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In this chapter we shall discuss certain basic aspects of signals. We shall also
introduce important basic concepts and qualitative explanations of the how’s and
why’s of systems theory, thus building a solid foundation for understanding the
quantitative analysis in the remainder of the book.

Signals

A signal, as the term implies, is a set of information or data. Examples include
a telephone or a television signal, monthly sales of a corporation, or the daily closing
prices of a stock market (e.g., the Dow Jones averages). In all these examples, the
signals are functions of the independent variable time. This is not always the case,
however. When an electrical charge is distributed over a body, for instance, the
signal is the charge density, a function of space rather than time. In this book
we deal almost exclusively with signals that are functions of time. The discussion,
however, applies equally well to other independent variables.

Systems

Signals may be processed further by systems, which may modify them or
extract additional information from them. For example, an antiaircraft gun operator
may want to know the future location of a hostile moving target that is being tracked
by his radar. Knowing the radar signal he knows the past location and velocity of
the target. By properly processing the radar signal (the input) he can approximately
estimate the future location of the target. Thus, a system is an entity that processes
a set of signals (inputs) to yield another set of signals (outputs). A system may be
made up of physical components, as in electrical, mechanical, or hydraulic systems
(hardware realization), or it may be an algorithm that computes an output from
an input signal (software realization).

1
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2 1 Introduction to Signals and Systems

1.1 Size of a Signal

The size of any entity is a number that indicates the largeness or strength of
that entity. Generally speaking, the signal amplitude varies with time. How can a
signal that exists over a certain time interval with varying amplitude be measured
by one number that will indicate the signal size or signal strength? Such a measure
must consider not only the signal amplitude, but also its duration. For instance, if
we are to devise a single number V as a measure of the size of a human being, we
must consider not only his or her width (girth), but also the height. If we make a
simplifying assumption that the shape of a person is a cylinder of variable radius r
(which varies with the height h) then a reasonable measure of the size of a person
of height H is the person’s volume V , given by

V = π

∫ H

0
r2(h) dh

Signal Energy

Arguing in this manner, we may consider the area under a signal f(t) as a
possible measure of its size, because it takes account of not only the amplitude, but
also the duration. However, this will be a defective measure because f(t) could be
a large signal, yet its positive and negative areas could cancel each other, indicating
a signal of small size. This difficulty can be corrected by defining the signal size
as the area under f2(t), which is always positive. We call this measure the signal
energy Ef , defined (for a real signal) as

Ef =
∫ ∞
−∞

f2(t) dt (1.1)

This definition can be generalized to a complex valued signal f(t) as

Ef =
∫ ∞
−∞

|f(t)|2 dt (1.2)

There are also other possible measures of signal size, such as the area under |f(t)|.
The energy measure, however, is not only more tractable mathematically, but is
also more meaningful (as shown later) in the sense that it is indicative of the energy
that can be extracted from the signal.

Signal Power

The signal energy must be finite for it to be a meaningful measure of the signal
size. A necessary condition for the energy to be finite is that the signal amplitude
→ 0 as |t| → ∞ (Fig. 1.1a). Otherwise the integral in Eq. (1.1) will not converge.

In some cases, for instance, when the amplitude of f(t) does not → 0 as |t| → ∞
(Fig. 1.1b), then, the signal energy is infinite. A more meaningful measure of the
signal size in such a case would be the time average of the energy, if it exists. This
measure is called the power of the signal. For a signal f(t), we define its power Pf

as

Pf = lim
T→∞

1
T

∫ T/2

−T/2
f2(t) dt (1.3)
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1.1 Size of a Signal 3

(b)

 f  ( t )
(a)

t

 f  ( t )

t

Fig. 1.1 Examples of Signals: (a) a signal with finite energy (b) a signal with finite
power.

We can generalize this definition for a complex signal f(t) as

Pf = lim
T→∞

1
T

∫ T/2

−T/2
|f(t)|2 dt (1.4)

Observe that the signal power Pf is the time average (mean) of the signal amplitude
squared, that is, the mean-squared value of f(t). Indeed, the square root of Pf is
the familiar rms (root mean square) value of f(t).

The mean of an entity averaged over a large time interval approaching infinity
exists if the entity is either periodic or has a statistical regularity. If such a condition
is not satisfied, the average may not exist. For instance, a ramp signal f(t) = t
increases indefinitely as |t| → ∞, and neither the energy nor the power exists for
this signal.

Comments
The signal energy as defined in Eq. (1.1) or Eq. (1.2) does not indicate the

actual energy of the signal because the signal energy depends not only on the signal,
but also on the load. It can, however, be interpreted as the energy dissipated in a
normalized load of a 1-ohm resistor if a voltage f(t) were to be applied across the
1-ohm resistor (or if a current f(t) were to be passed through the 1-ohm resistor).
The measure of “energy” is, therefore indicative of the energy capability of the
signal and not the actual energy . For this reason the concepts of conservation of
energy should not be applied to this “signal energy”. Parallel observation applies
to “signal power” defined in Eq. (1.3) or (1.4). These measures are but convenient
indicators of the signal size, which prove useful in many applications. For instance, if
we approximate a signal f(t) by another signal g(t), the error in the approximation
is e(t) = f(t) − g(t). The energy (or power) of e(t) is a convenient indicator of
the goodness of the approximation. It provides us with a quantitative measure of
determining the closeness of the approximation. In communication systems, during
transmission over a channel, message signals are corrupted by unwanted signals
(noise). The quality of the received signal is judged by the relative sizes of the

© Oxford University Press. All rights reserved.



4 1 Introduction to Signals and Systems

t0

(a)

2 4− 1

f ( t )

2e − t / 2

f ( t )

t

0 1 32−1− 2− 3− 4 4

−1

1 (b)1

2

Fig. 1.2 Signals for Example 1.1.

desired signal and the unwanted signal (noise). In this case the ratio of the message
signal and noise signal powers (signal to noise power ratio) is a good indication of
the received signal quality.

Units of Energy and Power: Equations (1.1) and (1.2) are not correct dimen-
sionally. This is because here we are using the term energy not in its conventional
sense, but to indicate the signal size. The same observation applies to Eqs. (1.3)
and (1.4) for power. The units of energy and power, as defined here, depend on
the nature of the signal f(t). If f(t) is a voltage signal, its energy Ef has units of
V 2s (volts squared-seconds) and its power Pf has units of V 2 (volts squared). If
f(t) is a current signal, these units will be A2s (amperes squared-seconds) and A2

(amperes squared), respectively.

Example 1.1
Determine the suitable measures of the signals in Fig 1.2.
In Fig. 1.2a, the signal amplitude → 0 as |t| → ∞. Therefore the suitable measure

for this signal is its energy Ef given by

Ef =
∫ ∞

−∞
f2(t) dt =

∫ 0

−1

(2)2 dt +
∫ ∞

0

4e−t dt = 4 + 4 = 8

In Fig. 1.2b, the signal amplitude does not → 0 as |t| → ∞. However, it is periodic, and
therefore its power exists. We can use Eq. (1.3) to determine its power. We can simplify
the procedure for periodic signals by observing that a periodic signal repeats regularly
each period (2 seconds in this case). Therefore, averaging f2(t) over an infinitely large
interval is identical to averaging this quantity over one period (2 seconds in this case).
Thus

Pf =
1
2

∫ 1

−1

f2(t) dt =
1
2

∫ 1

−1

t2 dt =
1
3

Recall that the signal power is the square of its rms value. Therefore, the rms value of
this signal is 1/

√
3.
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1.1 Size of a Signal 5

Example 1.2
Determine the power and the rms value of
(a) f(t) = C cos (ω0t+θ) (b) f(t) = C1 cos (ω1t+θ1)+C2 cos (ω2t+θ2) (ω1 �= ω2)

(c) f(t) = Dejω0t.
(a) This is a periodic signal with period T0 = 2π/ω0. The suitable measure of this

signal is its power. Because it is a periodic signal, we may compute its power by averaging
its energy over one period T0 = 2π/ω0. However, for the sake of demonstration, we shall
solve this problem by averaging over an infinitely large time interval using Eq (1.3).

Pf = lim
T→∞

1
T

∫ T/2

−T/2

C2 cos2(ω0t + θ) dt = lim
T→∞

C2

2T

∫ T/2

−T/2

[1 + cos (2ω0t + 2θ)] dt

= lim
T→∞

C2

2T

∫ T/2

−T/2

dt + lim
T→∞

C2

2T

∫ T/2

−T/2

cos (2ω0t + 2θ) dt

The first term on the right-hand side is equal to C2/2. Moreover, the second term is zero
because the integral appearing in this term represents the area under a sinusoid over a
very large time interval T with T → ∞ . This area is at most equal to the area of half the
cycle because of cancellations of the positive and negative areas of a sinusoid. The second
term is this area multiplied by C2/2T with T → ∞. Clearly this term is zero, and

Pf =
C2

2
(1.5a)

This shows that a sinusoid of amplitude C has a power C2/2 regardless of the value of its
frequency ω0 (ω0 �= 0) and phase θ. The rms value is C/

√
2. If the signal frequency is zero

(dc or a constant signal of amplitude C), the reader can show that the power is C2.

(b) In Chapter 4, we show that a sum of two sinusoids may or may not be periodic,
depending on whether the ratio ω1/ω2 is a rational number or not. Therefore, the period
of this signal is not known. Hence, its power will be determined by averaging its energy
over T seconds with T → ∞. Thus,

Pf = lim
T→∞

1
T

∫ T/2

−T/2

[C1 cos (ω1t + θ1) + C2 cos (ω2t + θ2)]2 dt

= lim
T→∞

1
T

∫ T/2

−T/2

C1
2 cos2(ω1t + θ1) dt + lim

T→∞
1
T

∫ T/2

−T/2

C2
2 cos2(ω2t + θ2) dt

+ lim
T→∞

2C1C2

T

∫ T/2

−T/2

cos (ω1t + θ1) cos (ω2t + θ2) dt

The first and second integrals on the right-hand side are the powers of the two sinusoids,
which are C1

2/2 and C2
2/2 as found in part (a). Arguing as in part (a), we see that the

third term is zero, and we have†

Pf =
C1

2

2
+

C2
2

2
(1.5b)

and the rms value is
√

(C1
2 + C2

2)/2.
We can readily extend this result to a sum of any number of sinusoids with distinct

frequencies. Thus, if

†This is true only if ω1 �= ω2. If ω1 = ω2, the integrand of the third term contains a constant
cos (θ1 − θ2), and the third term → 2C1C2 cos (θ1 − θ2) as T →∞.
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6 1 Introduction to Signals and Systems

1

t0

e− t

1

 f 5 ( t )

2 3 4− 1− 2− 3− 4

(e)

10

2
 f 1  ( t )

t
(a)

10

1

 f 2 ( t )

t
(b)

10

2
 f 3 ( t )

t
(c)

0

2
 f 4 ( t )

t− 1

(d)

Fig. 1.3 Signals for Exercise E1.1.

f(t) =
∞∑

n=1

Cn cos (ωnt + θn)

where none of the two sinusoids have identical frequencies, then

Pf =
1
2

∞∑
n=1

Cn
2 (1.5c)

(c) In this case the signal is complex, and we use Eq. (1.4) to compute the power.

Pf = lim
T→∞

1
T

∫ T/2

−T/2

|Dejω0t|2 dt

Recall that |ejω0t| = 1 so that |Dejω0t|2 = |D|2, and

Pf = |D|2 (1.5d)
The rms value is |D|.
Comment: In part (b) we have shown that the power of the sum of two sinusoids
is equal to the sum of the powers of the sinusoids. It appears that the power of
f1(t) + f2(t) is Pf1 + Pf2 . Unfortunately, this conclusion is not true in general. It
is true only under a certain condition (orthogonality) discussed later in Sec. 3.1-3.
� Exercise E1.1

Show that the energies of the signals in Figs. 1.3a,b,c and d are 4, 1, 4/3, and 4/3, respec-
tively. Observe that doubling a signal quadruples the energy, and time-shifting a signal has no
effect on the energy. Show also that the power of the signal in Fig. 1.3e is 0.4323. What is the
rms value of signal in Fig. 1.3e? �
� Exercise E1.2

Redo Example 1.2a to find the power of a sinusoid C cos (ω0t + θ) by averaging the signal
energy over one period T0 = 2π/ω0 (rather than averaging over the infinitely large interval). Show
also that the power of a constant signal f(t) = C0 is C2

0 , and its rms value is C0. �
� Exercise E1.3

Show that if ω1 = ω2, the power of f(t) = C1 cos (ω1t + θ1) + C2 cos (ω2t + θ2) is [C1
2 +

C2
2 + 2C1C2 cos (θ1 − θ2)]/2, which is not equal to (C1

2 + C2
2)/2. �
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1.2 Classification of Signals 7

t

f ( t )

0

(a)

(b)

4

8

12

0

− 4

− 8

1981 ’82 ’83 ’84 ’85 ’86 ’87 ’88 ’89 ’90 ’91

Quarterly GNP : The return of recession
In percent change; seasonally adjusted annual rates

Source : Commerce Department, news reports

Two consecutive drops
during 1981-82 recession

Two consecutive drops :
Return of recession

’92 ’93 ’94

Fig. 1.4 Continuous-time and Discrete-time Signals.

1.2 Classification of Signals

There are several classes of signals. Here we shall consider only the following
classes, which are suitable for the scope of this book:

1. Continuous-time and discrete-time signals
2. Analog and digital signals
3. Periodic and aperiodic signals
4. Energy and power signals
5. Deterministic and probabilistic signals

1.2-1 Continuous-Time and Discrete-Time Signals

A signal that is specified for every value of time t (Fig. 1.4a) is a continuous-
time signal, and a signal that is specified only at discrete values of t (Fig. 1.4b) is
a discrete-time signal. Telephone and video camera outputs are continuous-time

© Oxford University Press. All rights reserved.



8 1 Introduction to Signals and Systems

(a)

t

(c)

t

(b)

t

(d)

t

f ( t )f ( t )

f ( t )f ( t )

Fig. 1.5 Examples of Signals: (a) analog, continuous-time (b) digital, continuous-time
(c) analog, discrete-time (d) digital, discrete-time.

signals, whereas the quarterly gross national product (GNP), monthly sales of a
corporation, and stock market daily averages are discrete-time signals.

1.2-2 Analog and Digital Signals

The concept of continuous-time is often confused with that of analog. The two
are not the same. The same is true of the concepts of discrete-time and digital. A
signal whose amplitude can take on any value in a continuous range is an analog
signal. This means that an analog signal amplitude can take on an infinite number
of values. A digital signal, on the other hand, is one whose amplitude can take
on only a finite number of values. Signals associated with a digital computer are
digital because they take on only two values (binary signals). A digital signal whose
amplitudes can take on M values is an M-ary signal of which binary (M = 2) is
a special case. The terms continuous-time and discrete-time qualify the nature of
a signal along the time (horizontal) axis. The terms analog and digital, on the
other hand, qualify the nature of the signal amplitude (vertical axis). Figure 1.5
shows examples of various types of signals. It is clear that analog is not necessarily
continuous-time and digital need not be discrete-time. Figure 1.5c shows an example
of an analog discrete-time signal. An analog signal can be converted into a digital
signal [analog-to-digital (A/D) conversion] through quantization (rounding off), as
explained in Sec. 5.1-3.

1.2-3 Periodic and Aperiodic Signals

A signal f(t) is said to be periodic if for some positive constant T0

f(t) = f(t+ T0) for all t (1.6)

© Oxford University Press. All rights reserved.



1.2 Classification of Signals 9

t

T0

f (t )

Fig. 1.6 A periodic signal of period T0.

The smallest value of T0 that satisfies the periodicity condition (1.6) is the period
of f(t). The signals in Figs. 1.2b and 1.3e are periodic signals with periods 2 and 1,
respectively. A signal is aperiodic if it is not periodic. Signals in Figs. 1.2a, 1.3a,
1.3b, 1.3c, and 1.3d are all aperiodic.

By definition, a periodic signal f(t) remains unchanged when time-shifted by
one period. For this reason a periodic signal must start at t = −∞ because if it
starts at some finite instant, say t = 0, the time-shifted signal f(t + T0) will start
at t = −T0 and f(t + T0) would not be the same as f(t). Therefore a periodic
signal, by definition, must start at t = −∞ and continuing forever, as illustrated in
Fig. 1.6.

Another important property of a periodic signal f(t) is that f(t) can be gen-
erated by periodic extension of any segment of f(t) of duration T0 (the period).
As a result we can generate f(t) from any segment of f(t) with a duration of one
period by placing this segment and the reproduction thereof end to end ad infini-
tum on either side. Figure 1.7 shows a periodic signal f(t) of period T0 = 6. The
shaded portion of Fig. 1.7a shows a segment of f(t) starting at t = −1 and having
a duration of one period (6 seconds). This segment, when repeated forever in either
direction, results in the periodic signal f(t). Figure 1.7b shows another shaded
segment of f(t) of duration T0 starting at t = 0. Again we see that this segment,
when repeated forever on either side, results in f(t). The reader can verify that this
construction is possible with any segment of f(t) starting at any instant as long as
the segment duration is one period.

It is helpful to label signals that start at t = −∞ and continue for ever as
everlasting signals. Thus, an everlasting signal exists over the entire interval −∞ <
t < ∞. The signals in Figs. 1.1b and 1.2b are examples of everlasting signals.
Clearly, a periodic signal, by definition, is an everlasting signal.

A signal that does not start before t = 0 is a causal signal. In other words,
f(t) is a causal signal if

f(t) = 0 t < 0 (1.7)

Signals in Figs. 1.3a, b, c, as well as in Figs. 1.9a and 1.9b are causal signals. A
signal that starts before t = 0 is a noncausal signal. All the signals in Figs. 1.1
and 1.2 are noncausal. Observe that an everlasting signal is always noncausal but
a noncausal signal is not necessarily everlasting. The everlasting signal in Fig. 1.2b
is noncausal; however, the noncausal signal in Fig. 1.2a is not everlasting. A signal
that is zero for all t ≥ 0 is called an anticausal signal.
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10 1 Introduction to Signals and Systems

(a)

t

f (t )

−1 0 2 5 11

(b)

f (t )

0 t6 12− 6

−7

Fig. 1.7 Generation of a periodic signal by periodic extension of its segment of one-period
duration.

Comment:
A true everlasting signal cannot be generated in practice for obvious reasons.

Why should we bother to postulate such a signal? In later chapters we shall see
that certain signals (including an everlasting sinusoid) which cannot be generated
in practice do serve a very useful purpose in the study of signals and systems.

1.2-4 Energy and Power Signals

A signal with finite energy is an energy signal, and a signal with finite and
nonzero power is a power signal. Signals in Fig. 1.2a and 1.2b are examples of
energy and power signals, respectively. Observe that power is the time average of
energy. Since the averaging is over an infinitely large interval, a signal with finite
energy has zero power, and a signal with finite power has infinite energy. Therefore,
a signal cannot both be an energy and a power signal. If it is one, it cannot be
the other. On the other hand, there are signals that are neither energy nor power
signals. The ramp signal is such an example.

Comments

All practical signals have finite energies and are therefore energy signals. A
power signal must necessarily have infinite duration; otherwise its power, which is
its energy averaged over an infinitely large interval, will not approach a (nonzero)
limit. Clearly, it is impossible to generate a true power signal in practice because
such a signal has infinite duration and infinite energy.

Also, because of periodic repetition, periodic signals for which the area under
|f(t)|2 over one period is finite are power signals; however, not all power signals are
periodic.

� Exercise E1.4

Show that an everlasting exponential e−at is neither an energy nor a power signal for any
real value of a. However, if a is imaginary, it is a power signal with power Pf = 1 regardless of
the value of a. �

1.2-5 Deterministic and Random Signals

A signal whose physical description is known completely, either in a mathemat-
ical form or a graphical form, is a deterministic signal. A signal whose values
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f  ( t )

(a)
t0

( t )  =  f  ( t − T )

(b)
t0

(c)
t0

T

T

f  ( t + T )

φ

Fig. 1.8 Time shifting a signal.

cannot be predicted precisely but are known only in terms of probabilistic descrip-
tion, such as mean value, mean squared value, and so on is a random signal. In
this book we shall exclusively deal with deterministic signals. Random signals are
beyond the scope of this study.

1.3 Some Useful Signal Operations

We discuss here three useful signal operations: shifting, scaling, and inversion.
Since the independent variable in our signal description is time, these operations are
discussed as time shifting, time scaling, and time inversion (or folding). However,
this discussion is valid for functions having independent variables other than time
(e.g., frequency or distance).

1.3-1 Time Shifting

Consider a signal f(t) (Fig. 1.8a) and the same signal delayed by T seconds
(Fig. 1.8b), which we shall denote by φ(t). Whatever happens in f(t) (Fig. 1.8a) at
some instant t also happens in φ(t) (Fig. 1.8b) T seconds later at the instant t+T .
Therefore

φ(t+ T ) = f(t) (1.8)
and

φ(t) = f(t − T ) (1.9)

Therefore, to time-shift a signal by T , we replace t with t − T . Thus f(t − T )
represents f(t) time-shifted by T seconds. If T is positive, the shift is to the right
(delay). If T is negative, the shift is to the left (advance). Thus, f(t − 2) is f(t)
delayed (right-shifted) by 2 seconds, and f(t+ 2) is f(t) advanced (left-shifted) by
2 seconds.
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1

t0

(a)

1

e−2 t

1

t0

(b)

1

e−2 ( t– 1)

1

t0

(c)e−2 ( t + 1)

− 1

f  ( t )

f  ( t – 1 )

f  ( t + 1 )

Fig. 1.9 (a) signal f(t) (b) f(t) delayed by 1 second (c) f(t) advanced by 1 second.

Example 1.3
An exponential function f(t) = e−2t shown in Fig. 1.9a is delayed by 1 second. Sketch

and mathematically describe the delayed function. Repeat the problem if f(t) is advanced
by 1 second.

The function f(t) can be described mathematically as

f(t) =

{
e−2t t ≥ 0

0 t < 0
(1.10)

Let fd(t) represent the function f(t) delayed (right-shifted) by 1 second as illustrated in
Fig. 1.9b. This function is f(t − 1); its mathematical description can be obtained from
f(t) by replacing t with t − 1 in Eq. (1.10). Thus

fd(t) = f(t − 1) =

{
e−2(t−1) t − 1 ≥ 0 or t ≥ 1

0 t − 1 < 0 or t < 1
(1.11)

Let fa(t) represent the function f(t) advanced (left-shifted) by 1 second as depicted in Fig.
1.9c. This function is f(t + 1); its mathematical description can be obtained from f(t) by
replacing t with t + 1 in Eq. (1.10). Thus

fa(t) = f(t + 1) =

{
e−2(t+1) t + 1 ≥ 0 or t ≥ −1

0 t + 1 < 0 or t < −1
(1.12)

� Exercise E1.5

Write a mathematical description of the signal f3(t) in Fig. 1.3c. This signal is delayed
by 2 seconds. Sketch the delayed signal. Show that this delayed signal fd(t) can be described
mathematically as fd(t) = 2(t − 2) for 2 ≤ t ≤ 3, and equal to 0 otherwise. Now repeat the

© Oxford University Press. All rights reserved.



1.3 Some Useful Signal Operations 13
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Fig. 1.10 Time scaling a signal.

procedure if the signal is advanced (left-shifted) by 1 second. Show that this advanced signal fa(t)
can be described as fa(t) = 2(t + 1) for −1 ≤ t ≤ 0, and equal to 0 otherwise. �

1.3-2 Time Scaling

The compression or expansion of a signal in time is known as time scaling.
Consider the signal f(t) of Fig. 1.10a. The signal φ(t) in Fig. 1.10b is f(t) com-
pressed in time by a factor of 2. Therefore, whatever happens in f(t) at some
instant t also happens to φ(t) at the instant t/2, so that

φ
(

t
2

)
= f(t) (1.13)

and

φ(t) = f(2t) (1.14)

Observe that because f(t) = 0 at t = T1 and T2, we must have φ(t) = 0 at t = T1/2
and T2/2, as shown in Fig. 1.10b. If f(t) were recorded on a tape and played back
at twice the normal recording speed, we would obtain f(2t). In general, if f(t) is
compressed in time by a factor a (a > 1), the resulting signal φ(t) is given by

φ(t) = f(at) (1.15)

Using a similar argument, we can show that f(t) expanded (slowed down) in
time by a factor a (a > 1) is given by

φ(t) = f
(

t
a

)
(1.16)

Figure 1.10c shows f( t
2 ), which is f(t) expanded in time by a factor of 2. Observe

that in time scaling operation, the origin t = 0 is the anchor point, which remains
unchanged under scaling operation because at t = 0, f(t) = f(at) = f(0).

In summary, to time-scale a signal by a factor a, we replace t with at. If a > 1,
the scaling results in compression, and if a < 1, the scaling results in expansion.

© Oxford University Press. All rights reserved.



14 1 Introduction to Signals and Systems

t0

(a)
2
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t0
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2

− 3

2e − t / 4
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f  ( 2 t )

f  ( t__
2 )

Fig. 1.11 (a) signal f(t) (b) signal f(3t) (c) signal f( t
2 ).

Example 1.4
Figure 1.11a shows a signal f(t). Sketch and describe mathematically this signal

time-compressed by factor 3. Repeat the problem for the same signal time-expanded by
factor 2.

The signal f(t) can be described as

f(t) =

⎧⎨
⎩

2 −1.5 ≤ t < 0

2 e−t/2 0 ≤ t < 3

0 otherwise

(1.17)

Figure 1.11b shows fc(t), which is f(t) time-compressed by factor 3; consequently, it can
be described mathematically as f(3t), which is obtained by replacing t with 3t in the
right-hand side of Eq. 1.17. Thus

fc(t) = f(3t) =

⎧⎨
⎩

2 −1.5 ≤ 3t < 0 or − 0.5 ≤ t < 0

2 e−3t/2 0 ≤ 3t < 3 or 0 ≤ t < 1

0 otherwise

(1.18a)

Observe that the instants t = −1.5 and 3 in f(t) correspond to the instants t = −0.5, and
1 in the compressed signal f(3t).

Figure 1.11c shows fe(t), which is f(t) time-expanded by factor 2; consequently, it
can be described mathematically as f(t/2), which is obtained by replacing t with t/2 in
f(t). Thus
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f  ( t )

−1

t0

2
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( t )  =  f  ( − t )

−1

2

Fig. 1.12 Time inversion (reflection) of a signal.

fe(t) = f
(

t

2

)
=

⎧⎨
⎩

2 −1.5 ≤ t
2 < 0 or − 3 ≤ t < 0

2 e−t/4 0 ≤ t
2 < 3 or 0 ≤ t < 6

0 otherwise

(1.18b)

Observe that the instants t = −1.5 and 3 in f(t) correspond to the instants t = −3 and 6
in the expanded signal f( t

2 ).

� Exercise E1.6

Show that the time-compression by a factor n (n > 1) of a sinusoid results in a sinusoid of the
same amplitude and phase, but with the frequency increased n-fold. Similarly the time expansion
by a factor n (n > 1) of a sinusoid results in a sinusoid of the same amplitude and phase, but with
the frequency reduced by a factor n. Verify your conclusion by sketching a sinusoid sin 2t and the
same sinusoid compressed by a factor 3 and expanded by a factor 2. �

1.3-3 Time Inversion (Time Reversal)

Consider the signal f(t) in Fig. 1.12a. We can view f(t) as a rigid wire frame
hinged at the vertical axis. To time-invert f(t), we rotate this frame 180◦ about the
vertical axis. This time inversion or folding [the reflection of f(t) about the vertical
axis] gives us the signal φ(t) (Fig. 1.12b). Observe that whatever happens in Fig.
1.12a at some instant t also happens in Fig. 1.12b at the instant −t. Therefore

φ(−t) = f(t)
and

φ(t) = f(−t) (1.19)

Therefore, to time-invert a signal we replace t with −t. Thus, the time inversion of
signal f(t) yields f(−t). Consequently, the mirror image of f(t) about the vertical
axis is f(−t). Recall also that the mirror image of f(t) about the horizontal axis is
−f(t).
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t

Fig. 1.13 An example of time inversion.

Example 1.5
For the signal f(t) illustrated in Fig. 1.13a, sketch f(−t), which is time inverted f(t).
The instants −1 and −5 in f(t) are mapped into instants 1 and 5 in f(−t). Because

f(t) = et/2, we have f(−t) = e−t/2. The signal f(−t) is depicted in Fig. 1.13b. We can
describe f(t) and f(−t) as

f(t) =

{
et/2 −1 ≥ t > −5

0 otherwise

and its time inverted version f(−t) is obtained by replacing t with −t in f(t) as

f(−t) =

{
e−t/2 −1 ≥ −t > −5 or 1 ≤ t < 5

0 otherwise

1.3-4 Combined Operations

Certain complex operations require simultaneous use of more than one of the
above operations. The most general operation involving all the three operations is
f(at − b), which is realized in two possible sequences of operation:
1. Time-shift f(t) by b to obtain f(t−b). Now time-scale the shifted signal f(t−b)

by a (that is, replace t with at) to obtain f(at − b).
2. Time-scale f(t) by a to obtain f(at). Now time-shift f(at) by b

a (that is, replace
t with (t− b

a ) to obtain f [a(t− b
a )] = f(at− b). In either case, if a is negative,

time scaling involves time inversion.
For instance, the signal f(2t− 6) can be obtained in two ways: first, delay f(t)

by 6 to obtain f(t − 6) and then time-compress this signal by factor 2 (replace t
with 2t) to obtain f(2t− 6). Alternately, we first time-compress f(t) by factor 2 to
obtain f(2t), then delay this signal by 3 (replace t with t − 3) to obtain f(2t − 6).

1.4 Some Useful Signal Models

In the area of signals and systems, the step, the impulse, and the exponential
functions are very useful. They not only serve as a basis for representing other
signals, but their use can simplify many aspects of the signals and systems.
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1

t0

(a)

1

e−a t  u  (t)

t0

(b)

 u  (t)

Fig. 1.14 (a) Unit step function u(t) (b) exponential e−atu(t).

1. Unit Step Function u(t)

In much of our discussion, the signals begin at t = 0 (causal signals). Such
signals can be conveniently described in terms of unit step function u(t) shown in
Fig. 1.14a. This function is defined by

u(t) =

{
1 t ≥ 0

0 t < 0
(1.20)

If we want a signal to start at t = 0 (so that it has a value of zero for t < 0), we
only need to multiply the signal with u(t). For instance, the signal e−at represents an
everlasting exponential that starts at t = −∞. The causal form of this exponential
illustrated in Fig. 1.14b can be described as e−atu(t).

The unit step function also proves very useful in specifying a function with
different mathematical descriptions over different intervals. Examples of such func-
tions appear in Fig. 1.11. These functions have different mathematical descriptions
over different segments of time as seen from Eqs. (1.17), (1.18a), and (1.18b). Such
a description often proves clumsy and inconvenient in mathematical treatment. Us-
ing the unit step function, we can describe such functions by a single expression
that is valid for all t.

(a)

0

1

2 4

(b)

t0

1

2

4

−1

t

Fig. 1.15 Representation of a rectangular pulse by step functions.

Consider, for example, the rectangular pulse depicted in Fig. 1.15a. We can
express such a pulse in terms of familiar step functions by observing that the pulse
f(t) can be expressed as the sum of the two delayed unit step functions as shown
in Fig. 1.15b. The unit step function u(t) delayed by T seconds is u(t − T ). From
Fig. 1.15b, it is clear that

f(t) = u(t − 2) − u(t − 4)
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Fig. 1.16 Representation of a signal defined interval by interval.

Example 1.6
Describe the signal in Fig. 1.16a.
The signal illustrated in Fig. 1.16a can be conveniently handled by breaking it up

into the two components f1(t) and f2(t), depicted in Figs. 1.16b and 1.16c respectively.
Here, f1(t) can be obtained by multiplying the ramp t by the gate pulse u(t) − u(t − 2),
as shown in Fig. 1.16b. Therefore

f1(t) = t [u(t) − u(t − 2)]

The signal f2(t) can be obtained by multiplying another ramp by the gate pulse illustrated
in Fig. 1.16c. This ramp has a slope −2; hence it can be described by −2t+c. Now, because
the ramp has a zero value at t = 3, the constant c = 6, and the ramp can be described by
−2(t − 3). Also, the gate pulse in Fig. 1.16c is u(t − 2) − u(t − 3). Therefore

f2(t) = −2(t − 3) [u(t − 2) − u(t − 3)]

and
f(t) = f1(t) + f2(t)

= t [u(t) − u(t − 2)] − 2(t − 3) [u(t − 2) − u(t − 3)]

= tu(t) − 3(t − 2)u(t − 2) + 2(t − 3)u(t − 3)

Example 1.7
Describe the signal in Fig. 1.11a by a single expression valid for all t.
Over the interval from −1.5 to 0, the signal can be described by a constant 2, and

over the interval from 0 to 3, it can be described by 2 e−t/2. Therefore

f(t) = 2[u(t + 1.5) − u(t)]︸ ︷︷ ︸
f1(t)

+2e−t/2[u(t) − u(t − 3)]︸ ︷︷ ︸
f2(t)

= 2u(t + 1.5) − 2(1 − e−t/2)u(t) − 2e−t/2u(t − 3)
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Fig. 1.17 The Signal for Exercise E1.7.
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Fig. 1.18 The signal for Exercise E1.8.

Compare this expression with the expression for the same function found in Eq. 1.17.

� Exercise E1.7

Show that the signals depicted in Figs. 1.17a and 1.17b can be described as u(−t), and
e−atu(−t), respectively. �
� Exercise E1.8

Show that the signal shown in Fig. 1.18 can be described as
f(t) = (t− 1)u(t− 1)− (t− 2)u(t− 2)− u(t− 4) �

2. The Unit Impulse Function δ(t)

The unit impulse function δ(t) is one of the most important functions in the
study of signals and systems. This function was first defined by P. A. M Dirac as

δ(t) = 0 t �= 0∫ ∞
−∞

δ(t) dt = 1 (1.21)

We can visualize an impulse as a tall, narrow rectangular pulse of unit area,
as illustrated in Fig. 1.19b. The width of this rectangular pulse is a very small
value ε → 0. Consequently, its height is a very large value 1/ε. The unit impulse
therefore can be regarded as a rectangular pulse with a width that has become
infinitesimally small, a height that has become infinitely large, and an overall area
that has been maintained at unity. Thus δ(t) = 0 everywhere except at t = 0, where
it is undefined. For this reason a unit impulse is represented by the spear-like symbol
in Fig. 1.19a.

Other pulses, such as exponential pulse, triangular pulse, or Gaussian pulse
may also be used in impulse approximation. The important feature of the unit
impulse function is not its shape but the fact that its effective duration (pulse width)
approaches zero while its area remains at unity. For example, the exponential pulse
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Fig. 1.19 A unit impulse and its approximation.

− ε
t

α e−αt

(a)

t

(b)

1_
ε

t

(c)

    1_____
ε √ 2π⎯   e − t

2 / 2 ε 2

ε

→ 0 ε → 0

α

α→∞

0 0 0

Fig. 1.20 Other possible approximations to a unit impulse.

αe−αtu(t) in Fig. 1.20a becomes taller and narrower as α increases. In the limit as
α → ∞, the pulse height → ∞, and its width or duration → 0. Yet, the area under
the pulse is unity regardless of the value of α because

∫ ∞
0

αe−αt dt = 1 (1.22)

The pulses in Figs. 1.20b and 1.20c behave in a similar fashion.
From Eq. (1.21), it follows that the function kδ(t) = 0 for all t �= 0, and its

area is k. Thus, kδ(t) is an impulse function whose area is k (in contrast to the unit
impulse function, whose area is 1).

Multiplication of a Function by an Impulse
Let us now consider what happens when we multiply the unit impulse δ(t) by

a function φ(t) that is known to be continuous at t = 0. Since the impulse exists
only at t = 0, and the value of φ(t) at t = 0 is φ(0), we obtain

φ(t)δ(t) = φ(0)δ(t) (1.23a)

Similarly, if φ(t) is multiplied by an impulse δ(t − T ) (impulse located at t = T ),
then

φ(t)δ(t − T ) = φ(T )δ(t − T ) (1.23b)

provided φ(t) is continuous at t = T .
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Sampling Property of the Unit Impulse Function

From Eq. (1.23a) it follows that

∫ ∞
−∞

φ(t)δ(t) dt = φ(0)
∫ ∞
−∞

δ(t) dt

= φ(0) (1.24a)

provided φ(t) is continuous at t = 0. This result means that the area under the
product of a function with an impulse δ(t) is equal to the value of that function at
the instant where the unit impulse is located. This property is very important and
useful, and is known as the sampling or sifting property of the unit impulse.

From Eq. (1.23b) it follows that∫ ∞
−∞

φ(t)δ(t − T ) dt = φ(T ) (1.24b)

Equation (1.24b) is just another form of sampling or sifting property. In the case
of Eq. (1.24b), the impulse δ(t − T ) is located at t = T . Therefore, the area under
φ(t)δ(t − T ) is φ(T ), the value of φ(t) at the instant where the impulse is located
(at t = T ). In these derivations we have assumed that the function is continuous
at the instant where the impulse is located.

Unit Impulse as a Generalized Function

The definition of the unit impulse function given in Eq. (1.21) is not mathe-
matically rigorous, which leads to serious difficulties. First, the impulse function
does not define a unique function: for example, it can be shown that δ(t) + δ̇(t)
also satisfies Eq. (1.21).1 Moreover, δ(t) is not even a true function in the ordinary
sense. An ordinary function is specified by its values for all time t. The impulse
function is zero everywhere except at t = 0, and at this only interesting part of its
range it is undefined. These difficulties are resolved by defining the impulse as a
generalized function rather than an ordinary function. A generalized function is
defined by its effect on other functions instead of by its value at every instant of
time.

In this approach the impulse function is defined by the sampling property [Eq.
(1.24)]. We say nothing about what the impulse function is or what it looks like.
Instead, the impulse function is defined in terms of its effect on a test function
φ(t). We define a unit impulse as a function for which the area under its product
with a function φ(t) is equal to the value of the function φ(t) at the instant where
the impulse is located. It is assumed that φ(t) is continuous at the location of the
impulse. Therefore, either Eq. (1.24a) or (1.24b) can serve as a definition of the
impulse function in this approach. Recall that the sampling property [Eq. (1.24)]
is the consequence of the classical (Dirac) definition of impulse in Eq. (1.21). In
contrast, the sampling property [Eq. (1.24)] defines the impulse function in the
generalized function approach.

We now present an interesting application of the generalized function definition
of an impulse. Because the unit step function u(t) is discontinuous at t = 0, its
derivative du/dt does not exist at t = 0 in the ordinary sense. We now show that

© Oxford University Press. All rights reserved.



22 1 Introduction to Signals and Systems

this derivative does exist in the generalized sense, and it is, in fact, δ(t). as a proof,
let us evaluate the integral of (du/dt)φ(t), using integration by parts:

∫ ∞
−∞

du

dt
φ(t) dt = u(t)φ(t)

∣∣∣∣∞
−∞

−
∫ ∞
−∞

u(t)φ̇(t) dt (1.25)

= φ(∞) − 0 −
∫ ∞

0
φ̇(t) dt

= φ(∞) − φ(t)|∞0
= φ(0) (1.26)

This result shows that du/dt satisfies the sampling property of δ(t). Therefore it is
an impulse δ(t) in the generalized sense—that is,

du

dt
= δ(t) (1.27)

Consequently ∫ t

−∞
δ(τ) dτ = u(t) (1.28)

These results can also be obtained graphically from Fig. 1.19b. We observe
that the area from −∞ to t under the limiting form of δ(t) in Fig. 1.19b is zero if
t < 0 and unity if t ≥ 0. Consequently

∫ t

−∞
δ(τ) dτ =

{
0 t < 0

1 t ≥ 0

= u(t) (1.29)

Derivatives of impulse function can also be defined as generalized functions (see
Prob. 1-22).

� Exercise E1.9
Show that

(a) (t3 + 3)δ(t) = 3δ(t)

(c) e−2tδ(t) = δ(t)

(b)
[
sin

(
t2 − π

2

)]
δ(t) = −δ(t)

(d)
ω2 + 1
ω2 + 9

δ(ω − 1) =
1
5

δ(ω − 1)

Hint: Use Eqs. (1.23). �
� Exercise E1.10

Show that

(a)

∫ ∞

−∞
δ(t)e−jωt dt = 1

(c)

∫ ∞

−∞
e−2(x−t)δ(2− t) dt = e−2(x−2)

(b)

∫ ∞

−∞
δ(t− 2) cos

(
πt

4

)
dt = 0

Hint: In part c recall that δ(x) is located at x = 0. Therefore δ(2− t) is located at 2− t = 0; that
is at t = 2. �
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Fig. 1.21 Sinusoids of complex frequency σ + jω.

3. The Exponential Function est

One of the most important functions in the area of signals and systems is the
exponential signal est, where s is complex in general, given by

s = σ + jω

Therefore
est = e(σ+jω)t = eσtejωt = eσt(cos ωt+ j sin ωt) (1.30a)

If s∗ = σ − jω (the conjugate of s), then

es∗t = eσ−jω = eσte−jωt = eσt(cos ωt − j sin ωt) (1.30b)

and
eσt cos ωt =

1
2
(est + es∗t) (1.30c)

Comparison of this equation with Euler’s formula shows that est is a generalization
of the function ejωt, where the frequency variable jω is generalized to a complex
variable s = σ + jω. For this reason we designate the variable s as the complex
frequency. From Eqs. (1.30) it follows that the function est encompasses a large
class of functions. The following functions are special cases of est:

1 A constant k = ke0t (s = 0)
2 A monotonic exponential eσt (ω = 0, s = σ)
3 A sinusoid cos ωt (σ = 0, s = ±jω)
4 An exponentially varying sinusoid eσt cos ωt (s = σ ± jω)

These functions are illustrated in Fig. 1.21.
The complex frequency s can be conveniently represented on a complex fre-

quency plane (s plane) as depicted in Fig. 1.22. The horizontal axis is the real axis
(σ axis), and the vertical axis is the imaginary axis (jω axis). The absolute value of
the imaginary part of s is |ω| (the radian frequency), which indicates the frequency
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Fig. 1.22 Complex frequency plane.

of oscillation of est; the real part σ (the neper frequency) gives information about
the rate of increase or decrease of the amplitude of est. For signals whose complex
frequencies lie on the real axis (σ-axis, where ω = 0), the frequency of oscillation
is zero. Consequently these signals are monotonically increasing or decreasing ex-
ponentials (Fig. 1.21a). For signals whose frequencies lie on the imaginary axis (jω
axis where σ = 0), eσt = 1. Therefore, these signals are conventional sinusoids with
constant amplitude (Fig. 1.21b). The case s = 0 (σ = ω = 0) corresponds to a
constant (dc) signal because e0t = 1. For the signals illustrated in Figs. 1.21c and
1.21d, both σ and ω are nonzero; the frequency s is complex and does not lie on
either axis. The signal in Fig. 1.21c decays exponentially. Therefore, σ is negative,
and s lies to the left of the imaginary axis. In contrast, the signal in Fig. 1.21d
grows exponentially. Therefore, σ is positive, and s lies to the right of the imagi-
nary axis. Thus the s-plane (Fig. 1.21) can be differentiated into two parts: the left
half-plane (LHP) corresponding to exponentially decaying signals and the right
half-plane (RHP) corresponding to exponentially growing signals. The imaginary
axis separates the two regions and corresponds to signals of constant amplitude.

An exponentially growing sinusoid e2t cos (5t + θ), for example, can be ex-
pressed as a sum of exponentials e(2+j5)t and e(2−j5)t with complex frequencies
2 + j5 and 2 − j5, respectively, which lie in the RHP. An exponentially decaying
sinusoid e−2t cos (5t + θ) can be expressed as a sum of exponentials e(−2+j5)t and
e(−2−j5)t with complex frequencies −2 + j5 and −2 − j5, respectively, which lie in
the LHP. A constant amplitude sinusoid cos (5t+θ) can be expressed as a sum of ex-
ponentials ej5t and e−j5t with complex frequencies ±j5, which lie on the imaginary
axis. Observe that the monotonic exponentials e±2t are also generalized sinusoids
with complex frequencies ±2.
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t

(a)
 fe (t)

−a a0 0 t

(b)

−a
a

 fo (t)

Fig. 1.23 An even and an odd function of t.

1.5 Even and Odd Functions

A function fe(t) is said to be an even function of t if

fe(t) = fe(−t) (1.31)

and a function fo(t) is said to be an odd function of t if

fo(t) = −fo(−t) (1.32)

An even function has the same value at the instants t and −t for all values of t.
Clearly, fe(t) is symmetrical about the vertical axis, as shown in Fig. 1.23a. On the
other hand, the value of an odd function at the instant t is the negative of its value
at the instant −t. Therefore, fo(t) is anti-symmetrical about the vertical axis, as
depicted in Fig. 1.23b.

1.5-1 Some Properties of Even and Odd Functions

Even and odd functions have the following property:

even function × odd function = odd function
odd function × odd function = even function
even function × even function = even function

The proofs of these facts are trivial and follow directly from the definition of odd
and even functions [Eqs. (1.31) and (1.32)].

Area

Because fe(t) is symmetrical about the vertical axis, it follows from Fig. 1.23a
that ∫ a

−a

fe(t) dt = 2
∫ a

0
fe(t) dt (1.33a)

It is also clear from Fig. 1.23b that∫ a

−a

fo(t) dt = 0 (1.33b)

These results can also be proved formally by using the definitions in Eqs. (1.31) and
(1.32). We leave them as an exercise for the reader.
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Fig. 1.24 Finding an even and odd components of a signal.

1.5-2 Even and Odd Components of a Signal

Every signal f(t) can be expressed as a sum of even and odd components
because

f(t) = 1
2 [f(t) + f(−t)]︸ ︷︷ ︸

even

+ 1
2 [f(t) − f(−t)]︸ ︷︷ ︸

odd

(1.34)

From the definitions in Eqs. (1.31) and (1.32), we can clearly see that the first
component on the right-hand side is an even function, while the second component
is odd. This is apparent from the fact that replacing t by −t in the first component
yields the same function. The same maneuver in the second component yields the
negative of that component.

Consider the function

f(t) = e−atu(t)

Expressing this function as a sum of the even and odd components fe(t) and fo(t),
we obtain

f(t) = fe(t) + fo(t)
where [from Eq. (1.34)]

fe(t) = 1
2

[
e−atu(t) + eatu(−t)] (1.35a)

and

fo(t) = 1
2

[
e−atu(t) − eatu(−t)] (1.35b)
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The function e−atu(t) and its even and odd components are illustrated in Fig. 1.24.

Example 1.8
Find the even and odd components of ejt.
From Eq. (1.34)

ejt = fe(t) + fo(t)
where

fe(t) = 1
2

[
ejt + e−jt

]
= cos t

and

fo(t) = 1
2

[
ejt − e−jt

]
= j sin t

1.6 Systems

As mentioned in Sec. 1.1, systems are used to process signals in order to modify
or to extract additional information from the signals. A system may consist of
physical components (hardware realization) or may consist of an algorithm that
computes the output signal from the input signal (software realization).

A system is characterized by its inputs, its outputs (or responses), and the
rules of operation (or laws) adequate to describe its behavior. For example, in
electrical systems, the laws of operation are the familiar voltage-current relation-
ships for the resistors, capacitors, inductors, transformers, transistors, and so on,
as well as the laws of interconnection (i.e., Kirchhoff’s laws). Using these laws,
we derive mathematical equations relating the outputs to the inputs. These equa-
tions then represent a mathematical model of the system. Thus a system is
characterized by its inputs, its outputs, and its mathematical model.

A system can be conveniently illustrated by a “black box” with one set of
accessible terminals where the input variables f1(t), f2(t), . . ., fj(t) are applied and
another set of accessible terminals where the output variables y1(t), y2(t), . . ., yk(t)
are observed. Note that the direction of the arrows for the variables in Fig. 1.25 is
always from cause to effect.

y
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•
•

•
•
•

•
•
•
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y
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f
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Fig. 1.25 Representation of a system.

The study of systems consists of three major areas: mathematical modeling,
analysis, and design. Although we shall be dealing with mathematical modeling, our
main concern is with analysis and design. The major portion of this book is devoted
to the analysis problem—how to determine the system outputs for the given inputs
and a given mathematical model of the system (or rules governing the system). To
a lesser extent, we will also consider the problem of design or synthesis—how to
construct a system which will produce a desired set of outputs for the given inputs.
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f  ( t ) vC ( t )

y  ( t )

R

C

Fig. 1.26 An example of a simple electrical system.

Data Needed to Compute System Response

In order to understand what data we need to compute a system response,
consider a simple RC circuit with a current source f(t) as its input (Fig. 1.26). The
output voltage y(t) is given by

y(t) = Rf(t) +
1
C

∫ t

−∞
f(τ) dτ (1.36a)

The limits of the integral on the right-hand side are from −∞ to t because this
integral represents the capacitor charge due to the current f(t) flowing in the ca-
pacitor, and this charge is the result of the current flowing in the capacitor from
−∞. Now, Eq. (1.36a) can be expressed as

y(t) = Rf(t) +
1
C

∫ 0

−∞
f(τ) dτ +

1
C

∫ t

0
f(τ) dτ (1.36b)

The middle term on the right-hand side is vC(0), the capacitor voltage at t = 0.
Therefore

y(t) = vC(0) +Rf(t) +
1
C

∫ t

0
f(τ) dτ (1.36c)

This equation can be readily generalized as

y(t) = vC(t0) +Rf(t) +
1
C

∫ t

t0

f(τ) dτ (1.36d)

From Eq. (1.36a), the output voltage y(t) at an instant t can be computed if we
know the input current flowing in the capacitor throughout its entire past (−∞ to
t). Alternatively, if we know the input current f(t) from some moment t0 onward,
then, using Eq. (1.36d), we can still calculate y(t) for t ≥ t0 from a knowledge of
the input current, provided we know vC(t0), the initial capacitor voltage (voltage
at t0). Thus vC(t0) contains all the relevant information about the circuit’s entire
past (−∞ to t0) that we need to compute y(t) for t ≥ t0. Therefore, the response
of a system at t > t0 can be determined from its input(s) during the interval t0 to
t and from certain initial conditions at t = t0.

In the preceding example, we needed only one initial condition. However, in
more complex systems, several initial conditions may be necessary. We know, for
example, that in passive RLC networks, the initial values of all inductor currents
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and all capacitor voltages† are needed to determine the outputs at any instant t ≥ 0
if the inputs are given over the interval [0, t].

1.7 Classification of Systems

Systems may be classified broadly in the following categories:‡
1. Linear and nonlinear systems;
2. Constant-parameter and time-varying-parameter systems;
3. Instantaneous (memoryless) and dynamic (with memory) systems;
4. Causal and noncausal systems;
5. Lumped-parameter and distributed-parameter systems;
6. Continuous-time and discrete-time systems;
7. Analog and Digital systems;

1.7-1 Linear and Nonlinear Systems

The Concept of Linearity
A system whose output is proportional to its input is an example of a linear

system. But linearity implies more than this; it also implies additivity property,
implying that if several causes are acting on a system, then the total effect on
the system due to all these causes can be determined by considering each cause
separately while assuming all the other causes to be zero. The total effect is then
the sum of all the component effects. This property may be expressed as follows:
for a linear system, if a cause c1 acting alone has an effect e1, and if another cause
c2, also acting alone, has an effect e2, then, with both causes acting on the system,
the total effect will be e1 + e2. Thus, if

c1 −→ e1 and c2 −→ e2 (1.37)
then for all c1 and c2

c1 + c2 −→ e1 + e2 (1.38)

In addition, a linear system must satisfy the homogeneity or scaling property,
which states that for arbitrary real or imaginary number k, if a cause is increased
k-fold, the effect also increases k-fold. Thus, if

c −→ e
then for all real or imaginary k

kc −→ ke (1.39)

Thus, linearity implies two properties: homogeneity (scaling) and additivity$. Both
these properties can be combined into one property (superposition), which is
expressed as follows: If

c1 −→ e1 and c2 −→ e2

then for all values of constants k1 and k2,

† Strictly speaking, independent inductor currents and capacitor voltages.
‡ Other classifications, such as deterministic and probabilistic systems, are beyond the scope of
this text and are not considered.
$ A linear system must also satisfy the additional condition of smoothness, where small changes
in the system’s inputs must result in small changes in its outputs.2
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k1c1 + k2c2 −→ k1e1 + k2e2 (1.40)

This is true for all c1 and c2.
It may appear that additivity implies homogeneity. Unfortunately, there are

cases where homogeneity does not follow from additivity. See the case in Exercise
E1.11 below.

� Exercise E1.11
Show that a system with the input (cause) c(t) and the output (effect) e(t) related by e(t) =

Re{c(t)} satisfies the additivity property but violates the homogeneity property. Hence, such a
system is not linear.
Hint: show that Eq. (1.39) is not satisfied when k is complex. �

Response of a Linear System

For the sake of simplicity, we discuss below only single-input, single-output
(SISO) systems. But the discussion can be readily extended to multiple-input,
multiple-output (MIMO) systems.

A system’s output for t ≥ 0 is the result of two independent causes: the initial
conditions of the system (or the system state) at t = 0 and the input f(t) for t ≥ 0.
If a system is to be linear, the output must be the sum of the two components
resulting from these two causes: first, the zero-input response component that
results only from the initial conditions at t = 0 with the input f(t) = 0 for t ≥ 0,
and then the zero-state response component that results only from the input f(t)
for t ≥ 0 when the initial conditions (at t = 0) are assumed to be zero. When all
the appropriate initial conditions are zero, the system is said to be in zero state.
The system output is zero when the input is zero only if the system is in zero state.

In summary, a linear system response can be expressed as the sum of a zero-
input and a zero-state component:

Total response = zero-input response + zero-state response (1.41)

This property of linear systems which permits the separation of an output into
components resulting from the initial conditions and from the input is called the
decomposition property.

For the RC circuit of Fig. 1.26, the response y(t) was found to be [see Eq.
(1.36c)]

y(t) = vC(0)︸ ︷︷ ︸
z−i component

+Rf(t) +
1
C

∫ t

0
f(τ) dτ︸ ︷︷ ︸

z−s component

(1.42)

From Eq. (1.42), it is clear that if the input f(t) = 0 for t ≥ 0, the output y(t) =
vC(0). Hence vC(0) is the zero-input component of the response y(t). Similarly, if
the system state (the voltage vC in this case) is zero at t = 0, the output is given
by the second component on the right-hand side of Eq. (1.42). Clearly this is the
zero-state component of the response y(t).

In addition to the decomposition property, linearity implies that both the zero-
input and zero-state components must obey the principle of superposition with
respect to each of their respective causes. For example, if we increase the initial
condition k-fold, the zero-input component must also increase k-fold. Similarly, if
we increase the input k-fold, the zero-state component must also increase k-fold.
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These facts can be readily verified from Eq. (1.42) for the RC circuit in Fig. 1.26.
For instance, if we double the initial condition vC(0), the zero-input component
doubles; if we double the input f(t), the zero-state component doubles.

Example 1.9
Show that the system described by the equation

dy

dt
+ 3y(t) = f(t) (1.43)

is linear.
Let the system response to the inputs f1(t) and f2(t) be y1(t) and y2(t), respectively.

Then
dy1

dt
+ 3y1(t) = f1(t)

and
dy2

dt
+ 3y2(t) = f2(t)

Multiplying the first equation by k1, the second with k2, and adding them yields

d

dt
[k1y1(t) + k2y2(t)] + 3 [k1y1(t) + k2y2(t)] = k1f1(t) + k2f2(t)

But this equation is the system equation [Eq. (1.43)] with

f(t) = k1f1(t) + k2f2(t)
and

y(t) = k1y1(t) + k2y2(t)

Therefore, when the input is k1f1(t) + k2f2(t), the system response is k1y1(t) + k2y2(t).
Consequently, the system is linear. Using this argument, we can readily generalize the
result to show that a system described by a differential equation of the form

dny

dtn
+ an−1

dn−1y

dtn−1 + · · · + a0y = bm
dmf

dtm
+ · · · + b1

df

dt
+ b0f (1.44)

is a linear system. The coefficients ai and bi in this equation can be constants or functions
of time.

� Exercise E1.12
Show that the system described by the following equation is linear:

dy

dt
+ t2y(t) = (2t + 3)f(t) �

� Exercise E1.13
Show that a system described by the following equation is nonlinear:

y(t)
dy

dt
+ 3y(t) = f(t) �

More Comments on Linear Systems

Almost all systems observed in practice become nonlinear when large enough
signals are applied to them. However, many systems show linear behavior for small
signals. The analysis of nonlinear systems is generally difficult. Nonlinearities can
arise in so many ways that describing them with a common mathematical form
is impossible. Not only is each system a category in itself, but even for a given
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system, changes in initial conditions or input amplitudes may change the nature of
the problem. On the other hand, the superposition property of linear systems is a
powerful unifying principle which allows for a general solution. The superposition
property (linearity) greatly simplifies the analysis of linear systems. Because of
the decomposition property, we can evaluate separately the two components of the
output. The zero-input component can be computed by assuming the input to
be zero, and the zero-state component can be computed by assuming zero initial
conditions. Moreover, if we express an input f(t) as a sum of simpler functions,

f(t) = a1f1(t) + a2f2(t) + · · · + amfm(t)

then, by virtue of linearity, the response y(t) is given by

y(t) = a1y1(t) + a2y2(t) + · · · + amym(t) (1.45)

where yk(t) is the zero-state response to an input fk(t). This apparently trivial
observation has profound implications. As we shall see repeatedly in later chapters,
it proves extremely useful and opens new avenues for analyzing linear systems.

f  ( t )

(a)Δ t
t

f  ( t )

(b)Δ t
t

Fig. 1.27 Signal representation in terms of impulse and step components.

As an example, consider an arbitrary input f(t) such as the one shown in
Fig. 1.27a. We can approximate f(t) with a sum of rectangular pulses of width
Δt and of varying heights. The approximation improves as Δt → 0, when the
rectangular pulses become impulses spaced Δt seconds apart (with Δt → 0). Thus,
an arbitrary input can be replaced by a weighted sum of impulses spaced Δt (Δt →
0) seconds apart. Therefore, if we know the system response to a unit impulse,
we can immediately determine the system response to an arbitrary input f(t) by
adding the system response to each impulse component of f(t). A similar situation
is depicted in Fig. 1.27b, where f(t) is approximated by a sum of step functions of
varying magnitude and spaced Δt seconds apart. The approximation improves as
Δt becomes smaller. Therefore, if we know the system response to a unit step input,
we can compute the system response to any arbitrary input f(t) with relative ease.
Time-domain analysis of linear systems (discussed in Chapter 2) uses this approach.

In Chapters 4,6,10, and 11 we employ the same approach but instead use
sinusoids or exponentials as our basic signal components. There, we show that
any arbitrary input signal can be expressed as a weighted sum of sinusoids (or
exponentials) having various frequencies. Thus a knowledge of the system response
to a sinusoid enables us to determine the system response to an arbitrary input
f(t).
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Fig. 1.28 Time-invariance property.

1.7-2 Time-Invariant and Time-Varying Parameter Systems

Systems whose parameters do not change with time are time-invariant (also
constant-parameter) systems. For such a system, if the input is delayed by T
seconds, the output is the same as before but delayed by T (assuming identical
initial conditions). This property is expressed graphically in Fig. 1.28.

It is possible to verify that the system in Fig. 1.26 is a time-invariant system.
Networks composed of RLC elements and other commonly used active elements
such as transistors are time-invariant systems. A system with an input-output
relationship described by a linear differential equation of the form (1.44) is a linear
time-invariant (LTI) system when the coefficients ai and bi of such equation are
constants. If these coefficients are functions of time, then the system is a linear
time-varying system. The system described in exercise E1.12 is an example of a
linear time-varying system. Another familiar example of a time-varying system is
the carbon microphone, in which the resistance R is a function of the mechanical
pressure generated by sound waves on the carbon granules of the microphone. An
equivalent circuit for the microphone appears in Fig. 1.29. The response is the
current i(t), and the equation describing the circuit is

L
di(t)
dt

+R(t)i(t) = f(t)

One of the coefficients in this equation, R(t), is time-varying.

� Exercise E1.14
Show that a system described by the following equation is time-varying parameter system:

y(t) = (sin t) f(t− 2)

Hint: Show that the system fails to satisfy the time-invariance property. �
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f  ( t )

L

i  ( t ) R  ( t )

Fig. 1.29 An example of a linear time-varying system.

1.7-3 Instantaneous and Dynamic Systems

As observed earlier, a system’s output at any instant t generally depends upon
the entire past input. However, in a special class of systems, the output at any
instant t depends only on its input at that instant. In resistive networks, for exam-
ple, any output of the network at some instant t depends only on the input at the
instant t. In these systems, past history is irrelevant in determining the response.
Such systems are said to be instantaneous or memoryless systems. More pre-
cisely, a system is said to be instantaneous (or memoryless) if its output at any
instant t depends, at most, on the strength of its input(s) at the same instant but
not on any past or future values of the input(s). Otherwise, the system is said to be
dynamic (or a system with memory). A system whose response at t is completely
determined by the input signals over the past T seconds [interval from (t − T ) to
t] is a finite-memory system with a memory of T seconds. Networks contain-
ing inductive and capacitive elements generally have infinite memory because the
response of such networks at any instant t is determined by their inputs over the
entire past (−∞, t). This is true for the RC circuit of Fig. 1.26.

In this book we will generally examine dynamic systems. Instantaneous systems
are a special case of dynamic systems.

1.7-4 Causal and Noncausal Systems

A causal (also known as a physical or non-anticipative) system is one for
which the output at any instant t0 depends only on the value of the input f(t) for
t ≤ t0. In other words, the value of the output at the present instant depends only
on the past and present values of the input f(t), not on its future values. To put
it simply, in a causal system the output cannot start before the input is applied. If
the response starts before the input, it means that the system knows the input in
the future and acts on this knowledge before the input is applied. A system that
violates the condition of causality is called a noncausal (or anticipative) system.

Any practical system that operates in real time† must necessarily be causal.
We do not yet know how to build a system that can respond to future inputs (inputs
not yet applied). A noncausal system is a prophetic system that knows the future
input and acts on it in the present. Thus, if we apply an input starting at t = 0
to a noncausal system, the output would begin even before t = 0. As an example,
consider the system specified by

y(t) = f(t − 2) + f(t+ 2) (1.46)

†In real-time operations, the response to an input is essentially simultaneous (contempo-
raneous) with the input itself.
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Fig. 1.30 A noncausal system and its realization by a delayed causal system.

For the input f(t) illustrated in Fig. 1.30a, the output y(t), as computed from
Eq. (1.46) (shown in Fig. 1.30b), starts even before the input is applied. Equation
(1.46) shows that y(t), the output at t, is given by the sum of the input values two
seconds before and two seconds after t (at t − 2 and t + 2 respectively). But if we
are operating the system in real time at t, we do not know what the value of the
input will be two seconds later. Thus it is impossible to implement this system in
real time. For this reason, noncausal systems are unrealizable in real time.

Why Study Noncausal Systems?
From the above discussion it may seem that noncausal systems have no practical

purpose. This is not the case; they are valuable in the study of systems for several
reasons. First, noncausal systems are realizable when the independent variable is
other than “time” (e.g., space). Consider, for example, an electric charge of density
q(x) placed along the x-axis for x ≥ 0. This charge density produces an electric field
E(x) that is present at every point on the x-axis from x = −∞ to ∞. In this case the
input [i.e., the charge density q(x)] starts at x = 0, but its output [the electric field
E(x)] begins before x = 0. Clearly, this space charge system is noncausal. This
discussion shows that only temporal systems (systems with time as independent
variable) must be causal in order to be realizable. The terms “before” and “after”
have a special connection to causality only when the independent variable is time.
This connection is lost for variables other than time. Nontemporal systems, such
as those occurring in optics, can be noncausal and still realizable.

Moreover, even for temporal systems, such as those used for signal processing,
the study of noncausal systems is important. In such systems we may have all input
data prerecorded. (This often happens with speech, geophysical, and meteorological
signals, and with space probes.) In such cases, the input’s future values are available
to us. For example, suppose we had a set of input signal records available for the
system described by Eq. (1.46). We can then compute y(t) since, for any t, we need
only refer to the records to find the input’s value two seconds before and two seconds
after t. Thus, noncausal systems can be realized, although not in real time. We
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Noncausal systems are realizable with time delay!

may therefore be able to realize a noncausal system, provided that we are willing
to accept a time delay in the output. Consider a system whose output ŷ(t) is the
same as y(t) in Eq. (1.46) delayed by two seconds (Fig 1.30c), so that

ŷ(t) = y(t − 2)

= f(t − 4) + f(t)

Here the value of the output ŷ at any instant t is the sum of the values of the input
f at t and at the instant four seconds earlier [at (t − 4)]. In this case, the output
at any instant t does not depend on future values of the input, and the system is
causal. The output of this system, which is ŷ(t), is identical to that in Eq. (1.46)
or Fig. 1.30b except for a delay of two seconds. Thus, a noncausal system may be
realized or satisfactorily approximated in real time by using a causal system with a
delay.

A third reason for studying noncausal systems is that they provide an upper
bound on the performance of causal systems. For example, if we wish to design
a filter for separating a signal from noise, then the optimum filter is invariably a
noncausal system. Although unrealizable, this noncausal system’s performance acts
as the upper limit on what can be achieved and gives us a standard for evaluating
the performance of causal filters.

At first glance, noncausal systems may seem inscrutable. Actually, there is
nothing mysterious about these systems and their approximate realization through
using physical systems with delay. If we want to know what will happen one year
from now, we have two choices: go to a prophet (an unrealizable person) who can
give the answers immediately, or go to a wise man and allow him a delay of one
year to give us the answer! If the wise man is truly wise, he may even be able to
shrewdly guess the future very closely with a delay of less than a year by studying
trends. Such is the case with noncausal systems—nothing more and nothing less.
� Exercise E1.15

Show that a system described by the equation below is noncausal:

y(t) =

∫ t+5

t−5

f(τ) dτ

Show that this system can be realized physically if we accept a delay of 5 seconds in the output.
�
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1.7-5 Lumped-Parameter and Distributed-Parameter Systems

In the study of electrical systems, we make use of voltage-current relationships
for various components (Ohm’s law, for example). In doing so, we implicitly assume
that the current in any system component (resistor, inductor, etc.) is the same at
every point throughout that component. Thus, we assume that electrical signals are
propagated instantaneously throughout the system. In reality, however, electrical
signals are electromagnetic space waves requiring some finite propagation time.
An electric current, for example, propagates through a component with a finite
velocity and therefore may exhibit different values at different locations in the same
component. Thus, an electric current is a function not only of time but also of
space. However, if the physical dimensions of a component are small compared to
the wavelength of the signal propagated, we may assume that the current is constant
throughout the component. This is the assumption made in lumped-parameter
systems, where each component is regarded as being lumped at one point in space.
Such an assumption is justified at lower frequencies (higher wavelength). Therefore,
in lumped-parameter models, signals can be assumed to be functions of time alone.
For such systems, the system equations require only one independent variable (time)
and therefore are ordinary differential equations.

In contrast, for distributed-parameter systems such as transmission lines,
waveguides, antennas, and microwave tubes, the system dimensions cannot be as-
sumed to be small compared to the wavelengths of the signals; thus the lumped-
parameter assumption breaks down. The signals here are functions of space as
well as of time, leading to mathematical models consisting of partial differential
equations.3 The discussion in this book will be restricted to lumped-parameter sys-
tems only.

1.7-6 Continuous-Time and Discrete-Time Systems

Distinction between discrete-time and continuous-time signals is discussed in
Sec. 1.2-1. Systems whose inputs and outputs are continuous-time signals are
continuous-time systems. On the other hand, systems whose inputs and out-
puts are discrete-time signals are discrete-time systems. If a continuous-time
signal is sampled, the resulting signal is a discrete-time signal. We can process a
continuous-time signal by processing its samples with a discrete-time system.

1.7-7 Analog and Digital Systems

Analog and digital signals are discussed in Sec. 1.2-2. A system whose input
and output signals are analog is an analog system; a system whose input and
output signals are digital is a digital system. A digital computer is an example
of a digital (binary) system. Observe that a digital computer is an example of a
system that is digital as well as discrete-time.

Additional Classification of Systems

There are additional classes of systems, such as invertible and noninvertible
systems. A system S performs certain operation(s) on input signal(s). If we can
obtain the input f(t) back from the output y(t) by some operation, the system
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S is said to be invertible. For a noninvertible system, different inputs can result
in the same output (as in a rectifier), and it is impossible to determine the input
for a given output. Therefore, for an invertible system, it is essential that distinct
inputs result in distinct outputs so that there is one-to-one mapping between an
input and the corresponding output. This ensures that every output has a unique
input. Consequently, the system is invertible. The system that achieves this inverse
operation [of obtaining f(t) from y(t)] is the inverse system of S. For instance,
A system whose input and output are related by equation y(t) = a f(t) + b is
an invertible system. But a rectifier, specified by the equation y(t) = |f(t)| is
noninvertible because the rectification operation cannot be undone.

An ideal differentiator is noninvertible because integration of its output cannot
restore the original signal unless we know one piece of information about the signal.
For instance, if f(t) = 3t + 5, the output of the differentiator is y(t) = 3. If this
output is applied to an integrator, the output is 3t + c, where c is an arbitrary
constant. If we know one piece of information about f(t), such as f(0) = 5, we can
determine the input to be f(t) = 3t+5. Thus, a differentiator along with one piece
of information (known as auxiliary condition) is an invertible system.† Similarly,
a system consisting of a cascade of two differentiators is invertible, if we know two
independent pieces of information (auxiliary conditions) about the input signal.

In addition, systems can also be classified as stable or unstable systems. The
concept of stability is discussed in more depth in later chapters.

� Exercise E1.16

Show that a system described by the equation y(t) = f2(t) is noninvertible. �

1.8 System Model: Input-output Description

As mentioned earlier, systems theory encompasses a variety of systems, such
as electrical, mechanical, hydraulic, acoustic, electromechanical, and chemical, as
well as social, political, economic, and biological. The first step in analyzing any
system is the construction of a system model, which is a mathematical expression
or a rule that satisfactorily approximates the dynamical behavior of the system.
In this chapter we shall consider only the continuous-time systems. (Modeling of
discrete-time systems is discussed in Chapter 8.)

To construct a system model, we must study the relationships between differ-
ent variables in the system. In electrical systems, for example, we must determine
a satisfactory model for the voltage-current relationship of each element, such as
Ohm’s law for a resistor. In addition, we must determine the various constraints on
voltages and currents when several electrical elements are interconnected. These are
the laws of interconnection—the well-known Kirchhoff’s voltage and current laws
(KVL and KCL). From all these equations, we eliminate unwanted variables to
obtain equation(s) relating the desired output variable(s) to the input(s). The fol-
lowing examples demonstrate the procedure of deriving input-output relationships
for some LTI electrical systems.

†The additional piece of information cannot be just any information. For instance, in the above
example, if we are given ḟ(0) = 0, it will not help in determining c, and the system is noninvertible.
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Fig. 1.31 Circuit for Example 1.10.

Example 1.10
For the series RLC circuit of Fig. 1.31, find the input-output equation relating the

input voltage f(t) to the output current (loop current) y(t).
Application of the Kirchhoff’s voltage law around the loop yields

vL(t) + vR(t) + vC(t) = f(t) (1.47)

By using the voltage-current laws of each element (inductor, resistor, and capacitor), we
can express this equation as

dy

dt
+ 3y(t) + 2

∫ t

−∞
y(τ) dτ = f(t) (1.48)

Differentiating both sides of this equation obtains

d2y

dt2
+ 3

dy

dt
+ 2y(t) =

df

dt
(1.49)

This differential equation is the input-output relationship between the output y(t)
and the input f(t).

It proves convenient to use a compact notation D for the differential operator
d
dt . Thus

dy

dt
≡ Dy(t) (1.50)

d2y

dt2
≡ D2y(t) (1.51)

and so on. With this notation, Eq. (1.49) can be expressed as(
D2 + 3D + 2

)
y(t) = Df(t) (1.52)

The differential operator is the inverse of the integral operator, so we can use
the operator 1/D to represent integration†.∫ t

−∞
y(τ) dτ ≡ 1

D
y(t) (1.53)

† Use of operator 1/D for integration generates some subtle mathematical difficulties because
the operators D and 1/D do not commute. For instance, we know that D(1/D) = 1 because
d
dt

[
∫ t

−∞ y(τ) dτ ] = y(t). However, 1
D

D is not necessarily unity. Use of Cramer’s rule in solving si-
multaneous integro-differential equations will always result in cancellation of operators 1/D and D.
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Fig. 1.32 Circuit for Example 1.11.

Consequently, the loop equation (1.48) can be expressed as(
D + 3 +

2
D

)
y(t) = f(t) (1.54)

Multiplying both sides by D, that is, differentiating Eq. (1.54), we obtain(
D2 + 3D + 2

)
y(t) = Df(t) (1.55)

which is identical to Eq. (1.52).
Recall that Eq. (1.55) is not an algebraic equation, and D2 + 3D + 2 is not an

algebraic term that multiplies y(t); it is an operator that operates on y(t). It means
that we must perform the following operations on y(t): take the second derivative
of y(t) and add to it 3 times the first derivative of y(t) and 2 times y(t). Clearly,
a polynomial in D multiplied by y(t) represents a certain differential operation on
y(t).

Example 1.11
Find the equation relating the input to output for the series RC circuit of Fig. 1.32

if the input is the voltage f(t) and output is (a) the loop current x(t) (b) the capacitor
voltage y(t).

The loop equation for the circuit is

Rx(t) +
1
C

∫ t

−∞
x(τ) dτ = f(t) (1.56)

or

15x(t) + 5
∫ t

−∞
x(τ) dτ = f(t) (1.57)

With operational notation, this equation can be expressed as

This procedure may yield erroneous results in those cases where the factor D occurs in the nu-
merator as well as in the denominator. This happens, for instance, in circuits with all-inductor
loops or all-capacitor cutsets. To eliminate this problem, avoid the integral operation in system
equations so that the resulting equations are differential rather than integro-differential. In elec-
trical circuits, this can be done by using charge (instead of current) variables in loops containing
capacitors and using current variables for loops without capacitors. In the literature this problem
of commutativity of D and 1/D is largely ignored. As mentioned earlier, such procedure gives er-
roneous results only in special systems, such as the circuits with all-inductor loops or all-capacitor
cutsets. Fortunately such systems constitute a very small fraction of the systems we deal with.
For further discussion of this topic and a correct method of handling problems involving integrals,
see Ref. 4
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15x(t) +
5
D

x(t) = f(t) (1.58)

Multiplying both sides of the above equation by D (that is, differentiating the above
equation), we obtain

(15D + 5)x(t) = Df(t) (1.59a)
or

15
dx

dt
+ 5x(t) =

df

dt
(1.59b)

Moreover,

x(t) = C
dy

dt

=
1
5
Dy(t)

Substitution of this result in Eq. (1.59a) yields

(3D + 1)y(t) = f(t) (1.60)

or
3
dy

dt
+ y(t) = f(t) (1.61)

� Exercise E1.17
For the RLC circuit in Fig. 1.31, find the input-output relationship if the output is the

inductor voltage vL(t).

Hint: vL(t) = LDy(t) = Dy(t). Answer:
(
D2 + 3D + 2

)
vL(t) = D2f(t) �

� Exercise E1.18
For the RLC circuit in Fig. 1.31, find the input-output relationship if the output is the

capacitor voltage vC(t).

Hint: vC(t) = 1
CD

y(t) = 2
D

y(t). Answer:
(
D2 + 3D + 2

)
vC(t) = 2f(t) �
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Fig. 1.33 Armature controlled dc motor.

1.8-1 Internal and External Descriptions of a System

With a knowledge of the internal structure of a system, we can write system
equations yielding an internal description of the system. In contrast, the sys-
tem description seen from the system’s input and output terminals is the system’s
external description. To understand an external description, suppose that a sys-
tem is enclosed in a “black box” with only its input(s) and output(s) terminals
accessible. In order to describe or characterize such a system, we must perform
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Fig. 1.34 A system that cannot be described by external measurements.

some measurements at these terminals. For example, we might apply a known in-
put, such as a unit impulse or a unit step, and then measure the system’s output.
The description provided by such a measurement is an external description of the
system.

Suppose the circuit in Fig. 1.34a with the input f(t) and the output y(t) is
enclosed inside a “black box” with only the input and output terminals accessible.
Under these conditions the only way to describe or specify the system is with exter-
nal measurements. We can, for example, apply a known voltage f(t) at the input
terminals and measure the resulting output voltage y(t). From this information we
can describe or characterize the system. This is the external description.

Assuming zero initial capacitor voltage, the input voltage f(t) produces a cur-
rent i (Fig. 1.34a), which divides equally between the two branches because of the
balanced nature of the circuit. Thus, the voltage across the capacitor continues to
remain zero. Therefore, for the purpose of computing the current i, the capacitor
may be removed or replaced by a short. The resulting circuit is equivalent to that
shown in Fig. 1.34b. It is clear from Fig. 1.34b that f(t) sees a net resistance of
5 Ω, and

i(t) =
1
5
f(t)

Also, because y(t) = 2 × (i/2) = i,

y(t) =
1
5
f(t) (1.62)

The equivalent system as seen from the system’s external terminals is depicted in
Fig. 1.34b. Clearly, for the external description, the capacitor does not exist. For
most systems, the external and internal descriptions are identical, but there are a
few exceptions, as in the present case, where the external description gives an inad-
equate picture of the systems. This happens when the system is uncontrollable
and/or unobservable. Figures 1.35a and 1.35b show a structural representation
of simple uncontrollable and unobservable systems respectively. In Fig. 1.35a we
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Fig. 1.35 Structures of uncontrollable and unobservable systems.

note that part of the system (subsystem S2) inside the box cannot be controlled by
the input f(t). In Fig. 1.35b some of the system outputs (those in subsystem S2)
cannot be observed from the output terminals. If we try to describe either of these
systems by applying an external input f(t) and then measuring the output y(t),
the measurement will not characterize the complete system but only the part of the
system (here S1) that is both controllable and observable (linked to both the input
and output). Such systems are undesirable in practice and should be avoided in any
system design. The system in Fig. 1.35a can be shown to be neither controllable
nor observable. It can be represented structurally as a combination of the systems
in Figs. 1.35a and 1.35b.

1.9 Summary

A signal is a set of information or data. A system processes input signals
to modify them or extract additional information from them to produce output
signals (response). A system may be made up of physical components (hardware
realization) or may be an algorithm that computes an output signal from an input
signal (software realization).

A convenient measure of the size of a signal is its energy if it is finite. If the
signal energy is infinite, the appropriate measure is its power, if it exists. The signal
power is the time average of its energy (averaged over the entire time interval from
−∞ to ∞). For periodic signals the time averaging need be performed only over
one period in view of the periodic repetition of the signal. Signal power is also equal
to the mean squared value of the signal (averaged over the entire time interval from
t = −∞ to ∞).

Signals can be classified in several ways as follows:

1. A continuous-time signal is specified for a continuum of values of the indepen-
dent variable (such as time t). A discrete-time signal is specified only at a finite
or a countable set of time instants.

2. An analog signal is a signal whose amplitude can take on any value over a con-
tinuum. On the other hand, a signal whose amplitudes can take on only a finite
number of values is a digital signal. The terms discrete-time and continuous-
time qualify the nature of a signal along the time axis (horizontal axis). The
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terms analog and digital, on the other hand, qualify the nature of the signal
amplitude (vertical axis).

3. A periodic signal f(t) is defined by the fact that f(t) = f(t + T0) for some
T0. The smallest value of T0 for which this relationship is satisfied is called the
period. A periodic signal remains unchanged when shifted by an integral mul-
tiple of its period. A periodic signal can be generated by a periodic extension
of any segment of f(t) of duration T0. Finally, a periodic signal, by definition,
must exist over the entire time interval −∞ < t < ∞. A signal is aperiodic if
it is not periodic.
An everlasting signal starts at t = −∞ and continues forever to t = ∞. A
causal signal is a signal that is zero for t < 0. Hence, periodic signals are
everlasting signals.

4. A signal with finite energy is an energy signal. Similarly a signal with a finite
and nonzero power (mean square value) is a power signal. A signal can either
be an energy signal or a power signal, but not both. However, there are signals
that are neither energy nor power signals.

5. A signal whose physical description is known completely in a mathematical or
graphical form is a deterministic signal. A random signal is known only in
terms of its probabilistic description such as mean value, mean square value,
and so on, rather than its mathematical or graphical form.

A signal f(t) delayed by T seconds (right-shifted) is given by f(t − T ); on the
other hand, f(t) advanced by T (left-shifted) is given by f(t + T ). A signal f(t)
time-compressed by a factor a (a > 1) is given by f(at); on the other hand, the same
signal time-expanded by factor a is given by f( t

a ). The same signal time-inverted
is given by f(−t).

The unit step function u(t) is very useful in representing causal signals and
signals with different mathematical descriptions over different intervals.

In the classical definition, the unit impulse function δ(t) is characterized by
unit area, and the fact that it is concentrated at a single instant t = 0. The impulse
function has a sampling (or sifting) property, which states that the area under the
product of a function with a unit impulse is equal to the value of that function at
the instant where the impulse is located (assuming the function to be continuous
at the impulse location). In the modern approach, the impulse function is viewed
as a generalized function and is defined by the sampling property.

The exponential function est, where s is complex, encompasses a large class
of signals that includes a constant, a monotonic exponential, a sinusoid, and an
exponentially varying sinusoid.

A signal that is symmetrical about the vertical axis (t = 0) is an even function
of time, and a signal that is antisymmetrical about the vertical axis is an odd
function of time. The product of an even function with an odd function results in
an odd function. However, the product of an even function with an even function
or an odd function with an odd function results in an even function. The area
under an odd function from t = −a to a is always zero regardless of the value of a.
On the other hand, the area under an even function from t = −a to a is two times
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the area under the same function from t = 0 to a (or from t = −a to 0). Every
signal can be expressed as a sum of odd and even function of time.

A system processes input signals to produce output signals (response). The
input is the cause and the output is its effect. In general, the output is affected
by two causes: the internal conditions of the system (such as the initial conditions)
and the external input.

Systems can be classified in several ways:

1. Linear systems are characterized by the linearity property, which implies su-
perposition; if several causes (such as various inputs and initial conditions) are
acting on a linear system, the total effect (response) is the sum of the responses
from each cause, assuming that all the remaining causes are absent. A system
is nonlinear if it is not linear.

2. Time-invariant systems are characterized by the fact that system parameters
do not change with time. The parameters of time-varying parameter systems
change with time.

3. For memoryless (or instantaneous) systems, the system response at any instant
t depends only on the present value of the input (value at t). For systems with
memory (also known as dynamic systems), the system response at any instant t
depends not only on the present value of the input, but also on the past values
of the input (values before t).

4. In contrast, if a system response at t also depends on the future values of the
input (values of input beyond t), the system is noncausal. In causal systems,
the response does not depend on the future values of the input. Because of the
dependence of the response on the future values of input, the effect (response)
of noncausal systems occurs before cause. When the independent variable is
time (temporal systems), the noncausal systems are prophetic systems, and
therefore, unrealizable, although close approximation is possible with some
time delay in the response. Noncausal systems with independent variables
other than time (e.g., space) are realizable.

5. If the dimensions of system elements are small compared to the wavelengths of
the signals, we may assume that each element is lumped at a single point in
space, and the system may be considered as a lumped-parameter system. The
signals under this assumption are functions of time only. If this assumption
does not hold, the signals are functions of space and time; such a system is a
distributed-parameter system.

6. Systems whose inputs and outputs are continuous-time signals are continuous-
time systems; systems whose inputs and outputs are discrete-time signals are
discrete-time systems. If a continuous-time signal is sampled, the resulting
signal is a discrete-time signal. We can process a continuous-time signal by
processing the samples of this signal with a discrete-time system.

7. Systems whose inputs and outputs are analog signals are analog systems; those
whose inputs and outputs are digital signals are digital systems.

8. If we can obtain the input f(t) back from the output y(t) of a system S by
some operation, the system S is said to be invertible. Otherwise the system is
noninvertible.
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The system model derived from a knowledge of the internal structure of the
system is its internal description. In contrast, an external description of a system
is its description as seen from the system’s input and output terminals; it can be
obtained by applying a known input and measuring the resulting output. In the
majority of practical systems, an external description of a system so obtained is
equivalent to its internal description. In some cases, however, the external descrip-
tion fails to give adequate information about the system. Such is the case with the
so-called uncontrollable or unobservable systems.
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Problems

1-1 Find the energies of the signals illustrated in Fig. P1-1. Comment on the effect on
energy of sign change, time shifting, or doubling of the signal. What is the effect on
the energy if the signal is multiplied by k?

2π

1 sin t (c)

4π
t

0

2π

1 sin t (a)

0 2π

1 – sin t (b)

t
0

2π

2
2 sin t

(d)

t
0

t

Fig. P1-1

1-2 Repeat Prob. 1-1 for the signals in Fig. P1-2.

1-3 (a) Find the energies of the pair of signals x(t) and y(t) depicted in Figs. P1-3a and
b. Sketch and find the energies of signals x(t) + y(t) and x(t) − y(t). Can you make
any observation from these results?
(b) Repeat part (a) for the signal pair illustrated in Fig. P1-3c. Is your observation
in part (a) still valid?
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1-4 Find the power of the periodic signal f(t) shown in Fig. P1-4. Find also the powers
and the rms values of: (a) −f(t) (b) 2f(t) (c) cf(t). Comment.

t2

8

4

−8

 f  ( t )

t 3

2 6

t 3

–4–6 –2

Fig. P1-4
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48 1 Introduction to Signals and Systems

1-5 In Fig. P1-5, the signal f1(t) = f(−t). Express signals f2(t), f3(t), f4(t), and f5(t)
in terms of signals f(t), f1(t), and their time-shifted, time-scaled or time-inverted
versions. For instance f2(t) = f(t − T ) + f1(t − T ).

10

1
f

1
( t )

t– 1 0

1

t

f ( t )

– 1 0

1

t

f
3

( t )

1

10

1
f

2
( t )

t 2

0

1 . 5
f

5
( t )

t 20

1
f

4
( t )

t

1
2

1

1
2

Fig. P1-5

1-6 For the signal f(t) depicted in Fig. P1-6, sketch the signals: (a) f(−t) (b) f(t + 6)
(c) f(3t) (d) f( t

2 ) .

f  ( t )

t0
6

12

−1

0.5

15 24

Fig. P1-6

1-7 For the signal f(t) illustrated in Fig. P1-7, sketch (a) f(t − 4) (b) f( t
1.5 ) (c) f(−t)

(d) f(2t − 4) (e) f(2 − t) .

2

2

0 t−4

f ( t )
4

Fig. P1-7

1-8 Sketch the signals (a) u(t−5)−u(t−7) (b) u(t−5)+u(t−7) (c) t2[u(t−1)−u(t−2)]
(d) (t − 4)[u(t − 2) − u(t − 4)]

1-9 Express each of the signals in Fig. P1-9 by a single expression valid for all t.

1-10 For an energy signal f(t) with energy Ef , show that the energy of any one of the
signals −f(t), f(−t) and f(t − T ) is Ef . Show also that the energy of f(at) as well
as f(at− b) is Ef/a. This shows that time-inversion and time-shifting does not affect
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t2

4

4

−4

f 2 ( t )

t 2
(b)

t2

4

−1

f 1 ( t )

(a)

Fig. P1-9

signal energy. On the other hand, time compression of a signal (a > 1) reduces the
energy, and time expansion of a signal (a < 1) increases the energy. What is the
effect on signal energy if the signal is multiplied by a constant a?

1-11 Simplify the following expressions:

(a)
( sin t

t2 + 2

)
δ(t)

(c)
[
e−t cos (3t − 60◦)

]
δ(t)

(e)

(
1

jω + 2

)
δ(ω + 3)

(b)
(

jω + 2
ω2 + 9

)
δ(ω)

(d)

(
sin

[
π
2 (t − 2)

]
t2 + 4

)
δ(t − 1)

(f)
( sin kω

ω

)
δ(ω)

Hint: Use Eq. (1.23). For part (f) use L’Hôpital’s rule.

1-12 Evaluate the following integrals:

(a)
∫ ∞

−∞
δ(τ)f(t − τ) dτ

(b)
∫ ∞

−∞
f(τ)δ(t − τ) dτ

(c)
∫ ∞

−∞
δ(t)e−jωt dt

(d)
∫ ∞

−∞
δ(t − 2) sin πt dt

(e)
∫ ∞

−∞
δ(t + 3)e−t dt

(f)
∫ ∞

−∞
(t3 + 4)δ(1 − t) dt

(g)
∫ ∞

−∞
f(2 − t)δ(3 − t) dt

(h)
∫ ∞

−∞
e(x−1) cos

[
π
2 (x − 5)

]
δ(x − 3) dx

Hint: δ(x) is located at x = 0. For example, δ(1 − t) is located at 1 − t = 0, and
so on.

1-13 (a) Find and sketch df/dt for the signal f(t) shown in Fig. P1-7.
(b) Find and sketch d2f/dt2 for the signal f(t) depicted in Fig. P1-9a.

1-14 Find and sketch
∫ t

−∞ f(x) dx for the signal f(t) illustrated in Fig. P1-14.

1

–1

21 331 t0

1 (a) 1

–1

1 3 t0

–1

(b)

321

–1–1

Fig. P1-14
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50 1 Introduction to Signals and Systems

1-15 Using the generalized function definition, show that δ(t) is an even function of t.

Hint: Start with Eq. (1.24a) as the definition of δ(t). Now change variable t = −x to
show that ∫ ∞

−∞
φ(t)δ(−t) dt = φ(0)

1-16 Prove that
δ(at) =

1
|a|δ(t)

Hint: Show that ∫ ∞

−∞
φ(t)δ(at) dt =

1
|a|φ(0)

1-17 Show that ∫ ∞

−∞
δ̇(t)φ(t) dt = −φ̇(0)

where φ(t) and φ̇(t) are continuous at t = 0, and φ(t) → 0 as t → ±∞. This integral
defines δ̇(t) as a generalized function. Hint: Use integration by parts.

1-18 A sinusoid eσt cos ωt can be expressed as a sum of exponentials est and e−st (Eq.
(1.30c) with complex frequencies s = σ + jω and s = σ − jω. Locate in the com-
plex plane the frequencies of the following sinusoids: (a) cos 3t (b) e−3t cos 3t (c)
e2t cos 3t (d) e−2t (e) e2t (f) 5.

1-19 Find and sketch the odd and the even components of (a) u(t) (b) tu(t) (c) sin ω0t u(t)
(d) cos ω0t u(t) (e) sin ω0t (f) cos ω0t.

1-20 Write the input-output relationship for an ideal integrator. Determine the zero-input
and zero-state components of the response.

1-21 For the systems described by the equations below, with the input f(t) and output
y(t), determine which of the systems are linear and which are nonlinear.

(a)
dy

dt
+ 2y(t) = f2(t)

(b)
dy

dt
+ 3ty(t) = t2f(t)

(e)

(
dy

dt

)2

+ 2y(t) = f(t)

(d)
dy

dt
+ y2(t) = f(t)

(c) 3y(t) + 2 = f(t)

(f)
dy

dt
+ (sin t)y(t) =

df

dt
+ 2f(t)

(g)
dy

dt
+ 2y(t) = f(t)

df

dt

(h) y(t) =
∫ t

−∞
f(τ) dτ

1-22 For the systems described by the equations below, with the input f(t) and output
y(t), determine which of the systems are time-invariant parameter systems and which
are time-varying parameter systems.

(a) y(t) = f(t − 2)

(b) y(t) = f(−t)

(c) y(t) = f(at)

(d) y(t) = t f(t − 2)

(e) y(t) =
∫ 5

−5

f(τ) dτ

(f) y(t) =
(

df

dt

)2
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1-23 For a certain LTI system with the input f(t), the output y(t) and the two initial
conditions x1(0) and x2(0), following observations were made:

f(t) x1(0) x2(0) y(t)

0 1 −1 e−tu(t)

0 2 1 e−t(3t + 2)u(t)

u(t) −1 −1 2u(t)

Determine y(t) when both the initial conditions are zero and the input f(t) is as
shown in Fig. P1-23.

0

1

5

f (t)

− 5 t

Fig. P1-23

Hint: There are three causes: the input and each of the two initial conditions. Because
of linearity property, if a cause is increased by a factor k, the response to that cause
also increases by the same factor k. Moreover, if causes are added, the corresponding
responses add.

1-24 A system is specified by its input-output relationship as

y(t) = f2(t)
/(

df

dt

)
Show that the system satisfies the homogeneity property but not the additivity prop-
erty.

1-25 Show that the circuit in Fig. P1-25 is zero-state linear but is not zero-input linear.
Assume all diodes to have identical (matched) characteristics.
Hint: In zero state (when the initial capacitor voltage vc(0) = 0), the circuit is linear.
If the input f(t) = 0, and vc(0) is nonzero, the current y(t) does not exhibit linearity
with respect to its cause vc(0).

vc

f  ( t )

D1

2 R

+
–

y ( t )

+ –

2 R

D2

C

D3

R

Fig. P1-25
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y ( t )2 Ω1F

+

−

0.1 H

L

C

f ( t )

Fig. P1-26

1-26 The inductor L and the capacitor C in Fig. P1-26 are nonlinear, which makes the
circuit nonlinear. The remaining 3 elements are linear. Show that the output y(t) of
this nonlinear circuit satisfies the linearity conditions with respect to the input f(t)
and the initial conditions (all the initial inductor currents and capacitor voltages).
Recognize that a current source is an open circuit when the current is zero.

1-27 For the systems described by the equations below, with the input f(t) and output
y(t), determine which of the systems are causal and which are noncausal.

(a) y(t) = f(t − 2)

(b) y(t) = f(−t)

(c) y(t) = f(at) a > 1

(d) y(t) = f(at) a < 1

1-28 For the systems described by the equations below, with the input f(t) and output
y(t), determine which of the systems are invertible and which are noninvertible. For
the invertible systems, find the input-output relationship of the inverse system.

(a) y(t) =
∫ t

−∞
f(τ) dτ

(b) y(t) = f(3t − 6)

(c) y(t) = fn(t) n, integer

(d) y(t) = cos [f(t)]

y
2

 ( t )f  ( t ) y
1

 ( t )

3 Ω

Fig.  P1-29

1 H

  
1_
2

 

Ω   
1_
2

 

H

y
1

 ( t )

f  ( t )

Fig.  P1-30

1 F y
2

 ( t )

1-29 For the circuit depicted in Fig. P1-29, find the differential equations relating outputs
y1(t) and y2(t) to the input f(t).

1-30 Repeat Prob. 1-29 for the circuit in Fig. P1-30.

1-31 Water flows into a tank at a rate of qi units/s and flows out through the outflow valve
at a rate of q0 units/s (Fig. P1-31). Determine the equation relating the outflow q0
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h

q
i

q
o

Fig. P1-31

to the input qi. The outflow rate is proportional to the head h. Thus q0 = Rh where
R is the valve resistance. Determine also the differential equation relating the head
h to the input qi.
(Hint: The net inflow of water in time �t is (qi − q0)�t. This inflow is also A�h
where A is the cross section of the tank.)
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