.
 Usually, a compiled program executes faster than an
interpreted program. However, the big advantage of an
interpreted program is that it does not need to go through
the compilation stage during which machine instructions
are generated. This process can be time consuming if the
program is long. Moreover, the interpreter can immediately
execute high-level programs.
 All in all, compilers and interpreters both achieve
similar purposes, but inherently different as to how they
achieve that purpose.

Linker (link editor binder) It is a program that combines
object modules to form an executable program. Gener-
ally, in case of a large program, the programmers prefer
to break a code into smaller modules as this simplifies the
programming task. Eventually, when the source code of all
the modules has been converted into object code, we need
to put all the modules together. This is the job of the linker.
Usually, the compiler automatically invokes the linker as
the last step in compiling a program.

Loader It is a special type of program that copies programs
from a storage device to main memory, where they can be
executed. However, in this book we will not go into the
details of how a loader actually works. This is because
the functionality of a loader is generally hidden from the
programmer. As a programmer, it suffices to learn that the
task of a loader is to bring the program and all its related
files into the main memory from where it can be executed
by the CPU.

1.2.2 Application Software
Application software is a type of computer software that
employs the capabilities of a computer directly to perform
a user-defined task. This is in contrast with system

software which is involved in integrating a computer’s
capabilities, but typically does not directly apply them in
the performance of tasks that benefit users.
 To better understand application software consider an
analogy where hardware would depict the relationship of
an electric light bulb (an application) to an electric power
generation plant (a system) that depicts the software.
 The power plant merely generates electricity which
is not by itself of any real use until harnessed to an
application like the electric light that performs a service
which actually benefits users.
 Typical examples of software applications are word
processors, spreadsheets, media players, education software,
CAD, CAM, data communication software, and statistical
and operational research software. Multiple applications
bundled together as a package are sometimes referred to as
an application suite.

1.3 PROGRAMMING LANGUAGES
A programming language is a language specifically
designed to express computations that can be performed
by the computer. Programming languages are used to
create programs that control the behaviour of a system,
to express algorithms, or as a mode of human–computer
communication.
 Usually, programming languages have a vocabulary
of syntax and semantics for instructing a computer to
perform specific tasks. The term programming language
usually refers to high-level languages, such as BASIC,
C, C++, COBOL, FORTRAN, Ada, and Pascal to name a
few. Each of these languages has a unique set of keywords
(words that it understands) and a special syntax for
organizing program instructions.
 While high-level programming languages are easy
for humans to read and understand, the computer
actually understands the machine language that consists
of numbers only. Each type of CPU has its own unique
machine language.
 In between the machine languages and high-level
languages, there is another type of language known as
assembly language. Assembly languages are similar to
machine languages, but they are much easier to program
because they allow a programmer to substitute names for
numbers.
 However, irrespective of what language the programmer
uses, the program written using any programming
language has to be converted into machine language so

© Oxford University Press India. All rights reserved.

Oxfo
rd

Univ
ers

ity
 P

res
s

6 Programming in C

that the computer can understand it. There are two ways to
do this: compile the program or interpret the program
 The question of which language is the best depends on
the following factors:

∑ The type of computer on which the program has to be
executed

∑ The type of program
∑ The expertise of the programmer

 For example, FORTRAN is a particularly good
language for processing numerical data, but it does not
lend itself very well to organizing large programs. Pascal
can be used for writing well-structured and readable
programs, but it is not as flexible as the C programming
language. C++ goes one step ahead of C by incorporating
powerful object-oriented features, but it is complex and
difficult to learn.

1.4 GENERATION OF PROGRAMMING
LANGUAGES

We now know that programming languages are the
primary tools for creating software. As of now, hundreds
of programming languages exist in the market, some
more used than others, and each claiming to be the best.
However, back in the 1940s when computers were being
developed there was just one language—the machine
language.
 The concept of generations of programming languages
(also known as levels) is closely connected to the advances
in technology that brought about computer generations.
The four generations of programming languages include:

∑ Machine language
∑ Assembly language
∑ High-level language (also known as third generation

language or 3GL)
∑ Very high-level language (also known as fourth

generation language or 4GL)

1.4.1 First Generation: Machine Language
Machine language was used to program the first stored
program on computer systems. This is the lowest level
of programming language. The machine language is the
only language that the computer understands. All the
commands and data values are expressed using 1 and 0s,
corresponding to the ‘on’ and ‘off’ electrical states in a
computer.

 In the 1950s each computer had its own native
language, and programmers had primitive systems for
combining numbers to represent instructions such as add
and subtract. Although there were similarities between
each of the machine languages, a computer could not
understand programs written in another machine language
(Figure 1.4).

D000000A D000

D000000F D009

D000000B D009

D009

D009

D0 0Q

DOD0

D00C

D0E4

Dd0D

Dd3D

C1

C7

CF

D2

CF

FF27

FF53

CF

FF54

CF

CF

FF24

FF55

MACHINE LANGUAGE

This is an example of a machine language program that will add
two numbers and find their average. It is in hexadecimal
notation instead of binary notation because this is how the
computer presented the code to the programmer.

Figure 1.4 A machine language program

 In machine language, all instructions, memory locations,
numbers, and characters are represented in strings of
1s and 0s. Although machine-language programs are
typically displayed with the binary numbers represented
in octal (base 8) or hexadecimal (base 16), these programs
are not easy for humans to read, write, or debug.
 The main advantage of machine language is that the
code can run very fast and efficiently, since it is directly
executed by the CPU.
 However, on the downside, the machine language is
difficult to learn and is far more difficult to edit if errors
occur. Moreover, if you want to add some instructions
into memory at some location, then all the instructions
after the insertion point would have to be moved down
to make room in memory to accommodate the new
instructions.
 Last but not the least, the code written in machine
language is not portable across systems and to transfer
the code to a different computer it needs to be completely
rewritten since the machine language for one computer
could be significantly different from another computer.

© Oxford University Press India. All rights reserved.

Oxfo
rd

Univ
ers

ity
 P

res
s

7Introduction o Programming

Architectural considerations made portability a tough
issue to resolve.

1.4.2 Second Generation: Assembly Language

The second generation of programming language includes
the assembly language. Assembly languages are symbolic
programming languages that use symbolic notation to
represent machine-language instructions. These languages
are closely connected to machine language and the internal
architecture of the computer system on which they are
used. Since they are close to the machine, assembly
language is also called low-level language. Nearly all
computer systems have an assembly language available
for use.
 Assembly language developed in the mid 1950s
was a great leap forward. It used symbolic codes also
known as mnemonic codes that are easy-to-remember
abbreviations, rather than numbers. Examples of these
codes include ADD for add, CMP for compare, MUL for
multiply, etc.
 Assembly language programs consist of a series of
individual statements or instructions that instruct the
computer what to do. Basically, an assembly language
statement consists of a label, an operation code, and one
or more operands.
 Labels are used to identify and reference instructions in
the program. The operation code (opcode) is a mnemonic
that specifies the operation that has to be performed such
as move, add, subtract, or compare. The operand specifies
the register or the location in main memory where the data
to be processed is located.
 However, like the machine language, the statement
or instruction in the assembly language will vary from
machine to another because the language is directly
related to the internal architecture of the computer and is
not designed to be machine independent. This makes the
code written in assembly language less portable as the
code written for one machine will not run on machines
from a different or sometimes even the same manufacturer.
 No doubt, the code written in assembly language will be
very efficient in terms of execution time and main memory
usage as the language is also close to the computer.
 Programs written in assembly language need a
translator often known as assembler to convert them
into machine language. This is because the computer will
understand only the language of 1s and 0s and will not
understand mnemonics like ADD and SUB.

 The following instructions are a part of assembly
language code to illustrate addition of two numbers:

MOV AX,4 Stores value 4 in the AX

register of CPU

MOV BX,6 Stores value 6 in the BX

register of CPU

ADD AX,BX Adds the contents of AX and BX

registers. Stores the result in

AX register

 Although assembly languages are much better to
program as compared to the machine language, they still
require the programmer to think on the machine’s level.
Even today, some programmers still use assembly language
to write parts of applications where speed of execution is
critical, such as video games but most programmers today
have switched to third or fourth generation programming
languages.

1.4.3 Third Generation Programming
 Languages
A third generation programming language (3GL) is
a refinement of the second-generation programming
language. The 2GL languages brought logical structure to
software. The third generation was introduced to make the
languages more programmer friendly.
 Third Generation Programming Languages spurred the
great increase in data processing that occurred in the 1960s
and 1970s. In these languages, the program statements
are not closely related to the internal architecture of the
computer and is therefore often referred to as high-level
languages.
 Generally, a statement written in a high-level program-
ming language will expand into several machine language
instructions. This is in contrast to assembly languages,
where one statement would generate one machine lan-
guage instruction. Third Generation Programming Lan-
guages made programming easier, efficient, and less prone
to errors.
 High-level languages fall somewhere between natu-
ral languages and machine languages. Third Generation
Programming Languages include languages such as FOR-
TRAN (FORmula TRANslator) and COBOL (COmmon
Business Oriented Language) that made it possible for
scientists and business people to write programs using fa-
miliar terms instead of obscure machine instructions.
 The first widespread use of high-level languages in the
early 1960s changed programming into something quite
different from what it had been. Programs were written in

© Oxford University Press India. All rights reserved.

Oxfo
rd

Univ
ers

ity
 P

res
s

8 Programming in C

statements like English language statements, making them
more convenient to use and giving the programmer more
time to address a client’s problems.
 Although 3GLs relieve the programmer of demanding
details, they do not provide the flexibility available in low-
level languages. However, a few high-level languages
like C and FORTRAN combine some of the flexibility
of assembly language with the power of high-level
languages, but these languages are not well suited to an
amateur programmer.
 While some high-level languages were designed to serve
a specific purpose (such as controlling industrial robots
or creating graphics), other languages were flexible and
considered to be general-purpose languages. Most of the
programmers preferred to use general-purpose high-level
languages like BASIC (Beginners’ All-purpose Symbolic
Instruction Code), FORTRAN, PASCAL, COBOL, C++, or
Java to write the code for their applications.
 Again, a translator is needed to translate the instructions
written in high-level language into computer-executable
machine language. Such translators are commonly known
as interpreters and compilers. Each high-level language
has many compilers.
 For example, the machine language generated by one
computer’s C compiler is not the same as the machine
language of some other computer. Therefore, it is necessary
to have a C compiler for each type of computer on which
the C program has to be executed.
 Third generation programming languages have made
it easier to write and debug programs, which gives
programmers more time to think about its overall logic.
The programs written in such languages are portable
between machines. For example, a program written in
standard C can be compiled and executed on any computer
that has a standard C compiler.

1.4.4 Fourth Generation: Very High-Level
Languages

With each generation, programming languages started
becoming easier to use and more like natural languages.
However, fourth generation programming languages
(4GLs) are a little different from their its prior generation
because they are basically non-procedural. When writing
code using a procedural language, the programmer has to
tell the computer how a task is done—add this, compare
that, do this if the condition is true, and so on, in a very
specific step-by-step manner. In striking contrast, while
using a non-procedural language the programmers define

only what they want the computer to do, without supplying
all the details of how it has to be done.
 There is no standard rule that defines what a 4GL is but
certain characteristics of such languages include:

∑ the code comprising instructions are written in English-
like sentences;

∑ they are non-procedural, so users concentrate on ‘what’
instead of the ‘how’ aspect of the task;

∑ the code is easier to maintain;
∑ the code enhances the productivity of the programmers

as they have to type fewer lines of code to get something
done. It is said that a programmer becomes 10 times
more productive when he writes the code using a 4GL
than using a 3GL.

 A typical example of a 4GL is the query language
that allows a user to request information from a database
with precisely worded English-like sentences. A query
language is used as a database user interface and hides the
specific details of the database from the user. For example,
when working with structured query language (SQL),
the programmer just needs to remember a few rules of
syntax and logic, and it is easier to learn than COBOL
or C.
 Let us take an example in which a report has to be
generated that displays the total number of students
enrolled in each class and in each semester. Using a 4GL,
the request would look similar to one that follows:

TABLE FILE ENROLLMENT

SUM STUDENTS BY SEMESTER BY CLASS

 So we see that a 4GL is much simpler to learn and work
with. The same code if written in C language or any other
3GL would require multiple lines of code to do the same
task.
 Fourth generation programming languages are still
evolving, which makes it difficult to define or standardize
them. The only downside of a 4GL is that it does not
make efficient use of the machine’s resources. However,
the benefit of executing a program fast and easily, far
outweighs the extra costs of running it.

1.4.5 Fifth Generation Programming Languages
Fifth generation programming languages (5GLs) are cen-
tred on solving problems using constraints given to the
program, rather than using an algorithm written by a pro-
grammer. Most constraint-based and logic programming
languages and some declarative languages form a part of

© Oxford University Press India. All rights reserved.

Oxfo
rd

Univ
ers

ity
 P

res
s

9Introduction o Programming

the fifth-generation languages. Fifth generation program-
ming languages are widely used in artificial intelligence
research. Typical examples of 5GLs include Prolog,
OPS5, and Mercury.
 Another aspect of a 5GL is that it contains visual tools
to help develop a program. A good example of a fifth
generation language is Visual Basic.
 So taking a forward leap than the 4GLs, 5GLs are
designed to make the computer solve a given problem
without the programmer. While working with a 4GL, the
programmer had to write specific code to do a work but
with 5GL, the programmer only needs to worry about
what problems need to be solved and what conditions need
to be met, without worrying about how to implement a
routine or algorithm to solve them.
 Generally, 5GLs were built upon Lisp, many originating
on the Lisp machine, such as ICAD. Then, there are many
frame languages such as KL-ONE.
 In the 1990s, 5GLs were considered to be the wave of
the future, and some predicted that they would replace all
other languages for system development (except the low-
level languages). In 1982 to 1993 Japan had put much
research and money into their fifth generation computer
systems project, hoping to design a massive computer
network of machines using these tools. But when larger
programs were built, the flaws of the approach became
more apparent. Researchers began to observe that starting
from a set of constraints for defining a particular problem,
then deriving an efficient algorithm to solve the problem
is a very difficult task. All these things could not be
automated and still requires the insight of a programmer.
 However, today the fifth-generation languages are back
as a possible level of computer language. Software vendors
across the globe currently claim that their software meets
the visual ‘programming’ requirements of the 5GL concept.

1.5 PROGRAMMING PARADIGMS
A programming paradigm is a fundamental style of
programming that defines how the structure and basic
elements of a computer program will be built. The
style of writing programs and the set of capabilities
and limitations that a particular programming language
has depends on the programming paradigm it supports.
While some programming languages strictly follow a
single paradigm, others may draw concepts from more
than one. The sweeping trend in the evolution of high-
level programming languages has resulted in a shift in
programming paradigm. These paradigms, in sequence of
their application, can be classified as follows:

∑ Monolithic programming—emphasizes on finding a
solution

∑ Procedural programming—lays stress on algorithms
∑ Structured programming—focuses on modules
∑ Object-oriented programming—emphasizes on classes

and objects
∑ Logic-oriented programming—focuses on goals usually

expressed in predicate calculus
∑ Rule-oriented programming—makes use of ‘if-then-

else’ rules for computation
∑ Constraint-oriented programming—utilizes invariant

relationships to solve a problem

Each of these paradigms has its own strengths and
weaknesses and no single paradigm can suit all
applications. For example, for designing computation-
intensive problems, procedure-oriented programming
is preferred; for designing a knowledge base, rule-
based programming would be the best option; and for
hypothesis derivation, logic-oriented programming is
used. In this book, we will discuss only the first four
paradigms.

1.5.1 Monolithic Programming
Programs written using monolithic programming languages
such as assembly language and BASIC consist of global data
and sequential code. The global data can be accessed and
modified (knowingly or mistakenly) from any part of the
program, thereby posing a serious threat to its integrity. A
sequential code is one in which all instructions are executed
in the specified sequence. In order to change the sequence of
instructions, jump statements or ‘goto’ statements are used.
Figure 1.5 shows the structure of a monolithic program.
As the name suggests, monolithic programs have just one
program module as
such programming
languages do not
support the concept of
subroutines. Therefore,
all the actions required
to complete a particular
task are embedded
within the same
application itself. This
not only makes the size
of the program large but
also makes it difficult
to debug and maintain.

ADB 10

BDB 20

SUM DB?

Global data

Sequential
code with
JMP
instruction

MOV AX, A

ADD AX, B

MOV SUM, AX

JMP STOP

STOP: EXIT

................

Figure 1.5 Structure of a
monolithic program

© Oxford University Press India. All rights reserved.

Oxfo
rd

Univ
ers

ity
 P

res
s

10 Programming in C

For all these reasons, monolithic programming language
is used only for very small and simple applications where
reusability is not a concern.

1.5.2 Procedural Programming
In procedural lan-
guages, a program is
divided into subrou-
tines that can access
global data. To avoid
repetition of code,
each subroutine per-
forms a well-defined
task. A subroutine
that needs the ser-
vice provided by an-

other subroutine can call that subroutine. Therefore, with
‘jump’, ‘goto’, and ‘call’ instructions, the sequence of ex-
ecution of instructions can be altered. Figure 1.6 shows the
structure of a procedural language. FORTRAN and CO-
BOL are two popular procedural programming languages.

Advantages

∑ The only goal is to write correct programs.
∑ Programs are easier to write as compared to monolithic

programming.

Disadvantages

∑ No concept of reusability
∑ Requires more time and effort to write programs
∑ Programs are difficult to maintain
∑ Global data is shared and therefore may get altered

(mistakenly)

1.5.3 Structured Programming
Structured programming, also referred to as modular
programming, was first suggested by mathematicians,
Corrado Bohm and Guiseppe Jacopini in 1966. It was
specifically designed to enforce a logical structure on the
program to make it more efficient and easier to understand
and modify. Structured programming was basically
defined to be used in large programs that require large
development team to develop different parts of the same
program. Structured programming employs a top-down
approach in which the overall program structure is broken

Global data

Program

Subroutine

Figure 1.6 Structure of a
procedural program

down into separate modules. This allows the code to be
loaded into memory more efficiently and also be reused
in other programs. Modules are coded separately and
once a module is written and tested individually, it is then
integrated with other modules to form the overall program
structure (refer to Fig. 1.7). Structured programming is,
therefore, based on modularization which groups related
statements together into modules. Modularization makes it
easier to write, debug, and understand the program. Ideally,
modules should not be longer than a page. It is always easy
to understand a series of 10 single-page modules than a
single 10-page program. For large and complex programs,
the overall program structure may further require the
need to break the modules into subsidiary pieces. This
process continues until an individual piece of code can
be written easily. Almost every modern programming
language similar to C, Pascal, etc., supports the concepts
of structured programming. In addition to the techniques
of structured programming for writing modules, it also
focuses on structuring its data. In structured programming,
the program flow follows a simple sequence and usually
avoids the use of ‘goto’ statements. Besides sequential
flow, structured programming also supports selection and
repetition as mentioned here.

∑ Selection allows for choosing any one of a number of
statements to execute, based on the current status of the
program. Selection statements contain keywords such
as ‘if’, ‘then’, ‘end if’, or ‘switch’ that help to identify
the order as a logical executable.

∑ In repetition, a selected statement remains active until
the program reaches a point where there is a need for
some other action to take place. It includes keywords
such as ‘repeat’, ‘for’, or ‘do… until’. Essentially,
repetition instructs the program as to how long it needs
to continue the function before requesting further
instructions.

Global data

Program

Modules that have
local data and

code

Figure 1.7 Structured program

© Oxford University Press India. All rights reserved.

Oxfo
rd

Univ
ers

ity
 P

res
s

11Introduction o Programming

Advantages

∑ The goal of structured programming is to write correct
programs that are easy to understand and change.

∑ Modules enhance programmers’ productivity by
allowing them to look at the big picture first and focus
on details later.

∑ With modules, many programmers can work on a
single, large program, with each working on a different
module.

∑ A structured program takes less time to be written than
other programs. Modules or procedures written for one
program can be reused in other programs as well.

∑ Each module performs a specific task.
∑ Each module has its own local data.
∑ A structured program is easy to debug because each

procedure is specialized to perform just one task and
every procedure can be checked individually for the
presence of any error. In striking contrast, unstructured
programs consist of a sequence of instructions that are
not grouped for specific tasks. Their logic is cluttered
with details and, therefore, difficult to follow.

∑ Individual procedures are easy to change as well as
understand. In a structured program, every procedure
has meaningful names and has clear documentation
to identify the task performed by it. Moreover,
a correctly written structured program is self-
documenting and can be easily understood by another
programmer.

∑ More emphasis is given on the code and the least
importance is given to the data.

Disadvantages

∑ Not data-centred
∑ Global data is shared and therefore may get inadvertently

modified
∑ Main focus is on functions

1.5.4 Object-oriented Programming (OOP)
With the increase in size and complexity of programs,
there was a need for a new programming paradigm that
could help to develop maintainable programs. To
implement this, the flaws in previous paradigms had to
be corrected. Consequently, OOP was developed. It treats
data as a critical element in the program development
and restricts its flow freely around the system. We have
seen that monolithic, procedural, and structured

programming paradigms are task-based as they focus on
the actions the program should accomplish. However,
the object-oriented paradigm is task-based and data-
based. In this paradigm, all the relevant data and tasks
are grouped together in entities known as objects (refer
to Fig. 1.8). For example, consider a list of numbers. The
procedural or structured programming paradigm
considers this list as
merely a collection of
data. Any program that
accesses this list must
have some procedures or
functions to process this
list. For example, to find
the largest number or to
sort the numbers in the
list, we need specific
procedures or functions to
do the task. Therefore, the
list is a passive entity as it
is maintained by a
controlling program rather
than having the
responsibility of
maintaining itself. However, in the object-oriented
paradigm, the list and the associated operations are
treated as one entity known as an object. In this approach,
the list is considered an object consisting of the list,
along with a collection of routines for manipulating the
list. In the list object, there may be routines for adding a
number to the list, deleting a number from the list, sorting
the list, etc. The major difference between OOP and
traditional approaches is that the program accessing this
list need not contain procedures for performing tasks;
rather, it uses the routines provided in the object. In other
words, instead of sorting the list as in the procedural
paradigm, the program asks the list to sort itself.
Therefore, we can conclude that the object-oriented
paradigm is task-based (as it considers operations) as
well as data-based (as these operations are grouped with
the relevant data).
 The striking features of OOP include the following:

∑ Programs are data centred.
∑ Programs are divided in terms of objects and not

procedures.
∑ Functions that operate on data are tied together with the

data.
∑ Data is hidden and not accessible by external functions.

Objects of a program
interact by sending

messages to each other

Object 1

Object 2

Object 3

Object 4

Figure 1.8 Object-oriented
paradigm

© Oxford University Press India. All rights reserved.

Oxfo
rd

Univ
ers

ity
 P

res
s

12 Programming in C

POINTS TO REMEMBER

∑ A computer has two parts—computer hardware which
does all the physical work and computer soft are which
tells the hardware what to do and how to do it.

∑ A program is a set of instructions that are arranged in
a sequence to guide a computer to find a solution for a
given problem. The process of writing a program is called
programming.

∑ Computer soft are is wri� en by computer programmers
using a programming language.

∑ Application soft are is designed to solve a particular
problem for users.

∑ System soft are represents programs that allow the
hardware to run properly. It acts as an interface between
the hardware of the computer and the application
soft are that users need to run on the computer.

∑ The key role of BIOS is to load and start the operating
system. The code in the BIOS chip runs a series of tests
called POST (Power On Self Test) to ensure that the system
devices are working correctly. BIOS is stored on a ROM
chip built into the system.

∑ Utility soft are is used to analyse, configu e, optimi e,
and maintain the computer system.

∑ A compiler is a special type of program that transforms
source code wri� en in a programming language (the
source language) into machine language comprising of
just two digits—1s and 0s (the target language). The
resultant code in 1s and 0s is known as the object code.

∑ Linker is a program that combines object modules to form
an executable program.

∑ A loader is a special type of program that copies programs

from a storage device to main memory, where they can be
executed.

∑ The fourth generations of programming languages
are: machine language, assembly language, high-level
language, and very high-level language.

∑ Machine language is the lowest level of programming
language that a computer understands. All the instructions
and data values are expressed using 1s and 0s.

∑ Assembly language is a low-level language that uses
symbolic notation to represent machine language
instructions

∑ Third-generation languages are high-level languages in
which instructions are wri� en in statements like English
language statements. Each instruction in this language
expands into several machine language instructions

∑ Fourth-generation languages are non-procedural
languages in which programmers define only what they
want the computer to do, without supplying all the details
of how it has to be done.

∑ Programs wri� en using monolithic programming
languages such as assembly language and BASIC consist
of global data and sequential ode.

∑ In procedural languages, a program is divided into
subroutines th t can access global data.

∑ Structured programming employs a top-down approach
in which the overall program is broken down into separate
modules.

∑ Object-oriented programming treats data as a criti al
element in the program development and restricts its
fl w freely around the system.

EXERCISES

Fill in the Blanks
 1. ________ tells the hardware what to do and how to do

it.
 2. The hardware needs a ________ to instruct what has to

be done.
 3. The process of writing a p ogram is called _______.
 4. ________ is used to write computer soft are.

 5. ________ transforms the source code into binary
language.

 6. ________ allows a computer to interact with additional
hardware devices such as printers, scanners, and video
cards.

 7. ________ helps in coordinating system resources and
allows other programs to execute.

∑ New data and functions can be easily added as and when
required.

∑ Follows a bottom-up approach for problem solving.

In the forthcoming chapters, we are going to study C
programming language which supports both procedural as
well as structured programming.

© Oxford University Press India. All rights reserved.

Oxfo
rd

Univ
ers

ity
 P

res
s

13Introduction o Programming

 8. ________ provides a pla� orm for running applicatio
soft are.

 9. ________ can be used to encrypt and decrypt fil s.
 10. An assembly language statement consists of a ________,

an ________, and ________.
 11. ________ and ________ statements are used to change

the sequence of execution of in tructions
 12. ________ paradigm supports bo� om-up approach of

problem-solving.
 13. FORTRAN and COBOL are two popular ________

programming languages.

Multiple Choice Questions
 1. BIOS is stored in
 (a) RAM (b) ROM
 (c) Hard disk (d) None of these
 2. Which language should not be used for organizing large

programs?
 (a) C (b) C++
 (c) COBOL (d) FORTRAN
 3. Which language is a symbolic language?
 (a) Machine language (b) C
 (c) Assembly language (d) All of these

 4. Which language is a 3GL?
 (a) C (b) COBOL
 (c) FORTRAN (d) All of these

 5. Which language does not need any translator?
 (a) Machine language (b) 3GL
 (c) Assembly language (d) 4GL

 6. Choose the odd one out.
 (a) Compiler (b) Interpreter
 (c) Assembler (d) Linker

 7. Which one is a utility so� are?
 (a) Word processor
 (b) Antiviru
 (c) Desktop publishing tool
 (d) Compiler

 8. POST is performed by
 (a) Operating ystem (b) Assembler
 (c) BIOS (d) Linker

 9. Printer, monitor, keyboard, and mouse are examples of
 (a) Operating ystem (b) Computer hardware
 (c) Firmware (d) Device drivers
 10. Windows VISTA, Linux, Unix are examples of
 (a) Operating ystem (b) Computer hardware
 (c) Firmware (d) Device drivers

 11. Which programming paradigm utili es invariant
relationshi s to solve a problem?

 (a) Rule-based (b) Constraint-based
 (c) Structured (d) Object-oriented
 12. Which is the preferred paradigm for designing a

knowledge base?
 (a) Rule-based (b) Constraint-based
 (c) Structured (d) Object-oriented
 13. Which type of programming does not support

subroutines
 (a) Monolithic (b) Structured
 (c) Rule-based (d) Object-oriented
 14. C and Pascal belong to which type of programming

language?
 (a) Monolithic (b) Structured
 (c) Logic-oriented (d) Object-oriented
 15. Which paradigm holds data as a priority?
 (a) Monolithic (b) Structured
 (c) Logic-oriented (d) Object-oriented

State True or False

 1. Computer hardware does all the physical work.
 2. The computer hardware cannot think and make

decisions on its own.
 3. A soft are is a set of instructions that are arranged in a

sequence to guide a computer to find a solution for the
given problem.

 4. Word processor is an example of educational so� are.
 5. Desktop publishing system is a system soft are.
 6. BIOS defines fi ware interface.
 7. Pascal cannot be used for writing well-structured

programs.
 8. Assembly language is a low-level programming language.
 9. Operation code is used to identi y and reference

instructions in the p ogram.
 10. 3GLs are procedural languages.
 11. In monolithic paradigm, global data can be accessed and

modified f om any part of the program.
 12. Monolithic programs have two modules.
 13. Monolithic programs are easy to debug and maintain.
 14. Structured programming is based on modularization
 15. Object-oriented programming supports modularization
 16. Structured programming heavily uses goto statements.
 17. Modules enhance programmers’ productivit .
 18. A structured program takes more time to be wri� en

than other programs.

© Oxford University Press India. All rights reserved.

Oxfo
rd

Univ
ers

ity
 P

res
s

14 Programming in C

Review Questions

 1. Broadly classify the computer system into two parts.
Also make a comparison between a human body and
the computer system thereby explaining what each part
does.

 2. Di� erenti te between computer hardware and soft are.
 3. Define p ogramming.
 4. Define sou ce code.
 5. What is booting
 6. What criteria are used to select the language in which

the program will be wri� en?
 7. Explain the role of operating ystem.
 8. Give some examples of computer soft are.
 9. Di� erenti te between the source code and the object

code.
 10. Why are compilers and interpreters used?
 11. Is there any di� erence between a compiler and an

interpreter?
 12. What is application so� are? Give examples.

 13. What is BIOS?
 14. What do you understand by utility soft are? Is it a must

to have it?
 15. Di� erenti te between syntax errors and logical errors.
 16. Can a program wri� en in a high-level language be

executed without a linker?
 17. Give a brief description of generation of programming

languages. Highlight the advantages and disadvantages
of languages in each generation

 18. What do you understand by the term ‘programming
paradigm’?

 19. Discuss any three programming paradigms in detail.
 20. How is structured programming be� er than monolithic

programming?
 21. Describe the special characteristics of monolithic pro-

gramming.
 22. Explain how functional abstraction is achieved in struc-

tured programming.
 23. Which programming paradigm is data-based and why?
 24. What are the advantages of modularization

© Oxford University Press India. All rights reserved.

Oxfo
rd

Univ
ers

ity
 P

res
s

	Prelims
	Chap-01
	Chap-02
	Chap-03
	1_CS_Ch-2&3
	Chap-04
	Chap-05
	2_CS_Ch-5
	Chap-06
	Chap-07
	3_CS_Ch-6&7
	Chap-08
	Chap-09
	Chap-10
	Chap-11
	4_CS_Ch-8,9&11
	Appen-A
	Appen-B
	About the author

