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CHAPTER OBJECTIVES
After reading this chapter, the readers will be able to understand
• the fundamentals of mechanics of rigid bodies
• how dimensional analysis can be useful in understanding equations of

an engineering problem
• different laws and principles to study the conditions of equilibrium,

motion, and inertial effects on a body
• how vector mathematics can be used to solve the problems of mechanics

1.1 INTRODUCTION
Mechanics is the science that describes and predicts the conditions of inertia and
motion of bodies due to the action of forces.

1.1.1 Mechanics and Its Classification
Depending upon the nature of the body, the transmission of forces may cause the
body to deform internally or may not produce any deformation but the body may
tend to move due to it. Accordingly, the subject of mechanics can be broadly
classified into

(a) Mechanics of rigid bodies
(b) Mechanics of deformable bodies
(c) Mechanics of fluids
The broad classifications of mechanics are shown in Fig. 1.1. General rigid

body mechanics is divided into two groups, namely statics and dynamics. In this
part of study of mechanics, the body is assumed to be perfectly rigid. In mechanics
of machines, we study kinematics and dynamics, which deal with rigid bodies to
obtain desired motion by transmission of forces (for example, mechanism that
converts reciprocatory motion into rotary motion). In practice, structures and
machines are never absolutely rigid and undergo small deformations under the
action of external loads. Since the deformations are very small, they do not
appreciably affect the condition of equilibrium, which may be under static loading
or motion of the structure under dynamic loading.

© Oxford University Press. All rights reserved.



2 Engineering Mechanics

As far as the resistance of a structure to failure is concerned, it is important to
relate the deformation to external loading and geometry of the structure and these
are being studied in a separate subject called mechanics of deformable bodies.
Strength of materials and theory of elasticity deal with deformable bodies under
static loading and recoverable shapes after unloading.

Theory of plasticity deals with deformable bodies under static loading and
irrecoverable shapes after unloading. Mechanics of fracture deals with deform-
able physical bodies containing a definite size of crack and subjected to static or
dynamic loading and the recoverable or irrecoverable shapes after unloading.
Theory of vibrations deals with deformable bodies under dynamic loading and
recoverable shapes after unloading.

Another part of mechanics is mechanics of fluids, which deals with the fluids
having no heat transfer into or out of the system consisting of static fluid or fluid
flow. Again, this particular subject can be subdivided into the study of incom-
pressible fluids (hydraulics, which deals with problems involving liquids) and
compressible fluids. Thermodynamics, heat and mass transfer, and refrigeration
and air conditioning, etc. deal with fluids considering the effect of heat transfer
into or out of the system.

1.1.2 Historical Development of Mechanics
Many researchers have contributed various concepts of rigid body mechanics to
establish this particular course, which is being studied as rigid body mechanics
or engineering mechanics at undergraduate level.

Among various researchers, Archimedes (287–212 BC) developed the concept
of buoyancy forces. Kepler (1571–1630) established the fundamentals of astronomy
for planetary motion and the principles were named after him as Kepler’s laws.

Fig. 1.1 Mechanics and its classification
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Fundamentals of Mechanics 3

Newton (1642–1727) was the first person in history to establish the laws of
mechanics applicable to solids and his principles were named after him as
Newton’s three laws and the mechanics developed by him was called Newtonian
mechanics.

Bernoulli (1667–1748) developed the principle of virtual work, which is
applied in fluid mechanics as Bernoulli's equation for the total energy at any
point in a fluid flow.

D’Alembert (1717–1783) established a very important principle for a dynamic
system to be brought to equilibrium. His principle was named after him as
D’Alembert’s principle applied to a dynamic system.

1.1.3 Fundamental Concepts: Space, Time, Mass, and Force
In Newtonian mechanics, space, time, and mass are absolute quantities and
independent of each other.

Space is associated with the conception of the position of a point, say P.
Three coordinates, with reference to a particular point or the origin in three
mutually perpendicular directions, may define the position of P and are called
coordinates of P.

The time of an event in case of the dynamic condition of a point is to be
defined.

Mass is used to quantify the amount of resistance that is exerted by a body
while changing its state of rest or motion.

Force is defined as the ability to translate a body into action or as the action
of one body on another (for example, gravitational forces, magnetic forces, and
so on).

The force can be characterized with magnitude, point of application, and
direction. It is a vector quantity. A force on the xy-plane can be represented as

F = F
x

i + F
y
 j (1.1)

The magnitude of the resultant force F  is F Fx y
2 2+   and its direction with

respect to the x-axis is θ = tan–1 F
y 
/F

x  
as shown in Fig. 1.2.

Similarly, a force in the space can be represented with three components in
the x-, y-, and z-directions in vector form as

    F = F
x
 i + F

y
 j + F

x
 k (1.2)

The magnitude of the resultant

force F is F F Fx y z
2 2 2+ +   and its

directions with respect the to the x-,
y-, and z-axes respectively are θ

x

= cos–1 F
x
/ F, θ

y
 = cos–1 F

y
/ F, and θ

z

= cos–1 F
z
/ F, as shown in Fig. 1.3,

where cosθ
x
, cosθ

y
, and cosθ

z
 are

called directional cosines and are also
represented as l, m, and n respectively. Mathematically, it can be shown that

Fig. 1.2 Graphical representation of
a force on the xy-plane

Fy

Fx

i

F F F= +x y

2 2
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4 Engineering Mechanics

Fig. 1.3 Graphical representation of a force in space

1.1.4 Conceptualization of Rigid Body Mechanics
Rigid bodies are made up of atoms and molecules and these can be physically
defined by their shape. At micro-level, the behaviour of these atoms and molecules
is too complex to study and hence mass can be assumed to be continuously
distributed within the body. The body’s behaviour can be measured with its
dimension or position with respect to certain coordinate system and time. This
method of description of a body at its macro-level is called continuum. It can be
rigid or deformable, holding its shape or continuously deforming and changing
its shape depending upon the matter under study or consideration.

Rigid body mechanics
A body that does not undergo any deformation due to the action of the forces
applied on it is considered to be rigid. Or, in other words, if the deformation of a
body due to the external forces applied on it is negligible as compared with its
dimension/shape, then the body can be considered as rigid. Hence, the system of
external forces and moments due to the forces applied over the body and its
support reaction keep the body in equilibrium under static condition.

A system of external forces and moments due to the forces applied over the
body will be in equilibrium with its inertia forces and inertia moments respectively
under dynamic condition of the body.

Generally, a system of non-concurrent forces, which may be of coplanar or
non-coplanar forces (discussed later in Chapter 2, Section 2.1.1), is discussed
under rigid body mechanics.

Particle mechanics
A body is idealized as a particle when the whole mass of the body is concentrated
at its centroid and lines of action of a system of forces, including the support
reactions applied on the body, pass through the centroid. These forces have only
the force effect on the body and no moment effect. Generally, a system of
concurrent forces, which may be of coplanar or non-coplanar forces, is discussed
under particle mechanics.

l2 + m2 + n2 = 1 (1.3)
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Fundamentals of Mechanics 5

Mechanics of statics
If in a body, the external forces, support reactions, moments due to forces, and
reaction moments at supports, which are acting on the body, keep the body in
equilibrium, then the body is said to be in static condition. A body moving with
constant velocity is also treated as an equivalent static problem. The equilibrium
conditions for various cases are discussed below.

(i) A plane body idealized as a particle and applied with a system of
concurrent, coplanar forces, as shown in Fig. 1.4, should satisfy the
following equilibrium conditions:

∑F
x
 = 0 and ∑F

y
 = 0 (1.4)

(ii) A plane body idealized as a particle and applied with a system of
concurrent, non-coplanar forces, as shown in Fig. 1.5, should satisfy the
following equilibrium conditions:

∑F
x
 = 0, ∑F

y
 = 0, and ∑F

z
 = 0 (1.5)

Fig. 1.4 A system of con-
current, coplanar
forces

Fig. 1.5 A system of concurrent,
non-coplanar forces

(iii) A rigid body idealized as a plane rigid body and applied with a system
of non-concurrent, coplanar forces, as shown in Fig. 1.6, should satisfy
the following equilibrium conditions:

∑F
x
 = 0, ∑F

y
 = 0, and ∑M

about any point
 = 0 (1.6)

Fig. 1.6 A system of
non-concurrent,
coplanar forces

Fig. 1.7 A system of non-
concurrent, non-
coplanar forces

(iv) A rigid body applied with a system of non-concurrent, non-coplanar
forces, as shown in Fig. 1.7, should satisfy the following equilibrium
conditions:
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6 Engineering Mechanics

∑F
x
 = 0, ∑F

y
 = 0, ∑F

z
 = 0, ∑M

x
 = 0, ∑M

y
, and ∑M

z
 = 0 (1.7)

Mechanics of dynamics
In a body applied with external forces and support reactions, the moments due to
forces and reaction moments at supports will cause the body to accelerate or
decelerate in the direction along which it can move. However, a body getting
translated or rotated or getting both translated and rotated (general plane motion)
will be under equilibrium with its inertia forces and inertia moments.

Dynamics is divided into two groups— kinematics and kinetics.
Under kinematics, only the geometry of the motion relating to the various

motion parameters, such as position, velocity, and acceleration of the body, with
respect to time is studied irrespective of the cause of the motion (which is either
forces or the moments due to forces).

Under kinetics, the geometry of the motion such as acceleration relating to
the cause of the motion, which is either force or moment due to force, is studied.

A body under constant acceleration with constraints has the following cases,
which can be discussed for dynamic equilibrium over the period of time.

(a) A plane body idealized as a particle under the action of concurrent,
coplanar forces should satisfy the following dynamic and static
equilibrium conditions for different cases.
(i) For the case when the body is free to move in the x-direction and

constrained to move in the y-direction as shown in Fig. 1.8, the
dynamic and static equilibrium conditions can be written as

∑F
x 
= ma

x 
and  ∑F

y
 = 0 (1.8)

(ii) For the case when the body is free to move in the y-direction and
constrained to move in the x-direction as shown in Fig. 1.9, the
dynamic and static equilibrium conditions can be written as

∑F
x
 = 0 and ∑F

y
 = ma

y
(1.9)

(iii) If the body is free to move in an inclined direction and constrained
to move in the direction perpendicular to the inclined plane as shown
in Fig. 1.10, the equilibrium conditions can be written as

∑F
along the motion 

= ma
along the motion

 and ∑F⊥ to the motion 
= 0 (1.10)

Fig. 1.8 A system of concurrent, coplanar forces causing the body to accelerate
in the x-direction
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(b) A body idealized as a particle under the action of concurrent, non-
coplanar system of forces should satisfy the following dynamic and static
equilibrium conditions for the different cases.
(i) For the case when the body is free to move in the x-direction and

constrained to move in the y- and z-directions, the dynamic and
static equilibrium conditions can be written as

∑F
x
 = ma

x
, ∑F

y
 = 0,  and ∑F

z
 = 0 (1.11)

(ii) For the case when the body is free to move in the y-direction and
constrained to move in the x- and z-directions, the dynamic and
static equilibrium conditions can be written as

∑F
x
 = 0, ∑F

y
 = ma

y
, and ∑F

z
 = 0 (1.12)

Fig. 1.9 A system of concurrent, coplanar forces causing the body
to accelerate in the y-direction

Fig. 1.10 A system of concurrent, coplanar forces causing the body to
accelerate along the plane

(iii) For the case when the body is free to move in the z-direction and
constrained to move in other two perpendicular directions, the
dynamic and static equilibrium conditions can be written as

∑F
x
 = 0, ∑F

y
 = 0, and ∑F

z
 = ma

z
(1.13)
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(iv) For the case when the body is free to move in an inclined direction
and constrained to move in other two perpendicular directions to the
inclined plane, the dynamic and static equilibrium conditions can be
written as

∑F
along motion

 = ma
along motion

, ∑F⊥-I to the motion
 = 0,

and ∑F⊥-II to the motion
 = 0 (1.14)

(c) A plane body under the action of non-concurrent, coplanar system of
forces should satisfy the following dynamic and static equilibrium
conditions for different cases.
(i) For the case when the body is free to translate in the x-direction and

constrained to move in the y-direction and constrained to rotate about
the z-axis, the dynamic and static equilibrium conditions can be
written as

∑F
x
 = ma

x
, ∑F

y
 = 0, and ∑M

about z-axis taken at any point
 = 0 (1.15)

(ii) For the case when the body is free to translate in the x-direction and
constrained to move in the y-direction and free to rotate about the
z-axis, the dynamic and static equilibrium conditions can be written as

∑F
x
 = ma

x
, ∑F

y
 = 0, and ∑M

about z-axis and along rotation
 = Iα

along motion
     (1.16)

where I is the mass moment of inertia of an axis about which the body
is rotating.

Similarly, the equilibrium equations can be written for the case when the body
is free to translate in the y-direction and constrained to move in the x-direction
and either free to rotate or constrained to rotate about the z-axis.

(d) A solid body under the action of non-concurrent coplanar or non-
coplanar system of forces should satisfy the equilibrium conditions
according to the constraints. The static and dynamic equilibrium
equations for the same can be written accordingly as discussed above.

1.2 UNITS AND DIMENSIONS
1.2.1 System of Units (SI Units)
In Section 1.1.3, the four fundamental concepts, namely space, time, mass,
and force, were introduced. The space (which is referred in terms of length),
time, and mass are called base units, whereas the unit of force is a derived one.
Force is equal to the multiplication of mass and acceleration. A force of 1 N
gives an acceleration of 1 m/s2 for a body of mass of 1 kg (Fig. 1.11). Similarly,
when a body of mass 1 kg falls freely, it accelerates with 9.81 m/s2 and exerts
the force of 9.81 N, which is called the weight of the body, as shown in Fig.
1.12.

Fig. 1.11 One newton force accelerates the mass of 1 kg with 1 m/s2
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Fig. 1.12 A body of 1 kg mass accelerates with 9.81 m/s2 and exerts a
force of 9.81 N

The following four systems of units were generally followed:
(a) SI units: International system of units
(b) MKS units: Metre, kilogram, second system
(c) CGS units: Centimetre, gram, second system
(d) FPS units: Foot, pound, second system
Presently, the SI system of units is followed in many countries and hence in

this textbook the same SI units are used. The important SI units used for various
quantities that are used in mechanics are given in Table 1.1. In addition to the SI
units for various quantities, some prefixes, which are given in Table 1.2, are also
used under the SI system of units to represent very large or very small numbers.
For example, Young’s modulus of steel may be given as 200 GPa and it is equal
to 200 × 109 N/m2. Yield strength of steel may be given as 250 MPa, which is
equal to 250 × 106 N/m2. Speed may be given, for example, as 100 kmph, which
is equal to 100 × 1000 / 3600 m/s.

Table 1.1 Various quantities used in mechanics and their SI units

Sl. Quantity Dimensions in Unit Representation
No. terms of MLT of the unit

Base units
1 Length L Metre m
2 Mass M Kilogram kg
3 Time T Second s

Derived units
4 Area L2 Square metre m2

5 Acceleration LT–2 Metre per square second m/s2

6 Angle – Radian rad
7 Angular velocity T–1 Radian per second rad/s
8 Angular acceleration T–2 Radian per square second rad/s2

9 Area moment of L4 (metre)4 m4

inertia
10 Absolute viscosity ML–1T–1 Newton-second N-s/m2

per square metre or or
Pascal-second Pa-s

11 Density ML–3 Kilogram per cublic metre kg/m3

12 Energy/work ML2T–2 Joule J

Table 1.1 contd.
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13 Flow rate or discharge L3T–1 Cubic metre per second m3/s
14 Frequency T–1 Hertz (cycles per second) 1/s
15 Force/weight MLT–2 Newton N
16 Impulse/momentum MLT–1 Newton-second Ns or kg-m/s
17 Kinematic viscosity L2 T–1 Square metre per second m2/s
18 Mass moment of inertia ML2 Kilogram-Square metre kg-m2

19 Modulus of elasticity/ ML–1 T–2 Pascal N/m2 or
modulus of rigidity Pa

20 Moment of force ML2 T–2 Newton-metre N-m
21 Pressure/Stress ML–1T–2 Pascal N/m2 or Pa
22 Power ML2 T–3 Watt W or J/s
23 Specific weight ML–2 T–2 Newton per cubic metre N/m3

24 Surface tension MT–3 Newton per metre N/m
25 Volume of a solid L3 cubic metre m3

26 Volume of a liquid L3 Litre 10–3 m3

(1000 cubic
centimetre)

27 Velocity LT–1 Metre per second m/s

Table 1.2 Various prefixes used in the SI system

Sl. No. Prefix Value Symbol used

1 Nano 10–9 n
2 Micro 10–6 μ
3 Milli 10–3 m
4 Kilo 103 k
5 Mega 106 M
6 Giga 109 G

1.2.2 Conversion of One System of Units to Another
Let us take an example. The SI unit of pressure is Pa or N/m2.

This unit can be converted into a different unit in terms of N/mm2 as follows:
1 N/m2 = 1 N/(1000 mm)2 = 1×10–6 N/mm2

or 1 N/mm2 = 1×106 N/m2 = 1 MPa
Thus, a unit in one system can be converted into its equivalent in other system.

The US customary units and their SI equivalents are given in Table 1.3.

Table 1.3 US customary FPS units and their SI equivalents

Sl. No. Quantity US customary unit SI equivalent
1 Acceleration ft/s2 0.3048 m/s2

in/s2 0.0254 m/s2

2 Area ft2 0.0929 m2

in2 645.2 mm2

3 Energy lb-ft 1.356 J

Table 1.1 contd.

Sl. Quantity Dimensions Unit Representation
No. in terms of of the unit

MLT

Table 1.3 contd.
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4 Force kip 4.448 kN
lb 4.448 N
oz 0.2780 N

5 Impulse lb-s 4.448 N-s
6 Length ft 0.3048 m

1.2.3 Dimensional Analysis
Dimensions of various quantities are given in Table 1.1 in terms of absolute
MLT (mass, length, and time) system. There is another system called gravitational
FLT (force, length, and time) system to represent various quantities. The absolute
MLT system is generally followed. The variables governing the phenomena
expressed in a mathematical equation give the relationship between the variables.
The variables of the equation may be dimensional or non-dimensional. The
qualitative description of the a variable/quantity is known as dimension and the
quantitative description is called unit. For example, the weight of a body, which
is equal to the product of its mass and the acceleration due to gravity, has the
dimension MLT–2. If the mass of the body is 1 kg, then its weight equals 1 kg ×
9.81 m/s2 = 9.81 N, which is the quantitative value in the SI system of unit.

To be correct, the governing equation should satisfy the dimensions on both
sides of the equation. This condition is called dimensional homogeneity.

Using dimensional analysis, the dimensions of unknown variables can be
determined for physical phenomenon that is expressed in mathematical equation.
The homogeneous equation of a physical phenomenon can be converted into a non-
dimensional form. For example, the deflection of a helical spring is expressed as

δ = 
8 3

4

FD n

Gd
(1.17)

where δ is the deflection, F is the force, D is the mean diameter of the coil, n is
the total number of turns of the coil, d is the diameter of the wire of the helical
spring, and G is the shear modulus of the spring material.

Substituting the dimensions in Eq. (1.17),

L  = 
( )-2 3

-2
4

2

MLT L

MLT
L

L
 or L  =  L (1.18)

Example 1.1 Check the dimensional homogeneity for the equation
v2 – u2 = 2aS, where S is the displacement travelled by the particle when the
velocity of the particle changes from u to v with constant acceleration of a.

Solution Substituting the dimensions in the given equation,

(LT–1)2 – (LT–1)2 = (LT–2)L
or L2T–2 – L2T–2 = L2T–2

or L2T–2 = L2T–2 (1.19)

Table 1.3 contd.

Sl. No. Quantity US customary unit SI equivalent
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1.3 LAWS OF MECHANICS
Following are the fundamental laws/principles of mechanics:
(a) Newton’s first law (b) Newton’s second law
(c) Newton’s third law (d) Lami’s theorem
(e) Parallelogram law for addition of forces (f) Triangular law of forces
(g) Principle of transmissibility (h) Newton's law of gravitation

1.3.1  Newton's Laws
Newton’s first, second, and third laws are discussed below.

Newton’s first law of motion If a body has the state of rest or uniform motion,
then it will continue to have the same state of condition until and unless an
external force influences it.

Newton’s second law of motion When a body is under acceleration or decel-
eration, then the rate of change of momentum of the body in the direction of the
motion is equal to the algebraic sum of the forces acting along the same direc-
tion of the motion. For the case of a rigid body,

∑F
along motion

 = 
d

dt
(mV) = ma

along motion
(1.20)

Newton’s third law of motion The action of forces and the reaction developed
have the same magnitude and are opposite to each other, and they lie along the
same line of action. In simple terms, for every action, there is an equal and
opposite reaction. For example, when a gun is fired, the spring force on the
bullet that is in contact with the surface of the barrel develops the reactive force,
which kicks the shoulder.

1.3.2 Lami’s Theorem
Lami’s theorem states that ‘if three forces acting on a particle are in equilibrium,
then each force is proportional to the sine of the angle between the other two
forces’.

Explanation
Three  concurrent, coplanar forces, which
are acting at a point with their directions
represented away from the point, keep the
point in static equilibrium. According to
Lami’s theorem, for the forces as shown
in Fig. 1.13, each force is proportional to
the sine of the included angle between the
other two forces. This is basically the
trigonometric sine rule applicable to a
triangle.

Mathematically, Lami’s theorem can be
written as

Fig. 1.13 Equilibrium of three
concurrent, coplanar
forces: Lami’s theorem

F
1

F
3

O

F
2

i
1

i
3

i
2

© Oxford University Press. All rights reserved.



Fundamentals of Mechanics 13

Fig. 1.15 Finding resultant of two forces by the triangular law of forces

31 2

1 2 3sin sin sin

FF F

θ θ θ
= = (1.21)

1.3.3 Parallelogram Law for Addition of Forces
According to this law, if an
equivalent single force,
which is called resultant,
can replace the two forces
acting on a particle, then
the resultant can be found
by drawing the diagonal of
the parallelogram, which
has sides equal to the
given forces. This is
illustrated in Fig. 1.14.

1.3.4 Triangular Law of Forces
This law states that if F

1
 and F

2
 are two forces acting on a particle that can be

represented by the two sides of a triangle in the magnitude and direction taken
one after the other, then the side that closes the triangle represents the resultant
in opposite direction. This is illustrated in Fig. 1.15.

Fig. 1.14 Two forces and their resultant
represented in a parallelogram

1.3.5 Principle of Transmissibility
According to this principle, ‘the condition of equilibrium or motion of a rigid
body will remain unchanged if the force acting at a point on the rigid body is
transmitted to another point on the same line of action in the same direction’.
For example, pushing a vehicle from behind has the same effect as if it is pulled
from front with the force of same magnitude and along the same line of action as
shown in Fig. 1.16.

1.3.6 Newton's Law of Gravitation
It states that the gravitational force of attraction between two bodies is
proportional to the product of the masses of the two bodies and inversely
proportional to the square of the distance between them. This law is illustrated
in Fig. 1.17.
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Fig. 1.16 Principle of transmissibility

Fig. 1.17 Newton’s law of gravitation

F F

m1

m2

F

–F

r

Mathematically, Newton’s law of
gravitation can be written as

F ∝ 
m m

r
1 2

2  ⇒ F = G 
m m

r
1 2

2   (1.22)

where G is the universal constant or
constant of gravitation. Its value is
equal to 66.73 × 10–12 m3/kg-s2.

If the particle lies on the earth, then
Eq. (1.22) can be rewritten for the force
of attraction by the earth on the particle
as

F = G 2

M m

R
(1.23)

where M is the mass of the earth in kg, which is equal to 5.98 × 1024 kg, m is the
mass of the particle, and R is the distance between the centre of the earth and the
centre of the particle and is equal to the radius of the earth (6.378 × 106 m).
Equation (1.23) can be further rewritten to calculate the weight of a body W of
mass m, which is on the earth, or the force of attraction F of the earth on the
particle as follows:

F = m 2

GM

R
⎛ ⎞
⎜ ⎟⎝ ⎠

 ⇒ W = mg (1.24)

where g is called the acceleration due to gravity and is equal to

Earth
2
Earth

GM

R

⎛ ⎞
⎜ ⎟
⎝ ⎠

 = 9.81 m/s2 (1.25)

All the principles discussed in this section will be introduced in subsequent
chapters as and when they are needed.

1.4 VECTOR OPERATIONS
In this section, we will deal with vector operations and vector representation of
quantities.

1.4.1 Addition and Subtraction
First we will discuss how vectors are added.
Addition
The parallelogram law or the traingular law can be used for vector addition. Two
vectors P and Q as shown in Fig. 1.18(a) can be added using the parallelogram
law. The vectors P and Q are joined at their tails and parallel lines are drawn
(shown with dotted lines) from the arrowhead of each vector as shown in Fig.
1.18(b) to form a parallelogram. The diagonal of the parallelogarm represents
the resultant force vector R of the two vectors, which is given by
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Fig. 1.19 Representation of forces using the parallelogram and triangular
vector subtraction

R = P + Q
Using the triangular law, the head of vector P is connected to the tail of Q as

shown in Fig. 1.18(c).
The resultant R can be obtained by connecting the head of vector Q to the tail

of P. In other way, R can be obtained from Fig. 1.18(d).
Hence, vector addition is commutative, i.e.,

R = P + Q = Q + P (1.26)

Subtraction
The parallelogram law or the triangular law can be used for vector subtraction.

From Figures 1.19(a), (b), and (c),

R = –P + Q = (–P) + Q
      = Q + (–P)

Fig 1.18 Representation of forces using the parallelogram and triangular laws:
vector addition

The vector subtraction is also commutative, similar to the vector addition.
Representation of a vector quantity (1D, 2D, or 3D) using unit vectors Unit
vectors, denoted by i, j, and k, are used to represent the direction along the x-, y-,
and z-axes respectively and their magnitudes are equal to 1. A one-dimensional
vector is represented with a unit vector of i. A two-dimensional vector is
represented with unit vectors of i and j. Similarly, a three-dimensional vector is
represented with unit vectors of i, j, and k. For example,

Velocity, V = 5i + 2j m/s (two-dimensional)
Force, F = 3i + 4j + 5k N (three-dimensional)
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Example 1.2 If P = 3i + 2j – 5k, Q = 5i + 3j – 3k, and R = 3i –5j + 2k,
find the vector 3P + Q –3R and its magnitude.

Solution We have

P = 3i + 2j –5k, Q = 5i + 3j –3k, and R = 3i –5j + 2k
So, 3P + Q –3R = (9i + 6j –15k) + (5i + 3j – 3k) – (9i –15j +6k)

= 5i + 24j – 24k (Ans)

Magnitude of 3P + Q –3R is ( ) ( )5 24 242 2 2+ + −  = 34.31 (Ans)

Example 1.3 Determine the unit vector parallel to the resultant of vec-
tors P = 3i + 6j –9k and Q = 3i + 3j +5k.

Solution Resultant vector R = P + Q = 6i + 9j – 4k

Magnitude of the resultant, R = ( )6 9 42 2 2+ + −  = 11.53

The unit vector parallel to R is 
6 9 4

=
11.53

+ -

R

R i j k

= 0.52i + 0.78j –0.34k (Ans)
To check the answer, the magnitude of the unit vector should be 1, i.e.,

( ) ( ) ( )0 52 0 78 0 342 2 2. . .+ + −  = 1

Example 1.4 Determine the unit vector parallel to the line that starts at
the point A whose position is defined as (x

A
, y

A
, z

A
) = (3, 2, –3) and passes

through the point B whose position is defined as (x
B
, y

B
, z

B
) = (2, 1, 6).

Solution The unit vector λλλλλAB
 parallel to the line AB is equal to 

AB
AB

.

AB = (x
B
 – x

A
)i + (y

B
 –y

A
)j + (z

B
 –z

A
)k

= (2 – 3)i + (1 – 2)j + [6 –(–3)]k   = –i – j + 9k

Magnitude of AB = |AB| = ( ) ( )− + − +1 1 92 2 2  = 9.11

So, the unit vector λλλλλ
AB

 = 
– – + 9

9.11

i j k

or λλλλλAB
 = – 0.1097i – 0.1097j + 0.988k (Ans)

1.4.2 Vector Representation of a Force
First we will discuss vector representation of a force on a plane.

A force on a plane (two-dimensional force)
Figure 1.20 illustrates the two-dimensional vector representation of a force.

In Fig. 1.20(a), the force vector F, which is in the first quadrant, has two
components along the x- and y-directions.
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Fig. 1.20 Vector representation of a force on a plane (two-dimensional force)

This can be represented in vector form as

F = F
x
i + F

y
j

   = (Fcosθ)i + (Fsinθ)j (1.27)

where F
x
 = Fcosθ and F

y
 = Fsinθ

Similarly, from Fig. 1.20(b),

F = (–Fcosθ)i + (Fsinθ)j

where F
x
= –Fcosθ and F

y
 = Fsinθ (1.28)

From Fig. 1.20(c),

F = (– Fcosθ)i + (– Fsinθ)j (1.29)

where F
x
 = –Fcosθ and F

y
 = –Fsinθ

From Fig. 1.20(d),

F = (F cosθ)i + (–Fsinθ)j (1.30)

where  F
x
 = Fcosθ and F

y
 = –Fsinθ
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Vector representation of a force in space (three-dimensional force)
Figure 1.21 illustrates the vector representation of a force in space.

Fig. 1.21 Representation of a force in space (three-dimensional force)

In Fig. 1.21, the force vector F is acting from the point P to the point C. Here,
λλλλλPC

 is a unit vector along the line PC.
Vector representation of the force F can be written as

F = (magnitude of F) λλλλλPC
(1.31)

where   λλλλλPC
 = 

Position vector of

Magnitude of

PC

PC (1.32)

Position vector PC = dx i + dy j + dz k (1.33)

Magnitude of PC = ( ) ( ) ( )dx dy dz2 2 2+ + (1.34)

Example 1.5 Express the vector form for a force of 200 N acting from
the point P(x

1
, y

1
, z

1
) = (0,0,0) to the point C(x

2
, y

2
, z

2
) = (2,3,4) cm.

Solution From Fig. 1.16 and Eq. (1.34),

Magnitude of PC = ( ) ( ) ( )x x y y z z2 1
2

2 1
2

2 1
2− + − + −

= 2 3 42 2 2+ +  = 5.38 cm

Unit vector λ λ λ λ λPC
 = Magnitudeof

dx dy dz+ +i j k
PC

= 
2 3 4

5.38

+ +i j k
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or   λλλλλPC
= 0.37i + 0.56j + 0.74k

From Eq. (1.31),

F = 200(0.37i + 0.56j + 0.74k)

or F = 74 i + 112j + 148.5 k (Ans)

Example 1.6 Position vectors of the points
A and B shown in Fig. 1.22 are given by r

1
 = 4i

+ 3j – 2k and r
2
 = 5i + 4j – 3.5k. Determine AB

in terms of i, j, k and also find the distance be-
tween the points A and B.

Solution We have
r

2
= r

1
 + AB

or AB = r
2
 – r

1

= (5i + 4j – 3.5k)
– (4i + 3j – 2k)

or AB = i + j –1.5k (Ans)

The distance AB = ( )1 1 152 2 2+ − − .  = 2.06 units (Ans)

Using the vector mathematics, the problems in subsequent chapters are worked
out.

1.4.3 Dot Product and Cross Product
We will first deal with dot product.

Dot product (scalar)
Let us consider two vectors P and Q as shown in Fig.
1.23. The dot product of these vectors is given by

P · Q = PQ cosθ (1.35)

Thus, the dot product of P and Q is equal to the
magnitude of P multiplied by the component Qcosθ of
vector Q in the direction of P or the magnitude of Q
multiplied by the component Pcosθ of P in the direction
of Q. It satisfies the commutative law, i.e.,

P · Q = Q · P (1.36)
For unit vectors,

i · i = j · j = k · k = 1 (1.37)
(since cos 0° = 1)

i · j = j · i = j · k = k · j = k · i = i · k = 0 (1.38)
(since cos 90° = 0)

The vectors P and Q can be expressed as

P = P
x 
i + P

y  
j + P

z 
k

and Q = Q
x
i + Q

y 
j + Q

z
k

So, P · Q = P
x
 Q

x
 + P

y
 Q

y
 + P

z
 Q

z
(1.39)

Also P · P = P
x
2 + P

y
2 + P

z
2 (1.40)

Fig. 1.22

Fig. 1.23
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Vectors also satisfy the distributive law, i.e.,

P · (Q + R) = P · Q + P · R (1.41)

Cross product (vector)
The cross product P × Q of two vectors P and Q is another vector and its magnitude
is given as

|P × Q| = PQ sinθ (1.42)
P  × Q = – Q × P (1.43)

The cross product satisfies the distributive law, i.e.,

P × (Q + R) = P × Q + P × R (1.44)

The vectors P and Q can be expressed as

P = P
x
i + P

y  
j + P

z
k

and Q = Q
x
i + Q

y 
j + Q

z
k

So, P × Q = (P
y
 Q

z
 – P

z
 Q

y
) i + (P

z
 Q

x
 – P

x
 Q

z
) j + (P

x
 Q

y
 – P

y
 Q

x
)k (1.45)

The cross product P × Q can be expressed in the determinant of matrix as

P × Q = x y z

x y z

P P P

Q Q Q

i j k

(1.46)

Applying Eq. (1.42) for unit vectors,
i × j  = k,   j × i = –k (1.47)
j × k = i,   k × j = –i (1.48)
k × i = j,   i × k = –j (1.49)

1.4.4 Vector Representation of Moment
A force can translate and rotate a body about an axis. This rotational tendency of
the force about an axis is called moment and is denoted by M. The moment is the
cross product of the position vector and the force vector:

M = r × F (1.50)

Figure 1.24 shows a force
vector F on a plane (two-
dimensional), which is acting
at a point defined by a position
vector r

OA
. The moment due to

the force about the z-axis,
which is perpendicular to the
plane taken at point O, can be
expressed as

M
z-axis taken at point O

 = r
OA

×F  (1.51)

where F = F
x 
i + F

y 
 j and

r
OA

 = dx i + dy j = x
1 
i + y

1  
j

Fig. 1.24 Force F on a plane acting at a point A
defined by a position vector rOA
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M
z-axis taken at point O

 = 
x y

F Fx y

1 1
(1.52)

Similarly, Fig. 1.25 shows force vector F in space (three-dimensional) acting
at a point defined by a position vector r

PC
 and the moment due to the force about

point P can be expressed as

M
P
 = r

PC
 × F (1.53)

where F = F
x 
i  + F

y 
 j + F

z 
k and r

PC
 = dx i + dy

 
 j + dz

 
k = x

1 
i + y

1 
 j + z

1 
k

Fig. 1.25 Force F in space acting at a point defined by a position vector rPC

From Eq. (1.46), the moment can be expressed in the determinant of matrix
form as

M
P
  = 1 1 1

i j k

x y z

x y z

F F F
(1.54)

Problems are worked out in Chapter 4 using Eq. (1.54) to find out the moment
of force about the origin.

1.5 HOW TO SOLVE AN ENGINEERING MECHANICS PROBLEM
Problems in engineering mechanics are to be approached as an actual engineerng
situation and with individual experience and common sense, it is easy to
understand and formulate the problem. The first step involved in formulating the
problem is stating the problem, which contains the given data and the details
regarding what is to be determined.

The physical quantities are to be represented in a neat line diagram. The
independent line diagrams for all the bodies representing the magnitudes and the
directions of the forces acting on the body (which are known as free-body
diagrams) are to be drawn.

The next step is the solution part, which is based on the fundamental principles/
laws of mechanics stated in Section 1.3. They are used further in later chapters
to write a set of equations for a given numerical data of the problem. Thus, by
solving the equations, the required unknown values could be found out. Use of
suitable principles and correct computations in practical engineering problems
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are highly important since they influence the design safety of the structure and
its behaviour as well as the manufacturing cost of the entire structure. Most
static problems of rigid body mechanics are related to the mass, geometry, and
type of the constraints/supports of the body. For these problems, the reaction
forces and reaction moments that are developed can be determined by using the
static equilibrium equations. After finding the support reactions, supports can be
designed for the structure.

The dynamic problems of rigid body mechanics can be solved by two methods:
force (or moment due to force) method and energy method.

The solution to the dynamic problems is also related with the mass and
geometry of the body, geometry of the motion (rectilinear/curvilinear/projectile),
type of the motion (uniform motion/uniformly accelerated motion/uniformly
decelerated motion/combination of acceleration and deceleration, uniform motion,
etc.), external forces, and reactions, and moments due to the forces.

Kinematics of a body can be expressed in terms of mathematical equations
relating to its position, distance travelled, velocity, and acceleration with respect
to time. Kinetics of a body can be expressed in terms of mathematical equations
relating to the geometry of the motion (acceleration/deceleration) and mass of
the body, to determine the inertia forces/inertia moments of the body under motion
satisfying the condition of the dynamic equilibrium. Further, the body may be in
static equilibrium in the directions perpendicular to the motion. From all these
relations, a set of equations is formulated, which will be solved to determine the
unknown quantities in a specific problem.

In a similar way, an alternate energy method can be utilized to formulate a set of
equations to a specific problem from which the unknown quantities can be found.

Recapitulation
• Mechanics of bodies is classified as mechanics of rigid bodies, mechanics of

deformable bodies, and mechanics of fluids.
• In engineering mechanics, depending on the nature of the external forces applied

on the body, bodies are idealized as particle and rigid body. Hence, this subject
is studied under two groups—particle mechanics and rigid body mechanics.

• The fundamental laws/principles of mechanics are
(i) Newton’s three laws of motion
(ii) Lami’s theorem
(iii) Parallelogram law for addition of forces
(iv) Triangular law of forces
(v) Principle of transmissibility
(vi) Newton's law of gravitation

• Various systems of units are SI, MKS, CGS, and FPS.
• A body is idealized as a ‘particle’ in statics when its shape and size does not

affect the solution to the given problem and the mass of the body is assumed
to be concentrated to a specific point. When a system of concurrent forces is
applied on a body, then the body can be idealized as a particle.

• The idealizing situation of a rigid body is that the shape and size of the body
will not change at any condition of loading. A rigid body undergoes deformation
and changes its shape under a system of external forces acting on it. The
deformation and the change in shape are small and have negligible effect to
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develop the reactions required to maintain the equilibrium conditions of the
body. And hence in a structure of engineering applications, the members of the
structure are assumed to be rigid and the reactions at contact points are
determined. In rigid body mechanics, the effects of a system of non-concurrent,
coplanar or non-concurrent, non-coplanar forces acting on a body are studied.

• Statics of rigid body deals with a system of external forces applied on a body
in equilibrium with support reactions along the constrained direction. Further,
considering the unconstrained directions to be the directions perpendicular to
the constrained directions along which the condition of equilibrium is to be
justified.

• Dynamics of rigid body is studied under two groups, namely kinematics and
kinetics. Kinematics deals with the geometry of the motion such as position/
distance travelled, and velocity and acceleration of the body with respect to
time irrespective of the cause of the motion (force or moment due to the force).
In kinetics, the geometry of the motion, such as acceleration/deceleration, is
related with the cause of the motion (force or moment due to the force) by
which it satisfies the condition of the dynamic equilibrium.

• Vector addition and subtraction can be expressed as R = P + Q and R = P – Q.
• Vector representation of a force in one dimension, two dimensions (on a plane),

and three dimensions (in space) can be expressed respectively as F = F
x
i, F =

F
x
i + F

y 
j, and F = F

x
i + F

y 
j + F

z
k, where F

x
, F

y
, and F

z
 are the forces along

the x-, y-, and z-directions, respectively.

• The unit vector λλλλλ
AB

 of line AB whose coordinates are (x
A
, y

A
, z

A
) and (x

B
, y

B
, z

B
)

is equal to AB/|AB|, where
AB = (x

B
 – x

A
) i + (y

B
 – y

A
) j + (z

B
 – z

A
) k

and |AB| = ( ) ( ) ( )x x y y z zB A B A B A− + − + −2 2 2

A force of magnitude F acting along line AB can be expressed in vector form
as F = F(λλλλλ

AB
) = F [(x

B
 – x

A
) i + (y

B
 – y

A
) j + (x

B
 – z

A
)k].

• Moment can be expressed in vector form as M = M
x 
i + M

y  
j + M

z 
k, where M

x
,

M
y
, and M

z
 are moments due to force about the x-, y-, and z-axes respectively.

• Moment about the origin O due to the force F = F
x
i + F

y 
 j + F

z 
k, which is

acting at a point, say A, whose coordinates are (x
A
, y

A
, z

A
), can be expressed as

determinent of the matrix as

M
O
 = 

i j k

A A A

x y z

x y z

F F F

• The problem-solving technique in engineering mechanics involves first drawing
free-body diagram(s) showing the forces and the moments due to the forces
with their directions. In case of static problems, a set of equations can be
formulated by satisfying the equilibrium conditions and hence the unknown
quantities of the problem can be found. In case of dynamic problems, a set of
equations can be formulated in terms of kinematics and kinetics of the body
satisfying the condition of the dynamic equilibrium along the direction of the
motion and of the static equilibrium in the direction perpendicular to the motion.
From these equations, the unknown quantities of the problem can be found.
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Review Questions
1. Differentiate between rigid body, deformable body, and fluid.
2. Differentiate between statics and dynamics of rigid body.
3. Define force and its units.
4. How is a force represented in vector form?
5. Differentiate between particle and rigid body.
6. Write the dimensions in MLT system for the following quantities:

(i) Acceleration (ii) Force (iii) Moment
7. What is Lami’s theorem?
8. Define unit vector.
9. How can the force shown in Fig. 1.26 be represented in vector form?

Fig. 1.26

Ans: 200 cosθ i + 200 sinθj
10. ‘Most of the mechanics problems are governed by equilibrium conditions’. Do

you agree? Justify your answer.
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