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1.1 INTRODUCTION

Structures are built to facilitate the performance of various activities connected
with residence, office, education, healthcare, sports and recreation, transportation,
storage, power generation, irrigation, etc. We see a variety of structures in our
midst. Some are monumental, some residential, some commercial, some recreational,
some mobile, etc. All of them have certain common features; they form systems consist-
ing of a load-resisting component, which is called super structure and a load-dis-
tributing component to the ground which is known as substructure.

All the structures should sustain the loads coming on them during their serv-
ice life by possessing adequate strength and also limit the deformation by pos-
sessing enough stiffness. Strength of a structure depends on the characteristics of
the material with which it is constructed. Stiffness depends on the cross section
and the geometrical configuration of the structure. A structure is not a single entity;
it consists of many parts that are assembled together as a system. The parts are
called elements or members. The loads coming on a structure degenerate into forces
in these elements because of the deformation they undergo. The members should
be designed to resist these forces induced in them as per the relevant codes of practices
prevalent in a country. Besides, the structure should be stable against overturn-
ing moments caused by some kind of horizontal loads like that caused by earth-
quake or wind. Moreover, all the loads applied on the structure should be safely
transmitted to the ground through its foundation. Therefore, safety is of prime
importance in the existence of structures. Because human beings occupy the struc-
ture eventually one should not compromise on the safety aspect of the structure.
Otherwise distress in the structure will endanger lives of occupants. Transmission
of loads coming on the global system through its local members to the subsystem
consisting of the foundation for eventual distribution on the ground is called load
path. Any interruption in the load path will lead to collapse of the structure. So, the
safety of a structure can be assured with the right choice of appropriate load path.

Structural analysis, therefore, deals with the mechanism of degeneration of
loads applied on the system into local element forces, using various theories and
theorems enunciated by eminent engineers and investigators. It also deals with
the computation of deformations these members suffer under the action of the

Structural Systems
1
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induced forces. We will discuss all these aspects in details in the following
chapters in this book along with a number of illustrative examples.

First, we discuss about various types of loads applied on the structural systems.

1.1.1 Loads

A structural system experiences many kinds of loads during its service life. The
system should be designed for the worst combination of loads that is going to act
on it throughout its service life. Many types of loads that are applied on the
structure are as follows:

1. Dead loads
2. Live loads
3. Construction loads
4. Snow and ice loads
5. Earth pressures or soil pressures
6. Water pressures or hydrostatic pressures
7. Loads due to subsidence
8. Loads caused by thermal changes and misfit
9. Wind loads

10. Earthquake loads or seismic loads
11. Impact loads
12. Blast loads
13. Dynamic loads induced by machines
14. Fatigue loads induced by their repeated application, e.g., due to traffic,

waves, etc.
15. Loads due to transportation of fluids in pipelines
16. Loads caused by floods, landslides, etc.
17. Loads caused by fire
18. Centrifugal forces in bridges
19. Longitudinal forces by braking of vehicles on bridges

The dead load is fixed to the structure and is mostly invariant with time. For
example, self-weight of the structure; furniture; stored materials like books, sta-
tionery items, etc., constitute the dead loads. They reside permanently in the
structure and are the basic parameter for design in all structural systems. The
basic information about these loads is prescribed in relevant codes and standards
as well as in reference books. 

All the other loads are somewhat variable in nature, both in time and magni-
tude. These loads are applied over and above the dead or fixed loads. Hence, they
are called by a generic name, imposed loads. These loads are specified in vari-
ous codes and standards by countries across the globe.

Some of the loads due to wind, earthquake, floods, landslides, etc., are caused
by natural phenomena; therefore, they are categorized as geophysical loads.
These loads are mostly non-deterministic because of the uncertainties associated
with their occurrence, time and magnitude, and terrestrial conditions. 

Some other loads like impact loads, blast loads, dynamic loads, etc., are caused
by human activities and hence are called man-made loads.

2 Structural Analysis
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Loads such as dead loads, live loads, snow and ice loads, act vertically down-
wards and hence are called gravity loads. Wind loads, earthquake loads, and soil
and hydrostatic pressures act horizontally and hence are called lateral loads. Loads
caused by thermal changes and misfit as well as by blasting are directionless. 

Loads that do not vary with time and always maintain the same sense are
called static loads or monotonic loads, e.g., dead loads, construction loads, snow
loads, earth pressure, etc. However, those that vary with time and in sense are
called cyclic loads as well as dynamic loads, e.g., earthquake loads, impact
loads, blast loads, machine-induced loads, etc. Fatigue load is a kind of cyclic
load which is applied repeatedly on the structure for a long duration and it is a
special case of dynamic load. For example, traffic- and wave-induced loads fall
under the category of fatigue loads. Dynamic load sets the structure to vibrate.

1.1.2 Material

The materials form the backbone of the carrying capacity of structures. We have
a variety of materials that can be used in construction. Popular materials that are
being used over the decades are

1. Wood
2. Stone
3. Brick
4. Concrete
5. Steel
6. Aluminium
7. Brass
8. Cement products
9. Plastic

10. Smart and intelligent materials

The oldest material of construction is timber. At the beginning of habitation, as
plenty of timber was available, the construction was mostly based on this mate-
rial. Therefore, most of the buildings in Europe and America, even today, are
built with timber.

With the advent of binders, like lime and gypsum, stone was also used in con-
struction. With the invention of cement, brick became a popular construction
material. Stone and brick construction is called masonry. Stone and brick are
quite strong in resisting compression.

In the early nineteenth century, concrete emerged as a popular material for
construction. Because of its inherent weakness in carrying tensile force, it is nor-
mally strengthened with steel bars. This combination of concrete and steel is
called reinforced concrete. In this form of construction, initially steel remains
passive or dormant. Only upon loading, the steel becomes active. An advanced
form of reinforced concrete is the prestressed concrete in which the steel is made
active by imparting strength in it before carrying any load.

Steel has dominated the civil engineering construction over the past several
decades. Our earth is currently dotted with many prominent steel structures such as
The Eiffel Tower, The St. Louis Arch, etc. Of late, plastic is extensively used par-
ticularly in the form of fibre reinforced plastics (FRP).

Structural Systems 3
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All these materials discussed previously are called dumb materials because
they are not adaptive to their environment and do not forewarn any impending
distress in the structure. Like plants and animals which adapt to their environ-
ment, some materials called smart materials are being evolved. These materials
when incorporated in construction can adjust itself to the environment and indi-
cate any distress occurring inside. These are called intelligent materials or smart
materials. Shape memory alloy (SMA) is a popular example and it falls under
the category of smart materials. 

Adoption of a particular material for construction depends on the importance
of the building, economy, type of use, etc.

1.2 FORMS OF STRUCTURES

We have constructed structures of many forms and shapes. All structural forms
used for load transfer from one point to another are three-dimensional (3D) in
nature. Generally, they can be categorized as linear forms (Fig. 1.1) and curvilinear

4 Structural Analysis

Fig. 1.1 Chicago downtown buildings (linear form).

forms (Fig. 1.2). The type of functions and aesthetics dictate the forms of
structures. For instance, linear forms are preferred for residential, official, and
educational purposes. The linear form is called skeletal structures. They are artic-
ulated structures assembled with parts consisting of linear elements, such as bars
and beams, the connection between them being bolted or riveted or welded.

Fig. 1.2 Balloon structure (curvilinear form).
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Assemblage of members forming a frame to support the forces acting is called the
framed structure. A framework is the skeleton of the complete structure and it
supports all intended loads safely and economically. Some structural examples
are frames [Fig. 1.3(a)], high-rise structures [Fig. 1.3(b)], trusses [Fig. 1.3(c)],
industrial shed [Fig. 1.3(d)], bridge deck [Fig. 1.3(e)], plates [Fig. 1.3(f)], etc.
Generally, these structures are two-dimensional (2D) lying in one plane along two
coordinate axes. However, the parts by which they are assembled are one-dimen-
sional (1D) lying in a single plane along one coordinate axis. 

Structural Systems 5

Beam

(a) Frame

Column

Beams

Columns

(b) Hise-rise structure

(c) Truss

Bars

(d) Industrial shed

(e) Bridge deck (f) Plate

Fig. 1.3 Skeletal structures.

Curvilinear forms as single entities mostly occupy a space. For structural
analysis purposes these structures are idealized as continuous system.
Continuous system structures transfer loads through the in-plane or membrane
action to the boundaries. Assemblages of continuous members like shells,
domes, etc., are called continuous system. They are 3D structures. The exam-
ples for continuous system are domes, shells, arches, cables, cylindrical mem-
bers, cooling towers, space crafts, aircrafts, etc. These are shown in Fig. 1.4.
Structures in curvilinear form are called surƒace structures. 

The most suitable structural form is the one which provides satisfactory solu-
tions to functional, economic, sociological, aesthetic, and other requirements to
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(a) Dome (b) Shell

(c) Arch

wkN/m

(d) Cable

W1 W2

(e) Cylindrical membrane

Fig. 1.4 Surface structures.

the highest degree and that can be economically and reliably built, using the most
appropriate structural materials and construction methods that are available. 

On the basis of the dominant stress conditions developed under their most sig-
nificant design loads and conditions, structural forms may be classified as uniform
stress forms and varying stress forms. When the stress across a section is uniform
over the depth of a member or over the thickness of a panel, e.g., cables, arches,
truss members, membranes, and shells, such a form is called a uniform stress form.
When the stress varies over the depth or thickness, from a maximum compressive
stress on one surface to a maximum tensile stress on the other, e.g., in the case of
beams, rigid frames, slabs, plates, etc., such a form is called a varying stress form.

1.3 DIFFERENT STRUCTURAL SYSTEMS 

The term structural system or structural frame in structural engineering refers to
load-resisting subsystem of a structure. Structural system transfers loads through
interconnected structural components or members. In general, structural systems
are designed as a combination of different elements. The basic ones are the
members that are organized and connected in a way to define units of different
kinds like frames, trusses, floors. A series of units, connected and stabilized by
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auxiliary members, determines the system. All the components are arranged in
such a way as to allow the ensemble to assume a configuration capable to with-
stand the actions like loads, settlements of the construction, dimensional varia-
tions caused by hygrothermal fluctuations, etc., more or less matching with the
stiffness, strength, and relative motion between adjacent parts. All structural sys-
tems resist forces in three basic ways: by flexure or bending, shear, and axial ten-
sion and compression. Broadly speaking, we can categorize the structural system
based on applied loads as (i) gravity load-resisting system and (ii) lateral load-
resisting system.

1.3.1 Gravity Load-resisting System
In this system, normally load is applied on the horizontal elements of the system
like floors which is then transferred to vertical supporting elements like walls. 

1.3.1.1 Structural System Types for Simple Structures

Simple structures are mostly gravity load-resisting type. Structural systems nor-
mally employed in relatively simple structures are wood frame, masonry bearing
wall and concrete plank, steel, precast concrete, cast-in situ concrete, etc. The
selection of the appropriate system or combination of system is usually the result
of an evaluation of the following 12 factors:

1. Soil conditions
2. The programme and concept
3. Relevant codes
4. Potential changes in codes
5. Flexibility 
6. Impact on finished ceiling and building height 
7. Delivery of material and construction time
8. Construction capabilities locally available and preferences
9. Ease of construction and schedule

10. Cost of selected system
11. Cost impact on other systems
12. Elegance and aesthetic issues

On the basis of the factors listed previously some issues normally crop up. Nine
of the most common structural systems in which application of the above-men-
tioned factors may give rise to problems are briefed as follows.

Wood Frame This system is typically inexpensive; it can be implemented by a
wide variety of contractors; it is fast and it can be flexible. The limitations
regarding span can be circumvented with the use of trusses, laminated beam,
heavy timber, or mixing with steel or other systems in larger space. The most
common disadvantage in this system is that timber is combustible. Another
potential disadvantage is the vibration of the floor in high traffic areas.

Bearing Wall and Concrete Plank Here, we use a combination of masonry bear-
ing walls and precast concrete slab. It is a simple method, familiar to many contrac-
tors, relatively low cost, and relatively fast in construction. The span limitations can

Structural Systems 7

© Oxford University Press. All rights reserved.



be overcome by combining with other systems for large spaces. The major draw-
backs in this system are its relative lack of flexibility; performance on unstable soil;
height limitations; impact on the distribution of mechanical, electrical, plumbing,
and fire protection systems; and the occasional shortages of masons. Non-availabil-
ity of precast companies is another hurdle in the implementation of this system.

Steel and Concrete Plank This system is quite flexible; it performs adequately
on unstable soil, and hardly suffers from a lack of skilled manpower on the other
hand, steel requires fireproofing and its delivery time is more.

Steel and Poured-Concrete Deck It is more expensive and the depth of the
system is more than that for steel and concrete plank due to the inclusion of the
intermediate beams.

Precast Concrete Precast concrete can be used for more than exterior wall sys-
tem. It is also used in some locations of the columns, beams, and bearing walls.
It is a common structural choice for garages, site bridges, and other simple long-
span, heavy-load structures. The major drawback in this system is the non-avail-
ability of precast companies in the vicinity.

‘Beam-and-slab’ Cast-in-place Concrete This is a non-combustible system.
Particularly, it is best suited for situations where the lateral loads are significant.
It is relatively easy to build with locally available material. It can produce flexi-
ble buildings. Cast-in-situ tends to be relatively expensive and very often it has
a greater thickness than that of steel-and-concrete plank.

‘Flat-slab’ Cast-in situ Concrete For taller residential buildings, a two-way, flat-
slab concrete structure is a popular choice because it minimizes floor-to-floor
height, is fast to build, creates a finished ceiling with the underside of the slab, per-
mits flexibility in placing columns, and is relatively easy to brace or stiffen for lat-
eral loads. However, this system is more expensive than some of the other options. 

Prestressed and Post-tensioned Concrete In this system, the steel reinforce-
ment is tensioned even before it is loaded and hence it is an active system. In pre-
stressed concrete, steel is tensioned before pouring concrete. In post-tensioned
concrete, the member is cast first. After hardening of concrete, the reinforcing
steel is tensioned against the hardened concrete. The system can be thinner than
flat-plate and is more expensive. The system is less flexible because concrete
cannot be cut for future modifications. The construction industry in many parts
of the country does not have experience to implement these systems.

Combination of Systems We can employ two or more systems in a single project.
On the whole, the selection and design of a structural system, or combination of
systems, is an issue with significant cost, aesthetic, and functional implications.

1.3.2 Lateral Load-resisting Systems
In the early structures at the beginning of the twentieth century, they were
assumed to carry primarily gravity loads. However, in the modern times the

8 Structural Analysis
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situation has changed drastically. Rapid strides have been made in structural
designs/systems and development of high-strength materials. These develop-
ments have resulted in significant reduction in building weight as well as its
slenderness. This has necessitated the consideration of lateral loads due to wind
and earthquake in design. Understandably, buildings, particularly tall buildings,
suffer more from lateral loads resulting from wind and earthquake as their slen-
derness and the associated flexibility increases. As a general rule, other things
being equal, the taller the building, the more necessary it is to identify the proper
structural system for resisting the lateral loads. Currently, there are many struc-
tural systems that can be used for the lateral resistance of tall buildings. These
systems have been evolved in the context of resisting seismic forces which are
essentially horizontal in direction. 

The Uniform Building Code (UBC), USA, has recommended five major cat-
egories of building types distinguished by the method used to resist the lateral
force. These are illustrated in Fig. 1.5 and they consist of bearing walls, building
frames, moment-resisting frames, dual systems, and cantilevered columns.
These categories are further subdivided into the types of construction material
used as given in Table 1.1.

Structural Systems 9

Table 1.1 Structural Systems and Materials

Structural systems

I. Bearing wall system
(i) Wood light-framed walls with shear panels (up to three storeys or less)

(ii) Concrete or masonry shear walls
(iii) Steel braced frames
(iv) Heavy timber braced frames

II. Building frame system
(i) Steel eccentrically braced frame

(ii) Wood light-framed walls with shear panels (up to three storeys or less)
(iii) Concrete shear walls
(iv) Masonry shear walls
(v) Steel ordinary braced frames

(vi) Heavy timber braced frames
(vii) Steel special concentrically braced frames

III. Moment-resisting frame system
(i) Steel or concrete special moment-resisting frames (SMRF)

(ii) Masonry moment-resisting wall frames (MRWF)
(iii) Steel special truss moment frames

IV. Dual system
(i) Concrete shear walls with SMRF

(ii) Masonry shear walls with SMRF
(iii) Masonry shear walls with masonry MRWF
(iv) Steel eccentrically braced frames with steel SMRF
(v) Steel ordinary braced frames with steel SMRF

(vi) Steel special concentrically braced frames with steel SMRF

V. Inverted pendulum
(i) Cantilevered column elements (including column height)
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1.3.2.1 Bearing Wall System 

In this system, shear walls or braced frames provide support for all or most of
the gravity loads and for resisting all lateral loads [Fig. 1.5(a)]. Bearing wall
systems do not contain complete vertical load-carrying space frames but may
use some columns to support floor or roof vertical loads. This type of system is
very common and includes wood-frame buildings, concrete tilt-up buildings,
and masonry buildings.

A shear wall is one that resists lateral forces by developing shear in its own
plane and cantilevering from its base. It is essentially a very deep cantilever
beam that develops flexural stresses besides its own basic shear stress. The wall
tends to lift off at one end, and there must be adequate dead load to prevent this,
or, it must be tied down to the foundation adequately. Moreover, the connection
of the wall to the foundation must be adequate to prevent sliding. Shear walls
may be made of sheathed wood-frame walls, reinforced concrete, reinforced
masonry, or steel.

1.3.2.2 Building Frame System 

This system has two separate entities: one to provide support for lateral forces
and the other to bear gravity loads. A frame resists all gravity loads and an
independent shear wall or a braced frame resists all lateral loads. This
arrangement is shown in Fig. 1.5(b). Failure of the lateral support system will
not result in the collapse of the building since the frame continues to support
gravity loads. Typically building frame systems use steel braced frames or
concrete or masonry shear walls to resist lateral forces. Steel braced frames

Fig. 1.5 Different lateral load-resisting systems.
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Structural Systems 11

are often used in combination with concrete shear walls or masonry shear
walls.

Braced frames are essentially vertical cantilevered trusses to resist lateral
forces by axial tension and compression in the truss members, and may either be
concentric or eccentric configuration. Concentric frames have diagonal braces
so arranged that the lateral forces act along the direction of their longitudinal
axes. Eccentric braced frames use both axial loading of braces and bending of
sections of horizontal beam to resist the forces. Figure 1.6 shows typical braced
frame configurations. 

(a) X brace (b) Chevron brace (c) K brace (d) Eccentric brace

Fig. 1.6 Typical braced frames.

1.3.2.3 Moment-resisting Frames

Moment-resisting frames [Fig. 1.5(c)] can be steel, concrete, or masonry con-
struction. This system provides a complete space frame throughout the building
to carry vertical loads, and it uses some of the frame elements to resist lateral
forces. Shear walls and braced frames are not used in this system, as shown in
Fig. 1.5(c).

Moment-resisting frames, also called rigid frames, are specially detailed to
provide good ductility and support for both lateral and gravity loads by flexural
action. The ability of structural systems and materials to deform and absorb
energy, without failure or collapse, is termed as ductility. Moment-resisting
frames consist of beams and columns in which bending of these members pro-
vides the resistance to lateral force. The three categories of moment-resisting
frames are as follows:

1. Special moment-resisting frame (SMRF)
2. Intermediate moment-resisting frame (IMRF)
3. Ordinary moment-resisting frame (OMRF)

Special Moment-resisting Frame (SMRF) It is a moment-resisting frame
made of structural steel or reinforced concrete that has the ability to absorb a
large amount of energy in inelastic range, i.e., when the material is stressed
above its yield point without failure and without large and unacceptable defor-
mation. In severe seismic zones, construction of concrete frames must be of
SMRF.

Intermediate Moment-resisting Frame (IMRF) It is a concrete frame that has
less stringent requirements than that of an SMRF and, in general, used only in
moderate seismic zones.
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Ordinary Moment-resisting Frame (OMRF) It is a steel or a concrete frame
that does not meet the special detailing requirements for ductile behaviour.
Materials or systems that are able to absorb energy through deformation are
called ductile, whereas those able to do so to a lesser extent are called non-duc-
tile or brittle, e.g., a rubber band is ductile and a cast iron is brittle. The OMRF
made up of steel may be used in any seismic zone, whereas that made up of con-
crete is used in low seismic zones. Since a moment-resisting frame resists lateral
loads by bending, it is the most ductile lateral load-resisting system.

1.3.2.4 Dual System

A dual system is shown in Fig. 1.5(d). A dual system is one with an essentially
complete frame that provides support for vertical loads. Lateral loads are resis-
ted by both moment-resisting frames and shear walls or braced frames, in pro-
portion to their relative rigidities. The moment-resisting frame must be designed
to resist independently at least 25% of the total required lateral force, and, in
addition, the two systems shall be designed to resist the total required lateral
force in proportion to their relative rigidities.

1.3.2.5 Inverted Pendulum Structure

This system consists of a structure which is supported on cantilever column ele-
ments. These elements provide both lateral load resistance as well as resistance
to gravity loads. Therefore, failure of the columns due to lateral forces will also
cause failure of the gravity load-carrying capacity.

1.3.2.6 Selection Types

The selection of the appropriate type of lateral force-resisting elements in the
construction of buildings is mainly based on the criterion of economics. A sin-
gle type of resisting element is commonly used in most of the buildings such as
in houses where wood-framed shear walls are used, or in concrete tilt-up build-
ings where concrete shear walls are used. However, other types of buildings may
need the use of combination of more than one type of load-resisting system.

The building code permits the use of combinations of these systems but they
are also subject to very specific structural design guidelines. When we use dif-
ferent systems, there is bound to be some adjustment in design forces which is
inevitable. These adjustments in design forces are required to account for the
differences in strength, stiffness, and ductility among the different types of
resisting systems when used in combination.

1.3.3 Components of Structural Systems 
A structural system essentially consists of three components as shown in Fig. 1.7:
(a) structural model; (b) the prescribed actions; and (c) structural responses result-
ing from structural analysis.

In all cases, a structure must be idealized by a mathematical model so that its
behaviour can be evaluated by solving a set of mathematical equations.

A structure is generally transformed into a simple model for analysis
purposes. This process is called idealization of structures. The idealization consists

12 Structural Analysis
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of identifying the parts of a structure as well as individual structural elements.
This process requires experience and judgment.

A structural or mathematical model can be defined as an assembly of struc-
tural members or elements interconnected at ends or boundaries which may be
joints, lines, or surfaces. Thus, a structural model consists of three basic compo-
nents, namely (a) structural members, (b) joints or nodes or edges or surfaces,
and (c) boundary conditions.

A structural system can be 1D, 2D, or 3D depending on the dimensions of load-
ings and the kind of structural responses that are of interest to the designer. In real-
ity, all structures on the earth, strictly speaking, are 3D in nature. But for the
purposes of simplification and easier comprehension, we can recognize a specific
pattern of loading under which the key structural responses will remain in just 1D
or 2D space. In Fig. 1.8, we have shown some 2D and 3D structural systems.
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Fig. 1.7 Components of structural systems.
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Fig. 1.8 Structures of various geometry.

1.4 LINEAR AND NON-LINEAR STRUCTURES

We use wood, concrete, steel, etc., in the construction of structures. The load
resistance and deformation characteristics of structures significantly depend on
the properties of these materials. Each of these materials has different properties
that should be taken into consideration in the analysis and design of the struc-
ture. Typical stress–strain curve for these materials is shown in Fig. 1.9. As is
clear from Fig. 1.9, the ultimate tensile strength (UTS) of different materials is
different. Therefore, their resistance to loading, which depends on UTS, is also
varied. The initial slope of the curve for each material is different. This slope 
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characterizes the modulus of elasticity or Young’s modulus E of the material. The
modulus of elasticity of each material must be known for the calculation of dis-
placement of structures.

As can be observed in Fig. 1.9 that each material in the initial stage behaves
linearly, i.e., the stress and strain are proportional up to a certain limit which is
called an elastic limit. This is also called a linear range. Subsequently, at higher
stress the behaviour becomes non-linear, i.e., there is disproportionate increase
in strain for a corresponding increase in stress. This zone is called a non-linear
range. We call a system a linear structure when the stresses developed in it are
within the elastic limit, i.e., the stresses in the system lie within the linear range.
A system is called a non-linear structure if the stresses developed in it fall in the
plastic or a non-linear range. Such a classification is based on the behaviour of
material. The behaviour of a material in the plastic regime is characterized as
material non-linearities for representation in structural analysis. 
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Fig. 1.9 Typical stress–strain relation of various materials.
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Fig. 1.10 Geometric non-linearity.

In addition to material non-linearity, some structures may exhibit non-linear
characteristics in its overall behaviour due to changes in its shape under loading.
This necessitates that the structure should displace by a significant amount to
maintain its overall equilibrium. This kind of behaviour of the structure is called
geometrical non-linearity. A classical example of this type of non-linearity can be
observed in cable structures discussed in Chapter 21. Also, a cantilever structure
shown in Fig. 1.10 is another example of geometric non-linearity.
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An important property of a linear structure is that when it is loaded, the stress
in the material increases along a linear path till the elastic limit in the material is
reached. Suppose we unload the structure or remove the load on the structure
within this stage, the stress diminishes and it retraces the same linear path and

the structure returns to its original position without leaving any residual defor-
mation in the structure as shown in Fig. 1.11(a). 

In contrast, the stress level in a non-linear structure goes beyond elastic limit
and mostly it remains in plastic regime. If the load is removed from the structure
once the stresses have crossed elastic limit, then the structure returns to the orig-
inal position by a different path as shown in Fig. 1.11(b) leaving some residual
deformation in the structure. This is called a permanent set. 

1.4.1 Assumptions Involved in Linearity of Structure
The following assumptions are usually adopted in the case of linear structural
system.

1. Under the applied loads the displacement involved is so small that there is
no significant difference between the deformed configuration of the sys-
tem and its undeformed geometry. The system is still assumed to satisfy
the equilibrium conditions. 

2. The deformation of the structure is so small that it is able to maintain the
linear relation between strain and displacement.

3. The material of the structural system is assumed to be linear elastic,
isotropic, and homogeneous and obey Hooke’s law. 

Because of these above assumptions the overall structural system becomes a lin-
ear problem and hence the principle of superposition is applicable.

1.4.2 Structural Non-linearity
The non-linear load–displacement relationship exhibited by the stress–strain
relationship with a non-linear function of stress, strain, and/or time, changes in
geometry due to large displacements, irreversible structural behaviour upon
removal of the external loads; change in boundary conditions such as change in
the contact area and the influence of loading sequence on the behaviour of the
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Fig. 1.11 Linear and non-linear structures.
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Thus a non-linear structural behaviour arises from a number of causes, which
can be grouped into three principal categories. 

1.4.2.1 Changing Status Including Contact

Many common structural features demonstrate non-linear behaviour, i.e., status-
dependent. For example, a suspension cable initially slack, may become taut
under loading, a roller support is either in contact or not in contact. Status
changes might be directly related to load, like in the case of cable, or they might
be determined by some external cause. Situations in which contact occurs are
common to many different non-linear applications. Contact forms a distinctive
and important subset to the category of changing-status non-linearities.

1.4.2.2 Geometric Non-linearities 

If a structure experiences large deformations, its
changing configuration can cause the structure to
respond non-linearly. A mundane example is the
pole vault. Initially, it is straight; when the sports
person runs and hits in groove, it bends exces-
sively as a result of which the sports person 
jumps high and clears the horizontal bar. The
force–deformation curve for this case can be
depicted as in Fig. 1.13.

structure requires a non-linear structural analysis. The structural non-linearity
can be classified as geometric non-linearity, material non-linearity, and contact
or boundary non-linearity.

We encounter structural non-linearities in all our mundane affairs. For exam-
ple, a staple pin initially in an inverted channel shape, as shown in Fig. 1.12(a), is
permanently bent as shown in Fig. 1.12(a) after it is pinned on the bunch of
papers to hold them together. The load–deformation behaviour of the pin is shown
in Fig. 1.12(b). When we stack books on wooden shelf [Fig. 1.12(c)], as time
passes it sags more and more. The corresponding load–deformation curve is
shown in Fig. 1.12(d). If we observe both the load–deformation curves, we can
conclude that the non-linear structural behaviour is characterized by the change
in structural stiffness, i.e., the capacity of the structure to resist force per unit
deformation changes with time because of the plastification of the material. 
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1.4.2.3 Material Non-linearities

Non-linear stress–strain relationships are a common cause of non-linear struc-
tural behaviour. Several factors can influence the stress–strain properties of a
material, including load-history, environmental conditions, and the amount of
time that a load is applied.

1.4.2.4 Solution Technique for Non-linear Problems

To solve non-linear problems we usually employ
Newton–Raphson approach. In this approach the load
is subdivided into a series of load increments. The
load increment can be applied over several load steps.
Figure 1.14 illustrates the use of Newton–Raphson
equilibrium iterations.

Before each solution, the Newton–Raphson method
evaluates the out-of-balance vector, which is the dif-
ference between the loads corresponding to the element stresses and the applied
loads. The approach performs a linear solution, using the out-of-balance loads,
and check for convergence. If the convergence criteria are not satisfied, the out-
of-balance load vector is re-evaluated, the stiffness matrix (Chapter 13) is updated,
and a new solution is obtained. This iterative procedure continues until the prob-
lem converges.

1.4.3 Principle of Superposition
This principle forms the basis for much of the theory of structural analysis. We
can state this principle as

the total displacement or the forces induced internally at a point in a structure
acted upon by several externally applied loadings can be computed by summing up
of all the displacements or internal forces caused by each of the external loads act-
ing individually, one at a time. 

This statement is valid only when a linear relationship exists among loads, inter-
nal forces, and displacements. 

The essential requirements of the principle of superposition are

1. The stress–strain relationship of the material must be linear and the material
should obey Hooke’s law. This implies that the load is proportional to
displacement.

2. The resulting displacement of the structure must be small so that there is no
significant change in the geometry of the structure under loading. Large dis-
placement will significantly change the position and orientation of the loads.

1.5 CONDITIONS OF EQUILIBRIUM

In order to apply the principle of statics to a structural system, the structure
must be at rest. This is possible only when the sum of the applied loads and
support reactions is zero and there is no resultant couple at any point in the
structure. For this situation, all component parts of the structural system are
also in equilibrium.
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A structure is in equilibrium with a system of applied loads when the result-
ant moment about any point is zero. For a system of coplanar forces this may be
expressed by the three equations of static equilibrium.

(1.1)

where and are the resolved components in the horizontal and vertical
directions of a force and M is the moment of a force about any point.

In the case of 3D structures, the forces can be resolved into three orthogonal
directions, namely, X, Y, and Z coordinate axes. Moreover, if the resultant force
vector is zero then its components in three mutually perpendicular directions
also disappear. Hence, Eq. (1.1) may be written in three coordinate directions as
follows:

(1.2a)

(1.2b)

These six equations are called the equations of equilibrium of space struc-
tures and are necessary and sufficient conditions for equilibrium. All the
equilibrium equations must be satisfied simultaneously for the structure to be
in equilibrium.

Using Eqs (1.1) and (1.2) we could find out the reactions at the supports in a
structure. Once these reactions are evaluated, we could determine the internal
stress resultants (reactions, axial forces, moments, etc.) in the structure. Correct
solution for reaction and internal stresses must satisfy the equations of static equi-
librium for the entire structure. They must also satisfy equilibrium equations for
any part of the structure as a free body. A sketch depicting the free body with its
associated forces and internal stresses is called a free-body diagram (FBD). If the
number of unknown reactions is more than the number of equilibrium equations,
then we cannot determine the reactions with only equilibrium equations. Such
structures are known as the statically indeterminate structures. In such cases, we
need to obtain extra equations based on deformation of the structure. These 
equations obtained from displacement consideration are called compatibility 
equsations. 

We can make use of the equations of equilibrium to determine the internal
forces in a member or structure. For this, we cut the member and isolate it from
other parts. This is called a free body. We draw an FBD representing the internal
forces on it as shown in Fig. 1.15. In general, the internal forces acting at the cut
section of the member consist of normal force N, shear force V, and bending
moment M as shown in Fig. 1.15.

 gMx = 0;   gMy = 0;   gMz = 0

 gFx = 0;   gFy = 0;  gFz = 0

FVFH

gFH = 0;  gFV = 0;  gM = 0
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While representing the forces on a body we use a straight arrow with a single
head as . A moment is represented as a curved arrow with head either as 
for clockwise sense or for anticlockwise sense. Sometimes we represent a
moment as a straight arrow with double heads as

1.5.1 Sign Convention
As the forces and displacements are direction-dependent we need to adopt a sign
convention to sum up the results of various actions. We adopt here the sign con-
vention as shown in Fig. 1.16 for a 3D structure. Here X, Y, and Z are the coor-
dinate axes and are shown in positive directions.
When we move from X to Y in the horizontal
plane, the Z-axis must advance in its positive
direction. This is called left-hand system. We
assume that forces directed along the positive
direction of axes are positive. For a left-hand
system the couple should be a left-hand screw
progressing in the direction of the coordinate
axes. So, an anticlockwise moment is taken as
positive here.

1.6 DEGREES OF FREEDOM, DETERMINATE,
AND INDETERMINATE STRUCTURES 

In this section, we now explain these terms that are frequently referred in struc-
tural analysis.

1.6.1 Degrees of Freedom
The degrees of freedom (DOF) can be defined as a set of independent displace-
ments that specify completely the deformed position and orientation of the
body or system under loading. Here, displacements include deflections and
rotations as well. A rigid body that moves in 3D space in linear directions has
three translational displacement components as DOFs. The rigid body can also
undergo angular motion, which is called rotation. So, the body has three rota-
tional DOFs. Altogether a rigid body can have at most six DOFS, three trans-
lations, and three rotations. Translation refers to the ability of a body to move
without rotating whereas rotation refers to its angular motion about some axis. 

When a structure is loaded, the joints, also called nodes, will undergo unknown
displacements. These displacements are referred to as the DOF for the structures. 

1.6.2 Determinate Structures
The conditions of equilibrium discussed in Section 1.5 are necessary and suffi-
cient conditions to establish the equilibrium of structures. When structures are
loaded, they pass on these loads to the support as reactions. The applied forces
and the resulting reactions keep the structure in equilibrium. However, these
reactions are mostly unknowns. We normally evaluate these reactions by using
the equations of equilibrium. If all the reactions in a structure can be determined

::.

:

Z

Y

X

Fig. 1.16 Sign convention.
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strictly only by the application of equilibrium equations, the structure is referred
to as statically determinate. In other words, we can define a determinate struc-
ture as the one which can be fully analysed and all internal forces and stresses
determined through the use of one or more of the six equations of equilibrium
without recourse to stiffness, deflection, or other criteria for analysis.

Given a set of forces and reactions in equilibrium, the structural geometry of
determinate structures takes care of itself. In other words, force–deformation
compatibility for such structures is automatically satisfied for any set of forces
and reactions in equilibrium. For example, the support reactions and hence, the
moments and shears in a simple beam (Chapter 3) or a three-hinged arch
(Chapter 20) can be found statically without paying any attention to their
deformed shapes. As may be verified easily, a determinate structure has only as
many support reactions as absolutely necessary for its stability. The removal of
even a single reaction makes the structure unstable. 

Figure 1.17 shows the determinate structures. In Fig. 1.17(a), the frame has
three support reactions which can be calculated easily by Eq. (1.1). The arch in
Fig. 1.17(b) has four support reactions against the three equations of equilibrium
available for solution. So, it seems that reactions cannot be computed statically.
However, the condition that the moment at the hinge C be zero provides the addi-
tional fourth equation for finding the four unknown reactions. Such additional
equations are called condition equations. A statically determinate structure may
also be defined alternatively as the one in which the number of unknown reac-
tions R equals the sum of the number of applicable equations of equilibrium n and
that of the condition equations c, i.e.,

(1.3)

Equation (1.3) is called the equations of statics.
The qualification ‘applicable’ is important because equilibrium equations

which are applicable to a problem need only be counted in assessing its determi-
nacy. For example, in the continuous beam as shown in Fig. 1.17(c), as the loading

R = n + c
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Fig. 1.17 Determinate structures.

© Oxford University Press. All rights reserved.



is only vertical, only two conditions, namely, and are applica-
ble. Therefore, is meaningless in the absence of horizontal loads on the
beam.

1.6.3 Indeterminate Structures
Structures in which the reactions cannot be evaluated by the application of static
equilibrium equations alone are defined a statically indeterminate or hyperstatic
structures. They are also known as redundant structures. In these structures, the
number of unknown reactions is greater than the number of available equations of
static equilibrium. However, sometimes it is quite possible that the support reactions
are statically determinate, but internal forces remain indeterminate. For example,
we consider a truss shown in Fig. 1.18(a). We will discuss in Chapter 2 as how to
evaluate the forces and reactions in a truss. Accordingly, the truss in Fig. 1.18(a) is
statically determinate both for support reactions and forces in the members. In con-
trast, the truss shown in Fig. 1.18(b) is statically determinate only with reference to
the calculations of support reactions.

©FH = 0
©M = 0©FV = 0
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(a) Determinate truss

A

B C C

D

(b) Indeterminate truss
VA VA

HAHA

VD VD

B

D

Fig. 1.18 Determinate and indeterminate structures.

We now consider, for example, a continuous beam (discussed in Chapter 9)
shown in Fig. 1.19. It has six unknown support reactions as shown in Fig. 1.18
as against three equilibrium equations, namely, , and

available for the determination of these six reactions. Unless we deter-
mine these six reactions, it is not possible to evaluate the internal forces in the
beam. Three extra equations should be set up to circumvent this difficulty. We
can develop these equations from the geometrical conditions. For example, we
can specify that the vertical deflections at B, C, and D are zero. These additional
equations are called equations of compatibility and their number determines the
degree of indeterminacy D of the structure. The reactions, for the solution of
which the compatibility equations are developed, are termed as redundants R. 

©M = 0
gFV = 0, gFH = 0

VDVCVB

HA

VAMA

BA DC

Fig. 1.19 Continuous beam.
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It may be observed in Fig. 1.19 that the supports B, C, and D may be removed
without affecting the stability of the beam. This action reduces the beam into a
determinate one which is called a primary or released structure. So, we can con-
clude here that an indeterminate structure has more support reactions than are
absolutely necessary for its stability. This characteristic may be used to deter-
mine the degree of indeterminacy of structures. We can divide indeterminate
structures into three categories as follows:

1. Externally indeterminate structures
2. Internally indeterminate structures
3. Structures with combined indeterminacies.

We describe each one in detail below.

1.6.3.1 Externally Indeterminate Structures

When the total number of external reactions in a structure is greater than the
number of equations of statics applicable to the entire structure, then such a
structure is called externally indeterminate one. The number of external reac-
tions over and above the number of equations of statics defines the degree of
external indeterminacy E of the structure. The numbers of additional equations
which are equal in number to the external redundants matching with the geomet-
rical conditions at supports are required to supplement the equations of statics
for a solution of the problem.

The degree of external indeterminacy E of a structure may be evaluated by
any one of the methods listed below.

1. We can determine the difference between the total number of external reac-
tions in the structure and the number of equations of statics.

2. The redundant reactions are not essential to the stability of the structure. So,
we can count the number of such support reactions as can be safely removed
in order to render the structure externally determinate without affecting its
stability.

A few examples of externally indeterminate structures are shown in Fig. 1.20. In
Fig. 1.20(a), we have shown a propped beam as discussed in Chapter 7 in detail.
We have three reactions at support A. The additional support at B causes indeter-
minacy to the structure. If we remove this support the beam is reduced to a can-
tilever which we know is stable. Therefore, the degree of external indeterminacy
E for this beam is 1. The arch shown in Fig. 1.20(b) has both ends fixed (Chapter
20). It has six reactions, three at support A and three at support B. We can remove
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Fig. 1.20 Degree of external indeterminacy.
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the support B, thus releasing all the three reactions at B. This action converts the
arch into a stable and determinate structure. The three released reactions at B con-
stitute the degree of external indeterminacy. So, for the arch in Fig. 1.20(b) the
degree of external indeterminacy is 3. 

1.6.3.2 Internally Indeterminate Structures

Sometimes structures may be externally determinate but internal forces cannot
be determined by equations of equilibrium alone, e.g., Fig. 1.18(b). Such
structures are called internally indeterminate ones. A structure which is exter-
nally indeterminate should also be necessarily internally indeterminate
because internal forces cannot be determined without knowing the external
reactions. Hence, we cannot determine the internal indeterminacy of an exter-
nally indeterminate structure without accounting in someway for the external
indeterminacy. For this purpose, we remove either the external redundants to
render the structure externally indeterminate without in any way affecting its
overall stability before finding its degree of internal indeterminacy I, or their
number accounted for in the equations that determine I. These aspects are
explained below with examples.

For instance, we consider here the internal indeterminacy of plane building
frames. These frames depend on the assumed rigidity of their joints for their
ability to resist loads. Internal forces in the constituent members, namely, beams
and columns of a frame normally consist of a moment, a shear, and a normal
force. We consider here a frame shown in Fig. 1.21(a). It has six external reac-
tions shown in Fig. 1.21(a). It can be observed that it is externally indeterminate
to degree 3. If we remove the fixity at support H thus releasing all three reac-
tions at H and convert the frame into a determinate one as well as stable one.
However, the internal forces in beams and columns remain indeterminate.
Therefore, it is a clear case of internal indeterminacy. Now, we cut any two
beams and study the internal force at these sections. We take sections XX and YY
as shown in Fig. 1.21(a). At each section, we have three internal forces, namely,
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Fig. 1.21 Degree of internal indeterminacy.
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moment M, shear force V, and normal force N as shown in Fig. 1.21(b). A total
of six redundants is now exposed. Once these redundants are determined, we can
compute forces in other beam and in all columns. Thus, all internal forces in all
the members of the frame are clearly known. Therefore, the determinacy of the
frame depends on the degree of internal determinacy I of the frame. In the frame
shown in Fig. 1.21, the degree of internal indeterminacy is 6.

For evaluating I of a frame we can adopt the following rule. We should count the
number of p closed or completed cells in the plane frame, other than that of the first
storey. We can get I for the frame by multiplying the number of cells p by 3, i.e.,

(1.4)

Next, we evaluate the internal indeterminacy of plane trusses. We will discuss at
length in Chapter 2 about the kind of trusses, their stability, and the method of
determination of internal forces in the members of the trusses. However, to
explain the concept of internal indeterminacy we discuss here about some
aspects of trusses. A truss consists of bars connected at their ends by joints.
Therefore, a truss has m number of members and n number of joints or nodes
[Fig. 1.22(a)]. We can determine the member forces in a truss from the equilib-
rium of the truss joints. At each joint we have two equilibrium equations, namely,

and for the solution of member forces. With n number of
joints, we have 2n number of equations for the whole truss. If we define r as the
number of support reactions necessary and sufficient for the external determinacy
and stability of truss, then we can propose the following equation for internal
determinacy of the truss as

(1.5)

However, mere satisfaction of Eq. (1.5) does not ensure internal indeterminacy of
a truss. For example, the truss in Fig. 1.22(b) satisfies Eq. (1.5) but is not a stable
structure since the panel marked (A) forms an unstable mechanism capable of
undergoing excessive deformation under loads. Therefore, Eq. (1.5) must be

2n = (m + r)

©FH = 0©FV = 0

I = 3p
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Fig. 1.22 Plane truss.
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satisfied by the whole truss as well as by its different parts like (A) individually.
In other words, a truss that satisfies Eq. (1.5) is internally determinate only if it
is stable.

When the number of equilibrium equations 2n is less than the number of com-
bined unknown member forces and reactions, i.e., in a truss, then it is
called internally indeterminate, i.e., 

(1.6)

The difference between the sum of the unknown member forces and reactions
and the number equations, i.e., defines the degree of internal inde-
terminacy of the truss, i.e., 

(1.7)

If, however, is less than 2n the truss is unstable, i.e., 

(1.8)

A typical truss with one degree of internal indeterminacy is shown in Fig. 1.22(c).

1.6.3.3 Structure With Combined Indeterminacies

For a complete solution of a structure, the total indeterminacy, i.e., external and
internal combined together, is essentially required. The degree of total indeter-
minacy D is determined either by adding the degree of external and internal
indeterminacy, i.e., or by directly as explained below.

In the case of a truss, we can use Eq. (1.5) to evaluate the indeterminacy of
the truss, provided r is replaced by the total number of external reactions R.
Thus, for a determinate truss both externally and internally, we can say that

(1.9)

should be satisfied. Therefore, the total degree of internal indeterminacy is
given by 

(1.10)

We can develop similar equation for rigid-jointed frames. In the case of a frame
we have three equations of equilibrium, namely, , , and

at each joint. Therefore, we can write 3n equations for n number of
joints in a frame. If m is the number of elements in a frame, and R is the total
number of external reactions, the degree of total indeterminacy D is given by 

(1.11)

We can easily comprehend by remembering that every member has three inter-
nal redundants so that determines the total number of unknowns to be
calculated against 3n numbers of joint equilibrium equations. Therefore, addi-
tional equations to be obtained from the conditions of compatibility at judiciously
selected point in the structure are . We have shown the application
of Eq. (1.11) in Fig. 1.23(a) and Eq. (1.5) in Fig. 1.23(b), respectively. 

(3m + R - 3n)

(3m + R)

D = (3m + R - 3n)

©M = 0
©FH = 0©FV = 0

D = (m + R - 2n)

2n = (m + R)

E + I

(m + r) 6 2n

(m + r)

I = (m + r - 2n)

(m + r - 2n)

2n 6 (m + r)

(m + r)
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1.7 STATICS AND KINEMATICS

We have discussed in the previous sections that loads applied on structural sys-
tems in turn induce internal forces in the system. As a consequence of this, the
system undergoes deformation which generically is called as motion. The study
relating to forces and motions constitutes an applied science which is a branch
of mechanics. The cardinal principle underlying this study is the equilibrium
which we discussed earlier. It is a condition which describes a state of balance
of a system when forces applied on it. As the structural system is initially at rest
and in equilibrium too under a system of forces acting in it, we call that part of
mechanics concerned with relations between these forces as statics. 
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Fig. 1.23 Total degree of indeterminacy.
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1.7.1 Statics 
We now introduce certain fundamental ideas in statics. 

1.7.1.1 Applied and Reactive Forces
Fundamental to the field of mechanics is the concept of forces, and the composi-
tion and resolution of forces. A force is a directed interaction between bodies.
Force interactions have the effect of causing change in the shape of or motion, or
both, of the bodies involved. In SI unit, a force is expressed in Newton (N) or kilo
Newton (kN). A force applied to a body tends to cause the body to translate in the
direction of the force. Depending on the point of application of the force on the
body, the force may tend to cause the body to rotate too. This tendency to produce
rotation is called the moment of force. A moment is also called a couple. With
respect to a point or line, the magnitude of this turning or rotational tendency is
equal to the product of the magnitude of the force and the perpendicular distance
from the line of action of the force to the point or line under consideration. The
moment M of a force F about a point A is simply given as , where a
is the perpendicular distance from the line of action of F to the point A. The
parameter a is called the moment arm of force. A moment has the unit of force
times distance. In SI unit, a moment is expressed in Nm or kNm. 

Forces and moments that act on a system can be divided into two primary
types, namely, applied and reactive. In engineering applications, applied forces
are those that act directly on a structure, e.g., dead load, wind load, etc. Reactive
forces are those that are generated by the action of one body on another and
hence typically occur at connections or supports. They are also termed as reac-
tions. The concept of reaction emanates from the Newton’s third law of motion
which states that for every action there is an equal and opposite reaction. More
precisely, the law states that whenever one body exerts a force on another, the
second body in turn always exerts on the first a force which is equal in magni-
tude and opposite in direction, and has the same line of action.

In Fig. 1.24(a), we have shown a block resting on a foundation. The block
exerts its weight (W), which is a force, on the foundation. We consider the free
body of the block as shown in Fig. 1.24(b) and analyse the forces acting on it.
The weight W of the body exerts a force on the foundation in the downward
direction as shown in Fig. 1.24(b). The foundation in turn exerts a reaction R on
the block in the upward direction and in the same line of action of the weight. 

MA = F * a
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In another example, we consider a beam placed on supports at its ends as
shown in Fig. 1.25(a). Such an arrangement is called a simple beam. A load is
applied on the beam in the transverse direction. In Fig. 1.25(a), the load W on
the beam causes downward forces on the foundation and upward reactive forces
R at supports are consequently developed. A pair of action and reaction forces
thus exists at each interface between the beam and its foundations. 
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Fig. 1.25 A simple beam.

In some cases, moments form part of a reaction system as well. In Fig. 1.26(a),
we have shown a beam projecting from a wall and loaded transversely as shown.
This arrangement is called a cantilever. The FBD is shown in Fig. 1.26(b).
Accordingly, the load on the beam causes a downward force on the beam as
well as a moment too in the clockwise sense. The wall in turn exerts an upward
reactive force on the beam and a moment in the counterclockwise sense.

W

(a) Cantilever

(Reactive force)

(Moments)

W (Applied
 force)(Shear)

(b) FBD

Fig. 1.26 Reactive system—forces and moments.

If a system as illustrated in the above examples is indeed in a state of equilib-
rium, it is quite obvious that the general conditions of equilibrium for a rigid
body that were stated in Section 1.5 must be satisfied. The magnitude and direc-
tion of any reactive forces developed must be such that equilibrium is maintained
and are thus necessarily dependent on the characteristics of the applied force
system. Therefore, the entire system of applied and reactive forces acting on a
body must be in a state of equilibrium. This is checked by using FBDs, also
called equilibrium diagrams. Construction of FBDs and finding reactions for
loaded structural elements are a common first step in a complete structural
analysis. 

1.7.1.2 Support Conditions

The support conditions are also called boundary conditions. Most structures are
either partly or completely restrained so that they cannot move freely in space.
Such restrictions on the free motion of a body are called restraints and are
supplied by supports that connect the structure to some stationary body. The nature
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of the reactive forces developed on a loaded body depends on the exact way in
which the body is either supported or connected to other bodies.

For example, consider a planar structure such as the bar AB shown in Fig.
1.27(a). If this bar were a free body and were acted upon by a force P, it would
move freely in space with some combined translation and rotation. If, however,
a restraint were introduced in the form of a hinge that connected the bar to
some stationary body at point A as shown in Fig. 1.27(b), then the motion of
the bar would be partly restricted and could consist only of a rotation about the
hinge. During such a rotation, point B would move along an arc with point A
as the centre. Essentially, the movement of point B is in the vertical direction.
On the other hand if point B is restrained from moving in the vertical direction,
the rotation about the hinge at point A would be prevented and thus the free
motion of the bar would be completely restricted.
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Fig. 1.27 Boundary conditions.

Several basic types of support conditions are available. Of primary impor-
tance are pinned connections, roller connections, and fixed connections. 

In pinned connection, also called hinged support, shown in Fig. 1.28(a), the
joint allows the connected members to rotate freely but does not allow transla-
tions to occur in any direction. Consequently, the joint cannot provide moment
resistance but can provide resistance to force in any direction. A hinge support
supplies a reactive force, the line of action of which is known to pass through the
centre of the pin but the magnitude and direction of which are unknown. These
two unknowns of such a reaction could also be represented by the unknown mag-
nitudes of its horizontal and vertical components, and , respectively, both
acting through the centre of the pin.

A roller connection or support [Fig. 1.28(b)] also permits rotations to occur
freely. However, it resists translations only in the direction perpendicular to the
face of the support. It does not provide any force resistance parallel to the
surface of the support. A roller support provides a reactive force that is applied
at a known point and acts in a known direction but the magnitude is unknown. 

RVRH

RH

RV

R

(a) Pinned connection (b) Roller connection (c) Fixed support

RR

M

Fig. 1.28 Different types of supports.
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A fixed support [Fig. 1.28(c)] encases the member and hence completely
restraints rotations and translations in any direction. Consequently, it can provide
moment resistance and force resistance in any direction. A fixed support, there-
fore, supplies a reaction, the magnitude, point of application, and direction of
which are all unknown. These three unknowns can also be considered to be a
force that acts through a specific point but has an unknown magnitude and direc-
tion and a couple of unknown magnitude.

Generally, a reactive force is represented by an arrow with a single head as 
or with a dash across an arrow as .

1.7.1.3 Evaluation of Reactions

So far we have been discussing that a system of forces applied on a structural
system generates reactive forces at the supports. If the supports are replaced by
the reactions that they supply to the system, it will be acted upon by a general
system of forces consisting of the known loads and the unknown reactions. If the
structure is in static equilibrium under these forces, the three equations of static
equilibrium stated in Eq. (1.1) for planar structure can be written in terms of the
known loads and the unknown elements defining the reactions. The simultane-
ous solution of these three equations will, in certain cases, determine the magni-
tude of the unknown reactions.

1.7.1.4 Stability of Structural System

A fundamental consideration in designing a structure is that of assuring its
overall stability under any type of possible loading condition. A structure, as a
whole unit, might overturn, slide, or twist about its base especially when sub-
jected to wind or seismic force applied in the horizontal direction as shown in
Fig. 1.29. Tall structures with small bases are prone to overturning effects.
Seismic forces tend to cause overturning or sliding actions, but they are
dependent in magnitude on the weight of the structure because of the inertial
effect of earthquake force. If a system is planned unsymmetrically the horizontal

c
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Fig. 1.29 Failure of overall structural system.
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forces may cause its twisting because of the eccentricity between the centre of
mass and centre of stiffness. 

Overturning or twisting need not be caused only by horizontally acting forces.
Because of eccentricity in construction a system can overturn under its own self-
weight. 

All structures undergo some changes in shape under applied loads. In a sta-
ble structure the deformations induced by the load are typically small, and
internal forces are generated in the structure by the action of the load that tend
to restore the structure to its original shape after the removal of the load. In an
unstable structure, the deformations induced by a load are typically massive
and often tend to increase continuously as long as the load exists. An unstable
structure does not generate internal forces that tend to restore the structure to
its original configuration. As a load is applied to unstable structures, they col-
lapse instantaneously and totally. Therefore, a structural designer should con-
sider his primary responsibility to ensure that a proposed structure does, in
fact, form a stable configuration because stability is a crucial issue in the
design of structures. 

1.7.2 Kinematics 
In Section 1.7.1, we had discussed about one part of mechanics called statics
which deals mainly with forces and moments applied on a structural system.
There is another part of mechanics called dynamics which refers to the other part
of mechanics dealing with rigid bodies in motion. Dynamics is divided into two
parts, namely, kinematics and kinetics. Kinematics is the study of the geometry
of motion; it is used to relate displacement, velocity, acceleration, and time,
without any reference to the forces causing the motion. Kinetics is the study of
the relation existing between the forces acting on a body, the mass of the body,
and the motion of the body. It is used to predict the motion caused by the given
forces or to determine the forces required to produce a given motion. However,
we restrict our discussion here to only about kinematics.

In structural analysis, kinematics refers to quantities associated with geome-
try, the position changes, or the deformation of geometry. This term is used in
opposition to the term ‘statics’.

Displacement refers to a translation or a rotation of a specific point in a struc-
ture. For example, we consider a simple beam as shown in Fig. 1.30. It is free to
undergo displacement in the form of translation in the direction perpendicular to
its own axis as shown in Fig. 1.30 which is called deƒlection as well as rotate at
its supports. The quantity is the vertical translation of the beam and is called
deƒlection of the beam. The rotation at support A is and at support B is .
These rotations are called slopes.

uBuA

d
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Fig. 1.30 Displacement of simple beam.
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A joint in a truss can translate in two mutually perpendicular directions as
shown in Fig. 1.31. The joint C can displace along x and y directions only. The
joint cannot rotate. 

A rigid frame can undergo translation and rotation at joints as shown in Fig.
1.32. The joint B in Fig. 1.32 undergoes horizontal translation and a rota-
tion . uB

¢B

Fig. 1.31 Displacement in a truss.

These translations and rotations constitute the degrees of freedom of a struc-
tural system discussed in Section 1.6.1. In structural analysis these displacements
other than that at the supports are, in general, not known. Therefore, the objective
of the analysis is to determine their values. The number of the independent joint
displacement in a structure is called the degree of kinematic indeterminacy or the
number of degrees of freedom. This number is a sum of the degree of freedom in
rotation and in translation. For example, in a two span beam shown in Fig. 1.33
the degree of kinematic indeterminacy is 2 since the structure can undergo rota-
tions at joints B and C and these are indeterminates. Rotation at joint B and
rotation at joint C are the two unknowns. Because support A is fixed, the rota-
tion is zero which is a known quantity and hence determinate. More details on
kinematic indeterminacy specific to indeterminate beams and frames are given in
Chapter 10 and specific to indeterminate trusses in Chapter 22.
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Fig. 1.32 Displacement in a frame.
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Fig. 1.33 Degree of kinematic indeterminacy.
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1.8 STRESS RESULTANTS 

Forces and moments can either be external or internal. Forces and moments or
moments that are applied to a structure are described as external, e.g., gravity
and wind loads applied on a structure. The action of an external force on a struc-
ture due to its environment or use produces internal forces within a structure.
These are called stress resultants. The most common stress resultants are ten-
sion, compression, bending, shear, torsion, and bearing. Tension and compres-
sion result from the axial loading of a member whereas bending and shear result
from transverse loading. Torsion arises in the context of twisting of a member.
Bearing is developed at the interface between a member and its support.

We can determine the stress resultants by passing a section across the member,
cutting it into two segments, and analysing the free body. For example, we consider
an axially loaded rod by way of hanging a weight at one end as shown in Fig.
1.34(a). We take a section XX as shown in Fig. 1.34(a). The FBD of the cut section
is shown in Fig. 1.34(b). At cut section we have a resultant F which will balance
the weight W and acts in the same line that of W and hence As W acts
downward, F acts upward. It is tension and is the stress resultant. It is quite easy to
visualize from Fig. 1.34(b) that W and F are in equilibrium. As no other force is
applied on the rod, at every section, the stress resultant F remains the same. 

F = W.
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Fig. 1.34 Axial tension member.

P
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Fig. 1.35 Axial compressive member.

Next, we consider an axial bar subjected to a compressive force as shown in
Fig. 1.35(a). We take section XX and draw FBD as shown in Fig. 1.35(b). At the
cut section the stress resultant is P. From Fig. 1.35(b), we can observe that the
applied force and the stress resultant are in equilibrium. The stress resultant in
this case is compression.

We now consider a cantilever as shown in Fig. 1.36(a). At section XX we have a
shear V [Fig. 1.36(b)] and a bending moment M [Fig. 1.36(c)] as stress resultants.

Tension, compression, shear, and bending moment are the common stress
resultants that we come across frequently in the structural analysis of different
types of systems that we will discuss in subsequent chapters in this book. A struc-
tural system may have one or more of the stress resultants depending on the type
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of loading and its geometrical configuration. The methodology of determination
of these stress resultants for various structures is covered in the following chapters. 

1.9 ANALYSIS OF DETERMINATE 
AND INDETERMINATE STRUCTURES

The objective of a structural analysis is to check whether the given structural
system under a set of applied loading is safe enough by sustaining the loads and it
has adequate load path to transfer the loads to the foundation without collapsing.
In order to ensure proper functioning or serviceability of the structure, it is neces-
sary to consider all possible combination of loads. In the analysis, we should con-
sider the worst combination of loads that is going to be applied on the structure
during its life time. Also, we should verify that the structure with external forces
and internal stress resultants is in a state of static equilibrium and that the displace-
ments resulting from applied loading are within permissible limits. These require-
ments are common to both determinate and indeterminate structures.

1.9.1 Determinate Structures
In the determinate structure, the analysis is carried out, first, by determining the
reactions at supports. This is accomplished by applying the static equilibrium
equations to the whole structure and thus determining the unknown reactions at
supports. Once the reactions are known, it is easier to consider free body of
various parts of the structure and evaluate the different stress resultants. With the
known stress resultants, we can compute the deformation in various members of
the structure using the basic principles of mechanics and material characteristics.
This method of analysis will be applied for solving problems of determinate
plane trusses in Chapter 2 for the evaluation of forces and in Chapter 6 for the
determination of displacements. Similarly, in the case of determinate simple
beams, in Chapter 3, we will demonstrate this method in the evaluation of vari-
ous stress resultants and in Chapter 6 various procedures for the determination
of displacements in simple beams will be illustrated.

1.9.2 Indeterminate Structures
In the case of indeterminate structures, it is difficult to determine the reactive
forces and stress resultants mere with the application of the conditions of equi-
librium alone. We still require setting up of additional equations. These addi-
tional equations are usually derived from the geometrical conditions of the structure
or from the displacements of the structures. In indeterminate structures we have
more number of unknown reactions than that could be determined by the application
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of conditions of equilibrium. These excess unknown reactions are called redundants.
In one method of analysis called force method or flexibility method, we remove
the selected redundants and thus render the structure as determinate one. This
determinate structure is called a primary structure or a released structure. We,
then, calculate the displacement of the primary structure corresponding to the
redundant under the applied loading. In the released structure, we apply a unit
load corresponding to the redundant and evaluate the corresponding displace-
ment. This is called the ƒlexibility coefficient. Now, we write an equation on the
geometrical conditions at the supports from where the redundants have been
chosen. This equation consists of a sum of the displacement of the released
structure at the location of the redundant and the product of the flexibility coef-
ficient times the redundant and the sum in turn equated to the boundary condi-
tion prevalent in the original structure. This equation is called the compatibility
equation because it is based on the boundary conditions prescribed in the origi-
nal structure. The number of equations is equal to the number of redundants.
This method of analysis will be adopted in Chapter 15 for solving problems
involving indeterminate beams, plane frames, grids, and trusses.

The second method of analysis for the solution of indeterminate structures is
called the displacement method. In this method of analysis, the independent
unknown displacement components involved in the structure are first identified.
They are considered as the basic unknowns involved in the problem. The internal
forces in the structure are then expressed in terms of these unknown displace-
ments, using force–displacement relations. For each unknown displacement com-
ponent, a corresponding equilibrium equation is written in terms of known exter-
nal forces and the unknown internal forces, which are expressed in terms of dis-
placements. The number of these equations is equal to the unknown displace-
ments. We solve these equations simultaneously to determine these values. Once
these displacements are known, we can back substitute and compute the internal
forces. The slope-deflection method discussed in Chapter 10 and the moment dis-
tribution method discussed in Chapter 11 belong to this category of analysis.

The force method and displacement method of analysis are called classical
methods of analysis. In both these methods if the number of equations is large,
then calculation by hand becomes tedious and cumbersome. Therefore, we resort
to matrix algebra for solution of equations. With the advent of computer, the
matrix method of analysis has gained popularity and the solution of structural
problem involving complex structures has been made easy. In Chapter 15, we
will discuss the matrix force method of analysis. Similarly, the matrix stiffness
method of analysis is presented in Chapter 16. 

In the modern finite element analysis (FEA), we discretize the given structure
into finite elements and write their flexibility or stiffness matrices. A flexibility
matrix consists of a set of flexibility coefficients which are nothing but the dis-
placement per unit force. A stiffness matrix consists of a set of stiffness coeffi-
cients which are nothing but the force per unit displacement. Then we assemble
the element stiffness matrices into a structural stiffness matrix. We write the
equations of equilibrium using the stiffness matrix and the external force vector
and solve for the unknowns. A brief introduction about FEA is presented in
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Chapter 17. Because of the difficulties associated with the selection of redun-
dants and the corresponding released structures, flexibility method is not easily
amenable for computerization. Therefore, computer codes are developed based
mainly on stiffness method of analysis. 

Nowadays a number of FEA software packages such as ANSYS, ABACUS,
NISA, NASTRAN, and so on, are commercially available to assist structural
analysts for modelling as well as for solving problems involving thousands of
degrees of freedoms. However, these issues are beyond the scope of this book.

Recapitulation of Important Formulae

•
•
•
•

EXERCISES
1. What is a load path?
2. List the different types of loads.
3. List the types of materials used in construction.
4. What are the different forms of structures? Explain them.
5. What are the different structural systems available?
6. Write notes on (a) beam and slab in situ concrete and (b) ‘flat-slab’ in situ

concrete.
7. Describe the lateral load-resisting systems.
8. Explain in detail the building frame systems.
9. What is ductility?

10. What is a moment-resisting frame? Explain its different types.
11. Describe the various components of structural system.
12. What is a linear system and state the assumptions involved in it?
13. Explain structural non-linearity.
14. Describe the conditions of equilibrium.
15. What is a free body? Explain how is it useful in the analysis?
16. What are determinate and indeterminate structures?
17. What are the different types of indeterminacy present in structures and how to

calculate the degree of indeterminacy in each case?
18. Explain what is meant by statics.
19. What are the stress resultants and how to determine them?
20. Explain briefly the different methods of analysis of structures.

2n = m + r
I = 3p
R = n + c
gFH = ; gFV = 0; gM = 0
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•
•
•
• D = 3m + R - 3n

D = m + R - 2n
m + R 6 2n
2n 6 m + r
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