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CHAPTER 2

MODELLING ASPECTS

Most of the engineering processes that demand accurate product quality, and proceed
at high rates, high temperatures, and high pressures, are distinct for their utmost
complexity. A simple change in one of the variables may bring about complex and
non-linear changes in other variables.

The external potential of information about any engineering process is extremely
high. This complex situation can be handled diligently with very narrow channels
of perception by gaining an insight into a particular process using models. A model
is a simplified representation of those aspects of an actual process that are being
investigated (Kafarov & Kuznetsov 1976).

The flow of information is broken down into two stages. In the first stage, the
model is compared with the real process and considered adequate if the discrepancy
is negligible. In the second stage, the expectations are compared with the indications
of the model. This procedure is called modelling. Modelling is subdivided into two
groups:

� Physical modelling
� Mathematical modelling

We will also focus on specific applications of mathematical modelling in chemical
engineering, which is generally referred to as chemical systems modelling.

Before actually going into the details of and differences among physical,
mathematical, and chemical systems modelling, we need to have a good grasp of
different types of processes, such as deterministic and stochastic processes, and
their differences.

2.1 Deterministic Versus Stochastic Processes

2.1.1 Deterministic Process

In this process the observables take on a continuous set of values in a well-defined
(or definable) manner, while the output variable most representative of the process
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is uniquely determined by the input variable. These processes can be adequately
described by classical analysis and numerical methods. An example is the process
that takes place in a simple continuous stirred tank reactor (CSTR).

2.1.2 Stochastic Process

This is a process in which observables change in a random manner and often
discontinuously. The output variable is not directly related to the input variable.
These processes are described in terms of statistics and probabilistic theory.
Examples are the contact-catalytic process (packed beds) in which the yield of the
product diminishes with decrease in the activity in the catalyst as it ages with time
and the pulse properties (such as pulse frequency, pulse velocity, pulse height,
base hold-up, and pulse hold-up) in trickle bed reactors (Babu 1993).

A deterministic process is one whose behaviour (with respect to time, since it is
of interest) can be predicted exactly. However, for stochastic processes, we can
predict its response only approximately (generally invoking probabilistic notions).
Simple CSTR and hydrocracking in trickle bed reactors are quoted as examples
for deterministic and stochastic processes, respectively. However, it may be noted
that any process, whether it is a process in CSTR or hydrocracking or fluid catalytic
cracking (FCC), can be modelled as a deterministic or stochastic process, depending
on how much trust we repose in the model we have constructed and how well we
can describe all the inputs that affect the process behaviour. While a CSTR is a
simpler process to describe than an FCC, this does not in any way imply that we
can model CSTR behaviour exactly or that we know all the inputs that affect the
response of a CSTR. It is more a matter of our faith than of the process itself.

2.2 Physical Modelling

In physical modelling, the experiment is carried out directly on the real process.
The process of interest is reproduced on different scales, and the effect of physical
features and linear dimensions is analysed. The experimental data are reduced to
relationships involving dimensionless groups made up of various combinations of
physical quantities and linear dimensions. The relationships determined with this
dimensionless presentation can be generalized to classes of events having these
dimensionless groups, or similarity criteria. The resulting models are also known
as ‘empirical models’.

Physical modelling consists in seeking the same or nearly the same similarity
criteria for the model and the real process. The real process is modelled on a
progressively increasing scale, with the principal linear dimensions scaled up in
proportion (the similarity principle). Thus, a physical model is restrained directly
within the system where the real process of interest takes place. This approach
requires that the process be modelled up to the commercial scale, along with the
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complex systems that one has to deal with in chemical engineering. For relatively
simple systems (such as single-phase fluid-flow or heat-transfer systems) the
similarity principle and physical modelling are justified because the number of
criteria involved is limited. However, with complex systems and processes described
by a complex system of equations, one has to deal with a large set of similarity criteria
that are not simultaneously compatible and, as a consequence, cannot be realized.

Let us consider the example of designing an industrial heat exchanger. For
computing the heat-transfer coefficients that are required for designing a heat
exchanger, the empirical correlations (of the form Nu = c RemPrn, where Nu is the
Nusselt number, Re is the Reynolds number, and Pr is the Prandtl number; c, m,
and n are constant and the exponents are determined experimentally) developed at
laboratory scale could be scaled up to industrial scale using geometric and dynamic
similarities. Section 2.7 contains a detailed discussion on similarity principles.

The similarity principle has proved its worth in the analysis of deterministic
processes that obey the laws of classical mechanics and proceed in bounded single-
phase systems (within solid walls as a rule). It is, however, difficult to apply physical
similarity to an analysis of probabilistic processes involving multivalued stochastic
relationships between the events, an analysis of two-phase unbounded systems,
and to processes complicated by chemical reactions.

2.3 Mathematical Modelling

A mathematical model of a real chemical process is a mathematical description
which combines experimental facts and establishes relationships among the process
variables. Mathematical modelling is an activity in which qualitative and quantitative
representations or abstractions of the real process are carried out using mathematical
symbols. In building a mathematical model, a real process is reduced to its bare
essentials, and the resultant scheme is described by a mathematical formalism
(formulation) selected according to the complexity of the process. The resulting
models could be either analytical or numerical in nature depending upon the method
used for obtaining the solution.

The objective of a mathematical model is to predict the behaviour of a process
and to work out ways to control its course. The choice of a model and whether or
not it represents the typical features of the process in question may well decide the
success or failure of an investigation.

A good model should reflect the important factors affecting a process, but must
not be crowded with minor, secondary factors that will complicate the mathematical
analysis and might render the investigation difficult to evaluate. Depending on the
process under investigation, a mathematical model may be a system of algebraic or
differential equations or a mixture of both. It is important that the model should
also represent with sufficient accuracy both quantitative and qualitative properties
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of the prototype process and should adequately fit the real process. For a check on
this requirement, the observations made on the process should be compared with
the predictions derived from the model under identical conditions. Thus, a
mathematical model of a real chemical process is a mathematical description
combining experimental facts and establishing relationships between the process
variables. For this purpose, it uses both theory and experimentation (Babu &
Ramakrishna 2002a). When one is lacking information about a process or a system,
one begins with the simplest model, taking care not to distort the basic (qualitative)
aspects of the prototype process.

Mathematical modelling involves three steps:
� formalization—the mathematical description of the process under investi-

gation (mathematical formulation)
� development of an algorithm for the process
� testing of the model and the solution derived from it

In this method of analysis, the model itself is restrained through simulation on a
computer, rather than with the real process or plant, as is the case with physical
modelling. For this purpose, the variables that affect the course of a process are
changed from the computer control console to a predetermined program (algorithm)
and the computer represents the resultant outputs. With a conservative capital outlay,
mathematical modelling coupled with present-day computers makes it possible to
investigate various plant configurations in order to trace process behaviour under
different conditions, and to find ways and means for improvement. Furthermore,
this approach always guarantees an optimum solution within the framework of the
model being used. However, it should be stressed that mathematical modelling is
in no way set to oppose physical modelling. Rather, the former supplements the
latter with its wealth of mathematical formulation and numerical analysis. The
importance of lateral mixing from experimental evidence in thermal resistance
models (Babu 1993; Shah et al. 1995) is a very good example of this combination.

Mathematical modelling involves the simulation of a process on a computer by
changing in the interlinked variables. Using this technique, all promising alternatives
can be simulated in order to arrive at an optimum model and, as a consequence, to
optimize the process itself within a relatively short time. Mathematical modelling
is economic and less time consuming than physical modelling. Mathematical
modelling also uses the principles of analogies, or correspondence between different
physical phenomena, described by analogous mathematical equations. An example
is the analogy among energy, heat, mass and electricity transport as is demonstrated
below.
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Energy or momentum transport (force of friction)

Newton’s law of viscosity

τ μ= − �
��
�
��

dv
dx (2.1)

can be rearranged to

τ ρ= − �
��

�
��

v d v
dx
( )

(2.2)

where vρ  is the momentum per unit volume. In addition, in terms of driving force
ΔP  it becomes

2 2f v g D P
L

cρ =
Δ

(2.3)

Heat transport (heat flux)

Fourier’s law of heat conduction
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can be rearranged to
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where ρC Tp  is the heat per unit volume. Similarly, heat flux Q/A in terms of
driving force ΔT  is

Q
A

h TT= − Δ (2.6)

Mass transport (mass flux)

Fick’s first law of diffusion

q J D dc
dxm = = − �
��
�
�� (2.7)

can be rearranged to

q J D d c
dxm = = − �
	


�
�


( )
(2.8)

where c is the mass per unit volume. Similarly, mass flux NA in terms of driving
force Δc  is

N k cA L= − Δ (2.9)
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Electricity transport (current)

Ohm’s law

i dv
dx

= − �
��
�
��

1
ρ (2.10)

2.4 Chemical Systems Modelling

Performing experiments and interpreting the results is routine in all applied sciences
research. This may be done quantitatively by taking accurate measurements of the
system variables, which are subsequently analysed and correlated, or qualitatively
by investigating the general behaviour of the system in terms of one variable
influencing another. The first method is always desirable, and if a quantitative
investigation is to be attempted, it is better to introduce the mathematical principles
at the earliest possible stage, since they may influence the course of investigation.
This is done by looking for an idealized mathematical model of the system. The
second step is the collection of all relevant physical information in the form of
conservation laws and rate equations. The conservation laws of chemical engineering
are material balances, heat balances, and other energy balances; whilst the rate
equations express the relationships between flow rate and driving force in the fields
of fluid flow, heat transfer, and diffusion of matter. These are then applied to the
model, and the result should be a mathematical equation which describes the system.
The type of equation (algebraic, differential, finite difference, etc.) will depend
upon both the system under investigation and its model. For a particular system, if
the model is simple, the equation may be elementary; whereas if the model is more
refined, the equation will be more complex. Appropriate mathematical techniques
are then applied to this equation and a result is obtained. This mathematical result
must then be interpreted using the original model in order to give it physical
significance.

Most chemical engineering processes that proceed at high rates, high
temperatures, and high pressures in multiphase systems are distinct in their utmost
complexity. A change in one system variable may bring about non-linear changes
in other variables. This complexity becomes still more formidable in the case of
multiple feedback loops. In addition, random disturbances are superimposed on
the process. The external potential of information about chemical engineering
process is very high. An analysis of the system and system variables may therefore
be carried out with very narrow channels of perception by gaining insight into a
particular process through modelling. The development of new processes in the
chemical industry is becoming more complex and increasingly expensive. If the
research and development of a process can be carried out with confidence, the
ultimate design will be more exact and the plant will operate more economically.
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Mathematics, which is the language of quantitative analysis, plays a vital role in all
facets of such a project. Therefore, training in mathematical methods is of utmost
importance to chemical engineers.

The most important result of developing a mathematical model of a chemical
engineering system is the understanding that is gained of what really makes the
process work. This insight enables one to strip away from the problem many
extraneous confusing factors and get to the core of the system. It is basically trying
to find cause-and-effect relationships between the variables. Mathematical models
can be useful in all phases of chemical engineering, from research and development
to plant operations, and even in business and economic studies (Luyben 1990). In
research and development: determining chemical kinetic mechanisms and parameters
from laboratory or pilot-plant reaction data; exploring the effects of different
operating conditions for optimization and control studies; aiding in scale-up
calculations. In design: exploring the sizing and arrangement of processing
equipment for dynamic performance; studying the interactions of various parts of
the process, particularly when material recycling or heat integration is used;
evaluating alternative process and control structures and strategies; simulating
startup, shutdown, and emergency situations and procedures. In plant operations:
troubleshooting control and processing problems; aiding in startup and operator
training; studying the effects of and requirements for expansion (bottleneck-removal)
projects; optimizing plant operation. It is usually much cheaper, safer, and faster to
conduct the kinds of studies listed above on mathematical model simulations than
experimentally on an operating unit. This is not to say that plant tests are not
needed. As we will discuss later, they are vital for confirming the validity of a
model and for verifying important ideas and recommendations that evolve from
model studies.

2.4.1 Model Formulation Principles

Basis The bases for mathematical models are the fundamental physical and
chemical laws, such as the laws of conservation of mass, energy, and momentum.
To study dynamics we will use them in their general form with time derivatives
included.
Assumptions Probably the most vital role an engineer plays in modelling is in
exercising his engineering judgement as to what assumptions can be validly made.
Obviously an extremely rigorous model that includes every phenomenon down to
microscopic detail would be so complex that it would take a long time to develop
and might be impractical to solve, even on the latest supercomputers. An engineering
compromise between a rigorous description and getting an answer that is good
enough is always required. This has been called ‘optimum sloppiness’. It involves
making as many simplifying assumptions as are reasonable. In practice, this
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optimum usually corresponds to a model, which is as complex as the available
computing facilities will permit. The development of a model that incorporates the
basic phenomena occurring in a process requires a lot of skill, ingenuity, and practice.
It is an area where the creativity and innovativeness of the engineer is a key element
for the success of the process. The assumptions that are made should be carefully
considered and listed. They impose limitations on the model that should always be
kept in mind when evaluating its predicted results.
Mathematical consistency of model Once all the equations of the mathematical
model have been written, it is usually a good idea, particularly with big, complex
systems of equations, to make sure that the number of variables equals the number
of equations. The so-called degrees of freedom of the system must be zero in order
to obtain a solution. If this is not true, the system is underspecified or overspecified
and something is wrong with the formulation of the problem. This kind of consis-
tency check may seem trivial, but experience shows that it can save many hours of
frustration, confusion, and wasted computer time. This is required for a simulation
exercise. For an optimization exercise, there should be some degrees of freedom
available for optimizing, that is, an optimization problem is an underspecified prob-
lem. Checking to see that the units of all terms in all equations are consistent is
perhaps another trivial and obvious step, but one that is often forgotten. It is essential
to be particularly careful of the time units of parameters in dynamic models. Any
unit can be used (seconds, minutes, hours, etc.), but these cannot be mixed. Dynamic
simulation results are frequently in error because the engineer has forgotten a factor
of ‘60’ somewhere in the equations.
Solution of the model equations The available solution techniques and tools
must be kept in mind as a mathematical model is developed. An equation without
any way to solve it is not worth much.
Verification An important but often neglected part of developing a mathematical
model is proving that the model describes the real-world situation. At the design
stage, this sometimes cannot be done because the plant has not yet been built.
However, even in this situation there are usually either similar existing plants or a
pilot plant from which some experimental dynamic data can be obtained. The design
of experiments to test the validity of a dynamic model can sometimes be a real
challenge and should be carefully thought out.

2.4.2 Fundamental Laws used in Modelling

Some fundamental laws of physics and chemistry are required for modelling a
chemical engineering system. These laws are reviewed in their general time-
dependent form in this section.
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2.4.2.1 Continuity equations

Total continuity equation (mass balance) The principle of conservation of mass
applied to a dynamic system is

[Mass flow into system] – [mass flow out of system]
= [time rate of change of mass inside system] (2.11)

The units of Eq. (2.11) are mass per time. Only one total continuity equation
can be written for one system. According to the normal steady-state design equation
we use, we say that ‘what goes in, comes out’. The dynamic version of this says
the same thing with the addition of the word ‘eventually’. For any property in a
system, if we assume that the property does not vary with respect to spatial location,
we obtain an ordinary differential equation (ODE). Otherwise we obtain a partial
differential equation (PDE). If we assume that the property does not change with
time (steady-state assumption), we get an algebraic equation. The right-hand side
of the above equation will be either a partial derivative or an ordinary derivative of
the mass inside the system with respect to the independent variable t.
Component continuity equations (component balances) Unlike mass, chemical
components are not conserved. Again, to be precise, the total mass for a reacting/
non-reacting system is conserved. However, in general, for a reacting system, the
total number of moles is not a conserved quantity. For a reacting system, while the
masses of individual elements are conserved, masses/moles of individual
components are not conserved due to molecular rearrangement during a reaction.
If a reaction occurs inside a system, the number of moles of an individual component
will increase if it is a product of the reaction or decrease if it is a reactant. Therefore
the component continuity equation of the jth chemical species of the system is

[Flow of moles of jth component into system] – [flow of moles of jth
component out of system] + [rate of formation of moles of jth component
from chemical reactions] = [time rate of change of moles of jth component
inside system] (2.12)

The units of Eq. (2.12) are moles of component j per unit time. The flows in
and out can be both convective (due to bulk flow) and molecular (due to diffusion).
We can write one component continuity equation for each component in the system.
If there are NC components in a system, there are NC component equations.
However, the total mass balance and these NC component balances are not all
independent, since the sum of all the moles times their respective molecular weights
equals the total mass. Therefore a given system has only NC independent continuity
equations. We usually use the total mass balance and NC – 1 component balances.
For example, in a binary (two-component) system, there would be one total mass
balance and one component balance.
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There are some exceptions to the above rule. Consider a non-reacting system
first. If we consider a flow balance involving S streams connected to a process unit
(either in terms of moles or mass), NC component balances and S ‘normalization’
relations (one for each stream), which describe how the total mass of a stream is
related to the composition of the stream, then together these constitute NC + S + 1
equations, out of which one equation is redundant. Generally, it is not possible to
work with NC – 1 components (and implicitly use the normalization equation for
computing it) because the specified compositions may be distributed arbitrarily.

The same holds for a reacting system, but we should note that the equations
involve r parameters corresponding to the extents of reaction (with known
stoichiometry) assumed to occur in the reactor. A further complication is that element
balances are not equivalent to component balances unless some conditions are
satisfied (Reklaitis 1983; Felder & Rousseau 1999).

2.4.2.2 Energy equation

The first law of thermodynamics puts forward the principle of conservation of
energy. Written for a general open system (where flow of material in and out of the
system can occur) it is

[Flow of internal, kinetic, and potential energy into system by convection
or diffusion] – [flow of internal, kinetic, and potential energy out of system
by convection or diffusion] + [heat added to system by conduction,
radiation, and reaction] – [work done by system on surroundings (shaft
work and PV work)] = [time rate of change of internal, kinetic, and potential
energy inside system] (2.13)

2.4.2.3 Equation of motion

According to Newton’s second law of motion, force F is equal to mass M times
acceleration a for a system with constant mass M, i.e.,

F Ma
gc

= (2.14)

where gc is the conversion constant needed when FPS or MKS units are used
= 32.2 (lbm ft)/lbf s2 in FPS (English engineering) units
= 9.81 kgm m/kgf s2 in MKS units
= 1 kgm m/N s2 in SI units
= 1 gm cm/dyn s2 in CGS units

This is the basic relationship used in writing the equations of motion for a system.
In a slightly more general form, where mass can vary with time,

1

1g
d Mv

dt
F

c

i
ji

j

N( )
=

=
∑ (2.15)
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where vi is the velocity in the i direction and Fji is the jth force acting in the i
direction. From Eq. (2.15), we can say that the time rate of change of momentum
in the i direction (mass times velocity in the i direction) is equal to the net sum of
the forces pushing in the i direction. It can be thought of as a dynamic force balance,
or more eloquently it is called the conservation of momentum.

In the real world there are three directions: x, y, z. Thus, three force balances
can be written for any system. Therefore, each system has three equations of motion
(plus one total mass balance, one energy equation, and NC – 1 component balances).
Instead of writing three equations of motion, it is often more convenient (and
always more elegant) to write the three equations as one vector equation. The field
of fluid mechanics makes extensive use of the conservation of momentum.

2.4.2.4 Transport equations

The equations discussed so far are the laws governing the transfer of momentum,
energy, and mass. These transport laws all have the form of a flux (rate of transfer
per unit area) being proportional to a driving force (a gradient in velocity,
temperature, or concentration). The proportionality constant is a physical property
of the system (such as viscosity, thermal conductivity, or diffusivity). However,
for transport on a molecular level, the laws bear the familiar names of Newton,
Fourier, and Fick [Eqs (2.1), (2.4), and (2.7), respectively].

Transfer relationships of a more macroscopic overall form are also used; for
example, film coefficients and overall coefficients in heat transfer. Here the difference
in the bulk properties between two locations is the driving force [Eqs (2.3), (2.6),
and (2.9), respectively]. The proportionality constant is an overall transfer coefficient.

2.4.2.5 Equations of state

In mathematical modelling we need equations for physical properties, primarily
density and enthalpy, as a function of temperature, pressure, and composition.
Liquid density,

ρ L if P T x= ( ), , (2.16)
Vapor density,

ρV if P T y= ( ), , (2.17)
Liquid enthalpy,

h f P T xi= ( ), , (2.18)
Vapour enthalpy,

H f P T yi= ( ), , (2.19)

Occasionally, these relationships have to be fairly complex to describe the system
accurately. But in many cases simplification can be made without sacrificing much
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overall accuracy. Some of the simple enthalpy equations that can be used in energy
balances are

h C Tp= (2.20)

H C Tp v= + λ (2.21)
The next level of complexity would be to make the Cp’s functions of temperature:

h C T dtpT

T
= � ( )

0
(2.22)

A polynomial in T is often used for Cp:

C T A A Tp ( ) = +1 2 (2.23)
Then Eq. (2.22) becomes

h A T A T A T T A T T
T

T

= +
�

	



�

�

 = − + −1 2

2

1 0
2 2

0
2

2 2
0

( ) ( ) (2.24)

Of course, with mixtures of components, total enthalpy is needed. If heat-of-mixing
effects are negligible, the pure-component enthalpies can be averaged:

h
x h M

x M

j j j
j

j j
j

= =

=

∑

∑
1

1

NC

NC (2.25)

where xj is the mole fraction of the jth component, Mj is the molecular weight of
the jth component, and hj is the pure-component enthalpy of the jth component
(energy per unit mass). The denominator of Eq. (2.25) is the average molecular
weight of the mixture.

Liquid densities can be assumed constant in many systems unless large changes
in composition and temperature occur. Vapor densities usually cannot be considered
invariant and some sort of PVT relationship is almost always required. The simplest
and most often used is the perfect-gas law:

PV nRT= (2.26)
where P is the absolute pressure (kPa), V is the volume (m3), n is the number of
moles (kmol), R is a constant = 8.314 kPa m3/kmol K, and T is the absolute
temperature (K). Rearranging to get an equation for the density ρ v (kg/m3) of a
perfect gas with molecular weight M, we get

ρ v
nM
V

MP
RT

= = (2.27)
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2.4.2.6 Equilibrium relations

The basis for the equations that give the conditions of a system when equilibrium
conditions prevail is the second law of thermodynamics.
Chemical equilibrium Equilibrium occurs in a reacting system when

v j j
j

NC

μ =
=

∑ 0
1

(2.28)

where vj is the stoichiometric coefficient of the jth component with reactants having
a negative sign and products a positive sign, and μ j  is the chemical potential of
the jth component.
The usual way to work with this equation is in terms of the equilibrium constant
for a reaction. For example, consider a reversible gas-phase reaction of A to form
B at a specific rate k1 and B reaching back to A at a specific reaction rate k2. The
stoichiometry of the reaction is such that va moles of A react to form vb moles of B.

v A v Ba
k

b
1← →⎯  (rate constant for reverse reaction is k2) (2.29)

From Eq. (2.28), equilibrium will occur when
v vb b a aμ μ− = 0 (2.30)

The chemical potential for a perfect-gas mixture can be written as

μ μj j jRT P= +0 ln (2.31)

where μ j
0  is the standard chemical potential (or Gibbs free energy per mole) of the

jth component, which is a function of temperature only, Pj is the partial pressure of
the jth component, R is the perfect-gas law constant, and T is the absolute
temperature. Substituting into Eq. (2.30) and simplifying, we get

ln
P
P

v v
RT

B
v

A
v

a A b B
b

a

�

��
�

��
= −μ μ0 0

(2.32)

The right-hand side of this equation is a function of temperature only. The term in
parentheses on the left-hand side is defined as the equilibrium constant Kp, which
gives us the equilibrium ratios of products and reactants.

K
P
Pp

B
v

A
v

b

a
≡ (2.33)

Phase equilibrium Equilibrium between two phases occurs when the chemical
potential of each component is the same in the two phases:

μ μj j
I II= (2.34)
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where μ j
I  is the chemical potential of the jth component in phase I and μ j

II  is the
chemical potential of the jth component in phase II.

Since a vast majority of chemical engineering systems involve liquid and vapour
phases, many vapour–liquid equilibrium relationships are used. They range from
very simple to the very complex. Some of the most commonly used relationships
are listed below. More detailed treatments are presented in many thermodynamics
texts. Basically, we need a relationship that permits us to calculate the vapor
composition if we know the liquid composition, or vice versa.

The most common problem is a bubble point calculation: calculate the
temperature T and vapour composition yj, given the pressure P and the liquid
composition xj. This usually involves a trial-and-error, iterative solution because
the equations can be solved explicitly only in the simplest cases. Sometimes we
have bubble point calculations that start from known values of xj and T and we
want to find P and yj. This is frequently easier than when pressure is known,
because the bubble point calculation is usually non-iterative. Dew point calculations
must be made when we know the composition of the vapour yj and P (or T) and
want to find the liquid composition xj and T (or P). Flash calculations must be
made when we know neither xj nor yj and must combine phase equilibrium
relationships, component balance equations, and an energy balance to solve for all
the unknowns.

Let us assume ideal vapour-phase behaviour in our examples, i.e., the partial
pressure of the jth component in the vapour is equal to the total pressure P times
the mole fraction of the jth component in the vapour yj (Dalton’s law):

P Pyj j= (2.35)
Corrections may be required at high pressures. As far as the liquid phase is
concerned, several approaches are being used, which are shown below.
Raoult’s law Mixtures that obey Raoult’s law are called ideal mixtures.

P x Pj j
S

j
=

=
∑

1

NC

(2.36)

y
x P

Pj
j j

S

= (2.37)

where Pj
S  is the vapour pressure of pure component j. Vapour pressures are

functions of temperature only. This dependence is often described by

ln P
A
T

Bj
S j

j= + (2.38)
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Relative volatility The relative volatility α ij  of component i to component j is
defined as

α ij
i i

j j

y x
y x

= /
/ (2.39)

Relative volatilities are fairly constant in a number of systems. They are convenient
and hence are frequently used. In a binary system the relative volatility α of the
more volatile component compared with the less volatile component is

α =
− −

y x
y x

/
( )/( )1 1 (2.40)

Rearranging,

y x
x

=
+ −

α
α1 1( ) (2.41)

K values Equilibrium vapourization ratios of K values are widely used, particularly
in the petroleum industry.

K
y
xj

j

j
= (2.42)

The K’s are functions of temperature and composition and, to a lesser extent,
pressure.
Activity coefficients For non-ideal liquids, Raoult’s law must be modified to
account for the non-ideality in the liquid phase. The fudge factors used are called
activity coefficients.

P x Pj j
S

j
j

=
=

∑ γ
1

NC

(2.43)

where γ j  is the activity coefficient for the jth component. The activity coefficient
is equal to 1 if the component is ideal. The γ ’s  are functions of composition and
temperature.

2.4.2.7 Chemical kinetics

In modelling of chemical reactors, we must be familiar with the basic relationships
and terminology used in describing the kinetics (rate of reaction) of chemical
reactions.
Arrhenius temperature dependence The effect of temperature on the specific
reaction rate k is usually found to be exponential:

k e E RT= −α / (2.44)
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where k is the specific reaction rate, α  is the preexponential factor, E is the activation
energy [shows the temperature dependence of the reaction rate, i.e., the bigger E
is, the faster the increase in k with increasing temperature (cal/gmol) is], T is the
absolute temperature, and R is the perfect-gas constant = 1.99 cal/gmol K.

This experimental temperature dependence represents one of the most severe
non-linearities in a chemical engineering system. It may be noted that the apparent
temperature dependence of a reaction may not be exponential if the reaction is
mass-transfer limited and not chemical-rate limited. If both zones are encountered
in the operation of the reactor, the mathematical model must obviously include
both reaction-rate and mass-transfer effects.
Law of mass action Let us define an overall reaction rate ℜ, with the conventional
notation, as the rate of change of moles of any component per volume due to the
chemical reaction divided by that component’s stoichiometric coefficient:

ℜ =
�

��
�

��
1

v V
dn
dtj

j

R
(2.45)

The stoichiometric coefficients vj are positive for products of the reaction and
negative for reactants. It may be noted that ℜ is an intensive property and can be
applied to systems of any size. For example, assume we are dealing with an
irreversible reaction in which components A and B react to form components C
and D.

v A v B v C v Da b
k

c d+ ⎯ →⎯ + (2.46)
Then

ℜ =
−

�
��

�
��

=
−

�
��

�
��

1 1
v V

dn
dt v V

dn
dta

A

R b

B

R

=
−

�
��

�
��

=
−

�
��

�
��

1 1
v V

dn
dt v V

dn
dtc

C

R d

D

R
(2.47)

From the law of mass action, the overall reaction rate ℜ will vary with temperature
(since k is temperature-dependent) and with the concentrations of reactants raised
to some powers:

ℜ = k c cT A
a

B
b

( ) ( ) ( ) (2.48)
where cA is the concentration of component A and cB is the concentration of
component B. The constants a and b are not, in general, equal to the stoichiometric
coefficients va and vb. The reaction is said to be first-order in A if a = 1. It is
second-order in A if a = 2. The constants a and b can be fractional numbers.
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As indicated earlier, the units of the specific reaction rate k depend on the order
of the reaction. This is because the overall reaction rate ℜ always has the same
units (moles per unit time per unit volume). For a first-order reaction of A reacting
to form B, the overall reaction rate ℜ, written for component A, would have units
of moles of A/min ft3.

ℜ = kcA (2.49)
If cA has units of moles of A/ft3, k must have units of min–1. If the overall reaction
rate for the above system is second-order in A,

ℜ = kcA
2 (2.50)

ℜ still has units of molA/min ft3 (molA denotes moles of A). Therefore k must
have units of ft3/min molA. Considering the reaction A B C+ → ,  if the overall
reaction rate is first-order in both A and B,

ℜ = kc cA B (2.51)
ℜ still has units of molA/min ft3. Therefore k must have units of ft3/min molB.

2.5 Cybernetics

Cybernetics is a science dealing with any system capable of perceiving, storing,
and processing information for the purposes of optimum control. Thus, cybernetics
encompasses the concepts of a system, information, data storage and processing,
system control, and system optimization.

Mathematical modelling, computers, and cybernetics are interrelated. Computers
are tools of cybernetics and mathematical modelling is the basic method of
cybernetics.

2.6 Controlled System

After having discussed the details of modelling, let us see how a simple controlled
chemical system is represented schematically (Fig. 2.1). In the absence of
disturbances in the system, the process runs smoothly, giving the desired designed
outputs for the given inputs. But if there are any disturbances in the system, the
outputs will change and the desired designed outputs cannot be obtained for the
given inputs. Then, by means of manipulated variables, the effect of these
disturbances can be nullified and the desired outputs can be obtained again, under
controlled conditions.
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Fig. 2.1 A simple controlled chemical system

2.7 Principles of Similarity

These are useful in scaling up operations in physical modelling. Similarity is used
when models are either true or distorted ones. True models reproduce features of
the prototype but at a scale—that is they are similar as per either any or all of the
three similarity criteria, namely, geometric similarity, kinematic similarity, and
dynamic similarity.

2.7.1 Geometric Similarity

The solid boundaries of any flow system may be adequately described by a number of
length dimensions such as L1, L2, L3, ..., Ln. If these lengths are divided by L1, the
system may be defined by 1 2 3, , , ..., ,λ λ λ n  where λ λ λ2 2 3= / , = / , ...,1 3 1L L L
and λ n nL L= / .1  Geometric similarity exists between a model and a prototype if
the ratios of all corresponding dimensions in the model and the prototype are equal.

L
L

L
L

m

p
L

model

prototype
= = λ (2.52)

where λ L is the scale factor for length. For area,

A
A

L
L

m

p
L

model

prototype
= =

2

2
2λ (2.53)

All corresponding angles are the same.

2.7.2 Kinematic Similarity

Kinematic similarity refers to the motion occurring in the system and considers the
existing components of velocities. Kinematic similarity is the similarity of time as
well as geometry. For kinematic similarity to exist in two geometrically similar
systems, the velocities at the same relative point in each system must be related. It
exists between the model and the prototype if (i) the paths of moving particles are
geometrically similar and (ii) the ratios of the velocities of particles are similar.
Some useful ratios are the following.

PROCESS

Disturbances

Manipulated variables

Inputs Outputs
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For velocity,

V
V

L T
L T

m

p

m m

p p

L

T
u= = =/

/
λ
λ

λ (2.54)

For acceleration,

a
a

L T
L T

m

p

m m

p p

L

T
a= = =

/
/

2

2 2
λ
λ

λ (2.55)

and for discharge,

Q
Q

L T
L T

m

p

m m

p p

L

T
Q= = =

3

3

3/
/

λ
λ

λ (2.56)

Similarly, the velocity gradients in each system will bear a similar relationship to
each other. As a consequence, streamline patterns are the same.

2.7.3 Dynamic Similarity

Dynamic similarity exists between geometrically and kinematically similar systems
if the ratios of all the forces in the model and the prototype are the same. The force
ratio is

F
F

M a
M a

L
L

m

p

m m

p p

m m

p p

L

T
p L

L

T
p L u= = =

�

��
�

��
=

ρ
ρ

λ
λ

λ λ λ
λ

λ λ λ
3

3 2
2

2
2 2 (2.57)

This occurs when the controlling dimensionless group on the right-hand side of
the defining equation is the same for the model and the prototype.
Illustration 2.1
When a hydraulic structure is built it undergoes some analysis in the design stage.
Often the structures are too complex for simple mathematical analysis and a
hydraulic model is built. Usually the model is smaller than the full size, but it can
be larger. The real structure is known as the prototype. The model is usually built
to an exact geometric scale of the prototype, but in some cases—notably the river
model—this is not possible. Measurements can be taken from the model and a
suitable scaling law applied to predict the values in the prototype.

To illustrate how these scaling laws can be obtained, we will use the relationship
for the resistance of a body moving through a fluid. The resistance R depends on
the following physical properties:

r (ML–3),   u (LT–1),   l (L),   m (ML–1T–1)
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So the defining equation is f (R, r, u, l, m) = 0. Thus, m = 5, n = 3, so there are
5 – 3 = 2 p groups:

π ρ1
1 1 1= a b cu l R

π ρ μ2
2 2 2= a b cu l (2.58)

For the p1 group,

M L T (ML ) (LT ) (L) MLT0 0 3 1 20 1 1 1= − − −a b c (2.59)
leading to p1 as

π
ρ1 2 2= R

u l (2.60)

For the p2 group,

M L T (ML ) (LT ) (L) ML T0 0 0 3 1= − − − −a b c3 3 31 1 (2.61)
leading to p2 as

π μ
ρ2 =

ul
(2.62)

Notice how 1/p2 is the Reynolds number. We can call this p2a. So the defining
equation for resistance to motion is

f p p a( )1 2 0, = (2.63)
We can write

R
u l

ul
ρ

φ ρ
μ2 2 =
�
��
�
��

R u l ul=
�
��
�
��

ρ φ ρ
μ

2 2
(2.64)

This equation applies irrespective of the size of the body, i.e., it is applicable to the
prototype and the geometrically similar model. Thus, for the model,

R
u l

u lm

m m m

m m m

mρ
φ ρ

μ2 2 =
�

��
�

�� (2.65)

and for the prototype,

R

u l

u lp

p p p

p p p

pρ
φ

ρ
μ2 2 =

�

�
�

�

�
� (2.66)
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Dividing these two equations gives

R
u l
R
u l

u l

u l

m

m m m

p

p p p
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(2.67)

At this point we can go no further unless we make some assumptions. One common
assumption is to assume that the Reynolds number is the same for both the model
and the prototype, i.e.,

ρ
μ

ρ
μ

m m m

m

p p p

p

u l u l
= (2.68)

This assumption then allows the following equation to be written:

R
R

u l
u l

m

p

m m m

p p p
=

ρ
ρ

2 2

2 2 (2.69)

which gives this scaling law for resistance force,

λ λ λ λR p u L= 2 2 (2.70)

That the Reynolds numbers were the same was an essential assumption for this
analysis. The consequence of this should be explained.

Re Rem p=

ρ
μ

ρ
μ

m m m
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p p p

p

u l u l
= (2.71)
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= (2.72)

Substituting this into the scaling law for resistance gives

λ λ
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μ
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(2.73)
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So the force on the prototype can be predicted from the measurement of the force
on the model, but only if the fluid in the model is moving with the same Reynolds
number as it would in the prototype. That is to say, Rp can be predicted by

R
u l

u l
Rp

p p p

m m m
m=

ρ
ρ

2 2

2 2 (2.74)

provided that

u
l
l

up
m p m

p m p
m=

ρ μ
ρ μ (2.75)

In this case the model and prototype are dynamically similar.
Formally, this occurs when the controlling dimensionless group on the right-hand
side of the defining equation is the same for the model and the prototype. In this
case, the controlling dimensionless group is the Reynolds number.

Example 2.1 An underwater missile, diameter 2 m and length 10 m is tested in
a water tunnel to determine the forces acting on the real prototype. A 1/20th scale
model is to be used. If the maximum allowable speed of the prototype missile is
10 m/s, what should be the speed of the water in the tunnel to achieve dynamic
similarity?
Solution
For dynamic similarity, the Reynolds number of the model and the prototype must
be equal:

Re Rem p=

ρ
μ

ρ
μ

ud ud

m p

�
��

�
��

=
�
��

�
��

So the model velocity should be

u u
d
dm p

p p m

m m p
=

ρ μ
ρ μ

As both the model and the prototype are in water, mm = mp and rm = rp, so

u u
d
dm p

p

m
= = =10

1
1 20

200
/

m/s

Note that this is a very high velocity. This is one reason why model tests are not
always done at exactly equal Reynolds numbers. Some relaxation of the equivalence
requirement is often acceptable when the Reynolds number is high. Using a wind
tunnel could have been possible in this example. If this were the case, then the
appropriate values of the r and m ratios need to be used in the above equation.
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Example 2.2 A model aeroplane is built at 1/10th scale and is to be tested in a
wind tunnel operating at a pressure of 20 times atmospheric pressure. The aeroplane
will fly at 500 km/h. At what speed should the wind tunnel operate to give dynamic
similarity between the model and the prototype? If the drag measure on the model
is 337.5 N, what will be the drag on the plane?
Solution
Earlier, we derived the equation for resistance on a body moving through air:

R u l ul u l Re=
�
��

�
��

=ρ φ ρ
μ

ρ φ2 2 2 2 ( )

For dynamic similarity Rem = Rep, so

u u
d
dm p

p p m

p m p
=

ρ μ
ρ μ

The value of m does not change much with pressure, so mm = mp. The equation of
state for an ideal gas is p = rRT. As the temperature is same, the density of the air
in the model can be obtained from as follows:
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So the model velocity is found to be

u u um p p= =1
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/

.

um = 250 km/h
The ratio of forces is found from
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So the drag force on the prototype will be

R Rp m= = × =1
0 05

20 337 5 6750
.

. N
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EXERCISES

2.1 Classify modelling emphasizing on details of mathematical modelling.
2.2 Discuss the principles of similarity.
2.3 Describe deterministic and stochastic processes.
2.4 Discuss the various aspects involved in physical modelling.
2.5 What are the various model formulation principles?
2.6 Give a detailed account of the fundamental laws used in modelling.
2.7 Define cybernetics and discuss the controlled system by means of a neat
schematic diagram.
2.8 What are the various similarity criteria?
2.9 Discuss physical modelling versus mathematical modelling.


