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Objectives

After studying this chapter, you will be able to 

CHAPTER 1 

Measurement Systems, 
Units, and Standards

INTRODUCTION 
Before standard systems of measurement were invented, many approximate 
units were used. A long distance was often measured by the number of days 
it would take to ride a horse over the distance; a horse’s height was measured 
in hands; liquid was measured by the bucket or barrel. English-speaking 
peoples adopted the foot and the mile for measuring distances, the pound for 
mass, and the gallon for liquid. Other nations followed the lead of the French 
in adopting a metric system, in which large and small units are very 
conveniently related by a factor of 10. With the development of science and 
engineering, accurate units had to be devised, and several different unit 
systems were used before an international system was adopted. 

1-1 UNIT SYSTEMS

CGS and MKS Systems
For many years, systems using the centimeter, gram, and second (CGS) as the 
fundamental mechanical units were employed for scientific and engineering 
purposes. These were termed absolute systems because all quantities could be 
defined in terms of the three fundamental units. There are two CGS systems: 
an electrostatic system of units (esu) and an electromagnetic units system (emu). In 
the electrostatic system, the permittivity of free space ( 0) is defined as 1, and the 
unit of electrical charge is defined as the charge that exerts unit force on a 

 1. Discuss CGS, MKS, and SI unit  
systems and explain the need for a 
practical units system.

 2. Use scientific notation, engineering 
notation, and metric prefixes in  
stating quantities.

 3. Identify the three fundamental  
mechanical units in the SI system, and 
define SI mechanical derived units.

 4. Identify the fundamental electrical 
unit in the SI system, and define the 

SI derived units for various electri-
cal and magnetic quantities. 

 5. Explain SI temperature scales.
 6. Convert between SI and non-SI 

units when solving problems.
 7. Determine the dimensions of all 

fundamental and derived units. 
 8. Explain the various measurement 

standards and their applications.
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2 Electronic Instrumentation and Measurements

similar charge located at 1 cm distance. In the electromagnetic system, the 
permeability of free space ( 0) is defined as 1, and the unit magnetic pole is 
defined as the pole that exerts unit force on a similar pole located at 1 cm 
distance. 

Except in the case of electrostatic research, the electromagnetic system 
tended to be more convenient to use than the electrostatic system. However, 
some of the esu and emu units were different in magnitude, and care had to 
be taken in making conversions. Many CGS units were too small or too large 
for practical engineering applications, so a system of practical units was also 
used. Thus, there were two CGS (esu and emu) systems for use in research 
work, and a third (practical) system for engineering applications. Furthermore, 
both CGS systems were regarded as irrational (or unrationalized) because of 
the presence of the factor 4  in equations where it seemed inappropriate, and 
its absence in other equations where it was appropriate. 

These factors led to the proposed use of the practical units in an MKS 
system, using the meter (m), kilogram (kg), and second (s) as the fundamental 
units. The name Giorgi system is also applied to the MKS system, in reference 
to Italian Professor Giorgi who first suggested its use. The MKS system was 
also rationalized, to relocate the factor 4  to appropriate equations, and 
(instead of 1) the permittivity and permeability of free space were redefined 
as:  0 = 1/(36   10–9) and 0 = 4   10–7.

The SI System
To facilitate the exchange of scientific information, it was necessary to 
establish a single system of units of measurement that would be acceptable 
internationally. A metric system which uses the meter, kilogram, and second as 
fundamental mechanical units is now generally employed around the world. 
This was first devised in France, and it is known (from “systéme international”) 
as the SI system. 

The meter, kilogram, and second are the fundamental mechanical units of the 
SI system. Other units which are defined in terms of the fundamental units 
are termed derived units; for example, the unit of area is meters squared  
(m  m = m2). Thus, m2 is a derived unit. Some other derived units are those 
for force, work, energy, and power. 

A fundamental electrical unit is required in the SI system, and this is the 
ampere (A), the unit of electric current. With this addition, the MKS system 
became an MKSA system. Fundamental units are also required for 
temperature and illumination calculations, and these are the kelvin (K) and 
the candela (cd), respectively. The fundamental mechanical units are 
sometimes referred to as the primary fundamental units, and the units for 
current, temperature, and illumination are then termed auxiliary fundamental 
units. 

When solving problems, it is sometimes necessary to convert between SI 
and other unit systems. Appendix 1 provides a list of conversion factors for 
this purpose. 
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Chapter 1   Measurement Systems, Units, and Standards 3

Section Review
1-1.1 Explain the following in relationship to unit systems: CGS, MKSA, 

esu, emu, absolute system, practical units.

1-2 SCIENTIFIC NOTATION AND METRIC PREFIXES

Scientific Notation
Very large or very small numbers are conveniently written as a number 
multiplied by 10 raised to a power: 

 100 = l  10  10 = 1  102 

 10 000 = 1  10  10  10  10 = 1  104 

 0.001 = 1/(10  10  10) = 1/103 = 1  10–3 

 1500 = 1.5  103 

 0.015 = 1.5  10–2

Numbers presented in this form are said to use scientific notation. Note that 
in the SI system of units, spaces are used instead of commas when writing 
large numbers. Four-numeral numbers are an exception. One thousand is 
written as 1000, while ten thousand is 10 000. 

Metric Prefixes
Metric prefixes and the letter symbols for the various multiples and 
submultiples of 10 are listed in Table 1-1, with those most commonly used 
with electrical units shown in bold type. The prefixes are employed to 
simplify the representation of very large and very small quantities. Thus, 
1000  can be expressed as 1 kilohm, or 1 k . Here kilo is the prefix that 
represents 1000, and k is the symbol for kilo. Similarly, 1  10–3 A can be 
written as 1 milliampere, or 1 mA. 

TABLE 1-1 Scientific Notation and Metric Prefixes 

Value Scientific notation Prefix Symbol

1 000 000 000 000 1012 tera T
1 000 000 000 109 giga G

1 000 000 106 mega M

1000 103 kilo K

100 102 hecto h
10 10 deka da

0.1 10–1 deci d
0.01 10–2 centi c

0.001 10–3 milli m

0.000 001 10–6 micro μ

0.000 000 001 10–9 nano n

0.000 000 000 001 10–12 pico p
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4 Electronic Instrumentation and Measurements

Engineering Notation 
As already discussed, 1 k  is 1  103 , and 1 mA is 1  10–3 A. Note also 
from Table 1-1 that 1  106  is expressed as 1 M , and 1  10–6 A can be 
written as 1 μA. These quantities, and most of the metric prefixes in Table 
1-1, involve multiples of 103 or 10–3. Quantities that use 103 or 10–3 are 
said to be written in engineering notation. A quantity such as 1  104  is 
more conveniently expressed as 10 103 , or 10 k . Also, 47  10–4 A is 
best written as 4.7  10–3 A, or 4.7 mA. For electrical calculations, 
engineering notation is more convenient than ordinary scientific 
notation. 

Example 1-1
Write the following quantities using (a) scientific notation, (b) engineering 
notation, (c) metric prefixes: 12 000 , 0.000 3 V, 0.000 01 A. 
Solution

(a) Scientific 
notation

(b) Engineering 
notation

(c) Metric 
prefixes

12 000 1.2  104 12  103 12 k
0.000 3 V 3  10–4 V 300  10–6 V 300 V

0.000 01 A 1  10–5 A 10  10–6 A 10 A

Practice Problem
1-2.1 Express the following quantities using engineering notation: 
 0.005, 77700, 6  10–8, 6.8  104, 5.9  107, 0.00033

1-3 THE SI MECHANICAL UNITS 

Fundamental Mechanical Units 
As discussed above, the three fundamental mechanical units in the SI system 
are: 

Unit of length: the meter (m)
Unit of mass: the kilogram (kg)
Unit of time: the second (s) 
The meter was originally defined as one ten-millionth of a meridian passing 

through Paris from the North Pole to the equator. The kilogram was defined 
as 1000 times the mass of one cubic centimeter of distilled water. The liter is 
1000 times the volume of one cubic centimeter of liquid. Consequently, one 
liter of water has a mass of 1 kilogram. Because of the possibility of error in 
the original measurement, the meter was redefined in terms of atomic 
radiation. Also, the kilogram is now defined as the mass of a certain platinum-
iridium standard bar kept at the International Bureau of Weights and 
Measures in France. The second is, of course, 1/(86 400) of a mean solar day, 
but it is more accurately defined by atomic radiation. 
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Chapter 1   Measurement Systems, Units, and Standards 5

Unit of Force 
The SI unit of force is the newton1 (N), defined as that force which will give a mass 
of 1 kilogram an acceleration of one meter per second per second. 

When a body is to be accelerated or decelerated, a force must be applied 
proportional to the desired rate of change of velocity, that is, proportional to 
the acceleration (or deceleration). 

 Force = mass  acceleration 

 F = m a (1-1) 
Equation 1-1 gives the force in newtons when the mass is in kilograms and 
the acceleration is in m/s2.

If the body is to be accelerated vertically from the earth’s surface, the 
acceleration due to gravity (g) must be overcome before any vertical motion is 
possible. In SI units: 

 g = 9.81 m/s2 (1-2) 
Thus, a mass of 1 kg has a gravitational force of 9.81 N. 

Work 
When a body is moved, a force is exerted to overcome the body’s resistance 
to motion. 

The work done in moving a body is the product of the force and the distance 
through which the body is moved in the direction of the force. 

 Work = force  distance  (1-3) 

 W = F d 

The SI unit of work is the joule2 (J), defined as the amount of work done when a 
force of one newton acts through a distance of one meter. 

Thus, the joule may also be termed a newton-meter. For the equation W =  
F d, work is expressed in joules when F is in newtons and d is in meters. 

Power 
Power is the time rate of doing work. 

If a certain amount of work W is to be done in a time t, the power required is

 Power = work
time

 P = 
W
t

 (1-4)

The SI unit of power is the watt3 (W), defined as the power developed when one 
joule of work is done in one second. 

For P = W/t, P is in watts when W is in joules and t is in seconds.  

  1 Named for the great English philosopher and mathematician Sir Isaac Newton (1642–
1727). 

  2Named after the English physicist James P. Joule (1818–1899).
  3Named after the Scottish engineer and inventor James Watt (1736–1819).
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6 Electronic Instrumentation and Measurements

Energy
Energy is defined as the capacity for doing work. Consequently, energy is 
measured in the same units as work. 
 When 1 W of power is used for one hour, the energy consumed (or work 
done) is one watt-hour (1 Wh). When 1 kW is used for one hour, 1 kilowatt-
hour (1 kWh) of energy is consumed. Recall that power is the time rate of 
doing work, and that a power of 1 W represents a work rate of one joule per 
second (1 J/s). Therefore, when 1 W of power is dissipated for 1 s, 1 J of energy 
is consumed, or 1 J of work is done. Similarly, when 1 kW of power is 
expended for 1 minute

 Energy consumed = 1 kW  60 s

  = 60 kJ

and when 1 kW is expended for 1 hour,

 Energy consumed = 1 kW × 60 s × 60 min 

  = 3600 kJ

  = 3.6 MJ

The megajoule (MJ) is the SI unit of energy consumption.

Example 1-2
Calculate the power required to raise a 100 kg load 100 m vertically in  
30 s.
Solution 
Eqs. 1-1 & 1-2, F = m  a = 100 kg  9.81 m/s2 

  = 981 N

Eq. 1-3, W = F  d = 981 N  100 m

  = 98 100 J

Eq. 1-4, P = 
W
t

98 100
30

J
s

  = 3.27 kW

Section Review
1-3.1 State the SI units for power and work, and define each unit.

Practice Problem
1-3.1 Determine how long it takes for an engine with a 750 W output to 

raise a 50 kg load vertically through 65 m.
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1-4 THE SI ELECTRICAL UNITS

Units of Current and Charge 
Electric current (I) is a flow of charge carriers. Therefore, current could be 
defined in terms of the quantity of electricity (Q) that passes a given point in 
a conductor during a time of 1 s. 

The coulomb4 (C) is the unit of electrical charge or quantity of electricity. 
The coulomb was originally selected as the fundamental electrical unit 

from which other units were derived. However, because it is much easier to 
measure current accurately than it is to measure charge, the unit of current is 
now the fundamental electrical unit in the SI system. Consequently, the coulomb 
is a derived unit, defined in terms of the unit of electric current. 

The ampere5 (A) is the unit of electric current. 
The ampere (also termed an absolute ampere) is defined as that constant current 

which, when flowing in each of two infinitely long parallel conductors 1 meter apart, 
exerts a force of 2  10–7 newton per meter of length on each conductor. 

The coulomb is defined as that charge which passes a given point in a conductor 
each second, when a current of 1 ampere flows. 

These definitions show that the coulomb could be termed an ampere-second. 
Conversely, the ampere can be described as a coulomb per second: 

 Amperes = 
coulomb
second

 (1-5)

It has been established experimentally that 1 coulomb is equal to the total 
charge carried by 6.24  1018 electrons. Therefore, the charge carried by one 
electron is 

 Q = 1/(6.24  1018) 

  = 1.602  10–19 C 

Emf, Potential Difference, and Voltage 
The volt6 (V) is the unit of electromotive force (emf) and potential difference. 

The volt (V) is defined as the potential difference between two points on a conductor 
carrying a constant current of one ampere when the power dissipated between these 
points is one watt. 

As already noted, the coulomb is the charge carried by 6.24  1018 electrons. 
One joule of work is done when 6.24 1018 electrons are moved through a 
potential difference of 1 V. One electron carries a charge of 1/(6.24  1018) 
coulomb. If only one electron is moved through 1 V, the energy involved is 
an electron volt (eV). 

 1 eV = 1/(6.24  1018) J (1-6)

  4Named after the French physicist Charles Augustin de Coulomb (1736–1806).
  5Named after the French physicist and mathematician Andre Marie Ampere (1775–   
1836).

  6 Named in honour of the Italian physicist Count Alessandro Volta (1745–1827), inventor 
of the voltaic pile.
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The electron-volt is frequently used in the case of the very small energy 
levels associated with electrons in orbit around the nucleus of an atom. 

Resistance and Conductance 
The ohm7is the unit of resistance, and the symbol used for ohms is ; the Greek 
capital letter omega. 

The ohm is defined as that resistance which permits a current flow of one ampere 
when a potential difference of one volt is applied to the resistance. 

The term conductance (G) is applied to the reciprocal of resistance. The 
siemens8 (S) is the unit of conductance. The unit of conductance was 
previously the mho (ohm spelled backwards).

Magnetic Flux and Flux Density 
The weber9 (Wb) is the SI unit of magnetic flux. 

The weber is defined as the magnetic flux which, linking a single-turn coil, 
produces a 1 V emf when the flux is reduced to zero at a constant rate in 1 s. 

The tesla10 (T) is the SI unit of magnetic flux density. 
The tesla is the flux density in a magnetic field when 1 weber of flux occurs in a 

plane of 1 square meter; that is, the tesla can be described as 1 Wb/m2. 

Inductance 
The SI unit of inductance is the henry11 (H). 

The inductance of a circuit is 1 henry, when a 1 V emf is induced by the current 
changing at the rate of 1 A/s.

Capacitance 
The farad12 (F) is the SI unit of capacitance. 

The farad is the capacitance of a capacitor that contains a charge of 1 coulomb 
when the potential difference between its terminals is 1 volt. 

Example 1-3 
A bar magnet with a 1 inch square cross-section has 500 maxwells (see 
Appendix 1) total magnetic flux. Determine the flux density in teslas. 
Solution 
From Appendix 1, 

Total flux,  = (500 maxwell)  10–8 Wb
  = 5 Wb

 7 Named after the German physicist Georg Simon Ohm (1787–1854), whose investigations 
led to his statement of Ohm’s law of resistance. 

 8Named after Sir William Siemens (1823–1883), a British engineer who was born Karl 
William von Siemens in Germany.

 9Named after the German physicist Wilhelm Weber (1804–1890). 
 10Named for the Croatian-American researcher and inventor Nikola Tesla (1856–1943). 
 11Named for the American physicist Joseph Henry (1797–1878).
 12Named for the English chemist and physicist Michael Faraday (1791–1867).
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Area, A = (1 in  1 in)  (2.54  10–2)2 m2 

  = 2.542  10–4 m2

Flux density, B = 
A

5
2 54 102 4

Wb
.

  = 7.75 mT

Section Review
1-4.1 State the SI units for current and charge, and define each unit.
1-4.2 State the SI units for magnetic flux and flux density, and define 

each unit.

Practice Problem
1-4.1 A bar magnet has a cross-section of 0.75 in × 0.75 in and a flux 

density of 1290 lines per square inch. Calculate the total flux in 
webers.

1-5 TEMPERATURE UNITS

Temperature Scales
There are two Sl temperature scales, the Celsius scale13 and the Kelvin scale.14 
The Celsius scale has 100 equal divisions (or degrees) between the freezing 
temperature and the boiling temperature of water. At normal atmospheric 
pressure, water freezes at 0°C (zero degrees Celsius) and boils at 100°C. 

The Kelvin temperature scale, also known as the absolute scale, commences 
at absolute zero of temperature, which corresponds to –273.15°C. Therefore, 
0°C is equal to 273.15 K, and 100°C is the same temperature as 373.15 K. A 
temperature difference of 1 K is the same as a temperature difference of 1°C. 
With the (non-SI) Fahrenheit scale, 32°F is the freezing temperature of water 
and 212°F is the boiling temperature. 

Example 1-4 
The normal human body temperature is given as 98.6°F. Determine the 
equivalent Celsius and Kelvin scale temperatures. 
Solution 
From Appendix 1, 

 Celsius temperature = 
F

1.8
32 98 7 32

1 8
.

.
= 37°C

 Kelvin temperature = 
F

1.8
32

273 14.

  = 310.15 K

 13Invented by the Swedish astronomer and scientist Anders Celsius (1701–1744).
 14 Named for the Irish-born scientist and mathematician William Thomson, who became 

Lord Kelvin (1824–1907).
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Joules Equivalent
To raise a liter of water through 1°C requires an energy input of 4187 J. This is known 
as Joules equivalent, or the mechanical equivalent of heat. Using Joules equivalent, 
the energy required to raise a quantity of water through a given temperature 
change can be easily calculated. When water is heated, the container must also 
be raised to the same temperature as the water, so each container is usually 
defined as having a certain water equivalent. The water equivalent is the quantity 
of water that would absorb the same amount of energy as the container when 
heated through a specified temperature change.

Practice Problem
1-5.1 Calculate the time required for a kettle with a 1500 W heating 

element and a 0.5 liter water equivalent to raise 2 liters of water 
from 24°C to boiling point.

1-6 DIMENSIONS

Table 1-2 gives a list of quantities, quantity symbols, units, unit symbols, and 
quantity dimensions. The symbols and units are those approved for use with 
the SI system. To understand the dimensions column, consider the fact that 
the area of a rectangle is determined by multiplying the lengths of the two 
sides:

 Area = length  length

The dimensions of area are (length)2

or,  [area] = [L][L] = [L]2

Similarly, [velocity] = 
[ ]
[ ]
length
time

[ ]
[ ]
L
T

 = [LT–1]

 [acceleration] = 
[ ]

[ ]
[ ]

[ ]
velocity

time
LT

T

1

 = [LT–2]

 [force] = [mass]  [acceleration] 

  = [M][LT–2] = [MLT–2] 

 [work] = [force]  [distance] 

  = [MLT–2][L] = [ML2T–2] 

 [power] = 
[ ]
[ ]

[ ]
[ ]

work
time

ML T
T

2 2

 = [ML2T–3]

For the electrical quantities, current is another fundamental unit. So, electrical 
quantities can be analyzed to determine dimensions in the fundamental units 
of L, M, T, and I. 

 Charge = current  time 

 [charge] = [I][T] = [IT] 
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Example 1-5 
Determine the dimensions of voltage and resistance. 
Solution 
From, P = E I 

voltage [E] = 
[ ]
[ ]

=
[ ]

[ ]

2 3P
I

ML T
I

  = [ML2T–3I–1]

resistance, [R] = 
[ ]
[ ]

=
[ ]

[ ]

2 3 1E
I

ML T I
I

  = [ML2T–3I–2]

TABLE 1-2 SI Units, Symbols, and Dimensions

Quantity Symbol Unit Unit 
symbol

Dimensions 

Length l meter m [L]

Mass m kilogram kg [M]

Time t second s [T]

Area A square meter m2 [L2]

Volume V cubic meter m3 [L3]

Velocity v meter per 
second

m/s [LT –1]

Acceleration a meter per sec 
per sec 

m/s2 [LT –2]

Force F newton N [MLT –2]

Pressure p newton per 
square meter 

N/m2 [ML–1T –2]

Work W joule J [ML2T –2]

Power P watt W [ML2T –3]

Electric current I ampere A [I]

Electric charge Q coulomb C [IT]

Emf V volt V [ML2T –3I –1]

Electric field 
strength

volt per meter V/m [MLT –3I –1]

Resistance R ohm [ML2T –3I –2]

Capacitance C farad F [M –1L–2T 4I 2]

Inductance L henry H [ML2T –2I –2]

Magnetic field 
strength

H ampere per 
meter 

A/m [IL–1]

Magnetic flux weber Wb [ML2T –2I –1]

Magnetic flux 
density

B tesla T [MT –2I –1]
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Practice Problems
1-6.1 Determine the dimensions of power from P = I2 R and from  

P = V2/R.
1-6.2 The permeability of a magnetic material is  = B/H. Determine 

the dimensions of .

1-7 MEASUREMENT STANDARDS

Standard Classifications 
Electrical measurement standards are precise resistors, capacitors, inductors, 
voltage sources, and current sources, which can be used for comparison purposes 
when measuring electrical quantities. For example, resistance can be accurately 
measured by means of a Wheatstone bridge (see Section 8-2) which uses a 
standard resistor. Similarly, standard capacitors and inductors may be employed 
in bridge (or other) methods to accurately measure capacitance and inductance. 

Measurement standards are classified in four levels: international standards, 
primary standards, secondary standards, and working standards. 

International standards are defined by international agreements, and are 
maintained at the International Bureau of Weights and Measures in France. 
These are as accurate as it is scientifically possible to achieve. They may be 
used for comparison with primary standards, but are otherwise unavailable 
for any application. 

Primary standards are maintained at institutions in various countries 
around the world, such as the National Bureau of Standards in Washington. 
They are also constructed for the greatest possible accuracy, and their main 
function is checking the accuracy of secondary standards. 

Secondary standards are employed in industry as references for calibrating 
high-accuracy equipment and components, and for verifying the accuracy of 
working standards. Secondary standards are periodically checked at the 
institutions that maintain primary standards. 

Working standards are the standard resistors, capacitors, and inductors 
usually found in a measurements laboratory. Working standard resistors are 
usually constructed of manganin or a similar material, which has a very low 
temperature coefficient. They are normally available in resistance values 
ranging from 0.01  to 1 M , with typical accuracies of ±0.01% to ±0.1%. A 
working standard capacitor could be air dielectric type, or it might be 
constructed of silvered mica. Available capacitance values are 0.001 F to  
1 F with a typical accuracy of ±0.02%. Working standard inductors are 
available in values ranging from 100 H to 10 H with typical accuracies of 
±0.1%. Calibrators provide standard voltages and currents for calibrating 
voltmeters and ammeters (see Section 14-2). 

IEEE Standards
Standards published by the Institute of Electrical and Electronic Engineers 
(IEEE) are not the kind of measurement standards discussed above. Instead, 
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for example, they are standards for electrical hardware, for the controls on 
instrument front panels, for test and measuring procedures, and for 
electrical installations in particular situations. Standard device and logic 
graphic symbols for use on schematics are also listed. For instrumentation 
systems, a very important IEEE standard is standard hardware for 
interfacing instruments to computers for monitoring and control purposes. 
Detailed information about IEEE standards is available on the internet. 

Section Review
1-7.1 List the various categories of measurement standards, and discuss 

their applications.

REVIEW QUESTIONS

Section 1-1
1-1 Identify the two CGS units systems, and discuss difficulties that occur with 

their use. 
1-2 Briefly discuss the origins of the SI system as an MKS system, and why the 

MKS system became the preferred practical units system.
1-3 Define the following in respect to a units system: Fundamental units, derived 

units, primary fundamental units, auxiliary fundamental units, rationalized 
system.

1-4 State the expressions for the permittivity of free space and the permeability of 
free space in the CGS unit systems and in the SI system. 

Section 1-2
1-5 List the names of the various metric prefixes and the corresponding symbols. 

Also, list the value of each prefix in scientific notation. 
Section 1-3
1-6 List the three fundamental SI mechanical units and unit symbols, and discuss 

their origin. 
1-7  Define the SI units for force and work.
1-8 Define g, and state its numerical value in SI units.
1-9  Identify the SI units and unit symbols for energy and power. Define each unit. 
Section 1-4
1-10  State the SI units and unit symbols for electric current and charge. Define each 

unit. 
1-11  Define the SI units for electrical resistance and conductance.
1-12  Identify the SI units and unit symbols for magnetic flux and flux density. 

Define each unit. 
1-13  Define the SI units for inductance and capacitance.
Section 1-5 
1-14  Name the two SI temperature scales, and identify the freezing and boiling 

temperatures of water for each scale. 
Section 1-6
1-15 State the dimensions of the four fundamental units in the SI system, and write 

the dimensions for volume, velocity, and charge. 
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Section 1-7
1-16  List the various levels of measurement standards, and discuss the application 

of each classification. 

PROBLEMS

Section 1-2
1-1 Express the following quantities using (a) scientific notation, (b) metric prefixes: 

0.029 A, 13 000 , 5240 V, 0.0003 H, 738 000 .
1-2 Perform the following calculations to produce the answers using scientific 

notation: (a) 0.29  1300/0.006, (b) 83 400/5.13, (c) 0.42  300, (d) 310/ ( 169),  
(e) 0.0053/1200.

1-3 Express the following quantities using (a) engineering notation, (b) metric 
prefixes: 6800 , 0.000 05 A, 0.027 H, 82 000 , 0.0005 F.

Section 1-3
1-4  Referring to the unit conversion factors in Appendix 1, perform the following 

conversions: (a) 6215 miles to kilometers, (b) 50 miles per hour to kilometers 
per hour, and (c) 12 square feet to square centimeters. 

1-5  Determine how long it takes light to travel to earth from a star 1 million miles 
away. The speed of light is 3 × 108 m/s. 

1-6  The speed of sound in air is 345 m/s. Calculate the distance in miles from a 
thunderstorm when the thunder is heard 5 s after the lightning flash. 

1-7  A 140 lb person has a height of 5 ft 7 in. Convert these measurements into 
kilograms and centimeters. 

1-8 Determine the force that must be exerted by a crane to lift a 20 000 kg load.
1-9 A 2000 kg automobile is accelerated to 70 km/h in a 20 s time period. Neglecting 

all friction effects, calculate the force exerted by the engine. 
1-10 A 1000 kg elevator with a 1500 kg load is raised through a height of 60 m in  

1 minute. Calculate the work done and the power involved.
1-11 One thousand liters of water is pumped through a 20 m height in a 30 minute 

time period. Determine the work done and the power required.

Section 1-4
1-12  A 1/4 horsepower electric motor is operated 8 hours per day for 5 days every 

week. Assuming 100% efficiency, calculate the amount of energy consumed in 
1 year in kWh and in MJ. 

1-13  Calculate the number of electrons that pass through a resistor in a 1.5 h period 
when a 500 mA current flows. 

1-14 Determine the work done in joules when a 2 A current flows through a 12  
resistor for 45 minutes.

1-15 An electrical appliance consumes 1500 W of power when connected to a 115 V 
supply. Determine the supply current and the energy consumed in 5 h of 
operation.

1-16 Calculate the conductance of a lamp that dissipates 60 W when connected to a 
120 V supply.

1-17 An electronic amplifier produces 12 W output to a speaker. The amplifier 
draws a current of 650 mA from a 25 V supply. Calculate the amplifier 
efficiency.
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1-18 A 115 V electrical appliance with 80% efficiency absorbs 3 kW from the supply. 
Determine the energy consumed by the appliance and the energy output from 
the supply over a 12 h period.

1-19 A total flux of 0.5 μWb is emitted from  one pole of a bar magnet. The pole 
dimensions are 0.48 inches  0.48 inches. Calculate the flux density in tesla 
within the metal. Also, determine the flux density at a short distance from the 
pole if all of the flux is contained in an area of 2 inches  2 inches.

Section 1-5
1-20  Calculate the Celsius and Kelvin scale equivalents of 80°F.
1-21  An electric water heater takes 6 minutes to boil 1 liter of water in a pot which 

has a 0.2 liter water equivalent. If the element draws 11 A from the 115 V 
supply, calculate the efficiency of the heater.

Section 1-6
1-22  Determine the dimensions of area, volume, velocity, and acceleration. 
1-23 Derive the dimensions for force, work, energy, and power. 
1-24  Derive the dimensions for charge, voltage, and resistance. 
1-25  Determine the dimensions of capacitance and inductance.
1-26  The balance equations for a Maxwell-Wein bridge (Section 10-4) gives Ls = C3 

R1 R4. Use dimensional analysis to show that the right side of the equation has 
the dimensions of inductance.

Practice Problem Answers

1-2.1 5  10–3, 77.7  103, 60  10–9, 59  106, 330  10–6

1-3.1 42.5 s
1-4.1 7 Wb
1-5.1 8.8 min
1-6.1 [ML2T –3]
1-6.2 [MLT –2I –2]
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