Operational Amplifiers and Linear ICs

DAVID A. BELL

Lambton College of Applied Arts and Technology Sarnia, Ontario, Canada

© Oxford University Press

OXFORD

UNIVERSITY PRESS

YMCA Library Building, Jai Singh Road, New Delhi 110001

Oxford University Press is a department of the University of Oxford. It furthers the University's objective of excellence in research, scholarship, and education by publishing worldwide in

Oxford New York Auckland Cape Town Dar es Salaam Hong Kong Karachi Kuala Lumpur Madrid Melbourne Mexico City Nairobi New Delhi Shanghai Taipei Toronto

With offices in

Argentina Austria Brazil Chile Czech Republic France Greece Guatemala Hungary Italy Japan Poland Portugal Singapore South Korea Switzerland Thailand Turkey Ukraine Vietnam

Oxford is a registered trade mark of Oxford University Press in the UK and in certain other countries.

> Published in India by Oxford University Press

© Oxford University Press 2011

The moral rights of the author have been asserted.

Database right Oxford University Press (maker)

First published 2011

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, without the prior permission in writing of Oxford University Press, or as expressly permitted by law, or under terms agreed with the appropriate reprographics rights organization. Enquiries concerning reproduction outside the scope of the above should be sent to the Rights Department, Oxford University Press, at the address above.

You must not circulate this book in any other binding or cover and you must impose this same condition on any acquirer.

> ISBN-13: 978-0-19-569613-4 ISBN-10: 0-19-569613-1

Typeset in Times New Roman by Anvi Composers, New Delhi 110063 Printed in India by Chaman Enterprises, Delhi 110002 and published by Oxford University Press YMCA Library Building, Jai Singh Road, New Delhi 110001

CONTENTS

Prefa	ace	iii
Ch	hapter 1 Introduction to Operational Amp	olifiers 1
1-1	IC Operational Amplifier Circuit Symbol and Terminals 1 Basic Op-Amp Circuit 2	1
1-2	2. The Voltage Follower Circuit	4
1-3	B The Noninverting Amplifier	6
1-4	The Inverting Amplifier	8
Ch	napter 2 Operational Amplifier Parameter Performance	rs and 13
2-1	Ideal and Practical Operational Amplifiers	14
	Op-Amp Model 14	
	Currents and Impedances 14	
	Voltage Gain 15	
2_2	Ideal Op-Amp 16 Basic Op-Amp Internal Circuitry	17
2-2	Current Mirror 17	17
	Complementary Emitter Follower 18	
	Level Shifting Stage 19	
	Representative IC Op-Amp 19	
2-3	Input, Output, and Supply Voltages	22
	Supply Voltage Options 22	
	Input Voltage Range 22	
	Output Voltage Range 23	
	Common Mode Rejection 23	
	Power Supply Rejection 25	
2-4	Offset Voltages and Currents	27
	Input and Output Offset Voltages 27	
	Input Bias Current Effects 27	
	Input Offset Current 29	
	Combined Effect of Input Error Sources 29	
o =	Offset Nulling 30	01
2-5	input and Output Impedances	31
	Input Impedance 31	
26	Output Impedance 32	○ /
∠-0	5 Slew Rate and Frequency Limitations Slew Rate 34	34
	Frequency Limitations 35	
	i requerieg Enninations 55	

2-7	Op-amp Classification Packages 36 Op-Amp Identification Numbers 36 Temperature Range 37 Classification 37 Op-Amp Selection 38	36
Ch	apter 3 Op-Amps as DC Amplifiers	42
3-1	Biasing Op-Amps Bias Current Paths 43 Bias Circuit Resistor Values 43 Voltage Divider Bias 44 Biasing BIFET Op-Amps 45	43
3-2	Direct-Coupled Voltage Follower Performance 46	46
3-3	Voltage Follower Compared to an Emitter Follower 48 Direct-Coupled Noninverting Amplifiers Design 48 Performance 51	48
3-4	Computer Analysis of a Noninverting Amplifier 52 Direct-Coupled Inverting Amplifiers Design 52 Performance 54	52
	Computer Analysis of an Inverting Amplifier 55 External Nulling Methods Summing Amplifiers Inverting Summing Circuit 57	55 57
3-7	Noninverting Summing Circuit 59 Difference Amplifier Circuit Operation 61 Input Resistances 63 Common Mode Voltages 63 Output Level Shifting 64 Circuit Design 64	61
3-8	Computer Analysis of a Difference Amplifier 66 Instrumentation Amplifier Differential Input/Output Amplifier 66 Complete Instrumentation Amplifier 68 Computer Analysis of an Instrumentation Amplifier 72 Integrated Circuit Instrumentation Amplifier 72	66
Ch	apter 4 Op-Amps as AC Amplifiers	78
	Capacitor-Coupled Voltage Follower High Z _{in} Capacitor-Coupled Voltage Follower <i>Computer Analysis 85</i>	79 82
	Capacitor-Coupled Noninverting Amplifier High Z _{in} Capacitor-Coupled Noninverting Amplifier <i>Computer Analysis 90</i>	85 88

	Capacitor-Coupled Inverting Amplifier Setting the Upper Cutoff Frequency	92 92
	Computer Analysis 94 Capacitor-Coupled Difference Amplifier Use of a Single-Polarity Supply Voltage Follower 96 Noninverting Amplifier 98 Inverting Amplifier 100	95 96
Ch	apter 5 Operational Amplifier Frequency Response a Compensation	nd 105
	Op-Amp Circuit Stability Loop Gain and Loop Phase Shift 106 Single-Stage BJT Amplifier Gain and Phase Responses 107 Uncompensated Op-Amp Gain and Phase Response 108 Phase Margin 110	106
5-2	Frequency Compensation Methods Phase-Lag and Phase-Lead Compensation 112 Miller Effect Compensation 113 Manufacturer's Recommended Compensation 114	112
5-3	Internally Compensated Op-amps Compensated Op-Amp Gain and Phase Response 116 Amplifier Stability and Gain 117	116
5-4	Circuit Bandwidth and Slew Rate Lower and Upper Cutoff Frequencies 118 Gain-Bandwidth Product 120 Full-Power BW and Slew Rate 121	118
5-5	Stray and Load Capacitance Effects Effects of Stray Capacitance on Circuit Stability 123 Effects of Load Capacitance on Circuit Stability 126	123
5-6	Circuit Stability Precaution Power Supply Decoupling 129 Stability Precautions 130	129
Ch	apter 6 Noise in Op-Amp Circuits	134
6-1	Thermal Noise Resistors Noise 135 Noise Gain 136	135
	Shot Noise	137
	Op-Amp Noise Signal to Noise Patio	139 141
	Signal-to-Noise Ratio Minimizing Noise Grounding and Screening 143	141 143
Ch	napter 7 Miscellaneous Op-Amp Linear Applications	147
7-1	Voltage Sources Positive and Negative Voltage Source 148	148

7-2	Computer Analysis of Voltage Source 150 Current Sources and Current Sinks Current Sources 152 Current Sinks 154	152
7-3	Computer Analysis of a Current Sink 156 Current Amplifiers Current-to-Voltage Converter 157 Current Amplifier 157	157
	Computer Analysis of a Current Amplifier 159 DC Voltmeter Circuit Linear Ohmmeter Circuit 161	159
7-6	Computer Analysis of the Linear Ohmmeter 164 Log and Antilog Amplifiers Basic Log Amplifier 165 Basic Antilog Amplifier 166	165
	Temperature Compensation 167	
Ch	apter 8 Switching, Differentiating, and Integrating Circuits	173
8-1	Op-Amps in Switching Circuits Output Voltage Swing 174 Maximum Differential Input Voltage 174 Slew Rate 175	174
8-2	Frequency Compensation 176 Voltage Level Detectors Zero Crossing Detector 176 Level Detector 178 Voltage Level Monitor 178 Computer Analysis 181	176
8-3	Inverting Schmitt Trigger Circuit Circuit Operation 182 Positive Feedback 183 Triggering Points 183 Voltage Waveforms 183 Hysteresis 184 Input/Output Characteristic 184 Circuit Design 185 Adjusting the Trigger Points 186	182
8-4	Noninverting Schmitt Trigger Circuit Circuit Operation 187 Adjusting the Trigger Points 188 Computer Analysis 190	187
8-5	IC Voltage Comparator Comparator Operation 191 Comparator Specification 192 Comparator Level Detectors 192 Window Detector 194 Comparator as a Schmitt Trigger 195 Computer Analysis 196	191

	Differentiating Circuits Differentiating Circuit Waveforms 197 Basic Differentiating Circuit 198 Practical Op-Amp Differentiating Circuit 200 Differentiator Circuit Design 200 Differentiator Performance 202 Sine Wave Response 202 Integrating Circuits Integrating Circuit Waveforms 204 Basic Integrating Circuit 205 Practical Op-Amp Integrating Circuit 206 Integrator Circuit Design 206 Integrator Performance 207	197 204
	Sine Wave Response 208	244
Ch	hapter 9 Signal Processing Circuits	214
9-1	Precision Half-Wave Rectifiers	215
	Saturating Precision Rectifier 215	
	Nonsaturating Precision Rectifier 216	
	Two-Output Precision Half-Wave Rectifier 218	
9-2	Precision Full-Wave Rectifiers	219
	Half-Wave Rectifier and Summing Circuit 219	
	Computer Analysis 221	
0.2	High Input Impedance Precision Full-Wave Rectifier 221	224
9-3	Limiting Circuits	224
	Peak Clipper 224 Dead Zone Circuit 226	
	Precision Clipper 227	
	Computer Analysis 228	
	Precision Plus/Minus Clipping Circuit 228	
9-4	Clamping Circuits	231
	Diode Clamping Circuit 231	
	Precision Clamping Circuit 232	
	Computer Analysis 235	
9-5	Peak Detectors	235
	Precision Rectifier Peak Detector 235	
0 (Voltage Follower Peak Detector 237	220
9-6	Sample-and-Hold Circuits	239
	Op-Amp Sample-and-Hold 239 IC Sample-and-Hold 242	
	1C Sumple-unu-110tu 2+2	
Ch	napter 10 Signal Generators	247
10-1	Astable Multivibrator	248
-	Circuit Operation 248	
	Astable Design 249	
10-2	Monostable Multivibrator	251
	Monostable Operation 251	
	Recovery Time 253	

	Monostable Design 253	
	Triggering the Monostable 255	
	Computer Analysis 257	
10-3	Triangular Wave Generator	258
	Schmitt-Integrator Combination 258	
	Design Calculations 259	
10-4	Modifications to the Triangular Wave Generator	260
	Frequency and Duty-Cycle Adjustment 260	
	Voltage-Controlled Oscillator Modification 263	
	Computer Analysis 265	
10-5	Signal Generator Output Controls	266
10-6	555 Timer Monostable	268
	Timer Block Diagram 268	
	Timer Monostable Circuit 269	
	Designing a 555 Monostable 270	
	Modifications to the Basic 555 Monostable 271	
	Timing and Frequency Limitations 272	
10-7	Timer Pulse and Square Wave Generators	273
	Astable Multivibrator 273	
	555 Astable Design 274	
	Computer Analysis 275	
	Square Wave Generator 275	
	Another Square Wave Generator Circuit 276	
	Computer Analysis 278	
10-8	Miscellaneous Timer Circuits	278
	Voltage-Controlled Oscillator 278	
	Delay Timers 280	
	Sequential Timers 281	
	Pulsed-Tone Oscillator 282	
	The 7555 CMOS Timer 283	

apter 11 Sinusoidal Oscillators	289
Phase Shift and Quadrature Oscillators Phase Shift Oscillator Circuit 290 Phase Shift Oscillator Design 291 Ouadrature Oscillator 292	290
Colpitts and Hartley Oscillators Colpitts Oscillator 293 Circuit Design 295 Hartley Oscillator 296	293
Wein Bridge Oscillator	297
Oscillator Amplitude Stablization Output Amplitude 300 Diode Stabilization 300 Computer Analysis 302	300
	Phase Shift and Quadrature Oscillators Phase Shift Oscillator Circuit 290 Phase Shift Oscillator Design 291 Quadrature Oscillator 292 Colpitts and Hartley Oscillators Colpitts Oscillator 293 Circuit Design 295 Hartley Oscillator 296 Wein Bridge Oscillator Oscillator Amplitude Stablization Output Amplitude 300 Diode Stabilization 300

11-5	IC Function Functional E Supply Volta Basic 8038 F	ation Circuit 305 n Generator Plock Diagram 307 age and Output Amplitu unction Generator 309 e Frequency 311	de 308	307
Ch	apter 12	Active Filters		317
12-1	Low-Pass 31 High-Pass 3 Band-Pass 3 Notch 318 Fall-Off Rate	18 118	S	317
12-2	First-Order First-Order Filter Charac Design Calcu	r Active Filters Low-Pass Filter 321 cteristics 321		321
12-3	Second-Orde	der Filters er Low-Pass Filter 326		326
12-4	Third-Ord Third-Order Computer A	Low-Pass Filter 331		331
12-5	Band-Pass Multistage E Single-Stage Bandwidth	Filters Band-Pass Filter 335 Band-Pass Filter 336	Filter 340	335
	Notch Filte	ers hase Shifting Circuit <i>ircuit 343</i>		341 343
12-8	State-Varia Computer A			347
12-9	IC Switche	ed-Capacitor Filters pacitor Resistor Simulat	ion 350	350
Ch	apter 13	DC Voltage Regu	llators	359
13-1	Voltage Re Regulator Ad Source Effect			360

	Load Effect 361	
13-2	Ripple Rejection 361 Op-Amp Series Voltage Regulator	362
10 2	Basic Circuit 362	002
	Series Regulator Design 364	
10.0	Series Regulator Performance 366	0/7
13-3	Adjustable Output Regulators <i>Output Voltage Adjustment</i> 367	367
	High Output Current Circuit 368	
	Computer Analysis 370	
13-4	Output Current Limiting	371
	Short-Circuit Protection 371	
40 -	Fold-Back Current Limiting 373	074
13-5	IC Linear Voltage Regulators	376
	723 IC Regulator 376 LM317 and LM337 IC Regulators 379	
	LM340 Regulators 381	
13-6	Switching Regulators	381
	Switching Regulator Operation 381	
	Comparison of Linear and Switching Regulators 383	
	Step-Down Converter 384	
	Step-Down Converter Equations 384	
	Step-Up Converter 388	
13-7	<i>Inverting Converter</i> 390 Switching Regulator Controller	392
10 /	Function Block Diagram 392	072
	Step-Down Converter Using an MC34063 393	
	Variable Off Time Modulator 394	
	Catch Diode Selection 395	
	Diode Snubber 395	
	High Power Converters 395	
Ch	apter 14 Audio Power Amplifiers	400
14-1	BJT Power Amplifier With Op-Amp Driver	401
	Op-Amp Power Amplifier 401	
	Resistor Calculations 403	
	Capacitor Calculations 404	
	Transistor Specifications 404 Op-Amp Specification 404	
	Diodes 405	
	Computer Analysis 408	
14-2	Power Amplifier Performance Improvement	409
	Darlington-Connected Output Transistors 409	
	Quasi-Complementary Output Stage 412	
	Output Current Limiting 413	
	V_{BE} Multiplier 413	
	Use of Bootstrapping Capacitors 415 Load Compensation 420	
	Power Supply Decoupling 420	

14-4	IC Power Amplifier Driver MOSFET Power Amplifier With Op-Amp Driver Advantages of MOSFETs 424 Power Amplifier with MOSFET Output Stage 424 Output Voltage Swing 426 MOSFET Power Amplifier Design 427 Computer Analysis 430 Bias Control 432 Complete Op-Amp MOSFET Power Amplifier 433 IC Power Amplifiers 250 mW IC Power Amplifier 434 Bridge-Tied Load Amplifier 435 2.5 W IC Power Amplifier 437 7 W IC Power Amplifier 441 68 W IC Power Amplifier 441	421 424 434
Ch	hapter 15 Digital-to-Analog and Analog-to-Digital Conversion	447
15-1	Analog/Digital Conversion Basics Resolution 448 Analog-to-Digital Conversion 449 LSB and MSB 449 Digital-to-Analog Conversion 450 Settling Time 451 Monitonicity 451 Accuracy 451	448
15-2	Digital-to-Analog Conversion Weighted Resistor DAC 451 R-2R DAC 454 Multiplying DAC 456 Integrated Circuit 8-Bit DAC 457 Computer Analysis 457	451
15-3	Parallel ADC Simple 3-Bit Parallel ADC 459	459
15-4	ADC Counting Methods AND Gate 461 Flip-Flops 462 Counting Registers 464 Frequency Division 465 Linear Ramp ADC 465 Dual-Slope Integrator ADC 467 Digital Ramp ADC 468 Successive Approximation ADC 470	461
Ch	napter 16 Phase-Locked Loop	473
	Basic Phase-Locked Loop System PLL Components	474 476

16-2 PLL Component	16-2	PLL	Component
--------------------	------	-----	-----------

Phase Detector 476	
Phase/Frequency Detector 478	
Filter 479	
Amplifier 479	
VCO 479	
16-3 PLL Performance Factors	479
Loop Gain 479	
Tracking Range 481	
Capture Range 482	
Frequency Synthesis 484	
16-4 PLL Frequency Response and Compensation	485
System Characteristics 485	
VCO as an Integrator 485	
Instability 487	
Compensation 488	
16-5 Integrated Circuit PLL	488
Appendix A IC Data Sheets	494
A-1 741 Op-amp	494
A-2 LM709 Operational Amplifier	498
A-3 108 and 308 Op-amp	499
A-4 353 Op-amp	503
Appendix B Standard Value Components	506
Table B-1 Typical Standard-Value Resistors	506
Table B-2 Typical Standard-Value Capacitors	508
Table D 2 Typical Standard Value Capacitoris	000
Appendix C Answers to Odd-Numbered Problems	509
Index	515

CHAPTER 1 Introduction to Operational Amplifiers

Objectives

After studying this chapter, you will be able to

- 1 Sketch the circuit symbol for an operational amplifier (op-amp) and identify all terminals.
- 2 Draw a basic (three bipolar junction transistor) op-amp internal circuit diagram. Identify all terminals, and explain the circuit operation.
- 3 Sketch an op-amp voltage follower circuit. Explain its operation.
- 4 Draw the diagram for an opamp noninverting amplifier. Explain the circuit operation, and calculate the voltage gain for given resistor values.
- 5 Draw the diagram for an opamp inverting amplifier. Explain the circuit operation, and calculate the voltage gain for given resistor values.

INTRODUCTION

Operational amplifiers (op-amps) are very high gain amplifier circuits with two high-impedance input terminals and one low-impedance output. The input terminals are identified as *inverting input and noninverting input*. The basic op-amp circuit consists of a differential amplifier input stage, a level shifting intermediate stage, and an emitter-follower output stage. Operational amplifiers can be employed for a great many circuit applications by using various combinations of externally connected components. The simplest of these are the voltage follower, the noninverting amplifier, and the inverting amplifier.

1-1 IC OPERATIONAL AMPLIFIER

Circuit Symbol and Terminals

The circuit symbol for an op-amp, illustrated in Fig. 1-1, shows that there are two input terminals, one output terminal, and two supply terminals. Plusminus supply voltages ($+V_{CC}$ and $-V_{EE}$) are normally used and these typically range from ±5 to ±22 V. The input terminals are designated as *inverting input* (minus sign) and *noninverting input* (plus sign). A positive-going voltage applied to the inverting input produces a negative-going (inverted)

Figure 1-1 Operational amplifier circuit symbol. There are two supply terminals ($+V_{CC}$ and $-V_{EE}$), two input terminals (inverting and noninverting), and one output.

output, and a positive-going signal at the noninverting input generates a positive-going (noninverted) output.

Basic Op-amp Circuit

The basic circuit of an IC op-amp consists of a bipolar junction transistor (BJT) differential amplifier input stage combined with an emitter follower output. This is illustrated in Fig. 1-2. Note the plus—minus supply ($+V_{CC}$ and $-V_{EE}$), which is normally used. Transistors Q_1 and Q_2 together with resistors R_E and R_C constitute a differential amplifier, which produces a voltage change at the collector of Q_2 when a voltage difference is applied to the bases of Q_1 and Q_2 . The Q_2 collector voltage is passed to the voltage divider (R_a and R_b), which shifts the dc voltage level down to approximately half-way between $+V_{CC}$ and $-V_{EE}$. This voltage is then applied to the output via the emitter follower consisting of transistor Q_3 and emitter resistor R_{E3} .

Figure 1-2 An op-amp circuit consists basically of a differential amplifier input stage, a level shifting intermediate stage, and an emitter follower output.

Example 1-1

Calculate the voltage and current levels for the circuit shown in Fig. 1-2 if $V_{CC} = \pm 10 \text{ V}$, $V_i = V_2 = 0$, and the components are $R_a = 47 \text{ k}\Omega$, $R_b = 100 \text{ k}\Omega$, and $R_C = R_E = R_{E3} = 4.7 \text{ k}\Omega$. For simplicity, assume that Q_1 and Q_2 are

perfectly matched, that the current through R_a and R_b has no effect on the voltage drop across R_c , and that the Q_3 base current has no effect on the voltage divider.

Solution

$$V_{RE} = V_{B1} - V_{BE} - V_{EE}$$

= 0 - 0.7 V - (-10 V)
= 9.3 V
$$I_E = \frac{V_{RE}}{R_E} = \frac{9.3 V}{4.7 k\Omega}$$

= 1.98 mA
$$I_{C1} = I_{C2} = \frac{I_E}{2} = 0.99 \text{ mA}$$
$$V_{RC} = I_{C2} \times R_C$$

= 0.99 mA × 4.7 kΩ
= 4.65 V
$$V_{RaRb} = V_{CC} - V_{EE} - V_{RC}$$

= 10 V - (-10 V) - 4.65 V
= 15.35 V
$$V_{Rb} = \frac{V_{RaRb} \times R_b}{R_a + R_b}$$

= $\frac{15.53 V \times 100 k\Omega}{100 k\Omega + 4.7 k\Omega}$
= 10.4 V
$$V_o = V_{EE} + V_{Rb} - V_{BE}$$

= -10 V + 10.4 V - 0.7 V
= -0.3 V

To further investigate the operation of the circuit in Fig. 1-2, suppose that a positive input $(+V_i)$ is applied to the base of Q_1 and that the Q_2 base is held at ground level. This produces an increase in I_{C1} and a decrease in I_{C2} , resulting in a decreased voltage drop across resistor R_C . Consequently, V_{C2} and V_{B3} are increased, producing a positive-going output voltage. If the input to Q_1 base is negative $(-V_i)$ instead of positive, I_{C1} is decreased and I_{C2} is increased, resulting in an increase in V_{RC} , a decrease in V_{B3} , and a consequent negative-going output.

It is seen that a positive-going input at the base of Q_1 produces a positivegoing output at the Q_3 emitter, and that a negative-going input to Q_1 gives a negative-going output. This means that an input voltage applied to Q_1 base results in an output having the same polarity as the input (a noninverted output). Thus, the terminal at the base of Q_1 is the *noninverting input*.

Now assume that Q_1 base is maintained at ground level while a positive input (+ V_2) is applied to the base of Q_2 . In this case I_{C1} is decreased and I_{C2} is

increased, producing an increased voltage drop across $R_{\rm C}$ and a consequent negative-going output. When the input to Q_2 base is negative ($-V_2$) instead of positive, $I_{\rm C2}$ is decreased, $I_{\rm C1}$ is increased, $V_{\rm RC}$ is decreased, and the output is positive-going. So, an input voltage to Q_2 base results in an output having the opposite polarity to the input (an inverted output). So, the terminal at the base of Q_2 is the *inverting input*.

The differential amplifier stage offers high input impedance (Z_i) at the BJT bases. The emitter follower output stage gives a low output impedance (Z_o). The input stage also provides voltage gain, and the more complex circuitry of a practical IC op-amp produces much higher gain than would be available from the simple differential amplifier stage illustrated. As with all amplifiers, the voltage gain is the output voltage divided by the input voltage. In this case, the input voltage is the difference between the two input terminal voltages (V_D). Where no negative feedback is involved, the voltage gain is termed the *open-loop voltage gain* (A_{OL}) (or $A_{v(OL)}$). When negative feedback is employed, the voltage gain becomes the *closed-loop gain* (A_{CL}). The high input impedance and the low output impedance are also enhanced by the practical op-amp circuitry, and they are both very much improved by the use of negative feedback in typical op-amp applications.

Section Review

- **1-1.1** Sketch the graphic symbol for an op-amp and identify all of the terminals.
- **1-1.2** Sketch the basic (three BJT) internal circuit for an op-amp. Identify the inverting and noninverting terminals and briefly explain the circuit operation.

Practice Problem

1-1.1 Calculate V_0 for the circuit in Example 1-1 when the supply is $V_{CC} = \pm 15$ V and R_C and R_E are changed to 5.6 k Ω .

1-2 THE VOLTAGE FOLLOWER CIRCUIT

The IC op-amp lends itself to a wide variety of applications. The very simplest of these is the *voltage follower* shown in Fig. 1-3(a). The output terminal is connected directly to the inverting input terminal, the signal is applied to the noninverting input, and the load is directly coupled to the output. The output voltage now follows the input, giving the circuit a voltage gain of 1, a very high input impedance, and a very low output impedance.

To understand how the voltage follower operates, consider the basic opamp circuit reproduced in Fig. 1-3(b). As in Fig. 1-3(a), the output (terminal 6) is connected to the inverting input terminal (terminal 2). With terminal 3 grounded, terminal 2 and the output must also be at ground level. If the input voltage (V_i) is increased above ground level, I_{C1} is increased and I_{C2} is decreased, causing V_{C2} to be decreased and thus producing an increase in V_o , which brings V_2 back to equality with V_i . If V_2 were somehow to go above the level of V_i , I_{C2} would be increased to produce a drop in V_o , which would

(a) Voltage follower circuit

(b) Basic op-amp circuit connected as a voltage follower

drive V_2 back to equality with V_i . It is seen that there is 100% negative feedback (NFB), which maintains the output voltage equal to the input. The output always *follows* the input; hence the name *voltage follower*.

The output of a voltage follower does not perfectly follow the input, because there has to be a very small difference between the two input terminals (a *differential input*, V_D) to produce the output voltage change. This depends on the op-amp amplification without feedback, known as the *open-loop voltage* gain (A_{OL} or $A_{v(OL)}$). When negative feedback is employed, the voltage gain becomes *closed-loop gain* (A_{CL}).

The voltage follower has a high input impedance, a low output impedance, and a closed-loop voltage gain of 1. This is similar to a BJT emitter follower. However, the difference between the dc input and output voltages with a voltage follower is typically less than 50 μ V compared to 0.7 V for an emitter follower. As will be demonstrated, the voltage follower also has a much higher input impedance and a much lower output impedance than the emitter follower.

Example 1-2

Calculate the difference between the input and output voltages for a voltage follower with a 3 V input if the op-amp has $A_{OL} = 200\ 000$.

Solution

$$V_{\rm D} = \frac{V_{\rm o}}{A_{\rm OL}} = \frac{3 \,\mathrm{V}}{200\,000} = 15 \,\mathrm{\mu V}$$

Practice Problems

- **1-2.1** Calculate the precise peak output voltage levels when a ± 100 mV signal is applied as input to a voltage follower that uses an op-amp with $A_{OL} = 100\ 000$.
- **1-2.2** The output of a voltage follower is to follow the input within 20 μ V. Determine the minimum open-loop gain of the amplifier if the maximum input is ± 5 V.

1-3 THE NONINVERTING AMPLIFIER

The *noninverting amplifier* circuit shown in Figs. 1-4(a) and (b) behaves in a similar way to a voltage follower, except that the output voltage is divided by resistors R_1 and R_2 before being fed back to the inverting terminal. Consider the conditions that exist when the noninverting input is grounded. As is the case of the voltage follower, the inverting input terminal must also be at (or very close to) ground, and thus the junction of R_1 and R_2 is also at ground level. With both ends of resistor R_2 at ground level, there is no current flow through R_2 , and so (neglecting the very small bias current into terminal 2) there is no current through R_1 and no voltage drop across R_1 . Consequently, the circuit output voltage equals the input, which is at ground level.

Now suppose that a +100 mV input is applied to terminal 3. As explained, the output will move to a level that makes the feedback voltage (to terminal 2) equal to the voltage at terminal 3. The feedback voltage is developed across resistor R_2 , and the output appears across $R_1 + R_2$. So,

$$V_{\rm R2} = V_{\rm i} = I_1 R_2$$

and

$$V_{\rm o} = I_1(R_1 + R_2)$$

giving a closed-loop voltage gain

$$A_{\rm CL} = \frac{V_{\rm o}}{V_{\rm i}} = \frac{I_1(R_1 + R_2)}{I_1 R_2}$$

or,

$$A_{\rm CL} = \frac{R_1 + R_2}{R_2} \tag{1-1}$$

Example 1-3

A noninverting amplifier, as in Fig. 1-4, has $R_1 = 8.2 \text{ k}\Omega$ and $R_2 = 150 \Omega$. (a) Calculate the voltage gain. (b) Determine a new resistance for R_2 to give $A_{\text{CL}} = 75$.

(a) Noninverting amplifier circuit

(c) Basic op-amp circuit connected as a noninverting amplifier

Figure 1-4 A noninverting amplifier operates in the same way as a voltage follower except that the output voltage is divided before it is fed back to the inverting input terminal. The circuit closed-loop voltage gain is $A_{CL} = (R_1 + R_2)/R_2$.

Solution

(a) From Eq. 1-1

$$A_{\rm CL} = \frac{R_1 + R_2}{R_2} = \frac{8.2 \text{ k}\Omega + 150 \Omega}{150 \Omega}$$

= 55.7

(b) Again from Eq. 1-1

$$A_{\rm CL} = \frac{R_1 + R_2}{R_2} = \frac{R_1}{R_2} + 1$$

giving

$$R_2 = \frac{R_1}{A_{\rm CL} - 1} = \frac{8.2 \,\mathrm{k}\Omega}{75 - 1} = 111 \,\Omega$$

Practice Problems

- **1-3.1** For cases (a) and (b) in the circuit in Example 1-3, calculate the voltages across resistors R_1 and R_2 when a +50 mV signal is applied as input.
- **1-3.2** A noninverting amplifier, as in Fig. 1-4, has $R_1 = 4.7 \text{ k}\Omega$ and $R_2 = 220 \Omega$. (a) Determine the closed-loop voltage gain. (b) Calculate the difference between the two input terminal voltages for a 300 mV input if the op-amp has $A_{\text{OL}} = 100\ 000$.

1-4 THE INVERTING AMPLIFIER

The circuit shown in Fig. 1-5(a) is essentially the same as the noninverting amplifier in Fig. 1-4(a) with the important exception that the noninverting terminal is grounded and the input voltage is applied to resistor R_2 . In this case, a positive-going input voltage produces a negative-going output and vice versa. So, the circuit is an *inverting amplifier*. Figure 1-5(b) shows the way the circuit is usually drawn. Note that the junction of the two resistors is connected to the op-amp inverting input terminal, the noninverting terminal is grounded, and the input is applied between R_2 and ground, exactly as in Fig. 1-5(a).

Figure 1-5(c) shows the basic op-amp circuit connected as an inverting amplifier. When a positive-going input is applied to R_2 , I_{C2} is increased, thus increasing the voltage drop across R_C and driving the output voltage down. Because the base of Q_1 is grounded, the base of Q_2 will always be maintained at ground level (by negative feedback) regardless of the level of V_i . Thus, when V_i is applied, the output voltage moves to the level that keeps the inverting input terminal at ground. For this reason, the inverting input terminal in this type of circuit is referred to as a *virtual ground* or *virtual earth*.

Note from the above explanation that V_0 is moved in a negative direction when V_i is positive. Similarly, when V_i is negative, V_0 has to move in a positive direction to keep the op-amp inverting input terminal at ground level.

Now return to Fig. 1-5(b) and recall that the voltage at the inverting input terminal always remains close to ground because the noninverting terminal is grounded. Thus, the junction of R_1 and R_2 always remains at ground level. With V_i at one of R_2 and ground at the other end, V_i appears across R_2 , as illustrated. Also, with V_o at one end of R_1 and ground at the other end, V_o is seen to be developed across R_1 . Ignoring the very small bias current flowing into the op-amp inverting input terminal, the current I_1 effectively flows through both R_1 and R_2 . The input and output voltages can now be expressed as

$$V_{\rm i} = I_1 R_2$$

and

$$V_{\rm o} = -I_1 R_1$$

The closed-loop voltage gain is

$$A_{\rm CL} = \frac{V_{\rm o}}{V_{\rm i}} = \frac{-I_1 R_1}{I_1 R_2}$$

(a) Inverting amplifier circuit

(c) Basic op-amp circuit connected as an inverting amplifier

Figure 1-5 In an inverting amplifier the input is applied via resistor R_2 to the inverting input. This is essentially the same as a noninverting amplifier with the noninverting terminal grounded and the signal applied to the voltage divider. The circuit closed-loop voltage gain is $A_{CL} = -R_1/R_2$.

or,

$$A_{\rm CL} = -\frac{R_1}{R_2} \tag{1-2}$$

The minus sign in Eq. 1-2 indicates that the output is inverted with respect to the input.

Example 1-4

An inverting amplifier, as in Fig. 1-5, has $R_1 = 8.2 \text{ k}\Omega$ and $R_2 = 270 \Omega$. (a) Determine the voltage gain. (b) Calculate a new resistance for R_2 to give $A_{\text{CL}} = 60$.

Solution

(a) From Eq. 1-2

$$A_{\rm CL} = -\frac{R_1}{R_2} = -\frac{8.2 \text{ k}\Omega}{270 \Omega}$$

= -30.4

(b) From Eq. 1-2

$$R_2 = \frac{R_1}{A_{\rm CL}} = \frac{8.2 \text{ k}\Omega}{60}$$
$$= 137 \text{ }\Omega$$

Practice Problems

- **1-4.1** For cases (a) and (b) in the circuit in Example 1-4, calculate the current through resistors R_1 and R_2 when a +100 mV signal is applied as input.
- **1-4-2** An inverting amplifier, as in Fig. 1-5, has $R_1 = 3.9 \text{ k}\Omega$ and $R_2 = 180 \Omega$. (a) Determine the voltage gain. (b) If the op-amp has $A_{\text{OL}} = 200\ 000$, calculate the voltage difference between the op-amp input terminals when a 200 mV input is applied.

Review Questions

Section 1-1

- **1-1** Sketch the circuit symbol for an op-amp and identify all terminals.
- **1-2** Draw a basic (three BJT) op-amp internal circuit diagram. Identify the inverting input, noninverting input, and output terminals. Explain the circuit operation.

Section 1-2

1-3 Draw a circuit diagram for a voltage follower (a) using an op-amp graphic symbol and (b) using the basic three BJT op-amp circuit. Discuss the voltage follower operation.

Section 1-3

1-4 Draw a circuit diagram for a noninverting amplifier (a) using an op-amp graphic symbol and (b) using the basic three BJT op-amp circuit. Explain the circuit operation, and write the equation for the closed-loop voltage gain.

Section 1-4

1-5 Draw a circuit diagram for an inverting amplifier (a) using an op-amp graphic symbol and (b) using the basic three BJT op-amp circuit. Explain the circuit operation, and write the equation for the closed-loop voltage gain. Explain the term virtual ground.

Problems

Section 1-1

1-1 Recalculate the circuit current and voltage levels for the basic three BJT op-amp circuit in Example 1-1 when the output is directly connected to the inverting input terminal.

1-2 A basic op-amp circuit as in Fig. 1-2 has the following components: $R_{\rm C} = R_{\rm E} = R_{\rm E3} = 6.8 \text{ k}\Omega$, $R_{\rm a} = 56 \text{ k}\Omega$, and $R_{\rm b} = 120 \text{ k}\Omega$. The supply is $V_{\rm CC} = \pm 12$ V. Calculate the circuit current and voltage levels when the output is directly connected to the inverting input terminal. Assume that Q_1 and Q_2 are perfectly matched and that $I_{\rm B3}$ has no effect on the voltage divider.

Section 1-2

- **1-3** A 741 op-amp (Data Sheet A-1 in Appendix A) is connected as a voltage follower. If $V_i = 750$ mV and the amplifier open-loop gain is the only error source, calculate the precise level of V_o for (a) the specified minimum voltage gain and (b) for the specified typical gain.
- **1-4** An LM308 op-amp (Data Sheet A-3 in Appendix A) is substituted in place of the 741 in Problem 1-3. Calculate the output voltages for cases (a) and (b) once again.
- **1-5** An op-amp voltage follower with a 200 mV minimum input signal is to have 0.005% maximum output error. Determine the amplifier minimum open-loop gain.
- **1-6** A voltage follower using an LM308 op-amp is to reproduce the input with a maximum error of $10 \ \mu V$ due to the op-amp open-loop gain. Calculate the acceptable minimum input voltage.

Section 1-3

- **1-7** An op-amp noninverting amplifier, as in Fig. 1-4, has $R_1 = 22 \text{ k}\Omega$ and $R_2 = 120 \Omega$. Calculate the output voltage produced by a 75 mV input.
- **1-8** An op-amp noninverting amplifier is to have a voltage gain of 101. If $R_2 = 180 \Omega$ in Fig 1-4, determine a suitable resistance value for R_1 .
- **1-9** A 120 mV signal is to produce a 12 V output from an op-amp noninverting amplifier. If a 15 k Ω resistor is to be used for R_1 (as in Fig. 1-4), determine a suitable resistance value for R_2 .
- **1-10** Calculate the closed-loop gain for a noninverting amplifier, as in Fig. 1-4, with $R_1 = 27 \text{ k}\Omega$ and $R_2 = 390 \Omega$. Determine the voltage gain that results if the resistor positions are reversed.

Section 1-4

- **1-11** An op-amp inverting amplifier, as in Fig. 1-5(b), has $R_2 = 120 \ \Omega$ and $R_1 = 22 \ k\Omega$. Calculate the output voltage produced by a 50 mV input.
- **1-12** An op-amp inverting amplifier is to have a voltage gain of 150. If $\hat{R}_1 = 33 \text{ k}\Omega$ in Fig 1-5(b), determine a suitable resistance value for R_2 .
- **1-13** Calculate the closed-loop voltage gain for an inverting amplifier, as in Fig. 1-5(b), which has $R_1 = 39 \text{ k}\Omega$ and $R_2 = 680 \Omega$. Determine the new voltage gain if the resistor positions are reversed.
- **1-14** An op-amp inverting amplifier, as in Fig. 1-5(b), is to have a 0.5 V input signal and a 9 V output. Determine a suitable resistance value for R_2 if $R_1 = 12 \text{ k}\Omega$.

Practice Problem Answers

- **1-1.1** –0.2 V
- **1-2.1** $\pm (100 \text{ mV} 0.1 \mu \text{V})$
- **1-2.2** 250 000
- **1-3.1** (50 mV, 2.7 V), (50 mV, 3.69 V)
- **1-3.2** 22.4, 67 μV
- **1-4.1** 370 μV, 730 μA
- **1-4.2** –21.7, 21.7 μV