
Preface v

Part I Understanding the Realm of Software Engineering
1. What is Software Engineering? 3
2. Evolution of Software Engineering 17
3. Basic Ideas and First Principles 33

Part II Planning and Managing Software Development
4. Software Development Methodologies 51
5. Place of Process in Software Development 72
6. Software Estimation 84
7. Role of Metrics in Software Development 109
8. Software Project Management 141
9. Human Aspects of Software Development 159

10. Role of Automation in Software Development 176

Part III Making Software
 11. Understanding Software Architecture 203
12. Paradigms of Software Development 219
13. Languages of Software Development 246
14. Software Development across Workflows and Phases 279
15. Building a Software System: An Extended Case Study 317
16. Tricks of the Trade 357

Part IV Testing, Maintaining, and Modifying Software Systems
 17. Software Testing, Reliability, and Quality 375
18. Towards Software Evolution 411

Part V Latest Trends of Software Development
 19. Software Engineering and the World Wide Web 423
 20. Towards Enterprise Software Development 438
21. Global Software Development 456
 22. Open Source Software Development 466
23. Future of Software Development 478

Index 489

Brief Contents

Software Engineering.indb xSoftware Engineering.indb x 31/08/2010 11:49:09 AM31/08/2010 11:49:09 AM

© Oxford University Press

Preface v

Part I Understanding the Realm of Software Engineering

 1. What is Software Engineering? 3
 1.1 Motivation 3
 1.2 Definition of Software Engineering 4
 1.3 Characteristics of Software 5
 1.4 Problems Confronted by Software Engineering 6
 1.4.1 Problem of Change 6
 1.4.2 Problem of Complexity 7
 1.5 The Software Engineering Response 8
 1.6 Challenges with the Response 10
 1.7 Grand Challenge 11
 1.8 What it is Like to be a Software Engineer? 12
 1.8.1 Knowing across Domains 12
 1.8.2 Teaming across Cultures 12
 1.8.3 Innovating across Technologies 13

 2. Evolution of Software Engineering 17
 2.1 Motivation 17
 2.2 Need to Know History 18
 2.3 Evolutionary Trends 19
 2.3.1 Programming to Software Engineering 19
 2.3.2 Hardware-Software: From Coupling to Congress 20
 2.3.3 Advent of High-Level Languages 22
 2.3.4 Advent of the Personal Computer 24
 2.3.5 Global Software Development 25
 2.3.6 Return of Open Source 26
 2.4 Milestones in Software Engineering 27
 2.5 Towards a Slew of Silver Bullets 28

 3. Basic Ideas and First Principles 33
 3.1 Motivation 33
 3.2 A Word of Caution 34
 3.3 Are There Laws of Software Engineering? 34

Detailed Contents

Software Engineering.indb xiSoftware Engineering.indb xi 31/08/2010 11:49:09 AM31/08/2010 11:49:09 AM

© Oxford University Press

xii Detailed Contents

 3.4 Software Engineering versus Other Engineering Disciplines 36
 3.4.1 How an Engineering Approach to Software Helps 38
 3.4.2 How an Engineering Approach to Software Hinders 38
 3.5 Characterizing Software and Software Engineering 39
 3.5.1 No Laws of Software Engineering, Yet 39
 3.5.2 Development versus Production 40
 3.5.3 Plasticity of Software 40
 3.5.4 Macro- and Micro-states 41
 3.5.5 Importance of the Human Aspects 42
 3.5.6 Concept of Co-evolution 43
 3.6 Tying the Threads Together 43

Part II Planning and Managing Software Development

 4. Software Development Methodologies 51
 4.1 Motivation 51
 4.2 A Method to the Madness 52
 4.3 Software Development Life Cycle 53
 4.4 Algorithm, Process, and Methodology 55
 4.5 Different Development Philosophies 56
 4.5.1 Sequential Development 57
 4.5.2 Iterative Development 57
 4.6 Brief Review of Software Development Methodologies 58
 4.6.1 Code-a-Bit-Test-a-Bit 58
 4.6.2 Waterfall 58
 4.6.3 Rapid Prototyping 59
 4.6.4 Iterative and Incremental Development 61
 4.6.5 Spiral 64
 4.6.6 Extreme Programming and Agile Processes 65
 4.7 People and Processes 67

 5. Place of Process in Software Development 72
 5.1 Motivation 72
 5.2 What is a Process? 73
 5.3 Processes and Software Engineering 74
 5.4 From Micro to Macro 75
 5.5 Personal Software Process 75
 5.6 Team Software Process 77
 5.7 Unified Software Development Process 78
 5.8 Towards Process Improvement and Process Making 80
 Case Study 81

Software Engineering.indb xiiSoftware Engineering.indb xii 31/08/2010 11:49:09 AM31/08/2010 11:49:09 AM

© Oxford University Press

Detailed Contents xiii

 6. Software Estimation 84
 6.1 Motivation 84
 6.2 What is Estimation? 85
 6.3 Science and Art of Software Estimation 85
 6.4 Importance of Estimation in Software Development 86
 6.4.1 Getting the Work 87
 6.4.2 Getting the Work Done 87
 6.4.3 Getting the Work Done Well 87
 6.5 Why is Good Estimation So Difficult? 88
 Case Study 90
 6.6 Some Standard Estimation Techniques 91
 6.6.1 Estimation by Judgement 93
 6.6.2 Estimation by Comparison 95
 6.6.3 Estimation by Correlation 96
 6.7 Estimating Size 98
 6.8 Estimating Effort 99
 6.9 Estimating Time 100
 6.10 Estimation and Experience 100

 7. Role of Metrics in Software Development 109
 7.1 Motivation 109
 7.2 Need for Measurement 110
 7.3 Metrics Go Beyond Mere Measuring 111
 7.4 Metrics, Management, and Beyond 112
 7.5 Brief Review of Software Metrics 112
 7.5.1 Early Perspectives 113
 7.5.2 A Maturing Discipline 116
 7.5.3 Towards a Deeper Perception 117
 7.5.4 Metrics in the New Millennium 123
 7.6 Art and Craft of Metrics Making 128
 Case Study 129
 Shifting Sands of Design 130
 Making of the Metric 130
 Derivation—First Pass 130
 Derivation—Second Pass 132
 Back to Preeti 133
 An Allied Metric—Whitmire’s Volatility Index 134

 8. Software Project Management 141
 8.1 Motivation 141

Software Engineering.indb xiiiSoftware Engineering.indb xiii 31/08/2010 11:49:09 AM31/08/2010 11:49:09 AM

© Oxford University Press

xiv Detailed Contents

 8.2 That Elusive Something 142
 8.3 Four Ps of Software Development: People, Project, Product, and Process 143
 8.4 Project Life Cycle 144
 8.5 Principles of Software Project Management 146
 8.6 Project Management: Processes Groups and Knowledge Areas 148
 8.7 Software Project Management Plan 150
 8.8 Team Dynamics 152
 8.9 Important Project Management Activities 152
 8.9.1 Defining a Task Network 153
 8.9.2 Scheduling 153
 8.9.3 Earned Value Analysis 154
 8.9.4 Error Tracking 154
 8.10 Managing versus Leading 154

 9. Human Aspects of Software Development 159
 9.1 Motivation 159
 9.2 Software for Real Users 161
 9.3 Capricious Users 161
 Case Study 163
 9.4 Helping Users Know their Needs 165
 9.5 Co-evolution: Interaction of the Problem and Solution Domains 166
 9.6 Language and Communication 168
 9.7 Human-Computer Interaction 169
 9.8 Towards Usable Software Systems 169
 9.9 The Human Factor 171

 10. Role of Automation in Software Development 176
 10.1 Motivation 176
 10.2 Computer-Aided Software Engineering (CASE) 177
 10.3 The Odyssey of Automation 179
 10.4 Automation: Why, How, and What 182
 10.4.1 Test Automation 185
 10.4.2 Implementation Automation 185
 10.4.3 Design Automation 186
 10.4.4 Automation of Specification and Analysis 186
 10.4.5 Spectrum of Automation 186
 10.5 Automating One Aspect of Design: An Example 188
 10.5.1 Aptitude Index 189
 10.5.2 Requirement Set 190
 10.5.3 Concordance Index 190
 Case Study 193

Software Engineering.indb xivSoftware Engineering.indb xiv 31/08/2010 11:49:10 AM31/08/2010 11:49:10 AM

© Oxford University Press

Detailed Contents xv

Part III Making Software

 11. Understanding Software Architecture 203
 11.1 Motivation 203
 11.2 Architectural Views of Software 204
 11.3 Views and Definitions of Software Architecture 206
 11.4 Need for Architecture in Large-Scale Software Systems 207
 11.5 How Architecture Differs from Design 209
 11.6 Architectural Patterns 210
 11.7 Future of Software Architecture 212
 Case Study 213

 12. Paradigms of Software Development 219
 12.1 Motivation 219
 12.2 A Cooking Metaphor 220
 12.3 Case for Software’s Complexity 221
 12.4 Strategies for Addressing Complexity in Software Systems 223
 12.4.1 Decomposition 223
 12.4.2 Abstraction 224
 12.4.3 Hierarchies 225
 12.5 Different Software Development Paradigms 225
 12.5.1 Algorithmic Paradigm 225
 12.5.2 Object-Oriented Paradigm 229
 12.5.3 Aspect-Oriented Paradigm 231
 12.6 Paradigms, Perspectives, and Programming 233
 12.7 A Holistic View 234
 Case Study 235

 13. Languages of Software Development 246
 13.1 Motivation 246
 13.2 Incremental Approach to Learn Languages 249
 13.3 Programming Languages 249
 13.3.1 Journey of Programming Languages: Milestones 250
 13.3.2 Profusion of Programming Languages 252
 13.3.3 Classification of Programming Languages 253
 13.3.4 Choice of a Programming Language 255
 13.4 Modelling Languages 257
 13.4.1 Essence of a Model 257
 13.4.2 Unified Modelling Language 260
 13.5 Specification Languages 264
 13.5.1 Ten Commandments of Formal Methods 265
 13.5.2 Simple Example Using Z 268

Software Engineering.indb xvSoftware Engineering.indb xv 31/08/2010 11:49:10 AM31/08/2010 11:49:10 AM

© Oxford University Press

xvi Detailed Contents

 14. Software Development across Workflows and Phases 279
 14.1 Motivation 279
 14.2 Dimensionality of Software Development 282
 14.3 Phases and Workflows in Perspective 286
 14.4 A Model for Software Development 286
 14.5 Workflows 287
 14.5.1 Requirements 287
 14.5.2 Analysis 291
 14.5.3 Design 296
 14.5.4 Implementation 299
 14.5.5 Test 300
 14.6 Phases 302
 14.6.1 Inception 303
 14.6.2 Elaboration 305
 14.6.3 Construction 306
 14.6.4 Transition 307
 14.7 Workflows across Phases 308

 15. Building a Software System: An Extended Case Study 317
 15.1 Motivation 317
 15.2 Example System: An Overview 318
 15.3 Requirements 319
 15.4 Analysis 325
 15.5 Design 328
 15.6 Implementation 337
 15.7 Testing 353
 15.8 Phase Milestones 354
 15.9 Limitations of Case Study 354

 16. Tricks of the Trade 357
 16.1 Motivation 357
 16.2 Refactor, Reuse, Refine 358
 16.3 Refactor 359
 16.4 Reuse 360
 16.5 Refine 365
 16.6 Structured Analysis and Data Dictionary 365
 16.7 Modular Design 366
 16.8 Transform and Transaction Mapping 367
 16.9 Real-Time Software Design 367
 16.9.1 Real-Time Executive 368

Software Engineering.indb xviSoftware Engineering.indb xvi 31/08/2010 11:49:10 AM31/08/2010 11:49:10 AM

© Oxford University Press

Detailed Contents xvii

Part IV Testing, Maintaining, and Modifying Software Systems

 17. Software Testing, Reliability, and Quality 375
 17.1 Motivation 375
 17.2 Some Testing Terms 376
 17.3 Some Testing Tenets 378
 17.4 Two Testing Philosophies 379
 17.4.1 Black-Box Testing 379
 17.4.2 White-Box Testing 381
 17.5 Different Types of Testing 383
 17.5.1 Unit Testing 383
 17.5.2 Integration Testing 384
 17.5.3 Regression Testing 387
 17.5.4 Performance Testing 387
 17.5.5 Stress Testing 388
 17.5.6 User-Acceptance Testing 388
 17.5.7 Validation Testing 389
 17.6 Inspections, Walkthroughs, and Reviews 389
 17.7 Designing Test Cases 390
 Case Study 391
 17.8 Debugging Techniques 392
 17.8.1 Debugging by Brute Force 393
 17.8.2 Debugging by Induction 393
 17.8.3 Debugging by Deduction 393
 17.8.4 Debugging by Backtracking 394
 17.9 Test Automation 394
 17.10 Basic Ideas of Software Reliability 395
 17.10.1 Difference between Software and Hardware Reliability 396
 17.10.2 Some Useful Software Reliability Relations 397
 17.11 Towards Software Quality 398
 17.11.1 ISO 9000 Series of Standards 399
 17.11.2 Capability Maturity Model 399
 17.11.3 Six Sigma 400

 18. Towards Software Evolution 411
 18.1 Motivation 411
 18.2 Life after the Life Cycle 411
 18.3 Maintenance and Modification 412
 18.4 Software Entropy 413
 18.5 Software Evolution 415

Software Engineering.indb xviiSoftware Engineering.indb xvii 31/08/2010 11:49:10 AM31/08/2010 11:49:10 AM

© Oxford University Press

xviii Detailed Contents

Part V Latest Trends of Software Development

 19. Software Engineering and the World Wide Web 423
 19.1 Motivation 423
 19.2 Internet and the WWW 425
 19.3 Software Applications: Before and After the Web 430
 19.4 Architecture of Web-Based Software Systems 431
 19.5 Software Systems on the Web: Salient Features 432
 19.6 Web as a Software Development Medium 433

 20. Towards Enterprise Software Development 438
 20.1 Motivation 438
 20.2 How is Enterprise Software Development Different? 440
 20.3 Importance of Enterprise Software 443
 20.4 Challenges Unique To Enterprise Software Development 443
 20.5 Enterprise-Oriented Software Engineering 445
 20.5.1 Identifying and Understanding Stakeholders’ Needs 446
 20.5.2 Choice of a Methodology 447
 20.5.3 User Involvement and Feedback 448
 20.5.4 Continual Development 449
 Case Study 450

 21. Global Software Development 456
 21.1 Motivation 456
 21.2 What is So Special about Global Software Development? 457
 21.3 Genesis of Global Software Development 458
 21.4 Distributed Teams and Remote Customers 459
 21.5 Outsourcing: A Quick Reflection 460
 21.6 Global Software Engineer 461

 22. Open Source Software Development 466
 22.1 Motivation 466
 22.2 What is Open Source Software? 467
 22.3 Evolution of Open Source Software 468
 22.3.1 From Free to Proprietary 468
 22.3.2 Open Source Response 469
 22.3.3 Spread of the Mantra 470
 22.3.4 Open Source as an Institution 471
 22.4 Range and Limitations of Open Source Software 471
 22.5 Opens Source Software and the Professional Software Engineer 473

Software Engineering.indb xviiiSoftware Engineering.indb xviii 31/08/2010 11:49:11 AM31/08/2010 11:49:11 AM

© Oxford University Press

Detailed Contents xix

 23. Future of Software Development 478
 23.1 Motivation 478
 23.2 Evolving Trends in Software Development 479
 23.2.1 Understanding of Software Engineering 479
 23.2.2 Planning and Managing Software Development 480
 23.2.3 Designing and Building Software Systems 480
 23.2.4 Testing, Maintenance, and Modifications 481
 23.2.5 What will be the Next Big Thing? 481
 23.3 Software Engineer’s Survival Toolkit 483
 23.3.1 Virtuosity with at least One Programming Language 483
 23.3.2 In-depth Experience with at least One Development Methodology 484
 23.3.3 Detailed Understanding of at least One Application Domain 484
 23.3.4 Sense of History 485

Index 489

Software Engineering.indb xixSoftware Engineering.indb xix 31/08/2010 11:49:11 AM31/08/2010 11:49:11 AM

© Oxford University Press

What is Software Engineering?

Learning Objectives
In this chapter, we begin by exploring some of the foundations of software
engineering. Specifically, we consider:

• Various definitions of software engineering
• Characteristics of software
• Problems confronting software engineering
• Its response to the problems
• Challenges with the response and the grand challenge
• What it is like to be a software engineer

1.1 MOTIVATION
Most textbooks on software engineering start with a picture of gloom. Copious
references are made to the ‘ software crisis’ (see Chapter 2), with indications that
the crisis has not ended yet, and insinuations that it may never end. The monumental
cost of software failure is highlighted with facts and figures. Perhaps all of this is
meant to emphasize the difficulties of software engineering and the onus on an
aspiring software engineer. When I read such books as a student (or at least started
reading), the first few pages of the first chapter had a rather depressing effect.
Given the gory details of the crisis software engineering seemed to be perpetually
in, I was not sure I wanted to risk my happiness getting sucked into that vortex
of missed deadlines, unhappy customers, and other vicissitudes. But in spite of
those ominous openings, fortunately, I ended up being a software engineer. After
more than a decade of studying, researching, and practicing software engineering,
when I come across similar books now, I find their overtures both odious and
misplaced.

Odious, since it is both in bad taste and pedagogically sterile to introduce a
student to a discipline by reciting all the privations of the past. It is very important

CHAPTER

1

Software Engineering.indb 3Software Engineering.indb 3 31/08/2010 11:49:17 AM31/08/2010 11:49:17 AM

© Oxford University Press

4 Software Engineering

to challenge the student, but it does no good to present the discipline in a foreboding
light. While recognizing that many of the facts reflecting on the difficulties of
software engineering are true, their introduction in the first few pages is still
misplaced. Software engineering, as we shall see, is a very young discipline. Many
of its monumental failures are very much in recent memory. On the other hand, no
one is old enough to remember exactly how many bridges fell (at least the falling
of the London bridge is canonized in nursery rhyme!) or how many trains tumbled
(well, they still do), before the engineering behind these artefacts stabilized. Every
engineering work is a trial-and-error game, as so brilliantly argued in books like
[Petroski 1992], and software is no exception. To the prepared mind, failures are
great learning aids, but to beginners, they are hardly inspiring.

Like any other human endeavour that is alive, software engineering is a work
in progress. If I have the privilege of ushering bright, young minds (I am talking
about you, the reader) into the field, I prefer to do so by outlining the challenges
we face in building beautiful, flexible, and resilient software. Yet, at the same time
underlining that you will be equal to those challenges in your lifetime with software
engineering. This book is a journey to get you started with the best equipment we
have now, so that you can fully utilize better equipment that comes to you in
future. This chapter begins our journey.

1.2 DEFINITION OF SOFTWARE ENGINEERING
When asked to define his subject, one mathematician reportedly said, mathematics
is what is done by mathematicians; and mathematicians are those who do
mathematics [Hamming 1997]. This is surely a joke, and the humour perhaps lies in
trying to define something in terms of itself. But this anecdote also highlights how
difficult it is to define anything, even as established and important as mathematics.
Defining software engineering poses more problems, at least quantitatively. First of
all, when compared to ‘mathematics’, ‘software engineering’ is two words versus
one. Moreover, both ‘software’ and ‘engineering’ are so-called operative words.
There is no consensus on what ‘engineering’ means, and even less unanimity on
what we mean by ‘software’. Thus trying to make sense of software engineering
by tying the definition of ‘software’ with that of ‘engineering’ is likely to create
even more rancour. Instead of taking on such a task ourselves, let us see how others
have tried to define software engineering.

• According to Boehm, software engineering involves the application of
science and mathematics through which the facilities of computer equipment
are made useful to human beings via computer programs, procedures, and
associated documentation.

Software Engineering.indb 4Software Engineering.indb 4 31/08/2010 11:49:18 AM31/08/2010 11:49:18 AM

© Oxford University Press

What is Software Engineering? 5

• Pfleeger identifies software engineering with the utilization of tools, techni-
ques, procedures, and paradigms toward quality improvement of the software
product.

• Naur and Randall see software engineering in terms of establishing and using
sound engineering principles to obtain economically effective and reliable
software that can work efficiently on real machines.

• According to Freeman and Von Staa, software engineering involves the
organized application of methods, tools, and knowledge towards fulfilling
stated technical, economic, and human goals for a software-intensive system.
Interestingly, in recent literature [Booch 2006], ‘software-intensive systems’
is being increasingly used to denote what we customarily call ‘software
systems’. The new nomenclature highlights that to be successful, software
has to successfully integrate within a larger framework of technological, com-
mercial, and human concerns.

• Kacmar says simply applying engineering principles to designing and con-
structing computer software can be termed software engineering.

• To Schach, software engineering is the discipline that aims at producing
fault-free software, to be delivered on time and within budget, which satisfies
the user’s needs.

• Whitmire describes software engineering as a ‘slippery’ term, and says for
some it is something that can only be applied to a large project, while to
others it is just a ‘figment of collective imaginations’. He gives a working
definition as, ‘Software engineering is the science and art of designing and
building, with economy and elegance, software systems and applications so
they can fill the uses to which they may be subjected’ [Whitmire 1997].

Now, what is the essence that ties these definitions together?

1.3 CHARACTERISTICS OF SOFTWARE
All the definitions in the previous section together make up our current understand-
ing of software engineering, which may not necessarily be complete. Software
engineering is very much a work in progress, due to its relative youth, as well
as the very nature of software. We will consider these topics in more depth in
Chapters 2 and 3. However, it is appropriate now to mention the set of software
characteristics Brooks identified decades ago [Brooks 1995]; and whose depth and
relevance we are still discovering.

• Software is inherently complex.
• Software must be made to conform to existing interfaces.
• Software is constantly subject to change.
• Software is invisible and unvisualizable.

Software Engineering.indb 5Software Engineering.indb 5 31/08/2010 11:49:18 AM31/08/2010 11:49:18 AM

© Oxford University Press

6 Software Engineering

We will not get into the detailed discussion of each of the above characteristics at
this time; let us wait till they unravel themselves as we get deeper into the book.
We will remark in passing, however, that although the above may not capture all
that is important about software, it certainly touches upon the essence of software
as a unique artefact of human ingenuity and utility. The problems that software
engineering addresses draw largely from these characteristics of software.

1.4 PROBLEMS CONFRONTED BY SOFTWARE ENGINEERING
Every engineering task starts off in response to some pressing problem. Civil or
structural engineering served the need to have shelter; mechanical engineering
addressed the need for locomotion; electrical engineering catered to growing energy
demands; and chemical engineering unlocked the hidden potential of matter. What
is, if any, the corresponding ‘ mission’ for software engineering?

Software engineering confronts the problems of change and complexity.

1.4.1 Problem of Change
When a bridge, a house, or a car is built and given to us, we try to use it, love it,
or hate it, continue using it, or move on to a new bridge, house, or car. When a

Exhibit 1.1 What’s in a Name?

Shakespeare, in the romantic classic Romeo
and Juliet, has the hero say, ‘What’s in a
name? That which we call a rose by any
other name would smell as sweet’. This
oft-quoted phrase is taken to mean that
names do not matter, substance does. But
for software engineering, in the beginning at
least, names did matter.
 The phrase ‘software engineering’ was first
used in a public discourse at a NATO Science
Committee sponsored conference, held at
Garmisch, Germany, from 7th to 11th October,
1968 [Bauer et al. 1968]. The conference
was a visionary exercise, seeking as it did
to bring together experts from the industry,
academia, and user communities to chart
out the course of software development for
the future. Discussions were organized in the

areas of Design, production, and service of
software. The conference proceedings, now
publicly available [Bauer et al. 1968]
illu minate how much has changed with
software engineering till date, with newer
tools and technologies; as well as how little
has changed, in terms of basic concerns
and expectations. While deliberating on
the ‘nature’ of software engineering, the
importance of feedback was highlighted
many times during the conference [Bauer
et al. 1968]. This feedback aspect assumes
much importance in the light of what we
discuss later in this chapter.
 There have been many conclaves on
software engineering ever since, but the 1968
NATO conference gave software engineering
a name, in the most literal sense.

Software Engineering.indb 6Software Engineering.indb 6 31/08/2010 11:49:18 AM31/08/2010 11:49:18 AM

© Oxford University Press

What is Software Engineering? 7

software system is given to us, we try to use it, love it, or hate it, and want the same
system to work the way we want it to. Typically, we do not know the way we want
it to work, before we start using it.

The very nature of software—its plasticity—makes it amenable to a continuous
cycle of change. It seems rather easy to accomplish. After all, tweaking one
statement in a software program can radically alter the program’s behaviour.
But such tweaking—little by itself, but considerable in conjunction—can end up
changing the intent of the program’s Design in fundamental ways. It is absurd to
expect a car to fly or float. But very often a software system built for one context
is expected to function in drastically different contexts, with the same grace and
efficiency. These expectations can be traced to our wide cognitive gap [Datta
2007] with the use of software. Decades and centuries of using cars and bridges
respectively, and millennia of using houses has ingrained in our minds what cars,
houses, and bridges can and cannot do. Accordingly, we tune our expectations
as well as environmental factors to set the context for these systems to function.
In comparison, the use of software amongst a large community of lay users has
just begun. Our understanding of how and to what extent software can serve
our needs is yet not complete. As a result, the problem of change for software
comes primarily from changing user expectations, and also from changes in the
environment—technological and social.

1.4.2 Problem of Complexity
Complexity is a complex word and there is no one definition to cover its ken; even
reaching a definition is an onerous task [Nicolis and Prigogine 1989], [Waldrop
1992]. But we need to care about it in life as well as in software engineering as
complexity arises out of simplicity, at times suddenly and surreptitiously. Think of
a simple computer program of five lines of code. It is straightforward; by carefully
reviewing each line, we can hope to have complete knowledge of the program’s
structure and behaviour. Now what if, a loop is introduced in the program—a simple
construct that executes a set of statements repetitively, until a condition holds. The
number of execution paths through the program has significantly increased now,
and it has become far more difficult to know for sure what happens in each step
when the program runs. (As we have illustrated in Chapter 17, for any non-trivial
software system, an impractical amount of time and effort is needed to test each
and every path of the program’s execution.) This example is just a watered down
instance of the combinatorial complexity software systems customarily face.

Then there are even more involved issues such as complexity of the problem
domain, complexity in the interaction of the various forces—technological,
com mercial, political—that a software system has to balance to be successful.

Software Engineering.indb 7Software Engineering.indb 7 31/08/2010 11:49:18 AM31/08/2010 11:49:18 AM

© Oxford University Press

8 Software Engineering

We have made a case for software’s complexity in Chapter 12 and will not go
into the details here. However, one must note that a common feature of complex
systems is that they are greater than the sum of their parts. Anyone who has done
a class project to build a piece of software stretching across several files can
appreciate the sense of this statement: A piece of software is made of individual
files, but it delivers something that merely bunching the files together will not
achieve. Now scale-up to a real world system—with hundreds, if not thousands
of files; and thousands, if not millions of interfaces be tween them; perhaps simple
by themselves, but certainly complex when functioning together. And this is just
one, relatively less significant, facet of software complexity. Given that change
and complexity are facts of life, what does software engineering do about them?

1.5 THE SOFTWARE ENGINEERING RESPONSE
The software engineering response to complexity and change comes in two parts:
breaking down the problem into smaller, more manageable ‘chunks’ to confront
complexity, and setting regular checkpoints during the process of building a
software system to address the effects of change. The breaking down results in
something we will call workflows and the checkpointing leads to phases; together
they constitute the software development life cycle or the SDLC. The SDLC lies at
the heart of software engineering and we take it up in right earnest later in the book
(Chapters 4 and 14). We will now briefly discuss how the problems of complexity
and change are addressed.

Workflows represent sets of activities starting from understanding what users
want from a software system (Requirements), to translating the language of the
problem into the language of the solution (Analysis), to expressing the solution
constructs in the language of development (Design), to building the system using
programming resources (Implementation), and finally, verifying whether the system
matches the stated Requirements (Testing). Phases, on the other hand, are focused
towards monitoring and managing change. During Inception we ask, what do the
users want from the system? During Elaboration, we are interested in knowing if
the system is feasible. Next comes the question: How do we build the system? This
is the concern of Construction. Finally, during Transition, we enquire, how do we
transfer the system from the developer domain to the user domain? In a particular
development life cycle, we may not know the answers to these questions when we
ask them. But based on our experience and understanding, we have an expectation
of what the answers are likely to be. When expectations are not met, it serves as
a reality check: A change, not budgeted for, must have occurred. This makes us
aware of the need to find out what changed and what that change might affect.

Software Engineering.indb 8Software Engineering.indb 8 31/08/2010 11:49:19 AM31/08/2010 11:49:19 AM

© Oxford University Press

What is Software Engineering? 9

Figure 1.1 Software development, ideally

Customer arrives with
Requirements …

Developer analyses
them and delegates …

To satisfy end-user
needs

Which are implemented in
code …

Responsibilities to
components …

A linear path across
the activities

Figure 1.2 Software development in reality

Customer arrives with
Requirements …

To satisfy end-user
needs

Which are implemented in
code …

Responsibilities to
components …

Developer analyses
them and delegates …

Seldom a linear path
from start to end;

Need to go back and
forth, many times

Software Engineering.indb 9Software Engineering.indb 9 31/08/2010 11:49:19 AM31/08/2010 11:49:19 AM

© Oxford University Press

10 Software Engineering

On the face of it, software engineering’s response to the problems of change and
complexity—seems cogent. But certain challenges come with it.

1.6 CHALLENGES WITH THE RESPONSE
As outlined above, an element of linearity is implicit in software engineering’s
response to the problems of change and complexity. Customers come with Require-
ments, which are Analysed, followed by the Design of the system, its Implement-
ation and Testing. The right questions are asked at each point; and Inception,
Elaboration, Construction, and Transition seem to follow one another in harmony.

But reality is much messier. Answers are seldom ready when questions are
asked; at the very least, customers and users change their minds all the time, and
technology and business environments change. Thus, in the real-world of software
development, it becomes imperative to go back and forth across workflows and
phases several times, driven by a variety of reasons. Figures 1.1 and 1.2 highlight
the differences between the ideal and real world of software engineering. Life is
inherently non-linear, and software engineering is no exception. But just as in life,
in software engineering too, we build our case on assumptions of linearity. And
then hope to tackle non-linearity, on a case-to-case basis.

So the key challenge with software engineering’s response boils down to being
able to monitor, control, and utilize the many feedback paths that exist in the real-
world software development life cycle (SDLC). ‘Feedback is one of the most
fundamental techniques of engineering. In the simplest of terms, feedback is a
mechanism for controlling an activity by regulating the input based on the output’
[Datta 2007]. Figure 1.3 illustrates a simple feedback mechanism. Processor 1 is
the primary processor of information; the Comparator compares the actual output
from Processor 1 with the expected output, and depending on the results, feeds
back information to the optional Processor 2, whose output is added to the initial
input by the Adder and fed into Processor 1. A system without a feedback does not
have its input conditioned by the output. The simple act of closing the loop (taking
the output of the comparator and adding it to the input, via the optional Processor 2)
can have a profound effect on system behaviour.

In our discussions throughout this book, we shall see how important a role
feedback plays in software engineering. Feedback exists at many levels, practical
as well as perceptual. An exception handler is a simple example of a feedback
loop. It monitors the execution of a piece of code and takes appropriate action
if the outcome is not as expected. On the other hand, modifying a system based
on user response is also an example of feedback. In software engineering, often
the difficulty lies in integrating the various forms and levels of feedback into a
consistent and repeatable development model. This is the central challenge with
the software engineering’s responses to the problems of change and complexity.

Software Engineering.indb 10Software Engineering.indb 10 31/08/2010 11:49:20 AM31/08/2010 11:49:20 AM

© Oxford University Press

What is Software Engineering? 11

1.7 GRAND CHALLENGE
A few years back, pioneering computer scientist, inventor of the quicksort sorting
algorithm, and Turing award winner, C.A.R. ‘Tony’ Hoare, outlined a set of
 grand challenges for computing research [Hoare and Milner 2005]. According
to Hoare, a typical grand challenge is like proving Fermat’s last theorem (already
accomplished), putting a man on moon (already accomplished), finding a cure
for cancer in 10 years (not yet accomplished), and mapping the human genome
(already accomplished). A grand challenge project typically lasts around 15 years,
has world-wide participation, presents clear criteria for evaluating success, and
offers a path-breaking advance in basic science and engineering.

One of the grand challenges Hoare identified for the next 15–20 years is
‘ Dependable Systems Evolution’. This aims to address the dependability of pro-
grams running in homes, offices, cars, planes, and rockets by developing tools and
technologies to have the computer guarantee the integrity, safety, and correctness
of its own programs. This guarantee should remain in place even as the programs
evolve to deliver better service or meet new needs. The project is expected to
illuminate the ‘logical foundations of computer science and its application to
software engineering’ [Hoare and Milner 2005]. Note how the challenge to build
dependable software systems involves change (better service, new needs) and
complexity (multiple domains of operations, from homes to rockets): These are the
same problems for software engineering we have discussed earlier in the chapter.
The fact that someone of Hoare’s erudition and experience identifies the problem
of dependable software evolution as a ‘grand challenge’, points to how important
it is for the world, and how difficult it is to solve.

Who will meet the grand challenge of Dependable Systems Evolution?
I am sure it will be you; the bright, young minds who study software engineering

today and will research and practice it tomorrow.

Figure 1.3 A simple feedback mechanism

System
input

Adder Processor 1 Comparator

System
output

Processor 2

Software Engineering.indb 11Software Engineering.indb 11 31/08/2010 11:49:20 AM31/08/2010 11:49:20 AM

© Oxford University Press

12 Software Engineering

1.8 WHAT IT IS LIKE TO BE A SOFTWARE ENGINEER?
From what we have discussed so far, software engineering seems exciting, but
serious business, with its problems of change and complexity, its response, and
the challenges with the response. Indeed, there is software engineering in nearly
every aspect of our lives today. And thus it is no surprise, we as software engineers
encounter the most intriguing and important problems. This book takes you on a
journey of discovery; how software engineering is doing today, as well as how you
will do it even better, tomorrow. It is an exciting journey. For you to embark on a
spirit of fun and adventure, let us see what it is like to be a software engineer.

1.8.1 Knowing across Domains
As we discussed briefly earlier, and will discuss in detail in Chapter 3, software is
unique amongst engineering artefacts in a number of ways. A bridge, a building, or
a bicycle has some value per se. They help us cross a chasm, give shelter from the
elements, or let us go from one place to another. On the other hand, a piece of software
usually provides a service to an existing enterprise, helping get it done faster, better,
and cheaper. Of course, additionally there are also truly game-changing uses of
software. They let us do something that was never imagined before, like deciphering
the human genome. But these lie in the realm of research for quite some time before
getting integrated into the so-called mainstream of software engineering.

Over the course of a typical software engineering career, even when working on
the usual customer-oriented projects, there is much scope for acquiring knowledge
across a wide spectrum of application domains and industries. The domains of
finance, travel, health care, entertainment, etc., are each different, with its own
vocabulary, quirks, and challenges, as well as rewards. Some solutions work well
for a particular domain, while wholly new ones have to be devised for others.
Software engineers thus need to stay updated with working knowledge across
various domains, in addition to refining their core skill of making software. This is
not easy, but it provides for intellectual stimulation and variety not readily available
in many other professions. It is enlightening to know of different industries, and
their unique user expectations and functioning. Successful software engineers use
this as an opportunity for hastening professional maturity.

1.8.2 Teaming across Cultures
Software engineering is very much a global enterprise now, and this trend will
only grow in the future (see Chapter 21). This offers unique opportunities for
interactions across cultures, even for those at the entry level. Indeed, to become a
successful software engineer, it is becoming essential to acclimatize oneself quickly

Software Engineering.indb 12Software Engineering.indb 12 31/08/2010 11:49:20 AM31/08/2010 11:49:20 AM

© Oxford University Press

What is Software Engineering? 13

and easily to a variety of work environments. This includes an understanding of
social, political, regional, and cultural sensitivities, in addition to technical and
communication skills.

Being a team player is an important criterion for success in the engineering
profession—after all, no serious engineering product comes out of the head or hand
of a single individual. For software engineers, merely being a team player is not
sufficient. The most successful software teams, the truly ‘jelled’ ones [Humphrey
1999] have the key ingredient of diversity. Most often, we need to work closely
with people who are very different—in language, culture, background, and skill—
yet united in a common professional purpose. Learning how to embrace and thrive
in such environments is hardly something textbooks or class lectures can teach you.
Your own attitude and temperament are your best—and often only—teachers.

1.8.3 Innovating across Technologies
As we mentioned before, software engineering is a young discipline; almost infant
when compared to some of the conventional engineering disciplines. While this has
its disadvantages—we are still groping for laws and first principles—it also makes
our field fertile for innovation. With little discipline, focus, and imagination, every
software engineer can innovate.

The burgeoning open source paradigm (see Chapter 22), has made it easy to
interact with the software com munity at large. And this interaction fuels innovation.
Ingredients for innovation are now available to every practicing software engineer
as basic professional tools. Web access and efficient computing facilities, are
necessary for software engineer ing innovation; but they are not sufficient. What
remains is a key element: the willingness to think outside the box. Even amidst
the grind of day-to-day work, with looming deadlines and delivery pressures, it
is not impossible to think a little deeply on the most pressing issues at hand; why
is a particular task taking so much time, how can performance of a component be
improved, is there a general solution to a particular problem? Such ‘ lateral’ thinking
will alleviate the tension and ennui of everyday work. Also, sooner or later, it will
lead to some innovation not only satisfying by itself but also offering valuable
career boost. Hamming’s description of how he developed his pioneering work on
error-correcting codes, while doing his routine work is very inspiring [Hamming
1997] for today’s software engineers looking to innovate. The facilities a software
engineer has today even for routine work were unthinkable a few years ago. It is
our onus—to society, to our profession, and most importantly, to ourselves—to
utilize these facilities to their fullest.

Software Engineering.indb 13Software Engineering.indb 13 31/08/2010 11:49:20 AM31/08/2010 11:49:20 AM

© Oxford University Press

14 Software Engineering

SUMMARY AND TAKE-AWAYS
This chapter begins the book’s journey of discovering what software engineering
is, what its major challenges are, and how tomorrow’s software engineers—the
readers of this book—can stand up to those challenges and get way beyond them.
Our discussion can be summarized as follows:

• There is no single universally accepted definition of software engineering;
the essence lies in synthesizing the various definitions.

• Change and complexity are the two major problems confronting software
engineering.

• To address the problem of complexity, software development is broken down
into workflows, each of which addresses a specific concern in the develop-
ment process.

• To address the problem of change, phases of software development monitors
changes and their effects during the development process.

• Workflows and phases together constitute the software development life
cycle; which lies at the heart of software engineering.

• The key challenge of software engineering is to be able to monitor, control, and
utilize the many feedback paths that exist in real-world software development.

• Hoare has identified the evolution of dependable software systems, carrying
with it the guarantee of acceptable behaviour across a wide variety of
operating conditions, as one of the grand challenges of computing in the next
15–20 years.

• Knowing across domains, teaming across cultures, and innovating across
technologies are the key elements of a software engineer’s experience.

WHERE TO LOOK FOR MORE
Although software engineering is a young discipline, a body of informative
and insightful writing has already been accumulated. The website http://tinyurl.
com/100sebooks lists the so-called ‘Top 100 Best Software Engineering Books,
Ever’. While this may not be the definitive list—few of my own favourites are
not featured—it does identify some very good books. Additionally, the author
discusses the metrics he used in ranking the books, which may be generally helpful
in choosing a good book.

Software Engineering.indb 14Software Engineering.indb 14 31/08/2010 11:49:20 AM31/08/2010 11:49:20 AM

© Oxford University Press

What is Software Engineering? 15

EXERCISES

Review Questions

Review Questions test your understand ing of the
key concepts presented in this chapter.
1. Which of the following is not included in

Whitmire’s working definition of software
engineering?
(a) Economy
(b) Use of a software system
(c) Art
(d) Performance

2. According to Brooks, which of the following
is a characteristic of software?
(a) Complexity
(b) Changeability
(c) Invisibility
(d) All of the above

3. Software systems need to encounter the
problem of change primarily because
(a) users do not initially know what they

want from software
(b) user needs are complex
(c) there is combinatorial complexity in

software
(d) of all of the above

4. Which of the following is not a concern
associated with a workflow?
(a) Testing
(b) Feasibility study
(c) Analysis
(d) Implementation

5. Which of the following is a concern asso-
ciated with a phase?
(a) Testing
(b) Feasibility study
(c) Analysis
(d) Implementation

Reflective Questions

Reflective Questions require you to think deeply
about some of the ideas and come up with your
own interpretations and answers.
1. Comment on the following statement in the

light of the various definitions of software
engineering: ‘No matter how we define it,
the most important component of software
engineering is com puter programming.’

2. Among the various definitions of software
engineering given in this chapter, which one
do you think comes closest to software engi-
neering as you see it? Justify your answer.

3. Out of the four characteristics of software
mentioned by Brooks (few decades ago),
which one do you think is most relevant to
software as it is perceived and used today,
and which one the least? Support your
choices with reasons.

4. Are invisibility and unvisualizability the
same characteristic of software? If not, why?
Explain with examples.

5. In this chapter, we have identified two major
problems that software engineering needs
to address. Can you correlate them with the
characteristics of software Brooks identified?

6. Do you think the so-called cognitive gap men-
tioned in the context of software vis-à-vis
other engineering disciplines is valid? Give
reasons for your answer.

7. Change and complexity are the two major
problems confronting software. Are these
two related? Can the response to one serve
the other?

8. How do you think workflows and phases are
related? Are they aligned or orthogonal to
one another?

Software Engineering.indb 15Software Engineering.indb 15 31/08/2010 11:49:21 AM31/08/2010 11:49:21 AM

© Oxford University Press

16 Software Engineering

 9. Feedback is everywhere. Give an example
of feedback and discuss the benefits it offers
in that particular case and how the situation
would have been without feedback.

10. How do you think we should approach the
grand challenge of Dependable Systems
Evolution? Is there a particular way that

Hoare suggests? What do you think of his
suggested path?

11. In this chapter, we have outlined some
aspects of what it is like to be a software
engineer. Which aspect attracts you most?
Which one do you think is most boring?

REFERENCES

Bauer, F.L., Bolliet, L., and Helms, H.J. (1968),
 NATO Software Engineering Conference
1968, http://homepages.cs.ncl.ac.uk/brian.
randell/NATO/nato1968.PDF, last accessed
on Nov 8, 2009.

Booch, G. (2006), ‘The Accidental Architecture’,
IEEE Softw., 23(3): 9–11.

Brooks, F.P. (1995), The Mythical Man-Month:
Essays on Software Engineering, 20th Anni-
vers ary Edition, Addison-Wesley.

Datta, S. (2007), Metrics-Driven Enterprise
Software Development: Effectively Meeting
Evolving Business Needs, J. Ross Publishing.

Hamming, R.R. (1997), Art of Doing Science
and Engineering: Learning to Learn, CRC.

Hoare, T. and Milner, R. (2005), Grand chal-
lenges for computing research, Comput. J.,
48(1): 49–52.

Humphrey, W.S. (1999), Introduction to the
Team Software Process, SEI Series in Soft-
ware Engineering.

Nicolis, G. and Prigogine, I. (1989), Exploring
Complexity: An Introduction, W.H. Freeman
and Company.

Petroski, H. (1992), To Engineer Is Human:
The Role of Failure in Successful Design,
Vintage.

Saxe, J.G. (1850), ‘The Blind Men and the Ele-
phant’, http://bygosh.com/Features/092001/
blindmen.htm, last accessed on Nov 8,
2009.

Waldrop, M.M. (1992), Complexity: The Emerg-
ing Science at the Edge of Order and Chaos,
Simon and Schuster.

Whitmire, S.A. (1997), Object-Oriented Design
Measurement, Wiley Computer Pub.

Software Engineering.indb 16Software Engineering.indb 16 31/08/2010 11:49:21 AM31/08/2010 11:49:21 AM

© Oxford University Press

