MEDICAL BIOTECHNOLOGY

© Oxford University Press

Contents

Preface		v
1.	BIOTECHNOLOGY AND HEALTHCARE	1
	1.1 Biotechnology in Healthcare	1
	1.2 Advancement of Diagnosis, Therapy, and Intervention	2
	1.2.1 Diagnosis	2
	1.2.2 Treatment	7
2.	GENE THERAPY	9
	2.1 The Silent Effectors	9
	2.2 Approaches for Gene Delivery	9
	2.2.1 SMaRT	10
	2.2.2 Antisense	11
	2.2.3 Triple-helix-forming Oligonucleotides	11
	2.2.4 Ribozymes	11
	2.3 Gene Therapy Based on Developmental Stage approach	11
	2.3.1 Isolating the Gene of Interest	14
	2.3.2 Gene Delivery Systems and Gene Expression	16
	2.4 Promoters and Enhancers for Transgene Expression	28
	2.5 DNA Recombination in Gene Therapy	29
	2.6 Drawbacks in Gene Therapy	30
	2.7 Chromatin Structure of Plasmids during Gene Delivery	31
	2.8 <i>Ex vivo</i> Gene Therapy in Humans	34
	2.9 Gene Therapy of HIV	35
	2.9.1 Mechanism of HIV-1 Entry into T cells and Macrophages	35
	2.9.2 Therapeutic Strategies against HIV	37
	2.9.3 Gene Therapy against HIV in Cell Culture	37
	2.9.4 Gene Therapeutic Strategies for AIDS	38
	2.9.5 Gene Therapy of HIV with Ribozymes	39
	2.9.6 Novel Therapies based on HIV Vectors	40
	2.9.7 Clinical Trials Involving HIV	40

	2.10 Cystic Fibrosis	40
	2.10.1 Molecular Mechanism of CF Pathogenesis	40
	2.10.2 CFTR Gene Transfer in Animal Models	41
	2.10.3 Clinical Trials on Cystic Fibrosis Patients	42
	2.11 Parkinson's Disease	42
	2.11.1 Etiology and Mechanisms of Destruction of Neurons in PD	43
	2.11.2 Drug Treatment of PD	43
	2.11.3 Candidate Genes for PD	44
	2.11.4 Gene and Cell Therapy for PD	45
	2.12 Gene Discovery: Novel Horizons in Gene Therapy	46
	2.12.1 What is Next on Gene Therapy?	46
3.	DNA-BASED VACCINES	49
	3.1 Introduction	49
	3.2 Subunit Vaccines	51
	3.3 Newer Vaccines	54
	3.3.1 Peptide Vaccines	54
	3.3.2 Minicells as Vaccines	57
	3.3.3 Recombinant DNA (R-DNA) Vaccines	57
	3.3.4 Attenuated Vaccines	58
	3.4 Vector Vaccines	60
	3.5 Vaccines Directed against Bacteria	65
4.	ANTISENSE THERAPEUTICS	69
	4.1 Introduction	69
	4.2 Ribozymes	71
	4.3 Delivery, Stability, Bioavailability, and Target Specificity	72
	4.4 Recommendations	73
	4.5 Phosphorothioate Oligonucleotides	73
	4.5.1 Characteristics	73
	4.5.2 Pharmacological Properties	74
	4.5.3 Toxicological Properties	75
	4.5.4 Genotoxicity	75
	4.5.5 Therapeutic Index	75
	4.6 The Medical Chemistry of Oligos	76
	4.6.1 Modifications	76
	4.6.2 Oligo Conjugates	76
	4.7 Applications of RNAi	77
	4.7.1 Prevention of Cancer	77
	4.7.2 Antiviral Drugs	78
	4.7.3 Leishmaniasis	78
	4.8 Advantages of Antisense Drugs	79

5.	RNA-BASED THERAPEUTICS	81
	5.1 RNA Interference Technology	81
	5.1.1 Mechanism of RNAi	82
	5.1.2 siRNA Synthesis and Delivery Strategies	83
	5.2 Micro RNA	84
	5.3 Applications of RNAi	86
	5.3.1 RNAi Studies in ES Cells	86
	5.3.2 Hemapoetic Stem Cells (HSCs)	87
	5.4 Concluding Remarks	88
6.	ENZYME THERAPY	
	6.1 Introduction	89
	6.2 Enzymes as Therapeutics	90
	6.3 Therapeutic Enzymes	91
	6.3.1 DNase I	91
	6.3.2 Alginate Lyase	92
	6.3.3 Adenosine Deaminase	94
	6.3.4 Dihydrofolate Reductase	94
	6.3.5 Lipase (Glucocerebrosidase)	95
	6.4 Streptokinase	95
7.	HORMONE THERAPY	
	7.1 Introduction	97
	7.2 Insulin (Humulin)	98
	7.3 Human Growth Hormone	100
	7.4 Somatostatin	101
	7.5 Erythropoietin	102
8.	CYTOKINES	105
	8.1 Cytokines	105
	8.1.1 Features of Cytokines	106
	8.1.2 Physiological Roles of Cytokines	106
	8.1.3 Cytokines as Therapeutic Agents	107
	8.1.4 Cytokines and Therapy	107
	8.1.5 Preparation of Cytokines from Natural Sources	108
	8.1.6 Preparation of Cytokines by Recombinant DNA Technology	109
	8.2 Interferons	110
	8.2.1 Mechanism of Interferon Action	110
	8.2.2 Production of Interferons	112
	8.2.3 Isolation of cDNA and its Engineering in Host	112
	8.2.4 Purification of Interferons	113
	8.2.5 Uses of Interferons	115

	8.3 Interleukins	115
	8.3.1 Interleukin-1	115
	8.3.2 Interleukin-2	115
	8.3.3 Interleukin-3	110
	8.3.4 Interleukin-4	118
	8.3.5 Interleukin-6 (IL-6)	118
	8.3.6 Interleukin-10 (IL-10)	110
	8.3.7 Interleukin-12 (IL-12)	119
	8.4 Colony Stimulating Factors	120
	8.4.1 Potential Clinical Applications of Myeloid CSFs	122
	8.5 Tumor Necrosis Factor	122
	8.6 Future Developments in Cytokine Therapy	123
9.	MONOCLONAL ANTIBODY THERAPY AND ANTIBODY ENGINEER	ING 129
	9.1 Introduction	129
	9.2 Monoclonal Antibodies in Therapy	129
	9.2.1 Targeted Therapies	130
	9.2.2 Generation of MAbs	131
	9.2.3 Antibody Engineering/Recombinant MAbs	131
	9.2.4 Humanized MAbs	138
	9.2.5 Immunotherapy using MAbs	141
	9.2.6 Immunomodulation	143
10.	. MOLECULAR PHARMING	151
	10.1 Introduction	151
	10.2 Creating Transgenics	151
	10.3 Biopharmaceuticals	155
	10.3.1 Generation of Vaccines	155
	10.4 Transgenic Animals	156
	10.4.1 Methods for Producing Transgenic Animals	158
	10.4.2 Transgenic Sheep	161
	10.4.3 Transgenic Chickens	161
	10.4.4 Transgenic Pigs	162
	10.4.5 Transgenic Mice	162
11.	. DRUG DESIGN	167
	11.1 Fundamentals of Drug Designing	167
	11.2 The Pharmacophore	169
	11.3 Structure-based Drug Design	169
	11.4 The Drug Discovery	172
	11.4.1 Combinatorial Chemistry	173
	11.4.2 Structure-based Design	173

11.4.3 QSAR and Drug Design	175
11.4.4 Computational Drug Design	177
11.5 Examples of Drug Design	180
11.5.1 QSAR-based Design	180
11.5.2 Computer-assisted Design	181
11.6 Limitations of <i>De Novo</i> Design	182
11.7 Rational Drug Design Software	184
11.7.1 Scanners	184
11.7.2 Builders	185
11.7.3 Hybrids	188
11.8 Future Perspectives	189
12. DRUG DELIVERY SYSTEM	191
12.1 Introduction	191
12.2 Criteria for Drug Delivery System	192
12.3 Drug Delivery Carriers	193
12.3.1 Polymers	193
12.3.2 Colloidal Drug	196
12.4 DNA-based Drug Delivery	202
12.4.1 Mechanical and Electrical Techniques	202
12.4.2 Vector-assisted Delivery Systems	203
12.5 RNA-based Drug Delivery	204
12.6 Protein Delivery System	204
12.6.1 Open and Closed Loop System	204
12.6.2 Microencapsulated Secretary Cells	205
12.6.3 Microspheres	206
12.6.4 Monoclonal Antibodies	207
12.7 Controlled-release Mechanisms	207
12.8 Administration Routes	209
12.9 Emerging Delivery Methods: Future Challenges	211
12.10 Case Studies of Delivery Against Some Popular Diseases	212
13. CHIRAL TECHNOLOGY	215
13.1 Introduction	215
13.2 Chiral Compounds	215
13.2.1 Sythesis of Chiral Compounds	216
13.2.2 Separation of Enantiomers	218
13.2.3 Importance of Enantiomer Separation	221
13.3 Chiral Compounds Marketing	223
13.4 Role of Biotechnology in Chiral Synthesis	224
13.4.1 (S)-2Chloropropanoic Acid [(S)-CPA]	224
13.4.2 L-Carnitine	224

14.	REGENERATIVE MEDICINE	227
	14.1 Introduction	227
	14.2 Tissue Engineering	228
	14.2.1 Characteristics of Cells Involved in Tissue Engineering	228
	14.2.2 Types and Characteristics of Biomaterials Used	229
	14.2.3 Specific Strategies of Tissue Engineering	231
	14.2.4 Other Applications of Tissue Engineering	235
	14.3 Stem Cell Therapy	241
	14.3.1 Stem Cells—Definition and Scope	242
	14.3.2 Types of Stem Cells	242
	14.3.3 Characteristics and Properties	244
15.	NANOMEDICINE	265
	15.1 Introduction	265
	15.2 Applications of Nanomedicine	266
	15.3 Biosensors	267
	15.3.1 Merits and Demerits of Biosensors	268
	15.3.2 Industries/Companies Dealing with Biosensors	269
	15.3.3 Different Types of Biosensors	269
	15.4 Nano Biomechanical Devices	271
	15.5 Nanomaterials	271
	15.5.1 Tagged Nanoparticles/Quantum Dots	271
	15.5.2 Artificial Molecular Receptors	272
	15.5.3 Dendrimers	273
	15.5.4 Smart Drugs	274
	15.5.5 Nanopore Immunoisolation Devices	275
	15.5.6 Nanopore Sensors and DNA Sequencing	275
	15.5.7 Nanorobotics	276
	15.5.8 DNA-based Nanodevices	277
	15.5.9 Nanotweezers	278
	15.5.10 Nanomotors	278
	15.5.11 Nanocomputers	279
	15.5.12 Nanomedical Diagnosis and Treatment	280
	15.5.13 Improved Human Abilities	281
	15.5.14 Chromosome Replacement Therapy	282
16.	PHARMACOGENOMICS	285
	16.1 Introduction	285
	16.2 Polymorphisms	286
	16.2.1 Glucose.6.Phosphate Dehydrogenase (G6PD) Deficiency	286
	16.2.2 The Acetylation Polymorphism	287

		16.2.3 Malignant Hyperthermia	288
		16.2.4 Serum Cholinesterase and Succinylcholine Sensitivity	289
	16.3	Identification of Drug Responsive Genes	290
	16.4	Microarray Gene Chips	290
	16.5	Chip Technology	291
	16.6	Pharmacogenomics of Multigenic Diseases	292
		16.6.1 Coronary Artery Disease	292
		16.6.2 Depression Disorders and Treatment	293
		16.6.3 Schizophrenia	294
		16.6.4 Cancer	294
		Anticipated Benefits of Pharmacogenomics	296
	16.8	Ethics	297
17.	CLI	NICAL DATA MANAGEMENT AND CLINICAL TRIALS	301
	17.1	Introduction	301
	17.2	Planning a Clinical Trial	301
	17.3	Components of a Clinical Trial	302
		17.3.1 Preclinical Testing	302
		17.3.2 Phases of a Clinical Trial	304
	17.4	Clinical Data Management System	308
		17.4.1 Double Data Entry	308
18.	TEC	CHNIQUES USED IN MEDICAL BIOTECHNOLOGY	311
	18.1	Introduction	311
	18.2	Molecular Tools	311
		18.2.1 DNA Sequencing	311
		18.2.2 DNA Gel Electrophoresis	315
		18.2.3 Nucleic Acid Hybridization	315
		18.2.4 Restriction Fragment Length Polymorphism (RFLP Analysis)	318
		18.2.5 Polymerase Chain Reaction	318
	18.3	Protein Purification and Characterization	328
		18.3.1 Protein Purification	328
		18.3.2 Protein Structure Determination	335
	18.4	Immunochemical Methods	339
		18.4.1 Western Blotting	339
		18.4.2 Production of Antibodies	341
		18.4.3 Immunoassays	343
19.	BIO	INFORMATICS	347
	19.1	Introduction	347
	19.2	Need for Bioinformatics	350

19.5 Types of Alignments19.6 Multiple Sequence Alignments	355 356
19.0 Multiple Sequence Anglinents 19.7 Protein Structure Prediction	350
19.7.1 Homology Modeling	358
Further Reading	361
Index	365

Biotechnology and Healthcare

After reading this chapter, the readers will be able to

- Understand the role of biotechnology in healthcare
- Know the advancement of diagnosis, therapy, and intervention
- Learn about different methodologies in diagnosis and treatment of various diseases

1.1 BIOTECHNOLOGY IN HEALTHCARE

Molecular biotechnology is globally emerging as the cutting-edge technology of medicine. The biotechnological innovations are directly applicable to the welfare of human health and society at large. The core of molecular biotechnology is the advancement of diagnosis, therapy, and intervention, which involves harnessing the natural process microbes, plants, and animal cells for the benefit of industrial processes and/or products like vaccines, antibiotics, and therapeutic proteins. Hence, molecular biotechnology is recognized as a discipline with basic and applied sciences being merged.

The rapid advances made in recombinant DNA technology has revolutionized into a new branch of medical biotechnology which has given an insight into the control of biological processes. This technology has made it possible to manipulate the heritable material of the biological systems and generate the desired end result.

Thus, more than 60% of the biotechnological innovations are directly pertinent to the field of medicine. One such innovation is the introduction of a monoclonal antibody based diagnostic test developed in 1981. This was followed by the generation of *humulin*, a recombinant human insulin produced commercially by Genetech, USA.

For investigations in bioprocess optimization, expression and/or scaling up off recombinant proteins, another field *bioprospecting* has emerged. With the dawn of the millennium, emerged another medical field called *nanomedicine* with the genetically engineered products being fabricated or designed *in silico* at the nano level.

1.2 ADVANCEMENT OF DIAGNOSIS, THERAPY, AND INTERVENTION

The field of biotechnology has led to the revolutionization of human health and medicine with its potential applications. The involvement of biotechnology in healthcare can be discussed on the aspects of

- Diagnosis of disorders
- Prevention, treatment, and management of diseases
- Counselling for health problems

A health problem can arise due to an infection by microorganism, a nutritional deficiency, or a hereditary cause.

1.2.1 Diagnosis

Diagnosis of the disease is very important, specifically when it is caused by an infectious agent or a gene. Diagnosis can be accurate only when a specific organism causing a symptom or a group of symptoms is properly identified. Accurate diagnosis is critical for effective management and cure of a disease.

Immunological Assays

Disease is usually diagnosed by specimen cultures to identify a cause, immunological assays for specific antigens present on the surface of pathogens, and antibodies produced in response to these antigens. The immunological assays also help in diagnosis of a disease or identification of a pathogen.

Monoclonal antibodies Another area of interest in diagnosis of diseases is monoclonal antibodies. A monoclonal antibody (MAb) is specific to a single antigenic determinant (epitope) of a single antigen. They are produced from *hybridoma clones*. Each hybridoma clone is derived from the fusion of a single *myeloma cell* with a single antibody producing *lymphocyte*. The various applications of MAbs include clear detection of pathogens, early and accurate detection of cancers, and blood typing (ABO, Rh).

MAbs play an important role in treatment and management of certain infectious diseases and cancers. They provide passive immunity against infectious diseases, for example leprosy. They deliver toxic molecular agents of immunotoxins to cancer cells in a specific manner.

Enzyme-linked immunosorbent assay Enzyme-linked immunosorbent assay (ELISA) (Fig. 1.1) is a highly sensitive technique for detecting and measuring antigens or antibodies. It is generally used in AIDS detection and other infectious diseases.

It is a heterogeneous, solid phase assay. Performing an ELISA involves at least one antibody with specificity for a particular antigen. The sample with an unknown amount of antigen is immobilized on a solid support (usually a *polystyrene* microtiter

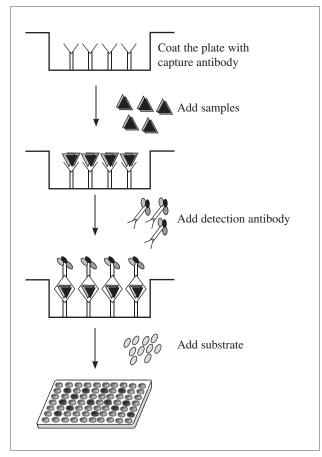


FIGURE 1.1 ELISA technique

plate), either non-specifically (via *adsorption* to the surface) or specifically (via capture by another antibody specific to the same antigen, in a *sandwich* ELISA).

Once the antigen is immobilized, the detection antibody is added, forming a complex with the antigen. The detection antibody can be covalently linked to an *enzyme*, or can itself be detected by a *secondary antibody* which is linked to an enzyme through *bioconjugation*. Between each step, the plate is typically washed with a mild *detergent* solution to remove any proteins or antibodies that are not specifically bound.

After the final wash step, the plate is developed by adding an enzymatic *substrate* to produce a visible signal, which indicates the quantity of antigen in the sample. Older ELISAs utilize *chromogenic* substrates, while newer assays employ *fluorogenic* substrates enabling much higher sensitivity.

Diagnostic test based on immunological protocols are lengthy and strenuous and may yield ambiguous results because of polymorphic nature of a disease, which are sometimes unreliable. New development in biotechnology leads to novel diagnostic approaches which are precise and rapid. Some of the important protocols are based on probes and MAbs.

Diagnosis Using Probes

Probes are oligonucleotides of about 30 bases of DNA or RNA, employed to detect the presence of complementary sequences in nucleic acid samples of pathogens from the diseased individuals. Probes are usually labelled with radioactive/non-radioactive substances for easy identification of unknown sequences.

Use of probes for diagnosis is advantageous over conventional procedures because of its specificity, reliability and safety, as they are non-infectious agents. Probes can be used in clinical diagnosis for the detection of pathogens in various samples, for example, plasmodium, schistosomes, mycobacterium tuberculosis, and herpes virus.

Probes can also be used in the southern blot, dot blot, *in situ* hybridization, and ligase chain reaction (LCR) for the detection of a variety of pathogenic microorganisms.

Polymerase Chain Reaction

Polymerase Chain Reaction (PCR) and the immuno PCR for detection of DNA by amplification and for detection of antigen-antibody complex linked to a marker DNA, respectively, help in detection of pathogens and their antigens.

PCR (Fig. 1.2) is a technique widely used in molecular biology, microbiology, genetics, diagnostics, clinical laboratories, forensic science, environmental science, hereditary studies, paternity testing, and many other applications. The name, polymerase chain reaction, comes from the DNA polymerase used to amplify (replicate many times) a piece of DNA by *in vitro* enzymatic replication.

The original molecule or molecules of DNA are replicated by the DNA polymerase enzyme, thus doubling the number of DNA molecules. Then each of these molecules is replicated in a second cycle of replication, resulting in four times the number of the original molecules. Again, each of these molecules is replicated in a third cycle of replication. This process is known as the *chain reaction* in which the original DNA template is exponentially amplified.

With PCR, it is possible to amplify fragments of DNA over many cycles, generating millions of copies of the original DNA molecule. PCR has been extensively modified to perform a wide array of genetic manipulations, diagnostic tests, etc.

Ligase Chain Reaction

Ligase chain reaction (LCR) is the technique on similar lines to PCR. The ligase chain reaction is an offshoot of PCR (Fig. 1.3) utilizes two pairs of oligonucleotides—one pair complementary to the upper template strand, and the other pair complementary to the lower template strand. Each member of a pair hybridizes to adjacent positions on the template such that the 5'-phosphate of one oligonucleotide abuts the 3'-hydroxyl of the other. The resulting nick is sealed by DNA ligase.

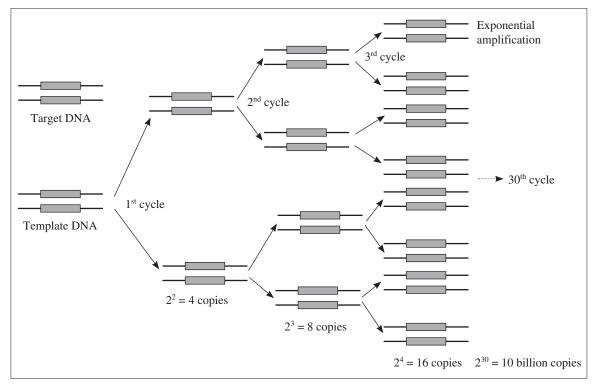


FIGURE 1.2 PCR technique

The product of one round of ligation can serve as a template for a subsequent cycle; thus, using a thermostable ligase and performing sequential cycles of denaturation and ligation results in an exponential accumulation of the product. Because a mismatch in the ligation junction inhibits the ligation reaction, LCR is ideal for the diagnosis of known mutations.

However, there are different protocols of diagnosis for inherited conditions in addition to the methods described above. They are amniocentesis, chorionic villus sampling where foetal cells are cultured and analysed for biochemical (α -fetoproteins), cytological (karyotyping), and molecular markers (RFLP, SNPs) associated with such inherited disorders.

RFLP/SNPs (restrictions fragment length polymorphism/single nucleotide polymorphisms) help us to delineate heterogeneity of the condition with varied genotype (for example, *Retinitis pigmentosa*), whereas karyotyping and *in situ* study helps to know chromosomal aberrations associated and molecular markers specific to chromosomal loci affected in inherited conditions.

'Prevention is better than cure' an epitome makes one to probe into the possibility of preventing various diseases rather than their cure, especially when treatment is difficult and impossible. One of the important products for prevention is the generation of vaccines. Vaccines are biological preparations which effectively

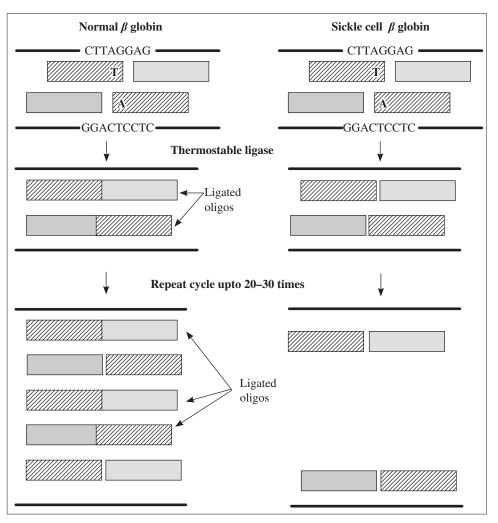


FIGURE 1.3 LCR technique for detection of sickle cell anemia

prevent the onset of the disease for a particular period depending on the type of vaccine and the pathogen against which it acts.

An ideal vaccine should be safe and produce long lasting humoral and cellular immunity. Recombinant vaccines are in use now either in the form of protein/ polypeptide subunit vaccine or DNA vaccines which are always a better choice over conventional vaccines.

A large number of genes encoding antigenic proteins have been integrated into vaccinia virus which was then used for vaccination. Some of the important examples are:

- Rabies virus glycoprotein
- Herpes simplex virus glycoprotein D
- Hepatitis B surface antigen

1.2.2 Treatment

Treatment of diseases utilizes a variety of preparations of compounds from plants, microorganism, cultured cells, and recombinant organisms. The various products include whole organisms like lactobacillus, biomass-based products like single cell proteins, antibiotics, vitamins, enzymes, organic acids. Such compounds can also be produced through plant and animal cell cultures, transgenic plants, and animals.

The advantages of such production over conventional methods are their costeffectiveness, no risk of contamination, and large production within a short time. Proteins of human origin were made available like humulin in place of insulin usually extracted from an animal. *Interferons* used in the treatment of cancers and as antiviral agents and growth factors involved in correcting some metabolic and immune disorders are some of the examples cited. *Erythropoietin* is one of the growth factors used in the treatment of anemia.

Antisense RNA of 25 to 35 bases pairs with 5' end mRNA preventing its translation, killing many of the parasites including *trypanosomes*.

Drug designing is one of the active areas of research in biotechnology. This approach is aimed at designing drugs which fit into the functional domain of target molecules, thereby inactivating them. The molecule which is targeted by this method can be a protein/enzyme in the metabolism or replication of DNA, a hormone receptor, or some other molecule of interest in causing the disease.

Once a drug is designed, it has to be properly delivered to the tissue or organ affected. The innovative methods are administration of drugs via parenteral administration. Alternatively, drugs can be encapsulated in liposomes which are tagged with ligands (monoclonal antibodies) to reach specific targets, thus delivering the DNA very effectively to the tissue/organ.

Gene therapy is aimed at correcting errors due to single gene mutations. Gene therapy may be affected at gametic level or zygotic level (germ line gene therapy), somatic level (somatic cells) which has been tried for cancer and blood disorders.

The two approaches of gene therapy, viz. addition or augmentation therapy, targeted gene transfer (homologous recombination) which was successful in the case of severe combined immunodeficiency (SCID) and adenosine deaminase (ADA) deficiency is well documented.

An advancement made in the field of regenerative medicine is tissue engineering based on the principles of cell transplantation and engineering towards the development of biological substitutes that can restore and maintain normal function.

Stem cell biology has come of age with emphasis on the self-renewal property of stem cells, which is also similarly identified in cancer cells via the signalling pathways. Hence, stem cell therapy is the latest development to treat cancers and other genetic disorders and to create artificial skin in case of burns and skin injuries. Last but not the least, bioinformatics is the bridge course which integrates information at DNA and mRNA level to protein, with the prediction of the structure, function, and model.

EXERCISES

Review Questions

- 1. Discuss the role of biotechnology in healthcare.
- 2. What are the different methodologies to be adopted in the diagnosis and treatment of various diseases?
- 3. Write short notes on
 - (a) Labelled probes
 - (b) LCR
 - (c) PCR
 - (d) Immuno PCR
 - (e) ELISA
 - (f) MAb
- 4. What is RFLP? Explain how it is performed.
- 5. What is ELISA? Explain its application with one example.
- 6. Differentiate between PCR and immuno PCR.

- 7. What are the applications of PCR?
- 8. What are the applications of immuno PCR?
- 9. Explain the utility of MAb in the treatment of cancers and other diseases.
- 10. What is hybridoma? How is it helpful in production of MAb?
- 11. What is LCR? Explain with one example.
- 12. Discuss the protocol for the development of a labelled probe.

Laboratory Exercise

- 1. Perform PCR for a given sample.
- 2. Perform ELISA to detect antigen in a given sample.