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CHAPTER 1

Electromagnetic Radiation

Introduction
Most of us are familiar with cellular phones. In cellular communication
systems, there is a two-way wireless transmission between the cellular phone
handset and the base station tower. The cell phone converts the audio sig-
nals into electrical form using a microphone. This information is imposed on
a high frequency carrier signal by the process of modulation. The modulated
carrier is radiated into free space as an electromagnetic wave which is picked
up by the base station tower. Similarly, the signals transmitted by the tower
are received by the handset, thus establishing a two way communication.
This is one of the typical examples of a wireless communication system
which uses free space as a medium to transfer information from the trans-
mitter to the receiver. A key component of a wireless link is the antenna
which efficiently couples electromagnetic energy from the transmitter to
free space and from free space to the receiver. An antenna is generally a
bidirectional device, i.e., the power through the antenna can flow in both the
directions, hence it works as a transmitting as well as a receiving antenna.

Transmission lines are used to transfer electromagnetic energy from one
point to another within a circuit and this mode of energy transfer is generally
known as guided wave propagation. An antenna acts as an interface between
the radiated electromagnetic waves and the guided waves. It can be thought
of as a mode transformer which transforms a guided-wave field distribution
into a radiated-wave field distribution. Since the wave impedances of the
guided and the radiated waves may be different, the antenna can also be
thought of as an impedance transformer. A proper design of this part is
necessary for the efficient coupling of the energy from the circuit to the free
space and vice versa.

One of the important properties of an antenna is its ability to transmit
power in a preferred direction. The angular distribution of the transmitted

1



2 Chapter 1 Electromagnetic Radiation

Fig. 1.1 Parabolic dish antenna at the Department of Electrical Engineering,
Indian Institute of Technology, Kanpur, India (Courtesy: Dept of EE, IIT Kanpur)

power around the antenna is generally known as the radiation pattern (A
more precise definition is given in Chapter 2). For example, a cellular phone
needs to communicate with a tower which could be in any direction, hence
the cellular phone antenna needs to radiate equally in all directions. Sim-
ilarly, the tower antenna also needs to communicate with cellular phones
located all around it, hence its radiation also needs to be independent of the
direction.

There are large varieties of communication applications where the direc-
tional property is used to an advantage. For example, in point-to-point com-
munication between two towers it is sufficient to radiate (or receive) only in
the direction of the other tower. In such cases a highly directional parabolic
dish antenna can be used. A 6.3 m diameter parabolic dish antenna used for
communication with a geo-stationary satellite is shown in Fig. 1.1. This an-
tenna radiates energy in a very narrow beam pointing towards the satellite.

Radio astronomy is another area where highly directional antennas are
used. In radio astronomy the antenna is used for receiving the electromag-
netic radiations from outer space. The power density of these signals from
outer space is very low, hence it is necessary to collect the energy over a very
large area for it to be useful for scientific studies. Therefore, radio astron-
omy antennas are large in size. In order to increase the collecting aperture,
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Fig. 1.2 A panoramic view of the Giant Metrewave Radio Tele-
scope (GMRT), Pune, India, consisting of 30 fully-steerable
parabolic dish antennas of 45 m diameter each spread over dis-
tances up to 25 km.1 (Photograph by Mr. Pravin Raybole, Cour-
tesy: GMRT, Pune, http://www.gmrt.ncra.tifr.res.in)

the Giant Metrewave Radio Telescope (GMRT) near Pune in India, has an
array of large dish antennas, as shown in Fig. 1.2.

The ability of an antenna to concentrate power in a narrow beam depends
on the size of the antenna in terms of wavelength. Electromagnetic waves of
wavelengths ranging from a few millimetres to several kilometres are used
in various applications requiring efficient antennas working at these wave-
lengths. These frequencies, ranging from hundreds of giga hertz to a few
kilo hertz, form the radio wave spectrum. Figure 1.3 depicts the radio wave
spectrum along with band designations and typical applications.

The radiation pattern of an antenna is usually computed assuming the
surroundings to be infinite free space in which the power density (power
per unit area) decays as inverse square of the distance from the antenna.
In practical situations the environment is more complex and the decay is
not as simple. If the environment consists of well defined, finite number of
scatterers, we can use theories of reflection, refraction, diffraction, etc., to
predict the propagation of electromagnetic waves. However, in a complex
environment, such as a cell phone operating in an urban area, the field
strength is obtained by empirical relations.

The atmosphere plays a significant role in the propagation of electromag-
netic waves. The density of the air molecules and, hence, the refractive index
of the atmosphere changes with height. An electromagnetic wave passing
through media having different refractive indices undergoes refraction.
Thus, the path traced by an electromagnetic wave as it propagates through

1The GMRT was built and is operated by the National Centre for Radio Astrophysics (NCRA)

of the Tata Institute of Fundamental Research (TIFR).
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Wavelength (m) 103 100 10−3 10−6 10−9 10−12

Radio waves
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designation Very

low frequency
Low

frequency
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frequency
High

frequency
Very

high frequency
Ultra

high frequency
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high frequency
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Radio wave bands
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10 km to 1 km
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1 km to 100 m

3 MHz–30 MHz
100 m to 10 m

30 MHz–300 MHz
10 m to 1 m

300 MHz–3 GHz
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10 cm to 1 cm

30 GHz–300 GHz
1 cm to 1 mm
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     broadcast

• Television • Television • Radar • Radar
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     communication
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• Cellular telephone

• FM broadcast
• Air traffic control• Amateur radio
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     communication
• Radio astronomy

• Direction finding

• Amateur radio

• Maritime
     communicationApplications

Frequency:
Wavelength:

Band
designation 1 GHz−2 GHz 2 GHz−4 GHz 4 GHz−8 GHz 8 GHz−12.4 GHz 12.4 GHz−18 GHz 18 GHz−27 GHz 27 GHz−40 GHz 40 GHz−300 GHz

Infrared Ultraviolet

Visible light

X rays Gamma rays

Fig. 1.3 Radio wave spectrum along with the band designations and typical ap-
plications.

the atmosphere is not a straight line. The air molecules also get ionized
by solar radiation and cosmic rays. The layer of ionized particles in the
atmosphere, known as the ionosphere, reflects high frequency (3 MHz to
30 MHz) waves. A multi-hop communication link is established by repeated
reflections of the electromagnetic waves between the ionosphere and the
surface of the earth. This is the mode of propagation of shortwave radio
signals over several thousand kilometres.

Both the radiation properties of the antennas and the propagation condi-
tions play a very important role in establishing a successful communication
link. This book addresses both these issues in some detail. It is assumed that
the students have some basic knowledge of electromagnetic theory. However,
in the following section some of the basic concepts of electromagnetic theory
used in the analysis of antennas are presented for easy reference as well as
for introducing the notation used in the book.

1.1 Review of Electromagnetic Theory
Electromagnetic fields are produced by time-varying charge distributions
which can be supported by time-varying current distributions. Consider sinu-
soidally varying electromagnetic sources. (Sources having arbitrary variation
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with respect to time can be represented in terms of sinusoidally varying
functions using Fourier analysis.) A sinusoidally varying current i(t) can be
expressed as a function of time, t, as

i(t) = I0 cos(ωt + ϕ) (1.1)

where I0 is the amplitude (unit: ampere, A), ω is the angular frequency
(unit: radian per second, rad/s), and ϕ is the phase (unit: radian, rad). The
angular frequency, ω, is related to the frequency, f (unit: cycle per second
or Hz), by the relation ω = 2πf . One may also express the current i(t) as
a sine function

i(t) = I0 sin(ωt + ϕ′) (1.2)

where ϕ′ = ϕ + π/2. Therefore, we need to identify whether the phase has
been defined taking the cosine function or the sine function as a reference.
In this text, we have chosen the cosine function as the reference to define
the phase of the sinusoidal quantity.

Since cos(ωt + ϕ) = Re
{
ej(ωt+ϕ)

}
where, Re{} represents the real part of

the quantity within the curly brackets, the current can now be written as

i(t) = I0Re
{
ej(ωt+ϕ)

}
(1.3)

= Re
{
I0e

jϕejωt
}

(1.4)

The quantity I0e
jϕ is known as a phasor and contains the amplitude and

phase information of i(t) but is independent of time, t.

EXAMPLE 1.1

Express i(t) = (cos ωt + 2 sinωt) A in phasor form.

Solution: First we must express sin ωt in terms of the cosine function using
the relation cos(ωt − π/2) = sin ωt. Therefore

i(t) = cos ωt + 2 cos
(

ωt − π

2

)

Using the relation cos(ωt + ϕ) = Re
{
ej(ωt+ϕ)

}

i(t) = Re
{
ejωt

}
+ Re

{
2ej(ωt−π/2)

}
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For any two complex quantities Z1 and Z2, Re{Z1 + Z2} = Re{Z1} +
Re{Z2} and, hence, the current can be written as

i(t) = Re{(1 + 2e−jπ/2)ejωt}
= Re{(1 − j2)ejωt}
= Re{2.24e−j1.1071ejωt}

Therefore, in the phasor notation the current is given by

I = 2.24e−j1.1071 A

EXAMPLE 1.2

Express the phasor current I = (I1e
jϕ1 + I2e

jϕ2) as a function of time.

Solution: The instantaneous current can be expressed as

i(t) = Re{Iejωt}

Substituting the value of I

i(t) = Re{I1e
jϕ1ejωt + I2e

jϕ2ejωt}
= I1 cos(ωt + ϕ1) + I2 cos(ωt + ϕ2)

The field vectors that vary with space, and are sinusoidal functions of
time, can also be represented by phasors. For example, an electric field vector
Ē(x, y, z, t), a function of space (x, y, z) having a sinusoidal variation with
time, can be written as

Ē(x, y, z, t) = Re
{
E(x, y, z)ejωt

}
(1.5)

where E(x, y, z) is a phasor that contains the direction, magnitude, and
phase information of the electric field, but is independent of time. In the text
that follows, ejωt time variation is implied in all the field and source quanti-
ties and is not written explicitly. In this text, bold face symbols (e.g., E) are
used for vectors, phasors, or matrices, italic characters for scalar quantities
(e.g., t), script characters (e.g., E) for instantaneous scalar quantities,
and script characters with an over-bar (e.g., Ē) for instantaneous vector
quantities.
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Using phasor notation, Maxwell’s equations can be written for the fields
and sources that are sinusoidally varying with time as1

∇× E = −jωμH (1.6)

∇× H = jωεE + J (1.7)

∇ · D = ρ (1.8)

∇ · B = 0 (1.9)

The symbols used in Eqns (1.6) to (1.9) are explained below:

E : Electric field intensity (unit: volt per metre, V/m)

H : Magnetic field intensity (unit: ampere per metre, A/m)

D : Electric flux density (unit: coulomb per metre, C/m)

B : Magnetic flux density (unit: weber per metre, Wb/m or tesla, T)

J : Current density (unit: ampere per square metre, A/m2)

ρ : Charge density (unit: coulomb per cubic metre, C/m3)

The first two curl equations are the mathematical representations of Fara-
day’s and Ampere’s laws, respectively. The divergence equation [Eqn (1.8)]
represents Gauss’s law. Since magnetic monopoles do not exist in nature,
we have zero divergence for B [Eqn (1.9)].

The current density, J, consists of two components. One is due to the
impressed or actual sources and the other is the current induced due to the
applied electric field, which is equal to σE, where σ is the conductivity of
the medium (unit: siemens per metre, S/m). In antenna problems, we are
mostly working with fields radiated into free space with σ = 0. Therefore, in
the analyses that follow, unless explicitly specified, J represents impressed-
source current density.

In an isotropic and homogeneous medium, the electric flux density, D,
and the electric field intensity, E, are related by

D = εE (1.10)

where ε is the electric permittivity (unit: farad per metre, F/m) of the
medium. ε0 is the permittivity of free space (ε0 = 8.854 × 10−12 F/m) and
the ratio, ε/ε0 = εr is known as the relative permittivity of the medium. It is

1See Cheng 2002, Hayt et al. 2001, Jordan et al. 2004, and Ramo et al. 2004.
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a dimensionless quantity. Similarly, magnetic flux density, B, and magnetic
field intensity, H, are related by

B = μH (1.11)

where μ = μ0μr is the magnetic permeability (unit: henry per metre, H/m) of
the medium. μ0 is the permeability of free space (μ0 = 4π × 10−7 H/m) and
the ratio, μ/μ0 = μr, is known as the relative permeability of the medium.
For an isotropic medium ε and μ are scalars and for a homogeneous medium
they are independent of position.

One of the problems in antenna analysis is that of finding the E and H
fields in the space surrounding the antenna. An antenna operating in the
transmit mode is normally excited at a particular input point in the an-
tenna structure. (The same point is connected to the receiver in the receive
mode). Given an antenna structure and an input excitation, the current
distribution on the antenna structure is established in such a manner that
Maxwell’s equations are satisfied everywhere and at all times (along with
the boundary conditions which, again, are derived from Maxwell’s equa-
tions using the behaviour of the fields at material boundaries). The
antenna analysis can be split into two parts—(a) determination of the cur-
rent distribution on the structure due to the excitation and (b) evaluation
of the field due to this current distribution in the space surrounding the
antenna. The first part generally leads to an integral equation, the treat-
ment of which is beyond the scope of this book. We will be mainly concerned
with the second part, i.e., establishing the antenna fields, given the current
distribution.

Maxwell’s equations [Eqns (1.6)–(1.9)] are time-independent, first order
differential equations to be solved simultaneously. It is a common practice
to reduce these equations to two second order differential equations called
wave equations. For example, in a source-free region (ρ = 0 and J = 0) we
can take the curl of the first equation [Eqn (1.6)], substitute it in the second
equation [Eqn (1.7)] to eliminate H, and get the wave equation, ∇2E +
k2E = 0, satisfied by the E field. Similarly, we can also derive the wave
equation satisfied by the H field. (Start from the curl of Eqn (1.7) and
substitute in Eqn (1.6) to eliminate E). Thus, it is sufficient to solve one
equation to find both E and H fields, since they satisfy the same wave
equation.

To simplify the problem of finding the E and H fields due to a current
distribution, we can split it into two parts by defining intermediate potential
functions which are related to the E and H fields. This is known as the vector
potential approach and is discussed in the following subsection.
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1.1.1 Vector Potential Approach
Given a current distribution on the antenna, the problem is one of deter-
mining the E and H fields due to this current distribution which satisfies all
four of Maxwell’s equations along with the boundary conditions, if any. In
the vector potential approach we carry out the solution to this problem in
two steps by defining intermediate potential functions. In the first step, we
determine the potential function due to the current distribution and in the
second step, the E and H fields are computed from the potential function.
In the analysis that follows, the relationships between the vector potential
and the current distribution as well as the E and H fields are derived. All
four of Maxwell’s equations are embedded in these relationships.

Let us start with the last of the Maxwell’s equations, ∇ · B = 0. Since
the curl of a vector field is divergence-free (vector identity: ∇ · ∇ × A = 0),
B can be expressed as a curl of an arbitrary vector field, A. We call this a
magnetic vector potential function because it is related to the magnetic flux
density, B, via the relationship

μH = B = ∇× A (1.12)

or

H =
1
μ
∇× A (1.13)

Substituting this into the equation ∇× E = −jωμH, Maxwell’s first equa-
tion is also incorporated

∇× E = −jω(μH) = −jω(∇× A) (1.14)

or

∇× (E + jωA) = 0 (1.15)

Since the curl of a gradient function is zero (vector identity: ∇×∇V = 0),
the above equation suggests that the quantity in brackets can be replaced
by the gradient of a scalar function. Specifically, a scalar potential function
V is defined such that

(E + jωA) = −∇V (1.16)

Using this we relate the E field to the potential functions as

E = −(∇V + jωA) (1.17)



10 Chapter 1 Electromagnetic Radiation

Equations (1.13) and (1.17) relate the H and E fields to the potential
functions A and V . Now, to satisfy Maxwell’s second equation, ∇× H =
jωεE + J, substitute the expression for the E and H fields in terms of the
potential functions [Eqns (1.13) and (1.17)]

1
μ
∇× (∇× A) = −jωε(∇V + jωA) + J (1.18)

which is valid for a homogeneous medium. Expanding the left hand side
using the vector identity

∇×∇× A = ∇(∇ · A) −∇2A (1.19)

we have

∇2A + ω2μεA = −μJ + ∇(∇ · A + jωμεV ) (1.20)

So far we have satisfied three of Maxwell’s four equations. Note that only
the curl of A is defined so far. Since the curl and divergence are two
independent parts of any vector field, we can now define the divergence
of A. We define ∇ · A so as to relate A and V as well as simplify Eqn (1.20)
by eliminating the second term on the right hand side of the equation. We
relate A and V by the equation

∇ · A = −jωμεV (1.21)

This relationship is known as the Lorentz condition. With this the magnetic
vector potential, A, satisfies the vector wave equation

∇2A + k2A = −μJ (1.22)

where

k = ω
√

με (1.23)

is the propagation constant (unit: radian per metre, rad/m) in the medium.
Now, to satisfy Maxwell’s fourth equation, ∇ · D = ρ, we substitute

E = −(∇V + jωA) in this equation to get

∇ · (−∇V − jωA) =
ρ

ε
(1.24)

or

∇2V + jω(∇ · A) = −ρ

ε
(1.25)
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Eliminating A from this equation using the Lorentz condition [Eqn (1.21)]

∇2V + k2V = −ρ

ε
(1.26)

Thus, both A and V must satisfy the wave equation, the source function
being the current density for the magnetic vector potential, A, and the
charge density for the electric scalar potential function V .

1.1.2 Solution of the Wave Equation
Consider a spherically symmetric charge distribution of finite volume, V ′,
centred on the origin. Our goal is to compute the scalar potential V (x, y, z)
[or V (r, θ, φ)1] due to this source, which is the solution of the inhomogeneous
wave equation as given by Eqn (1.26). Since the charge is spherically sym-
metric, we will solve the wave equation in the spherical coordinate system.
The Laplacian ∇2V in the spherical coordinate system2 is written as

∇2V =
1
r2

∂

∂r

(
r2 ∂V

∂r

)
+

1
r2 sin θ

∂

∂θ

(
sin θ

∂V

∂θ

)
+

1
r2 sin2 θ

∂2V

∂φ2
(1.27)

The scalar potential, V (r, θ, φ), produced by a spherically symmetric charge
distribution is independent of θ and φ. Therefore, the wave equation,
Eqn (1.26), reduces to

1
r2

∂

∂r

(
r2 ∂V

∂r

)
+ k2V = −ρ

ε
(1.28)

The right hand side of this equation is zero everywhere except at the source
itself. Therefore, in the source-free region, V satisfies the homogeneous wave
equation

1
r2

∂

∂r

(
r2 ∂V

∂r

)
+ k2V = 0 (1.29)

The solutions for V are the scalar spherical waves given by

V (r) = V
±
0

e∓jkr

r
(1.30)

where V
+

0 is a complex amplitude constant and e−jkr/r is a spherical wave
travelling in the +r-direction. V

−
0 is the complex amplitude of the scalar

1(x, y, z): rectangular co-ordinates; (r, θ, φ): spherical co-ordinates.
2See Appendix E for details on the coordinate systems and vector operations in different coordi-

nate systems.
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spherical wave ejkr/r travelling in the −r-direction. By substituting this in
the wave equation, it can be shown that it satisfies the homogeneous wave
equation [Eqn (1.29)].

EXAMPLE 1.3

Show that

V (r) = V
±
0

e∓jkr

r

are solutions of

1
r2

∂

∂r

(
r2 ∂V

∂r

)
+ k2V = 0

Solution: Let us consider the wave travelling in the positive r-direction

V (r) = V
+

0

e−jkr

r

Substituting into the left hand side (LHS) of the given equation

LHS =
1
r2

∂

∂r

[
r2 ∂

∂r

(
V

+

0

e−jkr

r

)]
+ k2V

+

0

e−jkr

r

= V
+

0

1
r2

∂

∂r

[
r2

(
−e−jkr

r2
− jk

e−jkr

r

)]
+ k2V

+

0

e−jkr

r

= V
+

0

1
r2

∂

∂r

(
−e−jkr − jkre−jkr

)
+ k2V

+

0

e−jkr

r

= V
+

0

1
r2

[
jke−jkr − jke−jkr − k2re−jkr

]
+ k2V

+

0

e−jkr

r

= 0

Therefore, the positive wave is a solution of the given differential equation.
Now, let us consider the wave that is travelling along the negative

r-direction

V (r) = V
−
0

ejkr

r
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Substituting into the left hand side of the given differential equation

LHS =
1
r2

∂

∂r

[
r2 ∂

∂r

(
V

−
0

ejkr

r

)]
+ k2V

−
0

ejkr

r

= V
−
0

1
r2

∂

∂r

[
−r2 1

r2
ejkr + jkrejkr

]
+ k2V

−
0

ejkr

r

= V
−
0

1
r2

[
−jkejkr + jkejkr − rk2ejkr

]
+ k2V

−
0

ejkr

r

= 0

The wave travelling in the −r-direction satisfies the differential equation,
hence it is also a solution.

These are the two solutions of the wave equation in free space and rep-
resent spherical waves propagating away from the origin (+r-direction) and
converging on to the origin (−r-direction). Taking physical considerations
into account, the wave converging towards the source is discarded.

The instantaneous value of the scalar potential V(r, t) for the wave prop-
agating in the +r-direction can be written as

V(r, t) = Re

{
V

+

0

ej(ωt−kr)

r

}
(1.31)

Since V
+

0 is a complex quantity, it can be expressed as, V
+

0 = |V +

0 |ejϕv , where
ϕv is the phase angle of V

+

0 . The equation for the constant phase spherical
wave front is

ϕv + ωt − kr = const (1.32)

The velocity of the wave is the rate at which the constant phase front moves
with time. Differentiating the expression for the constant phase front surface
with respect to time, we get

jω − jk
dr

dt
= 0 (1.33)

This follows from the fact that V
+

0 and, hence, the phase ϕv, is independent
of time, i.e., dϕv/dt = 0. Therefore, the velocity (v, unit: metre per second,
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m/s) of the wave can be expressed as

v =
dr

dt
=

ω

k
(1.34)

Substituting the value of the propagation constant from Eqn (1.23), the
wave velocity is

v =
ω

ω
√

με
=

1√
με

(1.35)

The velocity of the wave in free space is equal to 3 × 108 m/s. The distance
between two points that are separated in phase by 2π radians is known as
the wavelength (λ, unit: metre, m) of the wave. Consider two points r1 and
r2 on the wave with corresponding phases

ϕ1 = ϕv + ωt − kr1

ϕ2 = ϕv + ωt − kr2

such that

ϕ2 − ϕ1 = k(r1 − r2) = kλ = 2π (1.36)

Therefore, the wavelength and the propagation constant are related by

k =
2π

λ
(1.37)

The velocity can be written in terms of the frequency and the wavelength
of the wave

v =
ω

k
=

2πf

2π/λ
= fλ (1.38)

EXAMPLE 1.4

The electric field of an electromagnetic wave propagating in a homogeneous
medium is given by

Ē(x, y, z, t) = aθ
50
r

cos(4π × 106t − 0.063r) V/m
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Calculate the frequency, propagation constant, velocity, and the magnetic
field intensity of the wave if the relative permeability of the medium is equal
to unity.

Solution: The θ-component of the electric field can be expressed as

Eθ = Re
{

50
r

ej(4π×106t−0.063r)
}

Comparing this with Eqn (1.31), ω = 4π × 106 rad/s, hence frequency
of the wave is f = ω/(2π) = 2 MHz, and the propagation constant is
k = 0.063 rad/m. The velocity of the wave is given by v = ω/k = 4π ×
106/0.063 = 2 × 108 m/s.

Expressing the electric field as a phasor

E = aθ
50
r

e−j0.063r V/m

Substituting this in Maxwell’s equation, Eqn (1.6), and expressing the curl
in spherical coordinates

−jωμH = ∇× E =
1

r2 sin θ

∣∣∣∣∣∣∣∣
ar raθ r sin θaφ

∂/∂r ∂/∂θ ∂/∂φ

0 rEθ 0

∣∣∣∣∣∣∣∣
Expanding the determinant

∇× E =
1

r2 sin θ

[
−ar

∂(rEθ)
∂φ

+ aφr sin θ
∂(rEθ)

∂r

]

Since r and Eθ are not functions of φ

∇× E = aφ
50
r

(−j0.063)e−j0.063

Therefore, the magnetic field is given by

H =
1

−jωμ
∇× E = aφ

0.063
ωμ

× 50
r

e−0.063r

Substituting the values of ω = 4π × 106 rad/s and μ = 4π × 10−7 H/m

H = aφ
0.2
r

e−j0.063r A/m
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The magnetic field can also be expressed as a function of time.

H̄ = aφ
0.2
r

cos(4π × 106t − 0.063r) A/m

Consider a static point charge q kept at a point with position vector r′ as
shown in Fig. 1.4. The electric potential, V , at a point P (r, θ, φ), with the
position vector r, is given by

V (r, θ, φ) =
q

4πεR
(1.39)

where R is the distance between the charge and the observation point,
R = |R| = |r − r′| (see Fig. 1.4). We are using two coordinate notations,
the primed coordinates (x′, y′, z′) for the source point and the unprimed
coordinates (x, y, z) or (r, θ, φ) for the field point.

If there are more than one point charges, the potential is obtained by
the superposition principle, i.e., summing the contributions of all the point
charges. If the source is specified as a charge density distribution over a
volume, the potential at any field point is obtained by integration over the
source volume. To do this, we first consider a small volume Δv′ centered
on r′. The charge contained in this volume is ρ(r′)Δv′, where ρ(r′) is the

z

Source

q (x', y', z' )
R

r

r'

y
o

Field
point

P (x, y, z)

x

Fig. 1.4 Position vectors of source and field points
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volume charge density distribution function. In the limit Δv′ → 0 we can
consider the charge as a point charge and compute the potential at any field
point r due to the charge contained in the volume Δv′ using the expression
given in Eqn (1.39).

ΔV (r, θ, φ) =
ρΔv′

4πεR
(1.40)

Let us now consider a time-varying charge ρΔv′ with a sinusoidal time
variation represented by ejωt. Heuristically, we can reason out that the effect
on the potential due to a change in the charge would travel to the field
point with the propagation constant k. Hence for a point charge with an
exponential time variation of the form ejωt, the phase fronts are spherical
with the point r′ as the origin. Therefore

ΔV (r, θ, φ) =
ρ(x′, y′, z′)Δv′

4πε

e−jkR

R
(1.41)

The potential at point (r, θ, φ) due to a charge distribution ρ(x′, y′, z′) is
obtained by integrating Eqn (1.41) over the source distribution

V (r, θ, φ) =
1

4πε

∫∫∫
V ′

ρ(x′, y′, z′)
e−jkR

R
dv′ (1.42)

where V ′ is the volume over which ρ(x′, y′, z′) exists, or the source volume.
The instantaneous value of the scalar potential V(r, θ, φ, t) is obtained by

V(r, θ, φ, t) = Re
{
V (r, θ, φ)ejωt

}
= Re

⎧⎨
⎩ 1

4πε

∫∫∫
V ′

ρ(x′, y′, z′)
e−jkR+jωt

R
dv′
⎫⎬
⎭

(1.43)
Using the relation v = ω/k, this reduces to

V(r, θ, φ, t) = Re

⎧⎨
⎩ 1

4πε

∫∫∫
V ′

ρ(x′, y′, z′)
ejω(t−R

v
)

R
dv′
⎫⎬
⎭ (1.44)

It is clear from this expression that the potential at time t is due to the
charge that existed at an earlier time R/v. Or the effect of any change
in the source has travelled with a velocity v to the observation point at a
distance R from the source. Therefore, V is also known as the retarded scalar
potential.
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In Section 1.1.1 it is shown that both, electric scalar potential, V and mag-
netic vector potential, A, satisfy the wave equation with the source terms
being ρ/ε and μJ, respectively. Therefore, a similar heuristic argument can
be used to derive the relationship between the current density distribution
J(x′, y′, z′) and the vector potential A(r, θ, φ). Starting from the expression
for the magnetic vector potential for a static current density we introduce
the delay time −R/v to obtain the retarded vector potential expression
for the time-varying current density distribution J. The vector potential at
any time t is related to the current density distribution at time (t − R/v).
Further, the vector A has the same direction as the current density J.
The relationship between the current density J(x′, y′, z′) and the vector
potential A(r, θ, φ) is given by simply multiplying the static relationship
with the e−jkR term. Thus, the retarded vector potential is given by

A(r, θ, φ) =
μ

4π

∫∫∫
V ′

J(x′, y′, z′)
e−jkR

R
dv′ (1.45)

If the current density is confined to a surface with surface density Js (in
A/m), the volume integral in the vector potential expression reduces to a
surface integral

A(r, θ, φ) =
μ

4π

∫∫
S′

Js(x′, y′, z′)
e−jkR

R
ds′ (1.46)

For a line current I (in A), the integral reduces to a line integral

A(r, θ, φ) =
μ

4π

∫
C′

I(x′, y′, z′)
e−jkR

R
dl′ (1.47)

1.1.3 Solution Procedure
The procedure for computing the fields of an antenna requires us to first
determine the current distribution on the antenna structure and then com-
pute the vector potential, A, using Eqn (1.45). In a source-free region, A is
related to the H field via Eqn (1.13)

H =
1
μ
∇× A (1.48)
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and H is related to the E field by (Eqn (1.7) with J = 0 in a source-free
region)

E =
1

jωε
∇× H (1.49)

As mentioned in Section 1.1, the computation of the current distribution
on the antenna, starting from the excitation, involves solution of an integral
equation and is beyond the scope of this book. Here we assume an approx-
imate current distribution on the antenna structure and proceed with the
computation of the radiation characteristics of the antenna.

1.2 Hertzian Dipole
A Hertzian dipole is ‘an elementary source consisting of a time-harmonic
electric current element of a specified direction and infinitesimal length’
(IEEE Trans. Antennas and Propagation 1983). Although a single current
element cannot be supported in free space, because of the linearity of
Maxwell’s equations, one can always represent any arbitrary current
distribution in terms of the current elements of the type that a Hertzian
dipole is made of. If the field of a current element is known, the field due to
any current distribution can be computed using a superposition integral or
summing the contributions due to all the current elements comprising the
current distribution. Thus, the Hertzian dipole is the most basic antenna
element and the starting point of antenna analysis.

Consider an infinitesimal time-harmonic current element, I = azI0dl, kept
at the origin with the current flow directed along the z-direction indicated
by the unit vector az (Fig. 1.5). I0 is the current and dl is the elemental
length of the current element. Time variation of the type ejωt is implied
in saying the current element is time-harmonic. Consider the relationship
between the current distribution I and the vector potential A, as shown in
Eqn (1.47) and reproduced here for convenience

A(r, θ, φ) =
μ

4π

∫
C′

I(x′, y′, z′)
e−jkR

R
dl′ (1.50)

Since we have an infinitesimal current element kept at the origin

x′ = y′ = z′ = 0 (1.51)

R =
√

(x − x′)2 + (y − y′)2 + (z − z′)2 =
√

x2 + y2 + z2 = r (1.52)
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x
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Y

azAz
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ar Ar

P (x, y, z)

I0 dl

r

ø
r sin �

�

�

Fig. 1.5 Components of the vector potential on the surface of a
sphere of radius r, due to a z-directed current element kept at the
origin

Now, the vector potential due to a current element can be written as

A(r, θ, φ) = az
μ

4π
I0dl

e−jkr

r
= azAz (1.53)

Note that the vector potential has the same vector direction as the current
element. In this case, the az-directed current element produces only the
Az-component of the vector potential.

The H and E fields of a Hertzian dipole are computed using the rela-
tionships given by Eqns (1.48) and (1.49), respectively. The E and H fields
are generally computed in spherical coordinates for the following reasons—
(a) the (e−jkr/r) term indicates that the fields consist of outgoing spheri-
cal waves which are simple to represent mathematically in spherical coor-
dinates and (b) the spherical coordinate system allows easy visualization
of the behaviour of the fields as a function of direction and simplifies the
mathematical representation of the radiated fields.
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From Fig. 1.5 we can relate the z-component of the vector potential, Az,
to the components in spherical coordinates Ar, Aθ, and Aφ as

Ar = Az cos θ

Aθ = −Az sin θ

Aφ = 0

(1.54)

Taking the curl of A in spherical coordinates

∇× A =
1

r2 sin θ

∣∣∣∣∣∣∣∣
ar raθ r sin θaφ

∂/∂r ∂/∂θ ∂/∂φ

Ar rAθ r sin θAφ

∣∣∣∣∣∣∣∣
(1.55)

Substituting the components of A from Eqn (1.54) into Eqn (1.55), we get

∇× A =
1

r2 sin θ

∣∣∣∣∣∣∣∣
ar raθ r sin θaφ

∂/∂r ∂/∂θ ∂/∂φ

Az cos θ −rAz sin θ 0

∣∣∣∣∣∣∣∣
(1.56)

Since Az is a function of r alone, its derivatives with respect to θ and φ are
zero. Hence, the curl equation reduces to

∇× A = aφ
1
r

[
∂

∂r
(−rAz sin θ) − ∂

∂θ
(Az cos θ)

]
(1.57)

Substituting the expression for Az and performing the indicated differenti-
ations in Eqn (1.57)

∇× A = aφ
1
r
Az sin θ (jkr + 1) (1.58)

Substituting the result in Eqn (1.48) and simplifying, we get the expres-
sions for the components of the H field of a Hertzian dipole in spherical
coordinates as

Hr = 0 (1.59)

Hθ = 0 (1.60)

Hφ = jk
I0dl sin θ

4π

e−jkr

r

[
1 +

1
jkr

]
(1.61)
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The electric field can be obtained from Maxwell’s curl equation. Substituting
the expression for H in Eqn (1.49) we get

E =
1

jωε
∇× H =

1
jωε

1
r2 sin θ

∣∣∣∣∣∣∣∣
ar raθ r sin θaφ

∂/∂r ∂/∂θ ∂/∂φ

0 0 r sin θHφ

∣∣∣∣∣∣∣∣
(1.62)

Expanding the determinant the equation reduces to

E =
1

jωε

1
r2 sin θ

[
ar

∂

∂θ
(r sin θHφ) − raθ

∂

∂r
(r sin θHφ)

]
(1.63)

After performing the indicated derivative operations, Eqn (1.63) can be sim-
plified to give the electric field components of a Hertzian dipole in spherical
coordinates as

Er = η
I0dl cos θ

2πr

e−jkr

r

(
1 +

1
jkr

)
(1.64)

Eθ = jη
kI0dl sin θ

4π

e−jkr

r

(
1 +

1
jkr

− 1
(kr)2

)
(1.65)

Eφ = 0 (1.66)

where η = k/(ωε) is the intrinsic impedance of the medium.

EXAMPLE 1.5

Show that η = k/(ωε).

Solution: Substituting k = 2π/λ and ω = 2πf and simplifying

k

ωε
=

2π/λ

(2πf)ε
=

1
(λf)ε

The velocity of the wave, v, is related to the frequency, f , and the wave-
length, λ, by v = fλ, and v is related to the permittivity, ε, and permeability,
μ, of the medium by v = 1/

√
με. Substituting these in the above equation

and simplifying

k

ωε
=

1
vε

=
√

με

ε
=
√

μ

ε
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The impedance of the medium η is related to ε and μ by η =
√

μ/ε and,
therefore

k

ωε
= η

It is interesting to note that a z-directed current element kept at the origin
has only the Hφ, Er, and Eθ components and, further, the fields have com-
ponents that decay as 1/r, 1/r2, and 1/r3, away from the current element.
Thus, these expressions form a convenient basis for classifying the fields of
any antenna depending on the nature of decay away from the antenna.

To understand the nature of the field behaviour as a function of r,
Eqns (1.64) and (1.65) can be re-written as

Er = η
k2I0dl cos θ

2π
e−jkr

(
1

(kr)2
+

1
j(kr)3

)
(1.67)

Eθ = jη
k2I0dl sin θ

4π
e−jkr

(
1
kr

+
1

j(kr)2
− 1

(kr)3

)
(1.68)

A plot of 1/(kr), 1/(kr)2, and 1/(kr)3 as functions of (kr) is shown in
Fig. 1.6. For large values of r, i.e., r � λ or kr � 1, the terms contain-
ing 1/(kr)2 and 1/(kr)3 decay much faster than 1/(kr). Therefore, at large
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Fig. 1.6 Dependence of 1/(kr), 1/(kr)2, and 1/(kr)3 on (kr)
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distances from the Hertzian dipole, only the terms containing 1/r are re-
tained in the electric and magnetic field expressions. The electric and the
magnetic fields of a z-directed Hertzian dipole for r � λ are given by

Eθ = jη
kI0dl sin θ

4π

e−jkr

r
(1.69)

Hφ = j
kI0dl sin θ

4π

e−jkr

r
(1.70)

The ratio of Eθ to Hφ is equal to the impedance of the medium.

EXAMPLE 1.6

Calculate and compare the r and θ components of the electric field inten-
sities at x = 100 m, y = 100 m, and z = 100 m produced by a Hertzian
dipole of length dl = 1 m kept at the origin, oriented along the z-axis,
excited by a current of i(t) = 1 × cos(10π × 106t) A, and radiating into free
space.

Solution: The frequency of excitation is ω = 10π × 106 rad/s, and therefore
f = 5 × 106 Hz. The dipole is radiating in free space with parameters μ =
4π × 10−7 H/m and ε = 8.854 × 10−12 F/m. Therefore, the impedance of
the medium is

η =
√

μ

ε
=

√
4π × 10−7

8.854 × 10−12
= 376.73 Ω

and the propagation constant is

k = ω
√

με = 10π × 106
√

4π × 10−7 × 8.854 × 10−12 = 0.1047 rad/m

The distance r between the field point and the dipole (which is at the
origin) is

r =
√

x2 + y2 + z2 =
√

1002 + 1002 + 1002 = 173.2 m

Using the relation z = r cos θ, we can compute value of θ as

θ = cos−1
(

z

r

)
= cos−1

(
100

173.2

)
= 54.73◦
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Substituting these values in Eqn (1.64)

Er = η
I0dl cos θ

2πr

e−jkr

r

(
1 +

1
jkr

)

= 376.73
1 × 1 × cos 54.73◦

2π × 173.2
e−j0.1047×173.2

173.2

(
1 +

1
j0.1047 × 173.2

)

= 1.154 × 10−3(1 − j0.055)e−j18.14

= 1.154 × 10−3 × 1.002� −3.148◦ × 1� 40.65◦

= 1.156 × 10−3 � 37.51◦ V/m

The θ-component of the electric field is evaluated using Eqn (1.65)

Eθ = jη
kI0dl sin θ

4π

e−jkr

r

(
1 +

1
jkr

− 1
(kr)2

)

= j376.73
0.1047 × 1 × 1 × sin 54.73◦

4π

e−j18.14

173.2

(
1 +

1
j18.14

− 1
18.142

)

= j0.0148e−j18.14(1 − j0.055 − 3.04 × 10−3)

= 1� 90◦ × 0.0148 × 1� 40.65◦ × 0.9985� −3.158◦

= 0.0148� 127.49◦ V/m

The wavelength of the EM wave is 60 m and, therefore, at a distance of
2.88λ the θ-component of the electric field is more than 10 times greater
than the r-component.

EXAMPLE 1.7

A vector A can be represented in rectangular coordinate system as A =
axAx + ayAy + azAz and in spherical coordinates as A = arAr + aθAθ +
aφAφ. Express Ax, Ay, and Az in terms of Ar, Aθ, and Aφ and vice versa.

Solution: The position vector of any point r in the rectangular coordinate
system is given by

r = axx + ayy + azz

From Fig. 1.5

x = r sin θ cos φ

y = r sin θ sin φ

z = r cos θ
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Therefore, the position vector can be written as

r = axr sin θ cos φ + ayr sin θ sinφ + azr cos θ

At any point P (r, θ, φ), ar, aθ, and aφ denote the unit vectors along the
r, θ, and φ directions, respectively. The unit vector along the r-direction is
given by

ar =
r
|r|

where |r| =
√

(r sin θ cos φ)2 + (r sin θ sinφ)2 + (r cos θ)2 = r and hence

ar = ax sin θ cos φ + ay sin θ sinφ + az cos θ

The unit vector aθ is tangential to the θ-direction. The tangent to the
θ-direction is given by ∂r/∂θ. Therefore, the unit vector along the θ-direction
is given by

aθ =
∂r/∂θ

|∂r/∂θ| = ax cos θ cos φ + ay cos θ sinφ − az sin θ

Similarly, aφ can be written as

aφ =
∂r/∂φ

|∂r/∂φ| = −ax sinφ + ay cos φ

This transformation from rectangular to spherical coordinates can be ex-
pressed in a matrix form as

⎛
⎜⎜⎝

ar

aθ

aφ

⎞
⎟⎟⎠=

⎛
⎜⎜⎝

sin θ cos φ sin θ sinφ cos θ

cos θ cos φ cos θ sinφ − sin θ

− sinφ cos φ 0

⎞
⎟⎟⎠
⎛
⎜⎜⎝

ax

ay

az

⎞
⎟⎟⎠

Equating the rectangular and spherical coordinate representations of A

A = ax + ay + az = arAr + aθAθ + aφAφ

Substituting the expressions for ar, aθ, and aφ in terms of ax, ay, and az

ax + ay + az = (ax sin θ cos φ + ay sin θ sinφ + az cos θ)Ar

+ (ax cos θ cos φ + ay cos θ sinφ − az sin θ)Aθ

+ (−ax sin φ + ay cos φ)Aφ
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This can be rearranged as

axAx + ayAy + azAz = ax(sin θ cos φAr + cos θ cos φAθ − sinφAφ)

+ay(sin θ sinφAr + cos θ sinφAθ + cos φAφ)

+az(cos θAr − sin θAθ)

Equating the coefficients of ax, ay, and az on both sides, we get a relationship
between (Ar, Aθ, Aφ) and (Ax, Ay, Az). This can be represented in matrix
form as

⎛
⎜⎜⎝

Ax

Ay

Az

⎞
⎟⎟⎠=

⎛
⎜⎜⎝

sin θ cos φ cos θ cos φ − sinφ

sin θ sinφ cos θ sinφ cos φ

cos θ − sin θ 0

⎞
⎟⎟⎠
⎛
⎜⎜⎝

Ar

Aθ

Aφ

⎞
⎟⎟⎠

The 3 × 3 matrix is known as the transformation matrix. Let us use the
symbol X to represent the transformation matrix.

The components of A in spherical coordinates can be written in terms of
its components in rectangular coordinates by pre-multiplying both the sides
of the above equation by the inverse of the transformation matrix.

⎛
⎜⎜⎝

Ar

Aθ

Aφ

⎞
⎟⎟⎠=

⎛
⎜⎜⎝

sin θ cos φ cos θ cos φ − sinφ

sin θ sinφ cos θ sinφ cos φ

cos θ − sin θ 0

⎞
⎟⎟⎠
−1⎛⎜⎜⎝

Ax

Ay

Az

⎞
⎟⎟⎠ (1.7.1)

= X−1

⎛
⎜⎜⎝

Ax

Ay

Az

⎞
⎟⎟⎠

The inverse of the transformation matrix is given by

X−1 =
1
Δ

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∣∣∣∣∣ cos θ sinφ cos φ

− sin θ 0

∣∣∣∣∣ −
∣∣∣∣∣ sin θ sinφ cos φ

cos θ 0

∣∣∣∣∣
∣∣∣∣∣ sin θ sin φ cos θ sinφ

cos θ − sin θ

∣∣∣∣∣

−
∣∣∣∣∣ cos θ cos φ − sinφ

− sin θ 0

∣∣∣∣∣
∣∣∣∣∣ sin θ cos φ − sinφ

cos θ 0

∣∣∣∣∣ −
∣∣∣∣∣ sin θ cos φ cos θ cos φ

cos θ − sin θ

∣∣∣∣∣
∣∣∣∣∣ cos θ cos φ − sinφ

cos θ sinφ cos φ

∣∣∣∣∣ −
∣∣∣∣∣ sin θ cos φ − sinφ

sin θ sinφ cos φ

∣∣∣∣∣
∣∣∣∣∣ sin θ cos φ cos θ cos φ

sin θ sinφ cos θ sinφ

∣∣∣∣∣

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

T
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where Δ is the determinant of the transformation matrix and is equal to
unity. On simplifying

X−1 =

⎛
⎜⎜⎝

sin θ cos φ cos θ cos φ − sinφ

sin θ sinφ cos θ sinφ cos φ

cos θ − sin θ 0

⎞
⎟⎟⎠

T

On taking the transpose of the matrix and substituting in Eqn (1.7.1)⎛
⎜⎜⎝

Ar

Aθ

Aφ

⎞
⎟⎟⎠=

⎛
⎜⎜⎝

sin θ cos φ sin θ sinφ cos θ

cos θ cos φ cos θ sinφ − sin θ

− sinφ cos φ 0

⎞
⎟⎟⎠
⎛
⎜⎜⎝

Ax

Ay

Az

⎞
⎟⎟⎠

The transformation matrix has the unitary property, i.e., X−1 = XT. Using
this property we can transform the unit vectors in spherical coordinates into
unit vectors in rectangular coodrinates as⎛

⎜⎜⎝
ax

ay

az

⎞
⎟⎟⎠=

⎛
⎜⎜⎝

sin θ cos φ cos θ cos φ − sinφ

sin θ sinφ cos θ sinφ cos φ

cos θ − sin θ 0

⎞
⎟⎟⎠
⎛
⎜⎜⎝

ar

aθ

aφ

⎞
⎟⎟⎠

EXAMPLE 1.8

Derive the expressions for the fields of a current element I0dl kept at the
origin, oriented along the x-axis, and radiating into free space.

Solution: Since the current element is oriented along the x-direction, the
magnetic vector potential has only the x-component. Following the proce-
dure given in Section 1.2, we can write the magnetic vector potential as

A = ax
μ0

4π
I0dl

e−jkr

r

The unit vector ax can be written in terms of the unit vectors of the spherical
coordinates (see Example 1.7)

A =
μ0

4π
I0dl

e−jkr

r
(ar sin θ cos φ + aθ cos θ cos φ − aφ sinφ)

The magnetic field is given by

H =
1
μ
∇× A =

1
μr2 sin θ

∣∣∣∣∣∣∣∣
ar raθ r sin θaφ

∂/∂r ∂/∂θ ∂/∂φ

Ar rAθ r sin θAφ

∣∣∣∣∣∣∣∣
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Expanding the determinant

H =
1

r2 sin θ

I0dl

4π

{
ar

[
∂

∂θ

(
− r sin θ sin φ

e−jkr

r

)
− ∂

∂φ

(
r cos θ cos φ

e−jkr

r

)]

−aθr

[
∂

∂r

(
− r sin θ sinφ

e−jkr

r

)
− ∂

∂φ

(
sin θ cos φ

e−jkr

r

)]

+aφr sin θ

[
∂

∂r

(
r cos θ cos φ

e−jkr

r

)
− ∂

∂θ

(
sin θ cos φ

e−jkr

r

)]}

Performing the indicated differentiations and simplifying

Hθ = −j
kI0dl

4π
sinφ

e−jkr

r

(
1 +

1
jkr

)

Hφ = −j
kI0dl

4π
cos θ cos φ

e−jkr

r

(
1 +

1
jkr

)

The electric field can be calculated from Maxwell’s equation jωεE =
∇× H

E =
1

jωε

1
r2 sin θ

∣∣∣∣∣∣∣∣
ar raθ r sin θaφ

∂/∂r ∂/∂θ ∂/∂φ

0 rHθ r sin θHφ

∣∣∣∣∣∣∣∣
On expanding the determinant, performing the indicated differentiations,
and simplifying

Er = η
I0dl

2πr
sin θ cos φ

e−jkr

r

(
1 +

1
jkr

)

Eθ = −jη
kI0dl

4π
cos θ cos φ

e−jkr

r

(
1 +

1
jkr

− 1
(kr)2

)

Eφ = jη
kI0dl

4π
sinφ

e−jkr

r

(
1 +

1
jkr

− 1
(kr)2

)

So far we have learnt how to compute the fields due to a current distri-
bution using the vector potential approach. Every antenna can be looked
at as a current distribution producing electric and magnetic fields in the
surrounding space and, therefore, we have learnt the basics of computing the
fields of an antenna. In the following chapter we will learn about properties
of antennas and introduce the various terms associated with antennas.
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Exercises

1.1 Prove that the spherical coordinate system
is orthogonal.

1.2 Show that for any twice differentiable
scalar function, φ, ∇×∇φ = 0.

1.3 Show that for any twice differentiable vec-
tor function A, ∇ · ∇ × A = 0.

1.4 Prove the vector identity ∇×∇× A =
∇(∇ · A) −∇2A.

1.5 In a source-free region show that the E
and H fields satisfy ∇2E + k2E = 0 and
∇2H + k2H = 0, respectively.

1.6 Show that V (r) = V0e
−jkr/r, where V0 is

a complex constant and k is a real number,
represents a wave travelling in the positive
r-direction.

1.7 Plot the equiphase surfaces of the electric
field of an EM wave given by (a) E =
aφE0e

−jkr/r and (b) E = ayE0e
−jkx,

where E0 is a complex constant.

1.8 Derive Eqns (1.59)–(1.61) from Eqn (1.57).

1.9 Derive Eqns (1.64)–(1.66) from Eqn (1.63).

1.10 For the Hertzian dipole considered in Sec-
tion 1.2, compute the electric and magnetic
fields in the rectangular coordinate system
directly by taking the curl of azAz. Now
convert the fields into spherical coordinates
and compare them with the results given in
Eqns (1.59)–(1.61) and Eqns (1.64)–(1.66).

1.11 Show that ωμ = kη, where the symbols
have their usual meaning.

1.12 Show that at large distances from a radi-
ating Hertzian dipole (r � λ), the elec-
tric and magnetic fields satisfy Maxwell’s
equations.

1.13 A z-directed Hertzian dipole placed at
the origin has length dl = 1 m and is ex-
cited by a sinusoidal current of amplitude
I0 = 10 A and frequency 1 MHz. If the
dipole is radiating into free space, calcu-
late the distance in the x-y plane from
the antenna beyond which the magnitude
of the electric field strength is less than
1 × 10−3 V/m.

Answer: 6279 m

1.14 Derive an expression for the fields of a
Hertzian dipole of length dl carrying a
current of I0 which is located at the ori-
gin of the coordinate system and oriented
along the y-axis.

1.15 Find the strength of the z-component of
the electric field at (0, 100 m, 0) produced
by a z-directed Hertzian dipole of length
dl = 0.5 m, placed at the origin, carrying
a current of i(t) = 2 cos(6π × 106t) A,
and radiating into free space. If the dipole
is oriented along the x-axis, what will be
strength of the x-component of the elec-
tric field at the same point?

Answer: Ez = 0.01856� −99.3◦ V/m;
Ex = 0.01856� −99.3◦ V/m


