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CHAPTER 1
Introduction to
Operational Amplifiers

1 Sketch the circuit symbol for an
operational amplifier (op-amp)
and identify all terminals.

2 Draw a basic (three bipolar
junction transistor) op-amp
internal circuit diagram. Identify
all terminals, and explain the
circuit operation.

3 Sketch an op-amp voltage fol-
lower circuit. Explain its opera-
tion.

4 Draw the diagram for an op-
amp noninverting amplifier.
Explain the circuit operation,
and calculate the voltage gain
for given resistor values.

5 Draw the diagram for an op-
amp inverting amplifier.
Explain the circuit operation,
and calculate the voltage gain
for given resistor values.

Objectives

After studying this chapter, you will be able to

INTRODUCTION 

Operational amplifiers (op-amps) are very high gain amplifier circuits with
two high-impedance input terminals and one low-impedance output. The
input terminals are identified as inverting input and noninverting input. The
basic op-amp circuit consists of a differential amplifier input stage, a level
shifting intermediate stage, and an emitter-follower output stage. Opera-
tional amplifiers can be employed for a great many circuit applications by
using various combinations of externally connected components. The sim-
plest of these are the voltage follower, the noninverting amplifier, and the
inverting amplifier.

1-1 IC OPERATIONAL AMPLIFIER 

Circuit Symbol and Terminals
The circuit symbol for an op-amp, illustrated in Fig. 1-1, shows that there are
two input terminals, one output terminal, and two supply terminals. Plus–
minus supply voltages (+VCC and –VEE) are normally used and these typi-
cally range from ±5 to ±22 V. The input terminals are designated as inverting
input (minus sign) and noninverting input (plus sign). A positive-going volt-
age applied to the inverting input produces a negative-going (inverted)

© Oxford University Press



2 Operational Amplifier

Figure 1-1 Operational amplifier circuit symbol.
There are two supply terminals (+VCC and
–VEE), two input terminals (inverting and nonin-
verting), and one output.

output, and a positive-going signal at the noninverting input generates a
positive-going (noninverted) output.

Basic Op-amp Circuit
The basic circuit of an IC op-amp consists of a bipolar junction transistor
(BJT) differential amplifier input stage combined with an emitter follower
output. This is illustrated in Fig. 1-2. Note the plus—minus supply (+VCC

and –VEE), which is normally used. Transistors Q1 and Q2 together with resis-
tors RE and RC constitute a differential amplifier, which produces a voltage
change at the collector of Q2 when a voltage difference is applied to the bases
of Q1 and Q2. The Q2 collector voltage is passed to the voltage divider (Ra and
Rb), which shifts the dc voltage level down to approximately half-way
between +VCC and –VEE. This voltage is then applied to the output via the
emitter follower consisting of transistor Q3 and emitter resistor RE3.

Differential input stage

+VCC

IC2IC1

+

–

+

–

Level shifting
stage

+

–

VRC
RC

Voltage follower
output stage

VC2

V2Vi

+

–

Ra
Q3

VB3

Q2Q1

RE IE
VRb Rb RE3

Vo

–VEE

Figure 1-2 An op-amp circuit consists basically of a differential amplifier input stage, a
level shifting intermediate stage, and an emitter follower output.

Example 1-1
Calculate the voltage and current levels for the circuit shown in Fig. 1-2
if VCC = ±10 V, Vi = V2 = 0, and the components are Ra = 47 kΩ, Rb = 100 kΩ,
and RC = RE = RE3 = 4.7 kΩ. For simplicity, assume that Q1 and Q2 are
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Chapter 1 Introduction to Operational Amplifiers   3

perfectly matched, that the current through Ra and Rb has no effect on the
voltage drop across RC, and that the Q3 base current has no effect on the volt-
age divider.

Solution
VRE = VB1 – VBE – VEE

= 0 – 0.7 V – (–10 V)
= 9.3 V 

VRC = IC2 � RC

= 0.99 mA� 4.7 k�
= 4.65 V

VRaRb = VCC – VEE – VRC

= 10 V – (–10 V) – 4.65 V 

= 15.35 V

Vo = VEE + VRb – VBE

= –10 V + 10.4 V – 0.7 V
= –0.3 V

To further investigate the operation of the circuit in Fig. 1-2, suppose that a
positive input (+Vi) is applied to the base of Q1 and that the Q2 base is held at
ground level. This produces an increase in IC1 and a decrease in IC2, resulting
in a decreased voltage drop across resistor RC. Consequently, VC2 and VB3 are
increased, producing a positive-going output voltage. If the input to Q1 base
is negative (–Vi) instead of positive, IC1 is decreased and IC2 is increased, re-
sulting in an increase in VRC, a decrease in VB3, and a consequent negative-
going output. 

It is seen that a positive-going input at the base of Q1 produces a positive-
going output at the Q3 emitter, and that a negative-going input to Q1 gives a
negative-going output. This means that an input voltage applied to Q1 base
results in an output having the same polarity as the input (a noninverted out-
put). Thus, the terminal at the base of Q1 is the noninverting input.

Now assume that Q1 base is maintained at ground level while a positive
input (+V2) is applied to the base of Q2. In this case IC1 is decreased and IC2 is

V
V R

R RRb
RaRb b

a b

15.53 V k
k 4.7

= ×
+

= ×
+

100
100

�

� kk
= 10.4 V

�

I I
I

C1 C2
E mA= = =
2

0 99.

I
V

RE
RE

E

9.3 V
4.7 k

= =
Ω

= 1.98 mA
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4 Operational Amplifier

increased, producing an increased voltage drop across RC and a consequent
negative-going output. When the input to Q2 base is negative (–V2) instead of
positive, IC2 is decreased, IC1 is increased, VRC is decreased, and the output is
positive-going. So, an input voltage to Q2 base results in an output having the
opposite polarity to the input (an inverted output). So, the terminal at the
base of Q2 is the inverting input.

The differential amplifier stage offers high input impedance (Zi) at the BJT
bases. The emitter follower output stage gives a low output impedance (Zo).
The input stage also provides voltage gain, and the more complex circuitry of
a practical IC op-amp produces much higher gain than would be available
from the simple differential amplifier stage illustrated. As with all amplifiers,
the voltage gain is the output voltage divided by the input voltage. In this
case, the input voltage is the difference between the two input terminal volt-
ages (VD). Where no negative feedback is involved, the voltage gain is
termed the open-loop voltage gain (AOL) (or Av(OL)). When negative feedback is
employed, the voltage gain becomes the closed-loop gain (ACL). The high input
impedance and the low output impedance are also enhanced by the practical
op-amp circuitry, and they are both very much improved by the use of nega-
tive feedback in typical op-amp applications. 

Section Review
1-1.1 Sketch the graphic symbol for an op-amp and identify all of the terminals.
1-1.2 Sketch the basic (three BJT) internal circuit for an op-amp. Identify the

inverting and noninverting terminals and briefly explain the circuit
operation.

Practice Problem
1-1.1 Calculate Vo for the circuit in Example 1-1 when the supply is VCC =

±15 V and RC and RE are changed to 5.6 kΩ.

1-2 THE VOLTAGE FOLLOWER CIRCUIT

The IC op-amp lends itself to a wide variety of applications. The very sim-
plest of these is the voltage follower shown in Fig. 1-3(a). The output terminal
is connected directly to the inverting input terminal, the signal is applied to
the noninverting input, and the load is directly coupled to the output. The
output voltage now follows the input, giving the circuit a voltage gain of 1, a
very high input impedance, and a very low output impedance. 

To understand how the voltage follower operates, consider the basic op-
amp circuit reproduced in Fig. 1-3(b). As in Fig. 1-3(a), the output (terminal
6) is connected to the inverting input terminal (terminal 2). With terminal 3
grounded, terminal 2 and the output must also be at ground level. If the
input voltage (Vi) is increased above ground level, IC1 is increased and  IC2 is
decreased, causing VC2 to be decreased and thus producing an increase in Vo,
which brings V2 back to equality with Vi. If V2 were somehow to go above the
level of Vi, IC2 would be increased to produce a drop in Vo, which would
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Chapter 1 Introduction to Operational Amplifiers   5

drive V2 back to equality with Vi. It is seen that there is 100% negative feed-
back (NFB), which maintains the output voltage equal to the input. The out-
put always follows the input; hence the name voltage follower.

The output of a voltage follower does not perfectly follow the input, be-
cause there has to be a very small difference between the two input terminals
(a differential input, VD) to produce the output voltage change. This depends
on the op-amp amplification without feedback, known as the open-loop voltage
gain (AOL or Av(OL)). When negative feedback is employed, the voltage gain
becomes closed-loop gain (ACL).

The voltage follower has a high input impedance, a low output imped-
ance, and a closed-loop voltage gain of 1. This is similar to a BJT emitter fol-
lower. However, the difference between the dc input and output voltages
with a voltage follower is typically less than 50 μV compared to 0.7 V for an
emitter follower. As will be demonstrated, the voltage follower also has a
much higher input impedance and a much lower output impedance than the
emitter follower.

Example 1-2
Calculate the difference between the input and output voltages for a voltage
follower with a 3 V input if the op-amp has AOL = 200 000.

Figure 1-3 In a voltage follower circuit, the op-amp output is connected directly back to
the inverting input terminal. When the input voltage changes, the output changes to keep
the inverting input terminal voltage equal to the voltage at the noninverting input.
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6 Operational Amplifier

Solution

Practice Problems
1-2.1 Calculate the precise peak output voltage levels when a ±100 mV sig-

nal is applied as input to a voltage follower that uses an op-amp with
AOL = 100 000.

1-2.2 The output of a voltage follower is to follow the input within 20 μV.
Determine the minimum open-loop gain of the amplifier if the maxi-
mum input is ±5 V.

1-3 THE NONINVERTING AMPLIFIER

The noninverting amplifier circuit shown in Figs. 1-4(a) and (b) behaves in a
similar way to a voltage follower, except that the output voltage is divided by
resistors R1 and R2 before being fed back to the inverting terminal. Consider
the conditions that exist when the noninverting input is grounded. As is the
case of the voltage follower, the inverting input terminal must also be at (or
very close to) ground, and thus the junction of R1 and R2 is also at ground
level. With both ends of resistor R2 at ground level, there is no current flow
through R2, and so (neglecting the very small bias current into terminal 2)
there is no current through R1 and no voltage drop across R1. Consequently,
the circuit output voltage equals the input, which is at ground level. 

Now suppose that a +100 mV input is applied to terminal 3. As explained,
the output will move to a level that makes the feedback voltage (to terminal
2) equal to the voltage at terminal 3. The feedback voltage is developed
across resistor R2, and the output appears across R1 + R2. So,

VR2 = Vi = I1R2

and

Vo = I1(R1 + R2)
giving a closed-loop voltage gain

or,

(1-1)

Example 1-3
A noninverting amplifier, as in Fig. 1-4, has R1 = 8.2 kΩ and R2 = 150 Ω.
(a) Calculate the voltage gain. (b) Determine a new resistance for R2 to give
ACL = 75.

A
R R

RCL
1 2

2

+=

A
V
V

I R R
I RCL

o

i

1 1 2

1 2

( + )= =

V
V
AD

o

OL

3 V
μV= = =

200 000
15
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Chapter 1 Introduction to Operational Amplifiers   7

Solution
(a) From Eq. 1-1

(b) Again from Eq. 1-1 

giving

R
R

A2
1

CL

8.2 k

=

= =
– –1 75 1

111

Ω

Ω

A
R R

R
R
RCL

1 2

2

1

2

+
+ 1= =

A
R R

RCL
1 2

2

+ 8.2 k + 150
0

= =

=

� �

�15

55 7.

Figure 1-4 A noninverting amplifier operates in the same way as a voltage follower except
that the output voltage is divided before it is fed back to the inverting input terminal. The
circuit closed-loop voltage gain is ACL = (R1 + R2)/R2.
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8 Operational Amplifier

Practice Problems
1-3.1 For cases (a) and (b) in the circuit in Example 1-3, calculate the voltages

across resistors R1 and R2 when a +50 mV signal is applied as input. 
1-3.2 A noninverting amplifier, as in Fig. 1-4, has R1 = 4.7 kΩ and R2 = 220 Ω.

(a) Determine the closed-loop voltage gain. (b) Calculate the difference
between the two input terminal voltages for a 300 mV input if the
op-amp has AOL = 100 000.

1-4 THE INVERTING AMPLIFIER

The circuit shown in Fig. 1-5(a) is essentially the same as the noninverting
amplifier in Fig. 1-4(a) with the important exception that the noninverting
terminal is grounded and the input voltage is applied to resistor R2. In this
case, a positive-going input voltage produces a negative-going output and
vice versa. So, the circuit is an inverting amplifier. Figure 1-5(b) shows the way
the circuit is usually drawn. Note that the junction of the two resistors is connected
to the op-amp inverting input terminal, the noninverting terminal is grounded,
and the input is applied between R2 and ground, exactly as in Fig. 1-5(a).

Figure 1-5(c) shows the basic op-amp circuit connected as an inverting
amplifier. When a positive-going input is applied to R2, IC2 is increased, thus
increasing the voltage drop across RC and driving the output voltage down.
Because the base of Q1 is grounded, the base of Q2 will always be maintained
at ground level (by negative feedback) regardless of the level of Vi. Thus,
when Vi is applied, the output voltage moves to the level that keeps the in-
verting input terminal at ground. For this reason, the inverting input termi-
nal in this type of circuit is referred to as a virtual ground or virtual earth.

Note from the above explanation that Vo is moved in a negative direction
when Vi is positive. Similarly, when Vi is negative, Vo has to move in a posi-
tive direction to keep the op-amp inverting input terminal at ground level.

Now return to Fig. 1-5(b) and recall that the voltage at the inverting input
terminal always remains close to ground because the noninverting terminal
is grounded. Thus, the junction of R1 and R2 always remains at ground level.
With Vi at one of R2 and ground at the other end, Vi appears across R2, as
illustrated. Also, with Vo at one end of R1 and ground at the other end, Vo is
seen to be developed across R1. Ignoring the very small bias current flowing
into the op-amp inverting input terminal, the current I1 effectively flows
through both R1 and R2. The input and output voltages can now be expressed as

Vi = I1 R2

and 

Vo = – I1 R1

The closed-loop voltage gain is

A
V
V

I R
I RCL

o

i

1 1

1 2

= = –
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or,

(1-2)

The minus sign in Eq. 1-2 indicates that the output is inverted with respect to
the input.

Example 1-4
An inverting amplifier, as in Fig. 1-5, has R1 = 8.2 kΩ and R2 = 270 Ω. (a) De-
termine the voltage gain. (b) Calculate a new resistance for R2 to give
ACL = 60.

A
R
RCL

1

2

= –

+

–

CC
+V

–VEE

3

2
6

+

–

+

–

(a) Inverting amplifier circuit

(b) Usual way to show an inverting amplifier circuit

+

–

+VCC

–VEE

3

2

6

+

–+

–

I1

Virtual
ground

–VEE

+VCC

+

–

External
connection

2
3

4

6

7

External
resistors

Virtual
ground

+

–

(c) Basic op-amp circuit connected as an inverting amplifier

+ –

Vo
+ –

Vo
Vi

Rb
RE3RE

R1

R2

I1

Vi

R1

Vi

Vi
R2

I1

R1

Vo

RC
Ra

Vo

Q1 Q2

Q3

R2

Figure 1-5 In an inverting amplifier the input is applied via resistor R2 to the inverting input.
This is essentially the same as a noninverting amplifier with the noninverting terminal
grounded and the signal applied to the voltage divider. The circuit closed-loop voltage
gain is ACL = –R1/R2.
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Solution
(a) From Eq. 1-2

(b) From Eq. 1-2

Practice Problems
1-4.1 For cases (a) and (b) in the circuit in Example 1-4, calculate the current

through resistors R1 and R2 when a +100 mV signal is applied as input. 
1-4-2 An inverting amplifier, as in Fig. 1-5, has R1 = 3.9 kΩ and R2 = 180 Ω.

(a) Determine the voltage gain. (b) If the op-amp has AOL = 200 000,
calculate the voltage difference between the op-amp input terminals
when a 200 mV input is applied.

Review Questions

Section 1-1
1-1 Sketch the circuit symbol for an op-amp and identify all terminals.
1-2  Draw a basic (three BJT) op-amp internal circuit diagram. Identify the inverting

input, noninverting input, and output terminals. Explain the circuit operation.

Section 1-2
1-3 Draw a circuit diagram for a voltage follower (a) using an op-amp graphic

symbol and (b) using the basic three BJT op-amp circuit. Discuss the voltage
follower operation.

Section 1-3
1-4 Draw a circuit diagram for a noninverting amplifier (a) using an op-amp

graphic symbol and (b) using the basic three BJT op-amp circuit. Explain the
circuit operation, and write the equation for the closed-loop voltage gain.

Section 1-4
1-5 Draw a circuit diagram for an inverting amplifier (a) using an op-amp graphic

symbol and (b) using the basic three BJT op-amp circuit. Explain the circuit
operation, and write the equation for the closed-loop voltage gain. Explain the
term virtual ground.

Problems

Section 1-1
1-1 Recalculate the circuit current and voltage levels for the basic three BJT

op-amp circuit in Example 1-1 when the output is directly connected to
the inverting input terminal.

R
R

A2
1

CL

8.2 k= =

=

Ω

Ω
60

137

A
R
RCL

1

2

8.2 k= =

=

– –

– .

Ω
Ω270

30 4
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1-2 A basic op-amp circuit as in Fig. 1-2 has the following components:
RC = RE = RE3 = 6.8 k�, Ra = 56 k�, and Rb = 120 k�. The supply is
VCC = ±12 V. Calculate the circuit current and voltage levels when the
output is directly connected to the inverting input terminal. Assume
that Q1 and Q2 are perfectly matched and that IB3 has no effect on the
voltage divider.

Section 1-2
1-3 A 741 op-amp (Data Sheet A-1 in Appendix A) is connected as a volt-

age follower. If Vi = 750 mV and the amplifier open-loop gain is the
only error source, calculate the precise level of Vo for (a) the specified
minimum voltage gain and (b) for the specified typical gain. 

1-4 An LM308 op-amp (Data Sheet A-3 in Appendix A) is substituted in
place of the 741 in Problem 1-3. Calculate the output voltages for cases
(a) and (b) once again.

1-5 An op-amp voltage follower with a 200 mV minimum input signal is to
have 0.005% maximum output error. Determine the amplifier mini-
mum open-loop gain.

1-6 A voltage follower using an LM308 op-amp is to reproduce the input
with a maximum error of 10 μV due to the op-amp open-loop gain.
Calculate the acceptable minimum input voltage.

Section 1-3
1-7 An op-amp noninverting amplifier, as in Fig. 1-4, has R1 = 22 kΩ and R2

= 120 Ω. Calculate the output voltage produced by a 75 mV input.
1-8 An op-amp noninverting amplifier is to have a voltage gain of 101.

If R2 = 180 Ω in Fig 1-4, determine a suitable resistance value for R1.
1-9 A 120 mV signal is to produce a 12 V output from an op-amp nonin-

verting amplifier. If a 15 kΩ resistor is to be used for R1 (as in Fig. 1-4),
determine a suitable resistance value for R2.

1-10 Calculate the closed-loop gain for a noninverting amplifier, as in Fig. 1-4,
with R1 = 27 kΩ and R2 = 390 Ω. Determine the voltage gain that results
if the resistor positions are reversed.

Section 1-4
1-11 An op-amp inverting amplifier, as in Fig. 1-5(b), has R2 = 120 Ω and

R1 = 22 kΩ. Calculate the output voltage produced by a 50 mV input.
1-12 An op-amp inverting amplifier is to have a voltage gain of 150. If R1 =

33 kΩ in Fig 1-5(b), determine a suitable resistance value for R2.
1-13 Calculate the closed-loop voltage gain for an inverting amplifier, as in

Fig. 1-5(b), which has R1 = 39 kΩ and R2 = 680 Ω. Determine the new
voltage gain if the resistor positions are reversed.

1-14 An op-amp inverting amplifier, as in Fig. 1-5(b), is to have a 0.5 V input
signal and a 9 V output. Determine a suitable resistance value for R2 if
R1 = 12 kΩ.
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Practice Problem Answers

1-1.1 –0.2 V
1-2.1 ±(100 mV – 0.1 μV)
1-2.2 250 000
1-3.1 (50 mV, 2.7 V), (50 mV, 3.69 V)
1-3.2 22.4, 67 μV
1-4.1 370 μV, 730 μA
1-4.2 –21.7, 21.7 μV
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