Operational Amplifiers and Linear ICs THIRD EDITION

DAVID A. BELL

Lambton College of Applied Arts and Technology
Sarnia, Ontario, Canada

OXFORD
 UNIVERSITY PRESS

YMCA Library Building, Jai Singh Road, New Delhi 110001
Oxford University Press is a department of the University of Oxford. It furthers the University's objective of excellence in research, scholarship, and education by publishing worldwide in

Oxford New York
Auckland Cape Town Dar es Salaam Hong Kong Karachi Kuala Lumpur Madrid Melbourne Mexico City Nairobi New Delhi Shanghai Taipei Toronto

With offices in
Argentina Austria Brazil Chile Czech Republic France Greece Guatemala Hungary Italy Japan Poland Portugal Singapore South Korea Switzerland Thailand Turkey Ukraine Vietnam

Oxford is a registered trade mark of Oxford University Press in the UK and in certain other countries.

Published in India
by Oxford University Press
© Oxford University Press 2011
The moral rights of the author have been asserted.
Database right Oxford University Press (maker)
First published 2011
All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, without the prior permission in writing of Oxford University Press, or as expressly permitted by law, or under terms agreed with the appropriate reprographics rights organization. Enquiries concerning reproduction outside the scope of the above should be sent to the Rights Department, Oxford University Press, at the address above.

You must not circulate this book in any other binding or cover and you must impose this same condition on any acquirer.

ISBN-13: 978-0-19-569613-4
ISBN-10: 0-19-569613-1

Typeset in Times New Roman by Anvi Composers, New Delhi 110063
Printed in India by Chaman Enterprises, Delhi 110002 and published by Oxford University Press
YMCA Library Building, Jai Singh Road, New Delhi 110001

CONTENTS

Preface iii
Chapter 1 Introduction to Operational Amplifiers 1
1-1 IC Operational Amplifier 1
Circuit Symbol and Terminals 1
Basic Op-Amp Circuit 2
1-2 The Voltage Follower Circuit 4
1-3 The Noninverting Amplifier 6
1-4 The Inverting Amplifier 8
Chapter 2 Operational Amplifier Parameters and Performance 13
2-1 Ideal and Practical Operational Amplifiers 14
Op-Amp Model 14
Currents and Impedances 14
Voltage Gain 15
Ideal Op-Amp 16
2-2 Basic Op-Amp Internal Circuitry 17
Current Mirror 17
Complementary Emitter Follower 18
Level Shifting Stage 19
Representative IC Op-Amp 19
2-3 Input, Output, and Supply Voltages 22
Supply Voltage Options 22
Input Voltage Range 22
Output Voltage Range 23
Common Mode Rejection 23
Power Supply Rejection 25
2-4 Offset Voltages and Currents 27
Input and Output Offset Voltages 27
Input Bias Current Effects 27
Input Offset Current 29
Combined Effect of Input Error Sources 29
Offset Nulling 30
2-5 Input and Output Impedances 31
Input Impedance 31
Output Impedance 32
2-6 Slew Rate and Frequency Limitations 34
Slew Rate 34
Frequency Limitations 35
2-7 Op-amp Classification 36
Packages 36
Op-Amp Identification Numbers 36
Temperature Range 37
Classification 37
Op-Amp Selection 38
Chapter 3 Op-Amps as DC Amplifiers 42
3-1 Biasing Op-Amps 43
Bias Current Paths 43
Bias Circuit Resistor Values 43
Voltage Divider Bias 44
Biasing BIFET Op-Amps 45
3-2 Direct-Coupled Voltage Follower 46
Performance 46
Voltage Follower Compared to an Emitter Follower 48
3-3 Direct-Coupled Noninverting Amplifiers 48
Design 48
Performance 51
Computer Analysis of a Noninverting Amplifier 52
3-4 Direct-Coupled Inverting Amplifiers 52Design 52Performance 54
Computer Analysis of an Inverting Amplifier 55
3-5 External Nulling Methods 55
3-6 Summing Amplifiers 57
Inverting Summing Circuit 57
Noninverting Summing Circuit 59
3-7 Difference Amplifier 61Circuit Operation 61
Input Resistances 63
Common Mode Voltages 63
Output Level Shifting 64
Circuit Design 64
Computer Analysis of a Difference Amplifier 66
3-8 Instrumentation Amplifier 66
Differential Input/Output Amplifier 66
Complete Instrumentation Amplifier 68
Computer Analysis of an Instrumentation Amplifier 72 Integrated Circuit Instrumentation Amplifier 72
Chapter 4 Op-Amps as AC Amplifiers 78
4-1 Capacitor-Coupled Voltage Follower 79
4-2 High $Z_{\text {in }}$ Capacitor-Coupled Voltage Follower 82
Computer Analysis 85
4-3 Capacitor-Coupled Noninverting Amplifier 85
4-4 High $Z_{\text {in }}$ Capacitor-Coupled Noninverting Amplifier 88
Computer Analysis 90
4-5 Capacitor-Coupled Inverting Amplifier 92
4-6 Setting the Upper Cutoff Frequency 92
Computer Analysis 94
4-7 Capacitor-Coupled Difference Amplifier 95
4-8 Use of a Single-Polarity Supply 96
Voltage Follower 96
Noninverting Amplifier 98
Inverting Amplifier 100
Chapter 5 Operational Amplifier Frequency Response and Compensation 105
5-1 Op-Amp Circuit Stability 106
Loop Gain and Loop Phase Shift 106
Single-Stage BJT Amplifier Gain and Phase Responses 107
Uncompensated Op-Amp Gain and Phase Response 108
Phase Margin 110
5-2 Frequency Compensation Methods 112
Phase-Lag and Phase-Lead Compensation 112
Miller Effect Compensation 113
Manufacturer's Recommended Compensation 114
5-3 Internally Compensated Op-amps 116Compensated Op-Amp Gain and Phase Response 116Amplifier Stability and Gain 117
5-4 Circuit Bandwidth and Slew Rate 118
Lower and Upper Cutoff Frequencies 118
Gain-Bandwidth Product 120
Full-Power BW and Slew Rate 121
5-5 Stray and Load Capacitance Effects 123
Effects of Stray Capacitance on Circuit Stability 123
Effects of Load Capacitance on Circuit Stability 126
5-6 Circuit Stability Precaution 129
Power Supply Decoupling 129
Stability Precautions 130
Chapter 6 Noise in Op-Amp Circuits 134
6-1 Thermal Noise 135
Resistors Noise 135
Noise Gain 136
6-2 Shot Noise 137
6-3 Op-Amp Noise 139
6-4 Signal-to-Noise Ratio 141
6-5 Minimizing Noise 143
Grounding and Screening 143
Chapter 7 Miscellaneous Op-Amp Linear Applications 147
7-1 Voltage Sources 148
Positive and Negative Voltage Source 148
Computer Analysis of Voltage Source 150
7-2 Current Sources and Current Sinks 152
Current Sources 152
Current Sinks 154
Computer Analysis of a Current Sink 156
7-3 Current Amplifiers 157
Current-to-Voltage Converter 157
Current Amplifier 157
Computer Analysis of a Current Amplifier 159
7-4 DC Voltmeter Circuit 159
7-5 Linear Ohmmeter Circuit 161
Computer Analysis of the Linear Ohmmeter 164
7-6 Log and Antilog Amplifiers 165
Basic Log Amplifier 165
Basic Antilog Amplifier 166
Temperature Compensation 167
Chapter 8 Switching, Differentiating, and Integrating Circuits 173
8-1 Op-Amps in Switching Circuits 174
Output Voltage Swing 174
Maximum Differential Input Voltage 174
Slew Rate 175
Frequency Compensation 176
8-2 Voltage Level Detectors 176
Zero Crossing Detector 176
Level Detector 178
Voltage Level Monitor 178
Computer Analysis 18
8-3 Inverting Schmitt Trigger Circuit 182
Circuit Operation 182
Positive Feedback 183
Triggering Points 183
Voltage Waveforms 183
Hysteresis 184
Input/Output Characteristic 184
Circuit Design 185
Adjusting the Trigger Points 186
8-4 Noninverting Schmitt Trigger Circuit 187
Circuit Operation 187
Adjusting the Trigger Points 188
Computer Analysis 190
8-5 IC Voltage Comparator 191
Comparator Operation 191
Comparator Specification 192
Comparator Level Detectors 192
Window Detector 194
Comparator as a Schmitt Trigger 195
Computer Analysis 196
8-6 Differentiating Circuits 197
Differentiating Circuit Waveforms 197
Basic Differentiating Circuit 198
Practical Op-Amp Differentiating Circuit 200
Differentiator Circuit Design 200
Differentiator Performance 202
Sine Wave Response 202
8-7 Integrating Circuits 204
Integrating Circuit Waveforms 204
Basic Integrating Circuit 205
Practical Op-Amp Integrating Circuit 206
Integrator Circuit Design 206
Integrator Performance 207
Sine Wave Response 208
Chapter 9 Signal Processing Circuits 214
9-1 Precision Half-Wave Rectifiers 215
Saturating Precision Rectifier 215
Nonsaturating Precision Rectifier 216
Two-Output Precision Half-Wave Rectifier 218
9-2 Precision Full-Wave Rectifiers 219
Half-Wave Rectifier and Summing Circuit 219
Computer Analysis 221
High Input Impedance Precision Full-Wave Rectifier 221
9-3 Limiting Circuits 224
Peak Clipper 224
Dead Zone Circuit 226
Precision Clipper 227
Computer Analysis 228
Precision Plus/Minus Clipping Circuit 228
9-4 Clamping Circuits 231
Diode Clamping Circuit 231
Precision Clamping Circuit 232
Computer Analysis 235
9-5 Peak Detectors 235
Precision Rectifier Peak Detector 235
Voltage Follower Peak Detector 237
9-6 Sample-and-Hold Circuits 239
Op-Amp Sample-and-Hold 239
IC Sample-and-Hold 242
Chapter 10 Signal Generators 247
10-1 Astable Multivibrator 248
Circuit Operation 248
Astable Design 249
10-2 Monostable Multivibrator 251
Monostable Operation 251
Recovery Time 253
Monostable Design 253
Triggering the Monostable 255
Computer Analysis 257
10-3 Triangular Wave Generator 258
Schmitt-Integrator Combination 258
Design Calculations 259
10-4 Modifications to the Triangular Wave Generator 260
Frequency and Duty-Cycle Adjustment 260
Voltage-Controlled Oscillator Modification 263
Computer Analysis 265
10-5 Signal Generator Output Controls 266
10-6 555 Timer Monostable 268
Timer Block Diagram 268
Timer Monostable Circuit 269
Designing a 555 Monostable 270
Modifications to the Basic 555 Monostable 271
Timing and Frequency Limitations 272
10-7 Timer Pulse and Square Wave Generators 273
Astable Multivibrator 273
555 Astable Design 274
Computer Analysis 275
Square Wave Generator 275
Another Square Wave Generator Circuit 276
Computer Analysis 278
10-8 Miscellaneous Timer Circuits 278
Voltage-Controlled Oscillator 278
Delay Timers 280
Sequential Timers 281
Pulsed-Tone Oscillator 282
The 7555 CMOS Timer 283
Chapter 11 Sinusoidal Oscillators 289
11-1 Phase Shift and Quadrature Oscillators 290
Phase Shift Oscillator Circuit 290
Phase Shift Oscillator Design 291
Quadrature Oscillator 292
11-2 Colpitts and Hartley Oscillators 293
Colpitts Oscillato 293
Circuit Design 295
Hartley Oscillator 296
11-3 Wein Bridge Oscillator 297
11-4 Oscillator Amplitude Stablization 300
Output Amplitude 300
Diode Stabilization 300
Computer Analysis 302
Voltage Divider Stabilization 302
Computer Analysis 305
FET Stabilization Circuit 305
11-5 IC Function Generator 307
Functional Block Diagram 307
Supply Voltage and Output Amplitude 308
Basic 8038 Function Generator 309
Adjusting the Frequency 311
Output Parameters 313
Chapter 12 Active Filters 317
12-1 Filter Types and Characteristics 317
Low-Pass 318
High-Pass 318
Band-Pass 318
Notch 318
Fall-Off Rate 319
Filter Design Categories 320
12-2 First-Order Active Filters 321
First-Order Low-Pass Filter 321
Filter Characteristics 321
Design Calculations 323
First-Order High-Pass Filter 324
12-3 Second-Order Filters 326
Second-Order Low-Pass Filter 326
Second-Order High-Pass Filter 328
12-4 Third-Order Filters 331
Third-Order Low-Pass Filter 331
Computer Analysis 333
Third-Order High-Pass Filter 333
12-5 Band-Pass Filters 335
Multistage Band-Pass Filter 33 335
Single-Stage Band-Pass Filter 336
Bandwidth 338
Narrowband Single-Stage Band-Pass Filter 340
12-6 Notch Filters 341
12-7 All-Pass Phase Shifting Circuits 343
Phase-Lag Circuit 343
Phase-Lead Circuit 346
12-8 State-Variable Filter 347
Computer Analysis 350
12-9 IC Switched-Capacitor Filters 350
Switched-Capacitor Resistor Simulation 350
IC Filter Circuit 352
Chapter 13 DC Voltage Regulators 359
13-1 Voltage Regulator Basics 360
Regulator Action 360
Source Effect 361
Load Effect 361
Ripple Rejection 361
13-2 Op-Amp Series Voltage Regulator 362
Basic Circuit 362
Series Regulator Design 364
Series Regulator Performance 366
13-3 Adjustable Output Regulators 367
Output Voltage Adjustment 367
High Output Current Circuit 368
Computer Analysis 370
13-4 Output Current Limiting 371
Short-Circuit Protection 371
Fold-Back Current Limiting 373
13-5 IC Linear Voltage Regulators 376
723 IC Regulator 376
LM317 and LM337 IC Regulators 379
LM340 Regulators 381
13-6 Switching Regulators 381
Switching Regulator Operation 381
Comparison of Linear and Switching Regulators 383
Step-Down Converter 384
Step-Down Converter Equations 384
Step-Up Converter 388
Inverting Converter 390
13-7 Switching Regulator Controller 392
Function Block Diagram 392
Step-Down Converter Using an MC34063 393
Variable Off Time Modulator 394
Catch Diode Selection 395
Diode Snubber 395
High Power Converters 395
Chapter 14 Audio Power Amplifiers 400
14-1 BJT Power Amplifier With Op-Amp Driver 401
Op-Amp Power Amplifier 401
Resistor Calculations 403
Capacitor Calculations 404
Transistor Specifications 404
Op-Amp Specification 404
Diodes 405
Computer Analysis 408
14-2 Power Amplifier Performance Improvement 409
Darlington-Connected Output Transistors 409
Quasi-Complementary Output Stage 412
Output Current Limiting 413
$V_{B E}$ Multiplier 413
Use of Bootstrapping Capacitors 415
Load Compensation 420
Power Supply Decoupling 420
14-3 IC Power Amplifier Driver 421
14-4 MOSFET Power Amplifier With Op-Amp Driver 424
Advantages of MOSFETs 424
Power Amplifier with MOSFET Output Stage 424
Output Voltage Swing 426
MOSFET Power Amplifier Design 427
Computer Analysis 430
Bias Control 432
Complete Op-Amp MOSFET Power Amplifier 433
14-5 IC Power Amplifiers 434
250 mW IC Power Amplifier 434
Bridge-Tied Load Amplifier 435
2.5 W IC Power Amplifier 437
7 W IC Power Amplifier 441
68 W IC Power Amplifier 441
Chapter 15 Digital-to-Analog and Analog-to-Digital Conversion 447
15-1 Analog/Digital Conversion Basics 448Resolution 448
Analog-to-Digital Conversion 449
LSB and MSB 449
Digital-to-Analog Conversion 450
Settling Time 451
Monitonicity 451
Accuracy 451
15-2 Digital-to-Analog Conversion 451
Weighted Resistor DAC 451
R-2R DAC 454
Multiplying DAC 456
Integrated Circuit 8-Bit DAC 457
Computer Analysis 457
15-3 Parallel ADC 459
Simple 3-Bit Parallel ADC 459
15-4 ADC Counting Methods 461
AND Gate 461
Flip-Flops 462
Counting Registers 464
Frequency Division 465
Linear Ramp ADC 465
Dual-Slope Integrator ADC 467
Digital Ramp ADC 468
Successive Approximation ADC 470
Chapter 16 Phase-Locked Loop 473
16-1 Basic Phase-Locked Loop System 474
16-2 PLL Components 476
Phase Detector 476
Phase/Frequency Detector 478
Filter 479
Amplifier 479
VCO 479
16-3 PLL Performance Factors 479
Loop Gain 479
Tracking Range 481
Capture Range 482
Frequency Synthesis 484
16-4 PLL Frequency Response and Compensation 485
System Characteristics 485
VCO as an Integrator 485
Instability 487
Compensation 488
16-5 Integrated Circuit PLL 488
Appendix A IC Data Sheets 494
A-1 741 Op-amp 494
A-2 LM709 Operational Amplifier 498
A-3 108 and 308 Op-amp 499
A-4 353 Op-amp 503
Appendix B Standard Value Components 506
Table B-1 Typical Standard-Value Resistors 506
Table B-2 Typical Standard-Value Capacitors 508
Appendix C Answers to Odd-Numbered Problems 509
Index 515

CHAPTER 1

Introduction to Operational Amplifiers

Objectives

After studying this chapter, you will be able to

1 Sketch the circuit symbol for an operational amplifier (op-amp) and identify all terminals.
2 Draw a basic (three bipolar junction transistor) op-amp internal circuit diagram. Identify all terminals, and explain the circuit operation.
3 Sketch an op-amp voltage follower circuit. Explain its operation.

4 Draw the diagram for an opamp noninverting amplifier. Explain the circuit operation, and calculate the voltage gain for given resistor values.
5 Draw the diagram for an opamp inverting amplifier. Explain the circuit operation, and calculate the voltage gain for given resistor values.

INTRODUCTION

Operational amplifiers (op-amps) are very high gain amplifier circuits with two high-impedance input terminals and one low-impedance output. The input terminals are identified as inverting input and noninverting input. The basic op-amp circuit consists of a differential amplifier input stage, a level shifting intermediate stage, and an emitter-follower output stage. Operational amplifiers can be employed for a great many circuit applications by using various combinations of externally connected components. The simplest of these are the voltage follower, the noninverting amplifier, and the inverting amplifier.

1-1 IC OPERATIONAL AMPLIFIER

Circuit Symbol and Terminals

The circuit symbol for an op-amp, illustrated in Fig. 1-1, shows that there are two input terminals, one output terminal, and two supply terminals. Plusminus supply voltages $\left(+V_{\mathrm{CC}}\right.$ and $\left.-V_{\mathrm{EE}}\right)$ are normally used and these typically range from ± 5 to $\pm 22 \mathrm{~V}$. The input terminals are designated as inverting input (minus sign) and noninverting input (plus sign). A positive-going voltage applied to the inverting input produces a negative-going (inverted)

Figure 1-1 Operational amplifier circuit symbol. There are two supply terminals ($+V_{\mathrm{Cc}}$ and $-V_{\mathrm{EE}}$), two input terminals (inverting and noninverting), and one output.
output, and a positive-going signal at the noninverting input generates a positive-going (noninverted) output.

Basic Op-amp Circuit

The basic circuit of an IC op-amp consists of a bipolar junction transistor (BJT) differential amplifier input stage combined with an emitter follower output. This is illustrated in Fig. 1-2. Note the plus-minus supply ($+V_{\mathrm{CC}}$ and $-V_{\mathrm{EE}}$), which is normally used. Transistors Q_{1} and Q_{2} together with resistors R_{E} and R_{C} constitute a differential amplifier, which produces a voltage change at the collector of Q_{2} when a voltage difference is applied to the bases of Q_{1} and Q_{2}. The Q_{2} collector voltage is passed to the voltage divider (R_{a} and R_{b}), which shifts the dc voltage level down to approximately half-way between $+V_{\mathrm{CC}}$ and $-V_{\mathrm{EE}}$. This voltage is then applied to the output via the emitter follower consisting of transistor Q_{3} and emitter resistor $R_{\mathrm{E} 3}$.

Figure 1-2 An op-amp circuit consists basically of a differential amplifier input stage, a level shifting intermediate stage, and an emitter follower output.

Example 1-1

Calculate the voltage and current levels for the circuit shown in Fig. 1-2 if $V_{\mathrm{CC}}= \pm 10 \mathrm{~V}, V_{\mathrm{i}}=V_{2}=0$, and the components are $R_{\mathrm{a}}=47 \mathrm{k} \Omega, R_{\mathrm{b}}=100 \mathrm{k} \Omega$, and $R_{\mathrm{C}}=R_{\mathrm{E}}=R_{\mathrm{E} 3}=4.7 \mathrm{k} \Omega$. For simplicity, assume that Q_{1} and Q_{2} are
perfectly matched, that the current through R_{a} and R_{b} has no effect on the voltage drop across R_{C}, and that the Q_{3} base current has no effect on the voltage divider.

Solution

$$
\begin{aligned}
V_{\mathrm{RE}} & =V_{\mathrm{B} 1}-V_{\mathrm{BE}}-V_{\mathrm{EE}} \\
& =0-0.7 \mathrm{~V}-(-10 \mathrm{~V}) \\
& =9.3 \mathrm{~V} \\
I_{\mathrm{E}} & =\frac{V_{\mathrm{RE}}}{R_{\mathrm{E}}}=\frac{9.3 \mathrm{~V}}{4.7 \mathrm{k} \Omega} \\
& =1.98 \mathrm{~mA} \\
I_{\mathrm{C} 1} & =I_{\mathrm{C} 2}=\frac{I_{\mathrm{E}}}{2}=0.99 \mathrm{~mA} \\
V_{\mathrm{RC}} & =I_{\mathrm{C} 2} \times R_{\mathrm{C}} \\
& =0.99 \mathrm{~mA} \times 4.7 \mathrm{k} \Omega \\
& =4.65 \mathrm{~V} \\
V_{\mathrm{RaRb}} & =V_{\mathrm{CC}}-V_{\mathrm{EE}}-V_{\mathrm{RC}} \\
& =10 \mathrm{~V}-(-10 \mathrm{~V})-4.65 \mathrm{~V} \\
& =15.35 \mathrm{~V} \\
V_{\mathrm{Rb}} & =\frac{V_{\mathrm{RaRb}} \times R_{\mathrm{b}}}{R_{\mathrm{a}}+R_{\mathrm{b}}} \\
& =\frac{15.53 \mathrm{~V} \times 100 \mathrm{k} \Omega}{100 \mathrm{k} \Omega+4.7 \mathrm{k} \Omega} \\
& =10.4 \mathrm{~V} \\
V_{\mathrm{O}} & =V_{\mathrm{EE}}+V_{\mathrm{Rb}}-V_{\mathrm{BE}} \\
& =-10 \mathrm{~V}+10.4 \mathrm{~V}-0.7 \mathrm{~V} \\
& =-0.3 \mathrm{~V}
\end{aligned}
$$

To further investigate the operation of the circuit in Fig. 1-2, suppose that a positive input ($+V_{\mathrm{i}}$) is applied to the base of Q_{1} and that the Q_{2} base is held at ground level. This produces an increase in $I_{\mathrm{C} 1}$ and a decrease in $I_{\mathrm{C} 2}$, resulting in a decreased voltage drop across resistor R_{C}. Consequently, $V_{\mathrm{C} 2}$ and $V_{\mathrm{B} 3}$ are increased, producing a positive-going output voltage. If the input to Q_{1} base is negative $\left(-V_{\mathrm{i}}\right)$ instead of positive, $I_{\mathrm{C} 1}$ is decreased and $I_{\mathrm{C} 2}$ is increased, resulting in an increase in V_{RC}, a decrease in $V_{\mathrm{B} 3}$, and a consequent negativegoing output.

It is seen that a positive-going input at the base of Q_{1} produces a positivegoing output at the Q_{3} emitter, and that a negative-going input to Q_{1} gives a negative-going output. This means that an input voltage applied to Q_{1} base results in an output having the same polarity as the input (a noninverted output). Thus, the terminal at the base of Q_{1} is the noninverting input.

Now assume that Q_{1} base is maintained at ground level while a positive input $\left(+V_{2}\right)$ is applied to the base of Q_{2}. In this case $I_{\mathrm{C} 1}$ is decreased and $I_{\mathrm{C} 2}$ is
increased, producing an increased voltage drop across R_{C} and a consequent negative-going output. When the input to Q_{2} base is negative $\left(-V_{2}\right)$ instead of positive, $I_{\mathrm{C} 2}$ is decreased, $I_{\mathrm{C} 1}$ is increased, V_{RC} is decreased, and the output is positive-going. So, an input voltage to Q_{2} base results in an output having the opposite polarity to the input (an inverted output). So, the terminal at the base of Q_{2} is the inverting input.

The differential amplifier stage offers high input impedance $\left(Z_{i}\right)$ at the BJT bases. The emitter follower output stage gives a low output impedance $\left(Z_{0}\right)$. The input stage also provides voltage gain, and the more complex circuitry of a practical IC op-amp produces much higher gain than would be available from the simple differential amplifier stage illustrated. As with all amplifiers, the voltage gain is the output voltage divided by the input voltage. In this case, the input voltage is the difference between the two input terminal voltages $\left(V_{\mathrm{D}}\right)$. Where no negative feedback is involved, the voltage gain is termed the open-loop voltage gain $\left(A_{\mathrm{OL}}\right)$ (or $\left.A_{\mathrm{V}(\mathrm{OL})}\right)$. When negative feedback is employed, the voltage gain becomes the closed-loop gain (A_{CL}). The high input impedance and the low output impedance are also enhanced by the practical op-amp circuitry, and they are both very much improved by the use of negative feedback in typical op-amp applications.

Section Review

1-1.1 Sketch the graphic symbol for an op-amp and identify all of the terminals.
1-1.2 Sketch the basic (three BJT) internal circuit for an op-amp. Identify the inverting and noninverting terminals and briefly explain the circuit operation.

Practice Problem

1-1.1 Calculate V_{O} for the circuit in Example 1-1 when the supply is $V_{\mathrm{CC}}=$ $\pm 15 \mathrm{~V}$ and R_{C} and R_{E} are changed to $5.6 \mathrm{k} \Omega$.

1-2 THE VOLTAGE FOLLOWER CIRCUIT

The IC op-amp lends itself to a wide variety of applications. The very simplest of these is the voltage follower shown in Fig. 1-3(a). The output terminal is connected directly to the inverting input terminal, the signal is applied to the noninverting input, and the load is directly coupled to the output. The output voltage now follows the input, giving the circuit a voltage gain of 1 , a very high input impedance, and a very low output impedance.

To understand how the voltage follower operates, consider the basic opamp circuit reproduced in Fig. 1-3(b). As in Fig. 1-3(a), the output (terminal 6) is connected to the inverting input terminal (terminal 2). With terminal 3 grounded, terminal 2 and the output must also be at ground level. If the input voltage $\left(V_{\mathrm{i}}\right)$ is increased above ground level, $I_{\mathrm{C} 1}$ is increased and $I_{\mathrm{C} 2}$ is decreased, causing $V_{\mathrm{C} 2}$ to be decreased and thus producing an increase in V_{o}, which brings V_{2} back to equality with V_{i}. If V_{2} were somehow to go above the level of $V_{\mathrm{i}}, I_{\mathrm{C} 2}$ would be increased to produce a drop in V_{o}, which would

(b) Basic op-amp circuit connected as a voltage follower

Figure 1-3 In a voltage follower circuit, the op-amp output is connected directly back to the inverting input terminal. When the input voltage changes, the output changes to keep the inverting input terminal voltage equal to the voltage at the noninverting input.
drive V_{2} back to equality with V_{i}. It is seen that there is 100% negative feedback (NFB), which maintains the output voltage equal to the input. The output always follows the input; hence the name voltage follower.

The output of a voltage follower does not perfectly follow the input, because there has to be a very small difference between the two input terminals (a differential input, V_{D}) to produce the output voltage change. This depends on the op-amp amplification without feedback, known as the open-loop voltage $\operatorname{gain}\left(A_{\mathrm{OL}}\right.$ or $\left.A_{\mathrm{v}(\mathrm{OL})}\right)$. When negative feedback is employed, the voltage gain becomes closed-loop gain ($A_{\text {CL }}$).

The voltage follower has a high input impedance, a low output impedance, and a closed-loop voltage gain of 1 . This is similar to a BJT emitter follower. However, the difference between the dc input and output voltages with a voltage follower is typically less than $50 \mu \mathrm{~V}$ compared to 0.7 V for an emitter follower. As will be demonstrated, the voltage follower also has a much higher input impedance and a much lower output impedance than the emitter follower.

Example 1-2

Calculate the difference between the input and output voltages for a voltage follower with a 3 V input if the op-amp has $A_{\mathrm{OL}}=200000$.

Solution

$$
V_{\mathrm{D}}=\frac{V_{\mathrm{o}}}{A_{\mathrm{OL}}}=\frac{3 \mathrm{~V}}{200000}=15 \mu \mathrm{~V}
$$

Practice Problems

1-2.1 Calculate the precise peak output voltage levels when a $\pm 100 \mathrm{mV}$ signal is applied as input to a voltage follower that uses an op-amp with $A_{\text {OL }}=100000$.
1-2.2 The output of a voltage follower is to follow the input within $20 \mu \mathrm{~V}$. Determine the minimum open-loop gain of the amplifier if the maximum input is $\pm 5 \mathrm{~V}$.

1-3 THE NONINVERTING AMPLIFIER

The noninverting amplifier circuit shown in Figs. 1-4(a) and (b) behaves in a similar way to a voltage follower, except that the output voltage is divided by resistors R_{1} and R_{2} before being fed back to the inverting terminal. Consider the conditions that exist when the noninverting input is grounded. As is the case of the voltage follower, the inverting input terminal must also be at (or very close to) ground, and thus the junction of R_{1} and R_{2} is also at ground level. With both ends of resistor R_{2} at ground level, there is no current flow through R_{2}, and so (neglecting the very small bias current into terminal 2) there is no current through R_{1} and no voltage drop across R_{1}. Consequently, the circuit output voltage equals the input, which is at ground level.

Now suppose that $\mathrm{a}+100 \mathrm{mV}$ input is applied to terminal 3 . As explained, the output will move to a level that makes the feedback voltage (to terminal 2) equal to the voltage at terminal 3. The feedback voltage is developed across resistor R_{2}, and the output appears across $R_{1}+R_{2}$. So,

$$
V_{\mathrm{R} 2}=V_{\mathrm{i}}=I_{1} R_{2}
$$

and

$$
V_{\mathrm{o}}=I_{1}\left(R_{1}+R_{2}\right)
$$

giving a closed-loop voltage gain

$$
A_{\mathrm{CL}}=\frac{V_{\mathrm{o}}}{V_{\mathrm{i}}}=\frac{I_{1}\left(R_{1}+R_{2}\right)}{I_{1} R_{2}}
$$

or,

$$
\begin{equation*}
A_{\mathrm{CL}}=\frac{R_{1}+R_{2}}{R_{2}} \tag{1-1}
\end{equation*}
$$

Example 1-3

A noninverting amplifier, as in Fig. 1-4, has $R_{1}=8.2 \mathrm{k} \Omega$ and $R_{2}=150 \Omega$. (a) Calculate the voltage gain. (b) Determine a new resistance for R_{2} to give $A_{\mathrm{CL}}=75$.

(a) Noninverting amplifier circuit

(c) Basic op-amp circuit connected as a noninverting amplifier

Figure 1-4 A noninverting amplifier operates in the same way as a voltage follower except that the output voltage is divided before it is fed back to the inverting input terminal. The circuit closed-loop voltage gain is $A_{\mathrm{CL}}=\left(R_{1}+R_{2}\right) / R_{2}$.

Solution

(a) From Eq. 1-1

$$
\begin{aligned}
A_{\mathrm{CL}} & =\frac{R_{1}+R_{2}}{R_{2}}=\frac{8.2 \mathrm{k} \Omega+150 \Omega}{150 \Omega} \\
& =55.7
\end{aligned}
$$

(b) Again from Eq. 1-1

$$
A_{\mathrm{CL}}=\frac{R_{1}+R_{2}}{R_{2}}=\frac{R_{1}}{R_{2}}+1
$$

giving

$$
\begin{aligned}
R_{2} & =\frac{R_{1}}{A_{\mathrm{CL}}-1}=\frac{8.2 \mathrm{k} \Omega}{75-1} \\
& =111 \Omega
\end{aligned}
$$

Practice Problems

1-3.1 For cases (a) and (b) in the circuit in Example 1-3, calculate the voltages across resistors R_{1} and R_{2} when a +50 mV signal is applied as input.
1-3.2 A noninverting amplifier, as in Fig. 1-4, has $R_{1}=4.7 \mathrm{k} \Omega$ and $R_{2}=220 \Omega$. (a) Determine the closed-loop voltage gain. (b) Calculate the difference between the two input terminal voltages for a 300 mV input if the op-amp has $A_{\mathrm{OL}}=100000$.

1-4 THE INVERTING AMPLIFIER

The circuit shown in Fig. 1-5(a) is essentially the same as the noninverting amplifier in Fig. 1-4(a) with the important exception that the noninverting terminal is grounded and the input voltage is applied to resistor R_{2}. In this case, a positive-going input voltage produces a negative-going output and vice versa. So, the circuit is an inverting amplifier. Figure 1-5(b) shows the way the circuit is usually drawn. Note that the junction of the two resistors is connected to the op-amp inverting input terminal, the noninverting terminal is grounded, and the input is applied between R_{2} and ground, exactly as in Fig. 1-5(a).

Figure 1-5(c) shows the basic op-amp circuit connected as an inverting amplifier. When a positive-going input is applied to $R_{2}, I_{\mathrm{C} 2}$ is increased, thus increasing the voltage drop across R_{C} and driving the output voltage down. Because the base of Q_{1} is grounded, the base of Q_{2} will always be maintained at ground level (by negative feedback) regardless of the level of V_{i}. Thus, when V_{i} is applied, the output voltage moves to the level that keeps the inverting input terminal at ground. For this reason, the inverting input terminal in this type of circuit is referred to as a virtual ground or virtual earth.

Note from the above explanation that V_{o} is moved in a negative direction when V_{i} is positive. Similarly, when V_{i} is negative, V_{o} has to move in a positive direction to keep the op-amp inverting input terminal at ground level.

Now return to Fig. 1-5(b) and recall that the voltage at the inverting input terminal always remains close to ground because the noninverting terminal is grounded. Thus, the junction of R_{1} and R_{2} always remains at ground level. With V_{i} at one of R_{2} and ground at the other end, V_{i} appears across R_{2}, as illustrated. Also, with V_{o} at one end of R_{1} and ground at the other end, V_{o} is seen to be developed across R_{1}. Ignoring the very small bias current flowing into the op-amp inverting input terminal, the current I_{1} effectively flows through both R_{1} and R_{2}. The input and output voltages can now be expressed as

$$
V_{\mathrm{i}}=I_{1} R_{2}
$$

and

$$
V_{\mathrm{o}}=-I_{1} R_{1}
$$

The closed-loop voltage gain is

$$
A_{\mathrm{CL}}=\frac{V_{\mathrm{o}}}{V_{\mathrm{i}}}=\frac{-I_{1} R_{1}}{I_{1} R_{2}}
$$

(b) Usual way to show an inverting amplifier circuit
(a) Inverting amplifier circuit

(c) Basic op-amp circuit connected as an inverting amplifier

Figure 1-5 In an inverting amplifier the input is applied via resistor R_{2} to the inverting input. This is essentially the same as a noninverting amplifier with the noninverting terminal grounded and the signal applied to the voltage divider. The circuit closed-loop voltage gain is $A_{\mathrm{CL}}=-R_{1} / R_{2}$.
or,

$$
\begin{equation*}
A_{\mathrm{CL}}=-\frac{R_{1}}{R_{2}} \tag{1-2}
\end{equation*}
$$

The minus sign in Eq. 1-2 indicates that the output is inverted with respect to the input.

Example 1-4

An inverting amplifier, as in Fig. 1-5, has $R_{1}=8.2 \mathrm{k} \Omega$ and $R_{2}=270 \Omega$. (a) Determine the voltage gain. (b) Calculate a new resistance for R_{2} to give $A_{\mathrm{CL}}=60$.

Solution

(a) From Eq. 1-2

$$
\begin{aligned}
A_{\mathrm{CL}} & =-\frac{R_{1}}{R_{2}}=-\frac{8.2 \mathrm{k} \Omega}{270 \Omega} \\
& =-30.4
\end{aligned}
$$

(b) From Eq. 1-2

$$
\begin{aligned}
R_{2} & =\frac{R_{1}}{A_{\mathrm{CL}}}=\frac{8.2 \mathrm{k} \Omega}{60} \\
& =137 \Omega
\end{aligned}
$$

Practice Problems

1-4.1 For cases (a) and (b) in the circuit in Example 1-4, calculate the current through resistors R_{1} and R_{2} when a +100 mV signal is applied as input.
1-4-2 An inverting amplifier, as in Fig. 1-5, has $R_{1}=3.9 \mathrm{k} \Omega$ and $R_{2}=180 \Omega$. (a) Determine the voltage gain. (b) If the op-amp has $A_{\mathrm{OL}}=200000$, calculate the voltage difference between the op-amp input terminals when a 200 mV input is applied.

Review Questions

Section 1-1

1-1 Sketch the circuit symbol for an op-amp and identify all terminals.
1-2 Draw a basic (three BJT) op-amp internal circuit diagram. Identify the inverting input, noninverting input, and output terminals. Explain the circuit operation.

Section 1-2

1-3 Draw a circuit diagram for a voltage follower (a) using an op-amp graphic symbol and (b) using the basic three BJT op-amp circuit. Discuss the voltage follower operation.

Section 1-3

1-4 Draw a circuit diagram for a noninverting amplifier (a) using an op-amp graphic symbol and (b) using the basic three BJT op-amp circuit. Explain the circuit operation, and write the equation for the closed-loop voltage gain.

Section 1-4

1-5 Draw a circuit diagram for an inverting amplifier (a) using an op-amp graphic symbol and (b) using the basic three BJT op-amp circuit. Explain the circuit operation, and write the equation for the closed-loop voltage gain. Explain the term virtual ground.

Problems

Section 1-1

1-1 Recalculate the circuit current and voltage levels for the basic three BJT op-amp circuit in Example 1-1 when the output is directly connected to the inverting input terminal.

1-2 A basic op-amp circuit as in Fig. 1-2 has the following components: $R_{\mathrm{C}}=R_{\mathrm{E}}=R_{\mathrm{E} 3}=6.8 \mathrm{k} \Omega, R_{\mathrm{a}}=56 \mathrm{k} \Omega$, and $R_{\mathrm{b}}=120 \mathrm{k} \Omega$. The supply is $V_{\mathrm{CC}}= \pm 12 \mathrm{~V}$. Calculate the circuit current and voltage levels when the output is directly connected to the inverting input terminal. Assume that Q_{1} and Q_{2} are perfectly matched and that $I_{\mathrm{B} 3}$ has no effect on the voltage divider.

Section 1-2

1-3 A 741 op-amp (Data Sheet A-1 in Appendix A) is connected as a voltage follower. If $V_{\mathrm{i}}=750 \mathrm{mV}$ and the amplifier open-loop gain is the only error source, calculate the precise level of V_{o} for (a) the specified minimum voltage gain and (b) for the specified typical gain.
1-4 An LM308 op-amp (Data Sheet A-3 in Appendix A) is substituted in place of the 741 in Problem 1-3. Calculate the output voltages for cases (a) and (b) once again.

1-5 An op-amp voltage follower with a 200 mV minimum input signal is to have 0.005% maximum output error. Determine the amplifier minimum open-loop gain.
1-6 A voltage follower using an LM308 op-amp is to reproduce the input with a maximum error of $10 \mu \mathrm{~V}$ due to the op-amp open-loop gain. Calculate the acceptable minimum input voltage.

Section 1-3

1-7 An op-amp noninverting amplifier, as in Fig. 1-4, has $R_{1}=22 \mathrm{k} \Omega$ and R_{2} $=120 \Omega$. Calculate the output voltage produced by a 75 mV input.
1-8 An op-amp noninverting amplifier is to have a voltage gain of 101. If $R_{2}=180 \Omega$ in Fig 1-4, determine a suitable resistance value for R_{1}.
1-9 A 120 mV signal is to produce a 12 V output from an op-amp noninverting amplifier. If a $15 \mathrm{k} \Omega$ resistor is to be used for R_{1} (as in Fig. 1-4), determine a suitable resistance value for R_{2}.
1-10 Calculate the closed-loop gain for a noninverting amplifier, as in Fig. 1-4, with $R_{1}=27 \mathrm{k} \Omega$ and $R_{2}=390 \Omega$. Determine the voltage gain that results if the resistor positions are reversed.

Section 1-4

1-11 An op-amp inverting amplifier, as in Fig. 1-5(b), has $R_{2}=120 \Omega$ and $R_{1}=22 \mathrm{k} \Omega$. Calculate the output voltage produced by a 50 mV input.
1-12 An op-amp inverting amplifier is to have a voltage gain of 150 . If $R_{1}=$ $33 \mathrm{k} \Omega$ in Fig 1-5(b), determine a suitable resistance value for R_{2}.
1-13 Calculate the closed-loop voltage gain for an inverting amplifier, as in Fig. 1-5(b), which has $R_{1}=39 \mathrm{k} \Omega$ and $R_{2}=680 \Omega$. Determine the new voltage gain if the resistor positions are reversed.
1-14 An op-amp inverting amplifier, as in Fig. 1-5(b), is to have a 0.5 V input signal and a 9 V output. Determine a suitable resistance value for R_{2} if $R_{1}=12 \mathrm{k} \Omega$.

Practice Problem Answers

1-1.1 -0.2 V
1-2.1 $\pm(100 \mathrm{mV}-0.1 \mu \mathrm{~V})$
1-2.2 250000
1-3.1 (50 mV, 2.7 V), ($50 \mathrm{mV}, 3.69 \mathrm{~V}$)
1-3.2 $22.4,67 \mu \mathrm{~V}$
1-4.1 $\quad 370 \mu \mathrm{~V}, 730 \mu \mathrm{~A}$
1-4.2 -21.7, $21.7 \mu \mathrm{~V}$

