Microprocessors
and Interfacing

8086, 8051, 8096, and advanced processors

N. Senthil Kumar

Professor
Department of Electrical and Electronics Engineering
Mepco Schlenk Engineering College
Sivakasi, Tamil Nadu

M. Saravanan
Professor
Department of Electrical and Electronics Engineering
Thiagarajar College of Engineering
Madurai, Tamil Nadu

S. Jeevananthan
Professor
Department of Electrical and Electronics Engineering
Pondicherry Engineering College
Puducherry

S.K. Shah

Professor and Head
Department of Electrical Engineering
MS University of Baroda
Vadodara, Gujarat

OXTFORD

UNIVERSITY PRESS

© Oxford University Press. All rights reserved.

OXTORD

UNIVERSITY PRESS

Oxford University Press is a department of the University of Oxford.
It furthers the University’s objective of excellence in research, scholarship,
and education by publishing worldwide. Oxford is a registered trade mark of
Oxford University Press in the UK and in certain other countries.

Published in India by
Oxford University Press
YMCA Library Building, 1 Jai Singh Road, New Delhi 110001, India

© Oxford University Press 2012
The moral rights of the author/s have been asserted.
First published in 2012

All rights reserved. No part of this publication may be reproduced, stored in
a retrieval system, or transmitted, in any form or by any means, without the
prior permission in writing of Oxford University Press, or as expressly permitted
by law, by licence, or under terms agreed with the appropriate reprographics
rights organization. Enquiries concerning reproduction outside the scope of the
above should be sent to the Rights Department, Oxford University Press, at the
address above.

You must not circulate this work in any other form
and you must impose this same condition on any acquirer.

ISBN-13: 978-0-19-807906-4
ISBN-10: 0-19-807906-0

Typeset in Times New Roman

by Trinity Designers & Typesetters, Chennai
Printed in India by Tara Art Printers (P) Ltd, Noida

© Oxford University Press. All rights reserved.

Brief Contents

Features of the Book

Preface
1. Microprocessors—Evolution and Introduction to 8085
2. Methods of Data Transfer and Serial Transfer Protocols
PART I: INTEL 8086—16-BIT MICROPROCESSORS
3. Intel 8086 Microprocessor Architecture, Features, and Signals
4. Addressing Modes, Instruction Set, and Programming of 8086
5. 8086 Interrupts
6. Memory and I/O Interfacing
7. Features and Interfacing of Programmable Devices for
8086-based Systems
8. Multiprocessor Configuration
9. 8086-based Systems
PART II: INTEL 8051—8-BIT MICROCONTROLLERS
10. Introduction to 8051 Microcontrollers
11. 8051 Instruction Set and Programming
12. Hardware Features of 8051
13. 8051 Interface Examples
PART 11I: INTEL 8096—16-BIT MICROCONTROLLERS
14. Overview of Intel 8096 Microcontrollers
15. 8096 Instruction Set and Programming
16. Hardware Features of 8096
PART IV: ADVANCED TRENDS
17. Microprocessor System Developments and Recent Trends
18. Advanced Microprocessors and Microcontrollers
19. Embedded Systems
20. Hybrid Programming Techniques Using ASM and C/C++

© Oxford University Press. All rights reserved.

vii

47

63
80
175
210

240
343
372

391
402
427
464

517
530
549

591
604
663
736

Xii Brief Contents

Appendix A: 8086 Case Studies 752
Appendix B: 8051 Case Studies 758
Appendix C: 8275 CRT Controller Chip 766
Appendix D: Multiple Choice Questions 777
Appendix E: 8086 Instruction Set 797
Appendix F: 8051 Instruction Set 803
Bibliography 811
Index 812

© Oxford University Press. All rights reserved.

Detailed Contents

Features of the Book

Preface

Brief Contents

Microprocessors—Evolution and Introduction to 8085
1.1 Introduction
1.2 Explanation of Basic Terms
1.3 Microprocessors and Microcontrollers
1.4 Microprocessor-based System
1.5 Origin of Microprocessors
1.5.1 First generation (1971-1973)
1.5.2 Second generation (1974-1978)
1.5.3 Third generation (1978-1980)
1.5.4 Fourth generation (1981-1995)
1.5.5 Fifth generation (1995-till date)
1.5.6 Timeline of microprocessor evolution
1.6 Classification of Microprocessors
1.7 Types of Memory
1.8 Input and Output Devices
1.9 Technology Improvements Adapted to Microprocessors and
Computers
1.10 Introduction to 8085 Processor
1.11 Architecture of 8085
1.11.1 Arithmetic and logic unit
1.11.2 General-purpose registers
1.11.3 Special-purpose registers
1.11.4 Instruction register and decoder
1.11.5 Timing and control unit
1.12 Microprocessor Instructions
1.13 Classification of Instructions
1.13.1 Based on functionality
1.13.2 Based on length
1.13.3 Addressing modes in instructions
1.14 Instruction Set of 8085
1.14.1 Format of assembly language instructions and programs
1.14.2 Data transfer instructions
1.14.3 Arithmetic instructions
1.14.4 Logical instructions
1.14.5 Branching instructions
1.14.6 Machine control instructions
1.15 Sample Programs
1.16 Instruction Execution

© Oxford University Press. All rights reserved.

©

14
14
16
16
17
17
19
19
23
24
24
26
28
30
31
31
34
36
38
39
40
42

Xiv Detailed Contents

2. Methods of Data Transfer and Serial Transfer Protocols

2.1 Data Transfer Mechanisms
2.2 Memory-mapped and I/O-mapped Data Transfer
2.3 Programmed Data Transfer
2.4 Direct Memory Access
2.5 Parallel Data Transfer
2.6 Serial Data Transfer
2.6.1 Introduction to RS-232 standard
2.6.2 Introduction to RS-485 standard
2.6.3 GPIB/IEEE 488 standards
2.7 Interrupt Structure of a Microprocessor
2.8 Types of Interrupts
2.8.1 Vectored and non-vectored interrupts
2.8.2 Maskable and non-maskable interrupts
2.8.3 Software and hardware interrupts
2.9 Interrupt Handling Procedure

PART I: INTEL 8086—16-BIT MICROPROCESSORS

. Intel 8086 Microprocessor Architecture, Features, and Signals
3.1 Introduction
3.2 Architecture of 8086
3.2.1 Execution unit
3.2.2 Bus interface unit
3.2.3 Minimum and maximum mode operations
3.3 Accessing Memory Locations
3.4 Pin Details of 8086
3.4.1 Function of pins common to minimum and maximum modes
3.4.2 Function of pins used in minimum mode
3.4.3 Function of pins used in maximum mode
3.5 Differences Between 8086 and 8088

. Addressing Modes, Instruction Set, and Programming
of 8086
4.1 Addressing Modes in 8086
4.1.1 Register Addressing Mode
4.1.2 Immediate Addressing Mode
4.1.3 Data Memory Addressing Modes
4.1.4 Program Memory Addressing Modes
4.1.5 Stack Memory Addressing Mode
4.2 Segment Override Prefix
4.3 Instruction Format of 8086
4.3.1 One-byte instruction
4.3.2 Register to register
4.3.3 Register to/from memory with no displacement
4.3.4 Register to/from memory with displacement
4.3.5 Immediate operand to register
4.3.6 Immediate operand to memory with 16-bit displacement

© Oxford University Press. All rights reserved.

47
47
47
48
49
50
50
51
54
55
57
57
57
58
58
58

63
63
63
63
66
67
67
70
70
72
73
74

80
80
80
80
81
83
85
86
87
87
87
87
89
89
89

Detailed Contents Xv

4.4 Instruction Set of 8086 91
4.4.1 Data transfer instructions 91
4.4.2 Arithmetic instructions 94
4.4.3 Logical instructions 102
4.4.4 Flag manipulation instructions 103
4.4.5 Control transfer instructions 103
4.4.6 Shift/rotate instructions 106
4.4.7 String instructions 109
4.4.8 Machine or processor control instructions 110

4.5 8086 Assembly Language Programming 110
4.5.1 Writing programs using line assembler 111
4.5.2 Writing time delay programs 127
4.5.3 8086 Assembler directives 129
4.5.4 Writing assembly language programs using MASM 138

4.6 Program Development Process 162

4.7 Modular Programming 164
4.7.1 CALL instruction 165
4.7.2 RET instruction 166
4.7.3 Macro 167
4.7.4 llustrative example 168

. 8086 Interrupts 175

5.1 Introduction 175

5.2 Interrupt Types in 8086 175

5.3 Processing of Interrupts by 8086 176

5.4 Dedicated Interrupt Types in 8086 178
5.4.1 Type O0H or divide-by-zero interrupt 178
5.4.2 Type 01H, single step, or trap interrupt 178
5.4.3 Type 02H or NMI interrupt 178
5.4.4 Type 03H or one-byte INT interrupt 179
5.4.5 Type 04H or overflow interrupt 179

5.5 Software Interrupts—Types 00H-FFH 179

5.6 INTR Interrupts—Types 00H-FFH 180

5.7 Priority Among 8086 Interrupts 182

5.8 Interrupt Service Routines 182

5.9 BIOS Interrupts or Function Calls 189
5.9.1 INT 10H 189
5.9.2 INT 11H 191
5.9.3INT 12H 192
5.9.4 INT 13H 192
5,95 INT 14H 192
5.9.6 INT 15H 192
5.9.7 INT 16H 192
5.9.8 INT 17H 192

5.10 Interrupt Handlers 194

5.11 DOS Services: INT 21H 195

5.12 System Calls—BIOS Services 198
5.12.1 Print screen service: INT 05H 199

© Oxford University Press. All rights reserved.

XVi

6.

Detailed Contents

5.12.2 Video services: INT 10H
5.12.3 Keyboard services: INT 16H
5.12.4 Printer services: INT 17H

Memory and I/O Interfacing
6.1 Physical Memory Organization in 8086
6.2 Formation of System Bus
6.3 Interfacing RAM and EPROM Chips using Only Logic Gates
6.4 Interfacing RAM/EPROM Chips using Decoder IC and
Logic Gates
6.5 1/0 Interfacing
6.5.1 1/O instructions in 8086
6.5.2 1/0-mapped and memory-mapped 1/O
6.6 Interfacing 8-bit Input Device with 8086
6.6.1 Assigning 8-bit address to 8-bit input device using
address decoder having only logic gates
6.6.2 Assigning 8-bit address to 8-bit input device using
address decoder 1C 74LS138
6.6.3 Assigning 16-bit address to 8-bit DIP switch using
address decoder having only logic gates
6.7 Interfacing 8-bit Output Device with 8086
6.8 Interfacing Printer with 8086
6.9 Interfacing 8-bit and 16-bit I/O Devices or Ports with 8086
6.10 Interfacing CRT Terminal with 8086

Features and Interfacing of Programmable Devices for
8086-based Systems
7.1 Intel 8255 Programmable Peripheral Interface
7.1.1 Features of 8255
7.1.2 Block diagram of Intel 8255
7.1.3 Operating modes and control words of 8255
7.1.4 Programming examples
7.2 Interfacing Switches and LEDS
7.2.1 Debouncing of keys
7.3 Interfacing Seven-segment Displays
7.4 Traffic Light Control
7.5 Interfacing Analog-to-digital Converters
7.5.1 ADC chips and interfacing to microprocessor
7.6 Interfacing Digital-to-analog Converters
7.6.1 Square wave generation
7.6.2 Staircase waveform generation
7.6.3 Ramp waveform generation
7.6.4 Waveform generation using stored data
7.7 Interfacing Stepper Motors
7.8 Interfacing Intelligent LCDs
7.9 Keyboard and Display Interface IC 8279
7.9.1 Matrix keyboard
7.9.2 Multiplexed display
7.9.3 Features, block diagram, and pin details of 8279

© Oxford University Press. All rights reserved.

200
202
204

210
210
211
213

217
220
220
220
222

222

222

224
224
225
229
233

240
240
241
241
242
248
249
253
254
256
259
260
263
264
265
266
267
268
273
278
278
283
285

Detailed Contents

7.9.4 Programming of 8279
7.9.5 Display interface using 8279
7.9.6 Keyboard interface using 8279
7.10 Intel Timer I1C 8253
7.10.1 Features of IC 8253
7.10.2 Block diagram of IC 8253 and pin details
7.10.3 Operating modes and control word of 1C 8253
7.10.4 Interfacing of IC 8253 with 8086
7.10.5 Application examples
7.11 Introduction to Serial Communication
7.11.1 Features and details of 8251 USART
7.11.2 Control words
7.11.3 Interfacing 8251 with 8086
7.12 8259 Programmable Interrupt Controller
7.12.1 Features and architecture of 8259
7.12.2 Pin diagram and details of 8259
7.12.3 Initialization of 8259
7.12.4 Operation of 8259
7.12.5 Interfacing of 8259 to 8086
7.13 8237 DMA Controller
7.13.1 Features, pin details, and architecture of 8237
7.13.2 DMA initialization and operation
7.13.3 Operation of 8237 with 8086

. Multiprocessor Configuration
8.1 Introduction
8.2 Multiprocessor System—Need and Advantages
8.3 Diftferent Configurations of Multiprocessor System
8.3.1 Coprocessor and closely-coupled configurations
8.3.2 Loosely-coupled configuration
8.4 Bus Arbitration in Loosely-coupled Multiprocessor System
8.4.1 Daisy chaining
8.4.2 Polling
8.4.3 Independent requesting
8.5 Interconnection Topologies in a Multiprocessor System
8.5.1 Shared bus architecture
8.5.2 Multi-port memory
8.5.3 Linked input/output
8.5.4 Crossbar switching
8.6 Physical Interconnections Between Processors in a
Multiprocessor System
8.6.1 Star configuration
8.6.2 Ring or loop configuration
8.6.3 Completely-connected configuration
8.6.4 Regular topology
8.6.5 Irregular topology
8.7 Operating System used in a Multiprocessor System
8.8 Typical Multiprocessor System having 8086 and 8087
8.8.1 Architecture of 8087

© Oxford University Press. All rights reserved.

xvii

287
292
293
295
295
295
297
302
302
307
309
312
314
317
318
320
320
324
325
326
327
333
335

343
343
344
345
345
345
346
347
347
348
349
349
349
350
350

351
351
351
352
352
352
353
353
354

xviii Detailed Contents

8.8.2 Pin details of 8087 354
8.8.3 Interconnection of 8087 with 8086 356
8.8.4 Data types of 8087 358
8.9 Typical Multiprocessor System having 8086 and 8089 359
8.9.1 Pin details of 8089 360
8.9.2 Local and remote operation of 8089 362
8.9.3 8089 architecture 364
8.9.4 Communication between CPU (8086) and IOP (8089) 367

9. 8086-based Systems 372
9.1 Introduction 372
9.2 8086 in Minimum Mode Configuration 372
9.2.1 Formation of separate address bus and data bus in 8086 372
9.2.2 Formation of buffered address bus and data bus in 8086 374
9.2.3 Connection of 8284A with 8086 375
9.3 8086 in Maximum Mode Configuration 376
9.4 8086 System Bus Timings 378

9.4.1 Timing diagrams for general bus operation in minimum mode 378
9.4.2 Timing diagrams for general bus operation in maximum mode 382

9.4.3 Interrupt acknowledgement (INTA) timing 383
9.4.4 Bus request and bus grant timing 384
9.5 Design of Minimum Mode 8086-based System 385

PART II: INTEL 8051—8-BIT MICROCONTROLLERS

10. Introduction to 8051 Microcontrollers 391
10.1 Introduction 391
10.2 Intel’s MCS-51 Series Microcontrollers 392
10.3 Intel 8051 Architecture 392
10.4 Memory Organization 394
10.5 Internal RAM Structure 395

10.5.1 Special function registers 397
10.5.2 Processor status word 397
10.6 Power Control in 8051 399
10.6.1 Idle mode 399
10.6.2 Power down mode 400
10.7 Stack Operation 400

11. 8051 Instruction Set and Programming 402
11.1 Introduction 402
11.2 Addressing Modes of 8051 402

11.2.1 Immediate addressing 402
11.2.2 Register direct addressing 402
11.2.3 Memory direct addressing 403
11.2.4 Memory indirect addressing 403
11.2.5 Indexed addressing 403
11.3 Instruction Set of 8051 404
11.3.1 Data transfer instructions 404
11.3.2 Arithmetic instructions 405

© Oxford University Press. All rights reserved.

Detailed Contents

11.3.3 Logical instructions
11.3.4 Branching instructions
11.3.5 Bit manipulation instructions
11.4 Some Assembler Directives
11.5 Programming Examples using 8051 Instruction Set

. Hardware Features of 8051

12.1 Introduction

12.2 Parallel Ports in 8051
12.2.1 Structure of port 1
12.2.2 Structure of ports 0 and 2
12.2.3 Structure of port 3

12.3 External Memory Interfacing in 8051
12.3.1 Program memory interfacing
12.3.2 Data memory interfacing

12.3.3 Timing diagram for external program and data memory access

12.4 8051 Timers
12.4.1 Timer SFRs
12.4.2 Timer operating modes
12.4.3 Timer control and operation
12.4.4 Using timers as counters
12.4.5 Programming examples
12.5 8051 Interrupts
12.5.1 Interrupt sources and interrupt vector addresses
12.5.2 Enabling and disabling of interrupts
12.5.3 Interrupt priorities and polling sequence
12.5.4 Timing of interrupts
12.5.5 Programming examples
12.6 8051 Serial Ports
12.6.1 Serial port control SFRs
12.6.2 Operating modes
12.6.3 Programming the serial port

. 8051 Interface Examples

13.1 Interfacing 8255 with 8051
13.2 Interfacing of Push Button Switches and LEDs
13.3 Interfacing of Seven-segment Displays
13.4 Interfacing ADC chip
13.5 Interfacing DAC chip
13.5.1 Square wave generation
13.5.2 Staircase wave generation
13.5.3 Ramp wave generation
13.5.4 Sine wave generation
13.6 Interfacing Matrix Keypad
13.7 Interfacing Stepper Motor with 8051
13.8 Interfacing LCD with 8051
13.9 Interfacing DC Motors/Servomotors
13.9.1 Bidirectional DC motor control
13.10 Microcontroller Application Example—Stopwatch

© Oxford University Press. All rights reserved.

Xix

406
407
408
410
410

427
427
427
428
429
430
432
432
434
435
437
437
439
442
443
443
445
445
446
447
448
450
453
453
455
457

464
464
465
467
469
471
472
472
473
474
475
478
482
487
488
489

XX

Detailed Contents

13.11 Microcontroller Application Example—Traffic Light Control
13.12 Microcontroller Application Example—Thermometer

13.13 RTC Interfacing using I1°C Standard
13.13.1 Details of I2C bus

13.13.2 8051 Subroutines used to implement I12C bus

13.13.3 DS1307—Serial 1°C real-time clock IC

PART III: INTEL 8096—16-BIT MICROCONTROLLERS

. Overview of Intel 8096 Microcontrollers

14.1 Introduction
14.2 Features of Intel 8096 Microcontroller
14.3 Functional Block Diagram
14.3.1 CPU section
14.3.2 8096 CPU buses
14.3.3 Register arithmetic and logical unit
14.3.4 Temporary register
14.3.5 Register file
14.3.6 Program status word
14.3.7 Memory controller
14.3.8 Internal timing
14.3.9 1/O section
14.4 Memory Structure
14.5 Power Down Mode of CPU

. 8096 Instruction Set and Programming

15.1 8096 Operand Types
15.2 Addressing Modes
15.2.1 Register direct addressing
15.2.2 Indirect addressing
15.2.3 Indirect addressing with auto increment
15.2.4 Immediate addressing
15.2.5 Short-indexed addressing
15.2.6 Long-indexed addressing
15.2.7 Zero register addressing
15.2.8 Stack pointer register addressing
15.3 Classification of Instructions
15.3.1 Data transfer instructions
15.3.2 Arithmetic and logical instructions
15.3.3 Shift/rotate instructions
15.3.4 Branching instructions
15.4 Complete 8096 Instruction Set

15.5 Programming Examples using 8096 Instruction Set

. Hardware Features of 8096

16.1 Parallel Ports in 8096 and Their Structure
16.1.1 Port 0
16.1.2 Port 1
16.1.3 Port 2

© Oxford University Press. All rights reserved.

491
495
498
499
503
505

517
517
519
519
519
521
521
521
522
523
523
523
524
525
528

530
530
531
531
531
532
532
532
532
532
533
533
533
533
534
535
536
540

549
549
549
550
550

16.1.4 Ports 3and 4
16.2 Control and Status Registers
16.2.1 Input/output control register 0
16.2.2 Input/output control register 1
16.2.3 Input/output status register O
16.2.4 Input/output status register 1
16.3 Timers
16.3.1 Timer 1
16.3.2 Timer 2
16.4 Interrupts
16.4.1 Interrupt sources
16.4.2 Polling routine
16.4.3 Vectored interrupt
16.4.4 Interrupt control
16.4.5 Interrupt pending register
16.4.6 Interrupt mask register
16.4.7 Global disable
16.4.8 Program status word
16.5 Serial Ports
16.5.1 Operating modes of serial port
16.5.2 Serial port control/status registers
16.5.3 Determining baud rate
16.5.4 Program for serial port data reception
16.6 Analog-to-digital Converter
16.7 Digital-to-analog Converter
16.8 High Speed Input Unit
16.8.1 HSI interrupts
16.8.2 Programming HSI
16.9 High Speed Output Unit
16.9.1 HSO status
16.10 Memory Expansion
16.10.1 Single-chip mode
16.10.2 Expanded mode
16.10.3 Choice of bus width
16.10.4 Bus control
16.10.5 ROM/EPROM lock

PART IV: ADVANCED TRENDS

17.1 Introduction

17.2 Microcontroller Features and Developments

17.3 Microprocessor Development Systems
17.3.1 In-system programming
17.3.2 Debugger
17.3.3 Emulator

17.4 Cross Compiler for 8051

17.5 Programming 8051 in C Language

Detailed Contents

. Microprocessor System Developments and Recent Trends

© Oxford University Press. All rights reserved.

xxi

551
551
551
552
552
553
553
553
554
556
556
557
557
559
560
561
561
561
562
563
564
564
565
566
569
570
573
573
575
578
578
579
579
580
581
583

591
591
591
593
594
594
594
595
596

xxii Detailed Contents

18. Advanced Microprocessors and Microcontrollers 604
18.1 Introduction 604
18.2 80186 Microprocessor 605

18.2.1 Architecture 605
18.2.2 Instruction set of 80186 606
18.3 80286 Microprocessor 607
18.3.1 Architecture 607
18.3.2 Register organization and real or protected addressing in
80286 608
18.3.3 Privilege levels in protected mode of operation 611
18.3.4 Descriptor cache or program-invisible registers 613
18.3.5 Accessing memory using GDT and LDT 613
18.3.6 Multitasking in 80286 615
18.3.7 Addressing modes and new instructions in 80286 616
18.3.8 Flag register 617
18.4 80386 Microprocessor 618
18.4.1 Architecture of 80386 618
18.4.2 Register organization in 80386 620
18.4.3 Instruction set of 80386 623
18.4.4 Addressing memory in protected mode 624
18.4.5 Physical memory organization in 80386 625
18.4.6 Paging mechanism in 80386 626
18.5 80486 Microprocessor 629
18.6 Pentium Microprocessor 632
18.6.1 Architecture of Pentium 632
18.6.2 Protected mode operation of Pentium 637
18.6.3 Addressing modes in Pentium 637
18.6.4 Paging mechanism in Pentium 637
18.7 Other Versions of Pentium 637
18.7.1 Pentium Pro processor 637
18.7.2 Pentium 11 processor 638
18.7.3 Pentium |11 processor 638
18.7.4 Pentium 4 processor 638
18.8 Operating Modes of Advanced Processors 638
18.9 Mode Transition 639
18.10 Memory Management in Protected Mode 640
18.11 Segment Descriptor 640
18.12 Protection: Purpose 643
18.12.1 Type checking 644
18.12.2 Limit checking/restriction of addressable domain 644
18.12.3 Privilege levels 645
18.13 Protected Mode Instructions 647
18.14 Multitasking 649

19. Embedded Systems 663

19.1 Introduction 663
19.1.1 Characteristics of embedded systems 663
19.1.2 Design metric 665
19.1.3 Evolution of embedded systems 667

© Oxford University Press. All rights reserved.

20.

19.1.4 Design technology
19.2 Classification of Embedded Systems
19.3 Embedded Processor Architecture
19.3.1 RISC and CISC architectures
19.3.2 SISD/SIMD
19.3.3 The €200z6 core
19.3.4 Cell microprocessor
19.3.5 PowerPC architecture
19.3.6 PIC16F877 microcontroller
19.3.7 ARM processors
19.4 SUN SPARC Microprocessor
19.4.1 SPARC architecture
19.4.2 Register file
19.4.3 Data types in SPARC architecture
19.4.4 SPARC instruction format

19.4.5 Adressing modes in SPARC microprocessor

19.4.6 Instruction set in SPARC microprocessor
19.4.7 Load and store instructions
19.4.8 Arithmetic and logical instructions
19.4.9 Branch instructions
19.4.10 Special instructions
19.5 Software Embedded into System
19.5.1 Codesign
19.6 Bus Architectures
19.6.1 Parallel bus protocols
19.6.2 Serial bus protocols
19.6.3 Serial wireless protocols
19.7 Memory
19.7.1 Memory technologies
19.7.2 Memory hierarchy
19.7.3 Memory interfacing
19.8 I/0O Interfacing
19.9 Smart Card Design

Detailed Contents

19.9.1 Vertical (concurrent) and horizontal (serial) codesign

19.9.2 Security extension

Hybrid Programming Techniques using ASM and C/C++

20.1 Combining Assembly Language with C/C++
20.2 Calling Conventions

20.2.1 CDECL calling convention

20.2.2 STDCALL calling convention

20.2.3 FASTCALL calling convention
20.3 Passing Parameter Techniques

20.4 Techniques for 16-bit ALP Microsoft C/C++ for DOS

20.4.1 Inline assembly
20.4.2 Linked assembly

20.5 Using ALP with C/C++ for 32-bit Applications

20.5.1 Calling ALP procedure from C
20.6 32-bit Windows Programming

© Oxford University Press. All rights reserved.

xxiii

667
668
669
671
673
673
675
675
679
695
707
707
709
712
713
714
714
715
716
717
718
721
722
725
725
726
727
727
728
728
729
729
730
731
732

736
736
737
738
739
740
740
741
741
742
743
744
744

xxiv Detailed Contents

20.6.1 Console functions
20.6.2 Microsoft Win32 application programming interface
20.7 Program Development Methods

Appendix A: 8086 Case Studies
Appendix B: 8051 Case Studies
Appendix C: 8275 CRT Controller Chip
Appendix D: Multiple Choice Questions
Appendix E: 8086 Instruction Set
Appendix F: 8051 Instruction Set
Bibliography

Index

© Oxford University Press. All rights reserved.

745
747
749

752
758
766
i
797
803
811
812

Microprocessors—Evolution and
Introduction to 8085

LEARNING OUTCOMES

After studying this chapter; you will be able to understand the following:
* Importance of microprocessors

* Origin and evolution of microprocessors

* Classification of microprocessors and memories

» Common input and output devices for computers

* Bus structures used in computers and technology improvements

» 8085 microprocessor architecture and instruction set

1.1 INTRODUCTION

The microprocessor is an electronic chip that functions as the central processing
unit (CPU) of a computer. In other words, the microprocessor is the heart of any
computer system. Microprocessor-based systems with limited resources are called
microcomputers. Today, microprocessors can be found in almost all consumer
electronic devices such as computer printers, washing machines, microwave ovens,
mobile phones, fax machines, and photocopiers and in advanced applications such
as radars, satellites, and flights. Any middle-class household will have about a
dozen microprocessors in different forms inside various appliances. The recent
developments in the electronics industry and the large-scale integration of devices
have led to rapid cost reduction and increased application of microprocessors and
their derivatives.

Typically, basic microprocessor chips have arithmetic and logic functional units
along with the associated control logic to process the instruction execution. Almost
all microprocessors use the basic concept of stored-program execution. Programs
or instructions to be executed by the microprocessor are stored sequentially in
memory locations. The microprocessor, or the processor in general, fetches the
instructions one after another and executes them in its arithmetic and logic unit. So
all microprocessors have a built-in memory access and management part as well
as some amount of memory.

A microprocessor can be programmed to perform any task that can be written
and programmed by the user. Without a program, the microprocessor unit is a
piece of useless electronic circuit. The programmer must take care of all the
resources of the microprocessor and use them efficiently for implementing the
required functionality. So to work with the microprocessor, it is necessary for the
programmer to know about its internal resources and features. The programmer

© Oxford University Press. All rights reserved.

2 Microprocessors and Interfacing

must also understand the instructions that a microprocessor can support. Every
microprocessor has its own associated set of instructions; this list is given by all
microprocessor manufacturers. The instruction set for microprocessors is in two
forms—one in mnemonic, which is comparatively easy to understand and the other
in binary machine code, which the microprocessor works with and is difficult
for us to understand. Generally, programs are written using mnemonics called
assembly-level language and then converted into binary machine-level language.
This conversion can be done manually or using an application called assembler.

In general, programs are written by the user for the microprocessor to work with
real world data. Data are available in many forms and from many sources. To input
these data to the microprocessor, the microprocessor-based systems need some
input interfacing circuits and some electronic processing circuits. These circuits
include data converters and ports. After processing the real world data, the output
from the microprocessor must be taken out to give to the output devices or circuits.
This again needs interfacing circuits and ports. So a microprocessor-based system
will need a set of memory units and interfacing circuits for inputs and outputs.
The circuits, together with the microprocessor, make the microcomputer system.
The physical components of the microcomputer system are called hardware. The
program that makes this hardware useful is called software.

The semiconductor manufacturing technology for chips has developed from
transistor—transistor logic (TTL) to complementary metal-oxide-semiconductor
(CMOS). Microprocessor manufacturing also has gone through these technological
changes. The other semiconductor manufacturing technology available is emitter-
coupled logic (ECL). TTL technology is most commonly used for basic digital
integrated circuits; CMOS is favoured for portable computers and other battery-
powered devices because of its low power consumption.

1.2 EXPLANATION OF BASICTERMS

The terms relevant to the use of microprocessors are explained in this section. These
explanations will give the reader an understanding of various microprocessor-
related terms, technologies, and topics.

Chip A chip or an integrated circuit is a small, thin piece of silicon with the
required circuits and transistors etched on it to perform a particular function.
Simpler processors may consist of a few thousand transistors etched onto a silicon
base just a few millimeters square.

Bit A bit means a single binary digit. The bit is also the fundamental storage
unit of computer memory. In binary form, a bit can have only two values, 0 or 1,
whereas a decimal digit can have 10 values, represented by symbols 0 through 9.

Bit size The bit size of a microprocessor refers to the number of bits that can be
processed simultaneously by the basic arithmetic circuits of the microprocessor.

Word A word is a number of bits grouped together for processing. In
microprocessors, a word refers to the basic data size or bit size that can be processed

© Oxford University Press. All rights reserved.

Microprocessors—Evolution and Introduction to 8085 3

by the arithmetic and logic unit (ALU) of the processor. A 16-bit binary number is
called a word in a 16-bit processor.

Memory word The number of bits that can be stored in a register or memory
element is called memory word. Mostly, all memory units use eight bits for their
memory word.

Byte An 8-bit word is referred to as a byte.

Nibble A 4-bit word is referred to as a nibble.

Kilobyte A collection of 1024 bytes is called a kilobyte (21° bytes).
Megabyte A collection of 1024 kilobytes is called a megabyte (2%° bytes).

RAM or R/W memory Random access memory or read/write memory is a type
of semiconductor memory in which a particular memory location can be erased
and written with new data at any time. These memory units are volatile, which
means that the contents of the memory are erased when the power to the chip is
disrupted. The access of the individual memory location can be done randomly. In
microprocessors, the RAM is used to store data.

DRAM Dynamic random access memory is a semiconductor memory in which
the stored contents need to be refreshed repeatedly at about thousands of times per
second. Without refreshing, the stored data will be lost. These memory chips are
preferred in a computer system as these are slower but economical.

SRAM Static random access memory chips keep the data stored in it as long as
power is available. There is no need for refreshing. In terms of speed, SRAM is
faster.

ROM Read only memory devices are memory devices whose contents are
retained even after removing the power supply.

Arithmetic and logic unit ALU is a digital circuit present in the microprocessor
to perform arithmetic and logic operations on digital data. The typical operations
performed by the ALU are addition, subtraction, logical AND, logical OR, and
comparison of binary data. Generally, the functions of the ALU of a microprocessor
will decide the processor’s functionality.

Microcontroller A microcontroller is a chip that includes microprocessor,
memory, and input/output signal ports. Microcontrollers can be called single-chip
microcomputers.

Microcomputer The system formed by interfacing the microprocessor
with the memory and 1/0 devices to execute the required programs is called
microcomputer.

Bus A bus is a group of wires/lines that carry similar information.

System bus The system bus is a group of wires/lines used for communication
between the microprocessor and peripherals.

© Oxford University Press. All rights reserved.

4 Microprocessors and Interfacing

Firmware Software written for a microprocessor application without provision
for changes is called firmware. These are stored in the permanent storage or ROM
of the computer system.

Input device The devices that are used for providing data and instructions to the
microprocessor or microcomputer system are called input devices. Keyboard and
mouse are the common input devices.

Output device The devices that are used for transferring data out of the
microprocessor or microcomputer system are called output devices. Display
screen, printer, and other forms of display are the common output devices.

Floppy disk A removable-type magnetic disk used for storing programs and
data for transferring from and to the computer is called floppy disk.

Disk drive The hardware component that is used to read or write data to devices
such as floppy disks is called disk drive.

Computer architecture The design, internal configuration, and accesses in a
digital computer are together called computer architecture.

Von-Neumann architecture The architecture in which the same memory is
used for storing programs as well as data.

Harvard architecture The architecture in which programs and data are stored
in two separate memory units.

CISC processor Complex instruction set computer is a processor architecture
that supports many machine language instructions.

RISC processor Reduced instruction set computer is a processor architecture
that supports limited machine language instructions. RISC processors are expected
to execute the programs faster than CISC processors.

High-level language A computer programming language in which programs
are written without the knowledge of the processor in which the program will
be executed. BASIC, Fortran, C, Pascal, and Java are examples of high-level
languages.

Assembly language A programming language written using the mnemonics
or the instruction set of a particular microprocessor is called assembly language.
Assembly language programming is microprocessor-specific. It is not as easily
understood as a high-level language program, but is easier than a machine language
program.

Machine language Machine language refers to binary code programs that are
specific to the processor and can be directly executed by the processor. Machine
language is the lowest level language and cannot be easily understood.

Assembler A computer application program that converts the assembly language
program into machine-level language program.

Compiler A computer program that converts the high-level language program
into machine-level language program.

© Oxford University Press. All rights reserved.

Microprocessors—Evolution and Introduction to 8085 5

Interpreter A computer program that reads the high-level or assembly-level
program one line at a time and converts it into machine-level program. Compiler
and assembler can function only on the entire program in a file.

Algorithm A sequence of operations or instructions that defines how to solve a
problem using a computer or microcomputer. An algorithm must be definite, must
follow a clear instruction flow without ambiguity, and must have definite start and
end points.

BIOS Basic input/output system is a set of programs that handles the input and
output functions and interacts with the hardware directly. A new hardware installed
must be provided with the corresponding BIOS routines.

Clock The circuit in the computer that generates the sequence of evenly spaced
pulses to synchronize the activities of the processor and its peripherals is called
clock. The clock speed determines the speed of the operation of the computer. The
computer with a high frequency clock works faster. Normally the clock frequency
is in the range of megahertz (MHz) or gigahertz (GHz).

MIPS Million instructions per second is a measure of the speed at which the
instructions are executed in a processor.

Tri-state logic It is the logic used by digital circuits. The three logic levels used
are high (1), low (0), and high impedance state (Z). The logic high state of a digital
circuit can source current and the logic low can sink current in a computer system,
but the high impedance state neither sources nor sinks current and so the other
devices connected to it are not affected.

Operating system The program that controls the entire computer and its
resources and enables users to access the computer and its resources is called
operating system. It is required for any computer system to become operational and
user friendly. Under the control of the operating system, the computer recognizes
and obeys commands typed by the user. In addition, the operating system provides
built-in routines that allow the user’s program to perform input/output operations
without specifying the exact hardware configuration of the computer. In low-level
microprocessor-based systems, the program that controls the hardware is called
monitor routine or monitor software.

1.3 MICROPROCESSORS AND MICROCONTROLLERS

The microprocessor (also called CPU) is the principal element of a computer
as it executes lists of instructions. These instruction lists are commonly called
programs. This programming language is complex to use since it is machine- or
processor-specific and coded into hexadecimal and binary.

Two types of processors are manufactured—the microprocessor and the
microcontroller. At the data processing level, the two are practically equivalent.
The distinction comes from the established functionalities.

The general-purpose microprocessors give the computers all the necessary
computing power. These microprocessors need additional circuitry elements such

© Oxford University Press. All rights reserved.

6 Microprocessors and Interfacing

as memory devices and I/O ports to connect the input and output devices. All
microprocessor-based systems need two types of memories—RAM and ROM.
RAM is used for storage of data while ROM is used for storage of programs,
especially the start-up program that runs when the microprocessor is powered on.

There are numerous microprocessors developed by many companies. The
evolution of microprocessors, from4-bit microprocessors to 64-bit microprocessors,
has been discussed later in this chapter. This book is devoted to the discussion
of two groups of microprocessors—Intel’s 8-bit 8085 microprocessor series in
brief and 16-bit 8086 series in detail.

Microcontrollers are microprocessors designed specially for control
applications. Microcontrollers contain memory units and 1/0 ports inside a chip, in
addition to the CPU. Microcontrollers are otherwise called embedded controllers;
they are generally used to control and operate smart machines. Some of the
machines using microcontrollers are microwave ovens, washing machines, sewing
machines, automobile ignition systems, computer printers, and fax machines.
You will be amazed to know that out of 100 processor chips manufactured, 99
are embedded processors; only one goes into a general computer! A plethora of
semiconductor companies are in the microcontroller market and any application
development engineer is flooded with a variety of microcontrollers to choose
from. This book discusses Intel’s 8-bit 8051 series and 16-bit 8096 series as also
other advanced microcontrollers.

1.4 MICROPROCESSOR-BASED SYSTEM

A computer system developed using a basic general-purpose microprocessor is
called a microcomputer system. The system consists of CPU, memory, and 1/O
ports as shown in Fig. 1.1.

CPU Memory Input Output
A A A A A A A A A A
- \ 4 \ 4 y__ Data bus _
> \/ \ v Control bus 4 _
D / Address bus _
Fig. 1.1 Microcomputer system (Von—Neumann model)

Figure 1.2 shows a typical personal computer system. The interfacing of the
processor with the other parts of the microcomputer system needs a three-bus
architecture. The three buses are data bus, address bus, and control bus.

Each memory location or I/O port is identified by a specific address similar
to a postal address. In microprocessor systems, the addresses are all in binary,
and in general, represented in hexadecimal number format. The address is a

© Oxford University Press. All rights reserved.

Microprocessors—Evolution and Introduction to 8085 7

RAM and ROM unique pattern used to identify a location

Output in the memory or an 1/0 port. The

address bus consists of many lines that

transport the digital data sent by the

processor. An address bus of eight bits

_ t0utput corresponds to eight lines of addresses

T2 and can thus address 28 different memory

locations. These addresses are written

in hexadecimal number format as 00H-

FFH and can be used to for 256 different

Fig. 1.2 Personal computer locations. Similarly, the 16-bit address

bus can address 2'6 different addresses.

Its address range is 0000H—FFFFH. The greater the number of lines in the address
bus, the greater the number of locations the processor is able to manage.

The address on the address bus can locate a specific memory or I/O location.
After selecting the location, the data transfer between the memory and processor
or between the 1/0 device and the processor is done through the data bus. The
width of the data bus determines the data size that can be transferred. An 8-bit
processor will generally have an 8-bit data bus and a 16-bit processor will have
a 16-bit data bus. The memory locations in microprocessors are accessed as
8-bit or one-byte units only. So the transfer of a 16-bit data from memory needs two
memory addresses. A 1 KB memory chip will have 1024 bytes of memory locations.

A control bus is needed for proper data transfer between the processor and
the peripherals. The control bus basically consists of signals for selection of the
correct memory or 1/O device from the address, indication of the direction of data
transfer, and synchronization of data transfer between slow devices. Many of the
control signals are given by the processor itself because the processor is the master
of the computer system. Some control signals such as selection of the correct
memory chip can be generated externally by the logic circuits. The timing of the
control signal is very important; the entire timing of the operation is controlled by
the microprocessor in synchronization with the clock signal input.

Input

1.5 ORIGIN OF MICROPROCESSORS

The microprocessor is the greatest invention of the 20" century. Its evolution started
from the earlier mechanical calculating devices, in the 1930s. These devices used
mechanical relays. Later, in the 1950s, these devices were replaced by vacuum
tubes. The vacuum tubes were quickly replaced by transistors. The breakthrough
in transistor technology led to the introduction of minicomputers in the 1960s and
the personal computer revolution in the 1970s.

The transistor technology led to the development of complex devices called
integrated circuits (ICs). The microprocessor, or microprocessing unit (MPU),
later evolved as an IC and was designed to fetch instructions and execute the
predefined arithmetic and logic functions. Intel was the first MPU producer and
has been holding a large share of the world market for this product. The evolution

© Oxford University Press. All rights reserved.

8 Microprocessors and Interfacing

of microprocessors is categorized into five generations: first, second, third, fourth,
and fifth.

1.5.1 First Generation (1971-1973)

The microprocessors that were introduced from 1971 to 1973 were referred to
as the first-generation systems. First-generation microprocessors processed their
instructions serially—they fetched the instruction, decoded it, and then executed
it. The first microprocessor, the 4004, was introduced in 1971. It was co-developed
by Busicom, a Japanese manufacturer of calculators, and Intel, a US manufacturer
of semiconductors. The 4-bit 4004 microprocessors ran at 108 kHz and contained
2300 transistors. They were fabricated using p-channel metal-oxide-semiconductor
(PMOS) technology, which provided low cost, slow speed, and low output currents.
They were not compatible with TTL. In 1972, Intel made the 8-bit 8008 and 8080
MICroprocessors.

1.5.2 Second Generation (1974-1978)

As the technology evolved, the number of circuits that could be fabricated on a
chip grew. Very large-scale integration (VLSI) led to chips that had speeds up to
hundreds of millions of switchings per second. The second generation marked the
beginning of very efficient 8-bit microprocessors. Some of the popular processors
were Motorola’s 6800 and 6809, Intel’s 8085, and Zilog’s Z80. The second-
generation devices marked a sharp contrast with the use of newer semiconductor
technology to fabricate chips. They were manufactured using n-channel metal-
oxide-semiconductor (NMOS) technology. This technology offered faster speed
and higher density than PMOS. It resulted in a five-fold increase in instruction
execution speed and higher chip densities.

1.5.3 Third Generation (1978-1980)

The third generation, introduced in 1978, was dominated by Intel’s 8086 and
Zilog’s Z8000, which were 16-bit processors with minicomputer-like performance.
These processors had the technology of 16-bit arithmetic and pipelined instruction
processing. The third generation came with IC transistor counts of about 250,000.
In Motorola’s MC68020, for example, an on-chip cache was incorporated for the
first time and the depth of the pipeline was increased to five or more stages. It
was designed using high density metal-oxide-semiconductor (HMOS) technology.
HMOS provides some advantages over NMOS: Its speed—power product is four
times better than that of NMOS; it can accommodate twice the circuit density of
NMOS.

1.5.4 Fourth Generation (1981-1995)

The microprocessors entered their fourth generation with designs containing more
than a million transistors in a single package. This era marked the beginning of 32-
bit microprocessors. Intel introduced 80386 and Motorola introduced 68020/68030.
They were fabricated using high density/high speed complementary metal-oxide-
semiconductor (HCMOS), a low-power version of the HMOS technology.

© Oxford University Press. All rights reserved.

Microprocessors—Evolution and Introduction to 8085 9

1.5.5 Fifth Generation (1995-till date)

The fifth generation microprocessors employ decoupled super scalar processing
and their design contains more than 10 million transistors. This generation marks
the introduction of devices that carry on-chip functionalities. It has also paved
the way for high speed memory I/O devices along with the introduction of 64-
bit microprocessors. Intel leads the show here with Pentium, Celeron, and very
recently, dual- and quad-core processors working with up to 3.5 GHz speed. This
generation is characterized by a low-margin single-microprocessor PC business,
which is complemented by high-volume sales. Table 1.1 gives the comparison of
the major processors based on specific parameters such as clock speed and data
word size.

Table I.I Comparison of general-purpose processors

General-purpose processors Transistors CPU speed Data length (bits)
8080 6,000 2MHz 8

8085 6,500 3MHz 8

8088 29,000 3MHz 16

8086 30,000 4MHz 16
80286 1,34,000 6MHz 16
80386 2,75,000 16 MHz 16/32
80486 12,00,000 33MHz 16/32
Athalon XP 37,00,000 2.8GHz 16/32/64
Celeron 75,00,000 1.06-2GHz 32
Pentium II 75,00,000 233-450 MHz 32
Pentium III 95,00,000 450MHz-1GHz 32
Pentium I Xeon 2,81,00,000 500 MHz—-1 GHz 32
Pentium 4 5,50,00,000 1.4-2.2GHz 32

IBM PowerPC G3 65,00,000 233-333MHz 32
PowerPC G4 1,05,00,000 400-800 MHz 32

1.5.6 Timeline of Microprocessor Evolution

(i) 1971—Intel 4004 microprocessor with 2300 transistors, working at a speed
of 108 kHz

(i) 1971—Intel 8008, twice as powerful as the 4004, with 3500 transistors and
speed of 200 kHz

(ii1)) 1974—Intel 8080 processor with 6000 transistors and speed up to 2 MHz

(iv) 1976—Intel 8085 processor with about 6500 transistors and speed of
3-5MHz came into existence. There were multiple versions of 8085
microprocessors. The original version of the 8085 microprocessor without
suffix A was manufactured by Intel. It was quickly replaced with the 8085A,
which had a bug-fixer. A few years later, in the 1980s, Intel introduced
the 8085AH, the HMOS version of 8085A followed by the 80C85A, the
CMOS version of the 8085A.

© Oxford University Press. All rights reserved.

10 Microprocessors and Interfacing

(v) 1978—Intel 80X86 families of microprocessors. The first generation of the
80X86 families included the 8086 and the 8088. It was followed by the
80186, 80286, 80386, and 80486.

(vi) 1979—Intel 8088, which was similar in architecture to the 8086; the
difference was in the available number of data bits of the data bus. Number
of transistors: 29,000; speed: SMHz, § MHz, 10 MHz

(vii) 1985—Intel 80386, the first 32-bit chip that contained 275,000 transistors,

processing five million instructions per second, and running all popular
operating systems, including Windows.

(viii) 1989—Intel 486 with an 8 KB cache memory (shared for data and
instructions), operating at clock frequencies from 25 to 100 MHz

(ix) 1993—Intel Pentium processor retains the 32-bit address bus of the 80486
but doubles the data bus to 64 bits. It includes two 8 KB cache memories—
one for instructions and the other for data. It was based on dual pipeline
method known as superscalar architecture and currently operates with
frequencies up to 1.75GHz, 20-stage pipeline, and three-level cache
memory architectures.

(x) 1997—Intel Pentium I1 processor was designed specifically to process video,
MMX audio, and graphics data efficiently with speeds o200 MHz, 233 MHz,
266 MHz, and 300 MHz.

(xi) 1999—Intel Celeron processor and Intel Pentium 111 processor

(xi1) 2000—Intel Pentium 4 processor

Various other companies such as Motorola, NEC, Mitsubishi, Siemens,
AMD, Toshiba, and Texas Instruments also manufacture processor chips. These
companies have their own chips and architectures in addition to the regular Intel-
based architectures.

1.6 CLASSIFICATION OF MICROPROCESSORS

Microprocessors can be classified based on their specifications, applications, and
architecture.
Based on the size of the data that the microprocessors can handle, they are
classified as 4-bit, 8-bit, 16-bit, 32-bit, and 64-bit microprocessors.
Based on the application of the processors, they are classified as follows:
(i) General-purpose processors
(if) Microcontrollers
(iii) Special-purpose processors

General-purpose processors are those that are used in general computer system
integration and can be used by the programmer for any application. Common
microprocessors from Intel 8085 to Intel Pentium are examples of general-purpose
processors. Microcontrollers are microprocessor chips with built-in hardware
for the memory and ports. These chips can be programmed by the user for any
generic control application. Special-purpose processors are designed specifically

© Oxford University Press. All rights reserved.

Microprocessors—Evolution and Introduction to 8085 |1

to handle special functions required for an application. Digital signal processors
are examples of special-purpose processors; these have special instructions to
handle signal processing. Application-specific integrated circuit (ASIC) chips are
also examples of this category of microprocessors.
Based on the architecture and hardware of the processors, they are classified as

follows:

(i) RISC processors

(it) CISC processors
(iii) VLIW processors

(iv) Superscalar processors

RISC is a processor architecture that supports limited machine language
instructions. RISC processors can execute programs faster than CISC processors.
CISC processors have about 70 to a few hundred instructions and are easier to
program. However, CISC processors are slower and more expensive than RISC
processors. Very long instruction word (VLIW) processors have instructions
composed of many machine operations. These instructions can be executed in
parallel. This parallel execution is called instruction-level parallelism. VLIW
processors also have a large number of registers. Superscalar processors use
complex hardware to achieve parallelism. It is possible to have overlapping of
instruction execution to increase the speed of execution.

1.7 TYPES OF MEMORY

Memory unit is an integral part of any microcomputer system. Its primary purpose is
to hold program and data. The main objective of the memory unit design is to enable
it to operate at a speed close to that of the processor. Although technology is available
to design such a high speed memory, cost is the major limiting factor. To strike a
balance between cost and operating speed, a memory system is usually designed
using different materials such as solid state, magnetic, and optical materials.
A microcomputer memory can be logically divided into four groups:

(i) Processor memory/register

(if) Cache memory
(iif) Primary or main memory
(iv) Secondary memory

Processor memory refers to a set of CPU registers. Processor registers are the
first set of storage devices available for the programmers to store any data, but
they are generally few in number—up to a few tens or hundreds. As these registers
are available within the processor, they are the fastest memory registers. The main
disadvantage is the cost involved, which restricts the number of registers and their
bytes.

Cache memory is the fastest external memory; it is placed close to the processor.
The instructions to be executed are placed in the cache memory for access by
the processor. These are a few kilobytes in size. Cache memory contains volatile
semiconductor RAMs. The processor fetches instructions from the cache memory
and if an instruction is not in cache, it refers to the primary memory.

© Oxford University Press. All rights reserved.

12 Microprocessors and Interfacing

Primary memory is the storage area from which all the programs are executed.
All the programs and corresponding data for execution must be within the primary
memory. The primary memory is much larger than the processor memory and the
cache memory but its operating speed is slower. The primary memory in a system
varies from few KB to a few MB.

Secondary memory refers to the storage medium for huge files such as program
source codes, compilers, operating systems, etc. These are not accessed directly or
very frequently by the microprocessor in a computer system. Secondary memory
consists of slow devices such as magnetic tapes and optical disks. Sometimes, they
are referred to as auxiliary or backup store. Stored information in a magnetic tape
or magnetic disk is not lost when power is turned off. Therefore, these storage
devices are called non-volatile memories.

Classification of primary memory Primary memory normally includes ROM
and RAM, which are further classified as shown in Fig. 1.3. Microprocessor-based
systems have at least one RAM and one ROM chip.

Primary memory

Semiconductor RAM ROM

Static Dynamic Mask OTP EPROM EEPROM Flash
PROM ROM memory

Fig. 1.3 Classification of primary memories

RAM devices allow both reading and writing to their memory cells. In static
RAM devices, bits are stored as the status of on/off switches. There are no charges
involved and hence, no charges to leak. However, static RAM devices have complex
construction and hence larger size per unit storage. So they are more expensive.
Static RAMs are comparatively faster and are used in cache memories.

In dynamic RAM devices, the data bits are stored as charge in capacitors. Since
capacitor charge has a tendency to leak, these devices need refreshing even when
they are powered. However, they have simpler construction and smaller size per
unit storage. These devices are less expensive and comparatively slower.

As the name implies, a ROM permits only read access. There are many kinds
of ROMs:

(i) Mask programmable ROMs (MPROMs) are custom-made for the customer;
their contents are programmed by the manufacturer. Since they are mass
produced, they are inexpensive. The customer cannot erase or program it
afterwards.

© Oxford University Press. All rights reserved.

Microprocessors—Evolution and Introduction to 8085 13

(i1)) Programmable ROMs (PROMs) or one-time programmable (OTP) ROMs
are devices that can be programmed by the user in his/her place using
special equipments. The main disadvantage of PROMs is that they cannot
be erased and reprogrammed.

(ii1) Erasable and programmable ROMs (EPROMs) allow the erasure and
reprogramming of the content by the user. In an EPROM, programs are
entered using electrical impulses and the stored information is erased using
ultraviolet rays.

(iv) Electrically erasable PROMs (EEPROMs) or electrically alterable ROMs
(EAROMs) allow the users to electrically erase and reprogram its contents.
EEPROMs are different from RAMs in that electrical signals are required
to erase and program them. EEPROMSs require a higher voltage for erasing
and programming than the normal 5V supply.

(v) Flash memory devices are a group of single transistor cell EPPROMs. Cell
sizes are about half the size of a two-transistor EEPROM. The operation
requires bulk erasure of a large portion of the memory array.

1.8 INPUT AND OUTPUT DEVICES

Input and output devices permit the user to feed data to the computer and retrieve
the computed result from it. Sometimes, the input and output devices can
communicate among themselves. In general, computer systems have I/O ports;
I/O devices are connected to these ports for data transfer. Basically, the ports are
digital registers that allow the computer to transfer data between the I/O devices
using additional control signals. These control signals allow error-free transfer of
data.

The common input device used in almost all systems is the keypad.
Microprocessor-based basic microcomputer systems use simple numeric keypads.
However, advanced computer systems use keyboards with a large number of keys
involving alphabets, numbers, and special characters. Nowadays, a number of
optical devices and scanners such as mouse, joystick, and bar code scanners are
also being used as input devices. Microcomputer systems also use different types
of sensors for data input. These sensors need data converters such as analog to
digital converters. Any introductory course on microprocessors should cover the
interfacing of data converters, keypads, and switches.

An output device is a device through which the user can receive the results from
the computer. The output can be a rapidly changing display or printed material.
Other forms of output are sounds and alarms. The simplest output devices, used in
almost all microprocessor-based systems and computer systems, are LEDs, seven-
segment LED displays, and LCD displays. The advanced video display terminals
(either cathode-ray tubes or LCDs) and ink-jet and laser printers are the common
output devices nowadays. Some output devices can be used to directly control
machineries. Some devices, such as display terminals with touch screen, may
provide both input and output. Modems and other network interface cards can
also be called output devices as they enable the transmission and reception of data
between computers.

© Oxford University Press. All rights reserved.

14 Microprocessors and Interfacing

1.9 TECHNOLOGY IMPROVEMENTS ADAPTEDTO
MICROPROCESSORS AND COMPUTERS

Technological improvements are taking place rapidly in microprocessor,
microcomputer, and personal computer systems. Some of these improvements are
listed here:

(1)

(i)

(iii)

(iv)

v)

(vi)

Increase in data bus/address bus width: The processing capability of the
microprocessor can be drastically improved by increasing data size. This
development can be seen clearly from the advancements in microprocessors
(Section 1.5).

Increase in speed: As the data to be processed by the microprocessors and
computers increased in volume, it became necessary to increase the speed of
the processor. With high speed processors, the user can get results quickly,
even with large data volumes.

Reduction in size and increase in capability: The trend in microprocessor
technology is to include a large number of peripherals such as memory and
I/O ports within a single chip. Microcontrollers are manufactured in this
fashion. In addition, developments in large scale integration have led to the
manufacture of small microprocessor chips with large built-in peripherals.
Processors with a large amount of flash memory are now available in the
market.

Development of external peripherals: The use of computers in all fields have
resulted in the development of many fast and advanced peripheral devices.
For example, the application of microprocessors in medicine has resulted
in the development of many handheld electronic devices with specialized
input sensors, output printers, etc. Faster peripherals can increase the speed
of processor execution and provide a good user interface.

Increase in memory unit size and speed: The developments in IC technology
have led to a reduction in the size of the memory units and an increase in
memory speed. This reduces the memory access time of the processor and
results in higher speed of execution. More amount of memory per unit area
is possible.

Microprocessors are largely used in handheld devices operated from a
battery source. This has resulted in research on the reduction of power
consumption in microprocessor chips. As power consumption is reduced,
these devices work for more time once the batteries are fully charged. There
are many devices operating at 3.3V or even lower voltages and have low
power consumption.

1.10 INTRODUCTIONTO 8085 PROCESSOR

The microprocessor is a semiconductor device consisting of electronic logic
circuits manufactured using either large-scale integration (LSI) or very large-scale
integration (VLSI) technique. It basically contains registers, an arithmetic and
logic unit, flip-flops, and timing and control circuits. All microprocessors work
using Von—Neumann architecture. In this architecture, the CPU or the processor

© Oxford University Press. All rights reserved.

Microprocessors—Evolution and Introduction to 8085 15

fetches instructions from the memory, decodes it (i.e., interprets the nature of
the instruction/command and develops clock-synchronized steps for execution),
generates appropriate control signals, and finally executes it. The program is
stored in consecutive memory locations. The execution steps are repeated for all
the instructions of the program until the execution is terminated by hardware or
software. The data required may be taken either from memory or from input ports;
the results of the program may be either stored in the memory or transferred out
through output ports.

A program is a list of instructions for the microprocessor to execute. Before
the start of execution, the complete program must be stored in the memory. Let us
assume that the starting address of the stored program is 8800H. While running
the program, the microprocessor must be directed to ‘go’ from 8800H. Once it has
executed the instruction in 8800H, it goes to the next address 8801H (assuming
single-byte instructions) and so on until it reaches the end of the program.

Intel 8085 is an 8-bit microprocessor manufactured by Intel Corporation and
is usually called a general-purpose 8-bit processor. It is upward compatible with
microprocessor 8080, which was Intel’s earlier product. There are several faster
versions of the 8085 microprocessor such as 8085AH, 8085AH-1, and 8085AH-2.

A microprocessor system consists of three functional blocks—central
processing unit (CPU), input and output units, and memory units, as shown in
Fig. 1.4. The CPU contains several registers, an arithmetic and logic unit (ALU),

Memory

(ROM)
Read only memory

(RAM)
Random access memory

Processor
Control unit
Input o | Output
unit] 1 unit
ALU

Fig. 1.4 A microprocessor system

© Oxford University Press. All rights reserved.

16 Microprocessors and Interfacing

and a control unit. The function of ALU, as the name implies, is to perform
arithmetic and logical operations. The control unit translates the instructions and
executes the desired task.

.11 ARCHITECTURE OF 8085

The block diagram explaining the architecture of Intel 8085 microprocessor is
shown in Fig. 1.5. It is generally available as a 40-pin IC package and uses +5V
for power. It can run at a maximum frequency of 3 MHz. The modified versions
of the 8085 processor have these minimum common features and functional
similarities.

The 8085 is called an 8-bit processor since its data length and data bus width is
eight bits. It has an addressing capability of 16 bits, i.e., it can address 2'®= 64 KB
of memory (1 KB = 1024 bytes). The processor contains five functional units:

(1) Arithmetic and logic unit (i1) General-purpose registers
(iii) Special-purpose registers (iv) Instruction register and decoder
(v) Timing and control unit

I.11.1 Arithmetic and Logic Unit

ALU is the circuitry that performs the actual numerical and logical operations.
Addition (ADD), subtraction (SUB), increment (INR), decrement (DCR),
and comparison (CMP) are the arithmetic operations possible in the 8085

INTA RST 6.5 TRAP
INTR T RSTlF% l le SOD
Interrupt control [Serial I/0 control|

S T v

\
ilﬁ b T . & J% T
Accumulator| [Temp reg. nstruction Multiplexer
(8) (§) reg. (8) P ‘
o ff

A

17 >
A W ®Z ®
ﬂ Temp reg. | Temp reg.
B ®|C (@
‘S| Temp reg.| Temp reg.
Instruction =D ®[E ©®
decoder o | Temp reg.| Temp reg.)
and | [H ®FfL ©® Register
machine & [Temp reg.| Temp reg. array
en(?géilieng Stack pointer (16)
Program counter (16)
| Incrementer/Decrementer
EL%?,)?; GSI\\I]D ﬂ | Address latch (16)
X]—»lCLK Timing and control < ~7
_)GfN Cimrm¢ Statui DMi Reset¢ |Addressi1ﬁfer (8)||Data/A%ress buffer (8)]
[EARAAEE RN
SIL_JKI' RE A%%ﬁLEsosio/MO E{[I)J%[ESE? IIEI\SI SN Address bus Address/Data bus

Fig. 1.5 Functional block diagram of Intel 8085

© Oxford University Press. All rights reserved.

Microprocessors—Evolution and Introduction to 8085 17

microprocessor. The possible logical operations are AND (AND), OR (OR),
exclusive OR (EXOR), complement (CMA), etc.

The ALU of the 8085 processor is called accumulator-oriented ALU as one of
the data used in arithmetic and logic operations must be stored in the accumulator.
The other data is taken from a memory location or register. The results of the
arithmetic and logical operations are stored in the accumulator. If the operation
needs only one data, that data must be stored in the accumulator.

1.11.2 General-purpose Registers

A register is a collection of eight D-type flip-flops with parallel-in and parallel-
out operation. A flip-flop can only store one bit at a time. Therefore, to handle
eight bits at a time, eight flip-flops are required and hence the term 8-bit register.
Though the registers are all storage areas inside the microprocessor, they differ in
the purpose of storage. The general-purpose registers are used to store only the
data that is being used by the program under execution and the results obtained
from it. These general-purpose registers are user accessible through programs.
Registers B, C, D, E, H, and L are the general-purpose registers in the 8085,
as shown in Fig. 1.6. They can also be called scratchpad registers. In almost all
arithmetic and logical

operations, these registers Accumulator A (8)
are used as the second B () c®)
operands, the first operand

being the accumulator) 2

(A). The general-purpose H (8) L(8)
registers are all 8-bit
registers but they can be
handled as 16-bit registers
as well. This can be
achieved by combining
the register pairs B and C,
D and E, and H and L to . i
perform 16-bit operations. Fig. 1.6 Registers of Intel 8085

They are then named register pairs BC, DE, and HL, respectively.

Among these pairs, HL has a special significance. A few memory-related
instructions of the 8085 (refer instruction set) use the HL pair as a memory pointer.
For example, the instruction MOV A, M transfers the content of the memory
location to which the HL pair is pointing, to the accumulator. The HL pair is pre-
loaded with the memory address in which data is available.

Stack pointer (SP) (16)

Program counter (PC) (16)

Data bus Address bus
8|lines (bidirectional) 16 lines (unidirectional)

1.11.3 Special-purpose Registers

There are also special-purpose registers that are dedicated to a specific function.
The accumulator, flag register, program counter (PC), and stack pointer (SP)
constitute the special registers in the 8085 microprocessor.

1.11.3.1 Accumulator
The accumulator is an 8-bit register; it is a part of the ALU and is the most

© Oxford University Press. All rights reserved.

18 Microprocessors and Interfacing

important register. It is used to store 8-bit data and to perform arithmetic and
logical operations. The output of an operation is also stored in the accumulator.
The accumulator is identified as register A in the instruction set of the 8085. The
programmer can use it at any time to store an 8-bit binary number. Being only
eight bits long, it can only hold one byte at a time. Any previous data stored in this
register will be overwritten as soon as new data is stored. The 8085 microprocessor
communicates with input/output devices only through the accumulator.

1.11.3.2 Flag Register

This is a special 8-bit register. Each bit of the flag register is quite independent of the
others. In all other registers, each bit is part of a single binary byte value and hence
each bit would have a numerical value. The flag is an 8-bit register used to indicate
the status of a recent arithmetic or logical operation. It may be set or reset after an
arithmetic or logical operation according to the condition of the processed data. The
five flag bits are zero (Z2), carry (CY), sign (S), parity (P), and auxiliary carry (AC);
their bit positions in the flag register are shown in Fig. 1.7. The remaining three bits
(D1, D3, and D5) of the flag

register remain unassigned: S22 X IO | P xjey
they are marked with an X to D7 D6 D5 D4 D3 D2 DI DO
show that they are not used

and are don’t cares. Fig. 1.7 Flag register

Any flag register bit is said to be ‘set’ when its value is | and ‘cleared’ when its
value is 0. The most commonly used flags are zero, carry, and sign. AC flag cannot
be accessed externally.

Sign flag (S) The sign flag is just a copy of the bit D7 (most significant bit—
MSB) of the accumulator. A negative number has a 1 in bit 7 and a positive
number has a 0 in 2’s complement representation. This flag indicates the sign of
the number. (It may be recalled that signed magnitude numbers use 1 to indicate
a negative number and 0 to indicate a positive number.) This flag can be used in
signed arithmetic operations.

Zero flag (Z) The zero flag is set if an arithmetic operation results in a zero. It
sets, i.e., it changes to binary 1 if the result in the accumulator is zero; if not, it
remains reset, i.e., at binary 0.

Carry flag (C) The carry flag is set when a carry is generated in the process
of an arithmetic operation in the accumulator. When addition is carried out, it
sometimes results in a ninth bit being carried over to the next byte. The C flag
copies the value of the carry, which is an extra bit, from D7. It also reflects the
value of the borrow in subtractions.

Auxiliary carry flag (AC) The auxiliary carry flag is set when an auxiliary
carry is generated in the process of an arithmetic operation in the accumulator,
i.e., when a carry results from bit D3 and passes on to D4 (from the lower nibble
to the higher nibble). This carry is also called half-carry. It may also occur in the
process of a subtraction operation. In other words, this flag is set if the subtraction
operation results in borrowing from the higher nibble.

© Oxford University Press. All rights reserved.

Microprocessors—Evolution and Introduction to 8085 19

Parity flag (P) The parity flag is set if the content of the accumulator after an
arithmetic operation has an even number of 1s. Otherwise, the parity flag is reset.
It is set for operation in the even parity mode.

1.11.3.3 Program Counter

Program counter (PC) is a 16-bit register that always points to the address of the
next instruction to be executed. In other words, this register is used to sequence the
execution of the instructions. After execution of every instruction, the content of
the memory location indicated by the PC is moved to the instruction register and
the PC is loaded with the next address. It keeps track of a program by counting the
memory address from which the next byte is to be fetched, and hence the name
program counter.

1.11.3.4 Stack Pointer

Stack is an array of memory locations organized in last-in, first-out (LIFO) or
first-in, last-out (FILO) fashion. It is accessed using a 16-bit pointer register called
stack pointer (SP), which holds the address of the memory location of the top of
the stack. The programmer can reserve and allocate a series of RAM locations
to be used as a stack and accordingly initialize the stack pointer. The range of
stack memory locations must be chosen carefully so that it does not affect the
program space. In all microprocessor-based systems, the stack is mainly used to
store the return address of the main program when a subroutine is called. While
the programmer uses the stack for storage and retrieval of data, the microprocessor
uses the stack during subroutine calls. Care must be taken by the programmer to
ensure that the data stored in the stack is retrieved properly, so that the data stored
in the stack by the processor is not affected.

1.11.4 Instruction Register and Decoder

It is an 8-bit register that temporarily stores the instructions drawn from memory
locations, before their actual execution. The content of the register is decoded by
the decoder circuitry, where the nature of the operation to be performed is decided
(interpreted). In addition, there are two temporary registers W and Z, which are
controlled internally and not available for user access.

1.11.5 Timing and Control Unit

The timing and control unit gets commands from the instruction decoder and
issues signals on the data bus, address bus, and control bus. The following sections
explain the operation of the various buses and the timing.

A typical microprocessor communicates with memory and input/output devices
using buses. There are three types of buses—the address bus, the data bus, and the
control bus.

1.11.5.1 Data Bus

The microprocessor performs its functions using wires or lines called buses. For
example, an 8-bit microprocessor normally uses eight wires to carry data between
the microprocessor and the memory. To make their representation simple, the data
wires with common functions are grouped together and referred to as the data bus.

© Oxford University Press. All rights reserved.

20 Microprocessors and Interfacing

The data bus (D0-D7) is a two-way bus carrying data around the system.
Information going into the microprocessor and results coming out of the
microprocessor are through this data bus. It is used for transfer of binary information
between the microprocessor, memory, and peripherals. The lower group of eight
address lines AO—A7 is multiplexed with the data bus in order to reduce the pin
count. Therefore, the multiplexed lower group of address lines and data lines is
more generally denoted as ADO-AD?7.

1.11.5.2 Address Bus

The address bus carries addresses and is a one-way bus from the microprocessor to
the memory or other devices. It is a group of sixteen unidirectional lines that allows
flow of address from the processor to its peripheral devices. Each peripheral and
memory location is identified by a 16-bit binary number called address. It follows
that the maximum number of memory locations that can be addressed by the 8085
processor is 2!¢ bytes = 64 KB. Its basic function is to identify a peripheral or
memory location.

The address bus lines are generally identified as AO—A15. The address bus has
eight higher-order address lines (A8—A15), which are unidirectional. The lower-
order eight lines (AO—A7) are multiplexed (time-shared) with the eight data bits
(D0-D7) and hence, they are bidirectional. When the instruction is executed, these
lines carry the address bits during the early part, and the eight data bits during the
later part. To separate the address from the data, a latch is used externally to save
the address before the function of the bits changes.

1.11.5.3 Control Bus

The control bus carries control signals that are partly unidirectional and partly
bidirectional. For a microprocessor to function correctly, these control signals are
vital. The control bus typically consists of a number of single lines that coordinate
and control microprocessor operations. For example, a read/write control signal
will indicate whether memory is being written into or read from. Thus, they are
individual lines that provide a pulse to indicate the operation of the microprocessor.
In fact, the microprocessor generates specific control signals for every operation,
which in turn are used to identify the type of device the processor intends to
communicate with. The following points describe the control and status signals
of the 8085 processor:

(i) ALE (output): Address Latch Enable is a pulse that is provided when an
address appears on the ADO-AD?7 lines, after which it becomes 0. This
signal can be used to enable a latch to save the address bits from the AD
lines, thereby de-multiplexing the address bus and data bus.

(ii) RD (active low output): The Read signal indicates that data are being read
from the selected 1/0 or memory device and that they are available on the
data bus.

(iii) WR (active low output): The Write signal indicates that the data on the data
bus are to be written into a selected memory or 1/0 location.

(iv) 10/M (output): It is a signal that distinguishes between a memory operation
and an I/O operation. An active low on this signal shows it is a memory

© Oxford University Press. All rights reserved.

Microprocessors—Evolution and Introduction to 8085 21

operation (I0/M = 0) and a high on this line indicates an I/O operation (I0/M
=1).

(v) SI and SO (output): These are status
signals used to specify the kind of
operation being performed. The status S1 S0 States
signals combine with /O signals to

Table 1.2 Status signals and
associated operations

_ _ 0 0 Halt
govern various operations; they are 0 1 Write
listed in Table 1.2. If both SO and S1 1 0 Read
are low, the operation of the processor 1 1 Fetch

tends to halt. If SO is low and S1 is
high, the processor reads data. If SO is high and S1 is low, the processor
writes data onto a memory or 1/O device. If both SO and S1 are high, the
fetch operation is performed.

The schematic representation of the 8085 bus structure, shown in Fig. 1.8, explains

how the movement of data within the computer is accomplished by a series of

buses. Address information, data, and control signals have to be carried around
inside the microprocessor as well as in the external system. Hence, the buses are
present both internally and externally.

(vi) Interrupts: These signals are used to make the microprocessor respond to high
priority externally initiated signals. When an interrupt signal is detected by the
processor, it suspends the execution of the current program and executes the
program corresponding to the interrupt signal instead. Five interrupt signals
(INTR, RST 5.5, RST 6.5, RST 7.5, and Trap) are available to facilitate the
processor to receive and acknowledge the interrupt call of peripherals. The
8085 processor accepts three more externally initiated signals—RESET IN,
Hold, and Ready as inputs. The following points explain these signals in
brief:

(a) INTR (input): It is a general-purpose interrupt request signal. It is an
active high signal.

(b) INTA (output): It is used to acknowledge an interrupt. It is an active low
signal.

(c) Restart interrupts (input): These are vectored interrupts that transfer the

‘:105 —> Address bus >
< < b
Memory Input
8085
Output > Ree}!j
MPU v&o%
A - ata
g(7)< < > Data bus - >
| | | |
—> Control bus

Fig. 1.8 Schematic representation of the 8085 bus structure

© Oxford University Press. All rights reserved.

22 Microprocessors and Interfacing

program control to specific memory locations. They have higher priority
than INTR interrupts. The priority order is RST 7.5, RST 6.5, and RST
5.5.

(d) Trap (input): It is a non-maskable interrupt, i.e., it cannot be stopped or

©
®

overridden by any command. It has the highest priority among all 8085
interrupts.

RESET IN (input): When the signal on this pin goes low the program
counter is set to zero and the processor is reset. It is an active low signal.
RESET OUT (output): This signal can be used to reset other devices that
are connected to the processor. It is an active high signal.

(g) Hold (input): This signal indicates that a peripheral such as a direct

memory access (DMA) controller is requesting the use of the address
and data buses.

(h) HLDA (output): It is an acknowledge signal that is sent in response to

(1)

the Hold request. During the Hold state, the peripheral (1/0) devices
get control over the data and address buses for data transfer to and from
memory. This operation is called direct memory access (DMA). DMA
is useful when high-speed peripherals want to transfer data to and from
memory. The processor does not intervene during this period.

Ready (input): It is a signal that serves to delay the microprocessor
read/write signals until a slow-responding peripheral is ready to send or
accept data. If this signal goes low, then the processor is allowed to wait
for an integral number of clock cycles until Ready becomes high. The
Ready signal must be synchronized with the processor clock.

X1—1 40 — Ve
X2—2 39— HOLD]_DMA
RESET OUT— 3 38— HLDA
Serial | l +5yv GND
SOD—4 37 CLK (OUT) 2
1/0 D bl 0 |
signals — SID—5 36— RESET IN xTAL[T] | T higher-order
TRAP —6 35—— READY X1 X2 Vccvss address bus
RST 7.5 —7 34— |O/M Al5
RST 6.5 — 8 33— 31 A8
RST5.5 —9 T 32—RD SID —>| :\Aultipleged
INTR — 10 31— WR _SOD <— ouier-orcer
_— TRAP —> address/data
INTA —11 30— ALE RST 7.5 —> AD7 bus
ADO — 12 29— S0 11%% gg —>
S —>»
AD1 —13 28— A15 AR c0gs 0> ALE
AD2 —14 27— Al4 INTA <— > 31
] [READY ——> > 50
AD3 15 26 Al B | 0
AD4 —116 25— Al2 HLDA <—| —> 10
AD5 — 17 24— All RESET —>| —>RD
AD6 — 18 23— Al0 IN —>WR
AD7 — 19 22— A9 ¢ ¢
Vg—120 21— A8 RESET OUT CLK (OUT)
(@ (b)

Fig.2.7 8085 details (a) Pin diagram (b) Signal groups

© Oxford University Press. All rights reserved.

Microprocessors—Evolution and Introduction to 8085 23

The typical pin layout and signal groups of the 8085 microprocessor are shown
in Figs 1.9 (a) and 1.9 (b), respectively. The 8085 is available with 40 pins as a
dual in-line package (DIP).

Intel 8085 has 40 pins, operates at 3 MHz clock frequency, and requires +5V
for power supply.

1.11.5.4 Serial 110 Signals

There are two signals to implement serial transmission. They are serial input data
(SID) and serial output data (SOD). The data bits are sent over a single line, one
bit at a time, in serial transmission.
(i) SID (input): The bit data on this line is loaded in the seventh bit of the
accumulator whenever a RIM instruction is executed.
(i) SOD (output): The output SOD is set or reset as specified by the SIM
instruction.

RIM and SIM instructions have been explained in detail in Chapter 5.

1.11.5.5 Power Supply and System Clock

The following pins are available in the 8085 chip to provide power and clock
signal to the processor:

(i) X1, X2 (input): A microprocessor needs a square wave (clock) signal to
ensure that all internal operations are synchronized. A crystal or R—C or L-C
network is connected to these two pins. The crystal frequency is internally
divided by two to give the operating system frequency. There are three
advantages in increasing the frequency of a crystal—as frequency increases,
the crystal size becomes smaller, and the crystal becomes lighter and cheaper.
Therefore, clock circuits include a divide-by-two circuit so that a double-
frequency crystal can be used. So, to run the microprocessor at 3MHz, a
6MHz crystal should be connected to the X1 and X2 pins. The crystal is
preferred as a clock source because of its high stability, large Q (quality
factor), and absence of frequency drifting with aging. Without a clock signal,
the microprocessor cannot execute any program.

(if) CLK (output): This output clock pin is used to provide the clock signal to the
rest of the system.

Power supplies: V.—+5V supply; Vs,—ground reference.

1.12 MICROPROCESSOR INSTRUCTIONS

Every microprocessor has its own instruction set. Based on the design of the
ALU and the decoding unit, microprocessor manufacturers generally list out the
instructions for every microprocessor manufactured. The instruction set consists
of both assembly language mnemonics and the corresponding machine code.

The purpose of the instruction set is to facilitate the development of efficient
programs by the users. The instruction set is based on the architecture of the
processor. So to understand the instruction set of a processor, it is necessary to
understand the basic architecture of the microprocessor and the user-accessible

© Oxford University Press. All rights reserved.

24 Microprocessors and Interfacing

registers in it. An instruction is a bit pattern that is decoded inside a microprocessor
to perform a specific function. The assembly language mnemonics are the codes for
these binary patterns so that the user can easily understand the functions performed
by these instructions. The entire group of instructions that a microprocessor
can handle is called its instruction set; this determines the microprocessor’s
functionality. The Intel 8085 processor has its own set of instructions listed both
in mnemonics and machine code, also called as object code. As the 8085 is an 8-
bit processor, the machine codes for the instructions are also 8 bits wide.

The syntax for 8085 instructions may contain one or more of the following
notations:
R = 8-bit register (A, B, C, D, E, H, and L)
Rs = Source register }
Rd = Destination register J (A, B, C, D, E, H, and L)
Rp = Register pair (BC, DE, HL, and SP)
P = Port address (8-bit binary number or two hex digits)
8-bit = 8-bit data or two hex digits
16-bit = 16-bit data/address or four hex digits
() = Contents of

1.13 CLASSIFICATION OF INSTRUCTIONS

Microprocessor instructions can be classified based on parameters such as
functionality, length, and operand addressing.

1.13.1 Based on Functionality

Based on the functionality, the instructions are classified into the following five
categories:

(i) Data transfer (copy) operations (ii) Arithmetic operations
(iif) Logical operations (iv) Branching operations
(v) Machine control operations

1.13.1.1 Data Transfer (Copy) Operations

This group of instructions copies data from a location called source register to
another location called destination register. Generally, the contents of the source
register are not modified. Although the term data transfer is used for the copy
operation, it is misleading because it implies that the contents of the source
memory location are destroyed. The various types of data transfer are listed in
Table 1.3 along with examples of each type.

Table 1.3 Types of data transfer

Type Example

Transferring data between one register MOV A, D—Copies the content of
and another register D to the accumulator
Storing a data byte in a register or MVI C, 66H—Loads register C with
memory location the data 66H

(Contd)

© Oxford University Press. All rights reserved.

Microprocessors—Evolution and Introduction to 8085 25

Table 1.3 Types of data transfer (Contd)

Type Example

Transferring data between a memory LDA 8800H—Loads the contents of
location and a register memory location 8800H in the accumulator
Transferring data between an I/O device ~ IN PORT1—Transfers data from an input
and the accumulator device to the accumulator

1.13.1.2 Arithmetic Operations

Arithmetic operations include addition, subtraction, increment, and decrement. As
the 8085 has an accumulator-oriented ALU, one of the data used in the arithmetic
operations is stored in the accumulator; the result is also stored in the accumulator.
Arithmetic and logical operations cannot be executed without the accumulator.

Addition (ADD) The addition instructions of the 8085 add the contents of
a register or memory location with the contents of the accumulator. The result
is stored in the accumulator. The Intel 8085 instruction set supports two types
of addition instructions—with and without addition of the carry flag content to
the least significant bit of the numbers. The instruction set also supports 16-bit
addition, i.e., the content of the HL register pair can be added to that of another
register pair and the result stored in the HL register pair.

Subtraction (SUB) The instruction set of the 8085 supports two types of
subtraction—with borrow and without borrow. Like addition, the subtraction
operation also uses the accumulator as reference, i.e., it subtracts the content of a
register or memory location from that of the accumulator and stores the result in
the accumulator.

Increment/Decrement These operations can be used to increment or decrement
the contents of any register, register pair, or memory location. Unlike the arithmetic
and logical operations, the increment and decrement operations need not be based
upon the accumulator.

1.13.1.3 Logical Operations

Logical instructions are also accumulator-oriented, i.e., they require one of the
operands to be placed in the accumulator. The other operand can be any register or
memory location. The result is stored in the accumulator. The operations that use
two operands are logical AND, OR, and EXOR. The operation that uses a single
operand (i.e., the accumulator) is the logical complement or NOT operation.

The instruction set of the 8085 supports rotation of the data stored in accumulator.
The data can be rotated left or right, through the carry or without the carry.

The most important 8085 instruction is the compare instruction. This instruction
is used to compare register or memory content with the accumulator content. The
result of comparison such as equal to, greater than, or less than is reflected in the
flag register bits.

1.13.1.4 Branching Operations
Branching instructions are important for programming a microprocessor. These

© Oxford University Press. All rights reserved.

26 Microprocessors and Interfacing

instructions can transfer control of execution from one memory location to another,
either conditionally or unconditionally. Branching can take place in the following
two ways:
(1) Execution control cannot return to the point of branching. Example: Jump
instructions
(if) Execution control can return to the point of branching, which is stored by the
8085. Example: Subroutine call instructions

1.13.1.5 Machine Control Operations

These instructions can be used to control the execution of other instructions. They
include halting the operation of the microprocessor, interrupting program execution,
etc. Detailed explanations for 8085 instructions are given in Section 1.14.

1.13.2 Based on Length

Based on the length of the machine language code, 8085 instructions can be
classified into the following three types:

(i) One-byte instructions (it) Two-byte instructions
(iii) Three-byte instructions

Assembly language instructions should be converted into machine code for
storage and execution by the processor. So the length of the machine language
code instructions determines the length of the program. This in turn determines the
amount of memory required for the program.

1.13.2.1 One-byte Instructions

Instructions that require only one byte in machine language are called one-byte
instructions. These instructions just have the machine code or opcode alone to
represent the operation to be performed. The common examples are the instructions
that have their operands within the processor itself. Some examples of one-byte
instructions are given in Table 1.4. Even though the instruction ADD M adds the
content of a memory location to that of the accumulator, its machine code requires
only one byte.

Let us now understand the
instruction MOV Rd, Rs. This Opcode Operand Machine code/Opcode/

Table 1.4 One-byte instructions

instruction copies the contents of Hex code

source register Rs to destination MOV A, B 78

register Rd. (Rd < Rs) ADD M 86
It is coded as Oldddsss. Here, XRA A AF

ddd is the binary code of one of the
seven general-purpose registers that is the destination of the data and sss is the
binary code of the source register.

Example:
MOV A, B (coded as 01111000 = 78H)

1.13.2.2 Two-byte Instructions

Instructions that require two bytes in machine code are called as two-byte
instructions. The first byte of the two-byte instructions is the opcode, which

© Oxford University Press. All rights reserved.

Microprocessors—Evolution and Introduction to 8085 27

specifies the operation to be performed. The second byte is the 8-bit operand,
which is either an 8-bit number or an address. Some common examples of two-
byte instructions are listed in Table 1.5.

Table 1.5 Two-byte instructions

Opcode Operand Machine code/Opcode/Hex code Byte description
MVI A, 7TFH 3E First byte

7F Second byte
ADI OFH Cé6 First byte

OF Second byte
IN 40H DB First byte

40 Second byte

The instruction is stored in two consecutive memory locations.
MVI R, data—(R <«— data)

Example:
MVI A, 32H (coded as 3E 32 in two contiguous bytes)
This is an example of immediate addressing.

The following two instructions are also examples of two-byte instructions:

(1) ADI data (A <— A + data)

(i1)) OUT port (where port is an 8-bit device address. (Port) «— A) Since the byte
is not the data itself, but points directly to where it is located, this is called
direct addressing. For a detailed account of addressing modes, see Section
1.13.3.

1.13.2.3 Three-byte Instructions

Instructions that require three bytes in machine code are called three-byte
instructions. In 8085 machine language, the first byte of the three-byte instructions
is the opcode which specifies the operation to be performed. The next two bytes
refer to the 16-bit operand, which is either a 16-bit number or the address of a
memory location. Some common examples of three-byte instructions are listed in
Table 1.6.

Table 1.6 Three-byte instructions

Opcode Operand Machine code/Opcode/Hex code Byte description
IMP 9050H C3 First byte
50 Second byte
90 Third byte
LDA 8850H 3A First byte
50 Second byte
88 Third byte
LXI H, 0520H 21 First byte
20 Second byte
05 Third byte

© Oxford University Press. All rights reserved.

28 Microprocessors and Interfacing

The instruction LXI Rp, 16-bit data can be explained as follows:

Rp is one of the pairs of registers BC, DE, or HL, which are used as 16-bit
registers. The two data bytes are to be stored as a 16-bit number in L and H in
sequence. LXI H, 0520H is coded as 21H 20H O5H in three bytes. (This is an
example of immediate addressing.)

In executing the instruction LDA addr, the accumulator is loaded with the memory
content of the address given in the instruction. Addr is a 16-bit address. LDA 8850H
is coded as 3AH 50H 88H. (This is an example of direct addressing.)

1.13.3 Addressing Modes in Instructions

Every instruction in a program has to operate on data. The process of specifying
the data to be operated on by the instruction is called addressing. Efficient
software development for the microprocessor requires complete familiarity with
the addressing mode employed for each instruction. For example, the instructions
MOV B, A and MVI A, 82H are used to copy data from a source to a destination.
In these instructions, the source can be a register or an 8-bit number (00H to FFH);
the destination is a register. The source and destination are operands. The various
formats for specifying operands are called addressing modes. The 8085 has the
following five types of addressing:

(i) Immediate addressing (i) Memory direct addressing
(iii) Register direct addressing (iv) Indirect addressing

(v) Implied or implicit addressing
1.13.3.1 Immediate Addressing
Immediate addressing transfers the Instruction
operand given in the instruction—a byte

or word—to the destination register or
memory location. The operand is part of

Opcode | Operand

the instruction. The format for immediate Fig. 1.10 Format of immediate
addressing is given in Fig. 1.10. addressing
Example:

MVI A, 9AH

(a) The operand is part of the instruction.
(b) The operand is stored in the register mentioned in the instruction.

Example:

ADI O5H
(a) Add O5H to the contents of the accumulator.
(b) O5H is the operand.

Immediate addressing has no memory reference to fetch data. It executes faster,
but has limited data range.

1.13.3.2 Memory Direct Addressing

Memory direct addressing moves a byte or word between a memory location and
register. The memory location address is given in the instruction. The instruction
set does not support memory-to-memory transfer. Memory direct addressing is
illustrated in Fig. 1.11.

© Oxford University Press. All rights reserved.

Microprocessors—Evolution and Introduction to 8085 29

Instruction

| Opcode | Memory address A Memory

> Operand

Fig. 1.1l Format of memory direct addressing

Example:

LDA 850FH
This instruction is used to load the contents of the memory location 850FH in the
accumulator.

Example:

STA 9001H
This instruction is used to store the contents of the accumulator in the memory
address 9001H.

In these instructions, the memory address of the operand is given in the instruction.

Direct addressing is also used for data transfer between the processor and
input/output devices. For example, the IN instruction is used to receive data from
the input port and store it in the accumulator; the OUT instruction is used to send
the data from the accumulator to the output port.

Example:
IN @0H and OUT @1H

1.13.3.3 Register Direct Addressing

Register direct addressing transfers a copy of a byte or word from the source
register to the destination register. The operand is in the register named in the
instruction. It executes very fast, has very limited register space, and requires
good assembly programming. The operand is within in the processor itself; so the
execution is faster. Register direct addressing is illustrated in Fig. 1.12.

Instruction

| Opcode| Register R | Registers

Y

Operand

Fig. 1.12 Format of register direct addressing

© Oxford University Press. All rights reserved.

30 Microprocessors and Interfacing

Example:
MOV Rd, Rs
MOV B, C
It copies the contents of register C to register B.

Example:
ADD B
It adds the contents of register B to the accumulator and saves it in the accumulator.

1.13.3.4 Indirect Addressing

Indirect addressing transfers a byte or word between a register and a memory
location. The address of a memory location is stored in a register and that register
is specified in the instruction. This is illustrated in Fig. 1.13.

In indirect addressing, the effective address is calculated by the processor using
the contents of the register specified in the instruction. This type of addressing
employs several accesses—two accesses to retrieve the 16-bit address and a further
access (or accesses) to retrieve the data which is to be loaded in the register.

Example:

MOV A, M
Here, the data is in the memory location pointed to by the contents of the HL pair.
The data is moved to the accumulator.

Instruction

|Opcode | Register address R |

Memory
Registers
Memory address
2 to operand > Operand

Fig. 1.13 Format of indirect addressing

1.13.3.5 Implied or Implicit Addressing

In implied addressing mode, the instruction itself specifies the data to be operated
upon. For example, CMA complements the contents of the accumulator. No
specific data or operand is mentioned in the instruction.

1.14 INSTRUCTION SET OF 8085

The 8085 microprocessor instruction set has 74 operation codes and 246
instructions. It is compatible with that of its predecessor, the 8080A, but has
two additional instructions—SIM (set interrupt mask) and RIM (read interrupt
mask)—related to serial I/O. The complete instruction set is listed in Appendix 1
with additional information such as number of clock states required for execution
and the flags affected.

© Oxford University Press. All rights reserved.

Microprocessors—Evolution and Introduction to 8085 31

I.14.1 Format of Assembly Language Instructions and Programs

Assembly language programs are written for performing specific functions,
converted into machine language code, and then stored in the memory of the
microprocessor-based system. The conversion of an assembly language program
into machine language code is called assembling; the application that performs this
task is called assembler. This conversion or assembling can also be done manually
by the programmers. To facilitate the process of assembling, the assembly language
programs are written in a specific format as shown in Fig. 1.14.

| Memory address | Machine code/Opcode | Label | Mnemonics with operands | Comments |

Fig. 1.14 Format for writing assembly language programs

In general, the assembly language mnemonics with their operands are written
first. The address where the instructions are stored is given a dummy name called
label. The purpose of labels is to give the correct branch addresses in instructions.
Labels are separated from mnemonics with a colon.

The comments column is essential for any program as it helps the programmer
understand the logic of the program at any point in time. Without comments, it is
difficult to understand an assembly language program. Comments are separated
from the mnemonics with a semicolon.

The first two columns correspond to the physical memory address and the
actual machine code. These two columns are filled in after completing the assembly
language programming. These columns must contain only binary numbers, but for
easy understanding, hexadecimal numbers are used. For manual assembling, these
two columns are filled in by the programmer. An assembler can generate these
columns automatically.

An example of the assembly language program format is given in Table 1.7.

Table 1.7 Sample assembly language program

Memory Machine code/ Label Mnemonics Comments

address Opcode with operands

8000 3E START: MVIA, 5SFH ; Load data in the accumulator.

8001 SF

8002 ; Address of the next memory
location

The instruction in Table 1.7 moves the data SFH to the accumulator.

1.14.2 Data Transfer Instructions

Data transfer instructions are used to transfer data between two registers in the
microprocessor or between a peripheral device and the microprocessor. Some
instructions and their features are given in the following points. The complete list
with explanations is given in Table 1.8.
(1) MVl instruction is used for storing 8-bit data in a microprocessor register.
(i1) LXI instruction is used for storing 16-bit data in a register pair.

© Oxford University Press. All rights reserved.

32 Microprocessors and Interfacing

(i) In direct addressing mode, MOV instruction is used for data transfer between
registers. In indirect addressing mode, MOV is used for data transfer between
a memory location and a register. If the instruction has M in the operand field,
the memory location pointed to by the HL pair is considered for data transfer.

Table 1.8 Data transfer instructions

Mnemonics

MVI R, 8-bit
LXI Rp, 16-bit

MOV Rd, Rs

LDA 16-bit

LHLD 16-bit

STA 16-bit

SHLD 16-bit

PUSH Rp

POP Rp

OUT 8-bit

Tasks performed on
execution

Moves the 8-bit data
to the register

Loads the 16-bit data in
the register pair

Copies the data from
the source register to
the destination register

Loads the accumulator
with the data from the
memory location
indicated by the

16-bit address

Loads the H and L
registers directly from
the two consecutive
memory locations
indicated by the
16-bit address

Stores the contents of
the accumulator in the
memory location
indicated by the
16-bit address

Stores the contents of
the H and L registers
in two consecutive
memory locations
indicated by the
16-bit address

Pushes the contents of
the register pair onto
a stack

Pops the top two memory

locations of the stack
onto a register pair

Outputs the data in the
accumulator to the port
indicated by the

8-bit address

Addressing
mode

Immediate
Immediate

Register
direct

Memory
direct

Memory
direct

Memory
direct

Memory
direct

Register
direct

Register
direct

/o

Instruction
length

Two bytes
Three bytes

One byte

Three bytes

Three bytes

Three bytes

Three bytes

One byte

One byte

Two bytes

© Oxford University Press. All rights reserved.

Example

MVI B, 3FH
LXI B, SAF3H

MOV A, B

LDA 905FH

LHLD 900AH

STA 9050H

SHLD 809FH

PUSH B

POP H

OUT 40H

(Contd)

Microprocessors—Evolution and Introduction to 8085 33

Table 1.8 Data transfer instructions (Contd)

Mnemonics Tasks performed on Addressing Instruction Example
execution mode length

IN 8-bit Inputs the data from the 1/O Two bytes IN 30H
port indicated by the
8-bit address to the
accumulator

MOV Rd, M Copies the contents of Indirect One byte MOV B, M

the memory location
pointed to by the HL
register pair to

the register

MOV M, Rs Copies the contents of the Indirect One byte MOV M, C

register to the memory
location pointed to by
the HL register pair

LDAX Rp Loads accumulator with Indirect One byte LDAX B

the contents of the
memory location pointed
to by the register pair

STAX Rp Stores the contents of the Indirect One byte STAX D

accumulator in the
memory location pointed
to by the register pair

XCHG Exchanges the contents Implicit One byte XCHG

of the HL register pair
with that of the D and E
register pair

SPHL Copies the contents of Implicit One byte SPHL

the H and L registers to
the stack pointer

XTHL Exchanges the contents Implicit One byte XTHL

of the HL register pair
with the top of stack

(iv)
v)

(vi)

(vii)

LDA and STA use memory direct addressing mode and a 16-bit memory
address as operand.

LDAX and STAX use indirect addressing mode for data transfer. The
operand given in the instruction is one of the register pairs BC or DE.
Register pair HL is not used with LDAX due to the availability of the
alternative instruction MOV A, M.

LHLD and SHLD are the instructions used to transfer 16-bit data between
the HL register pair and two consecutive memory locations. For example,
executing SHLD 9000H instruction will store the contents of L register in
9000H and the contents of H register in 9001H.

PUSH and POP instructions are used for data transfer between a register

© Oxford University Press. All rights reserved.

34 Microprocessors and Interfacing

(viii)

(ix)

(x)

pair and a stack. The stack is a set of memory locations configured as a last-
in, first-out (LIFO) or first-in, last-out (FILO) array. The top of the stack
locations is pointed to by a special register, the stack pointer, which is within
the microprocessor. PUSH instruction will store the register pair given in
the instruction to the top two memory locations of the stack. Similarly, POP
instruction will copy the last two bytes stored in the stack to the register pair
mentioned in the instruction. Care must be taken in using these instructions as
the stack is configured as a LIFO array. Another instruction to store data in the
stack is XTHL, which exchanges the top two memory locations of the stack
with the contents of the HL register pair.

Stack pointer can be initialized using LXI or SPHL instructions. SPHL
instruction will copy the contents of the HL register pair to the stack pointer.
IN and OUT instructions use 8-bit port addresses as operand. IN instruction
is used to get data from the input port and the data obtained is stored in the
accumulator. OUT instruction is used to issue data from the accumulator to
an output port.

XCHG instruction is used to exchange the contents of the HL and DE
register pairs.

1.14.3 Arithmetic Instructions

The arithmetic instructions supported by the 8085 are addition, subtraction, and
their variants. The arithmetic instructions are listed in Table 1.9.

Table 1.9 Arithmetic instructions

Mnemonics Tasks performed on Addressing Instruction Example
execution mode length

ADI 8-bit Adds the 8-bit data to Immediate Two bytes ADI 30H
the contents of the
accumulator

ACI 8-bit Adds the 8-bit dataand Immediate Two bytes ~ ACI 4FH
the carry flag to the
contents of the
accumulator

SUI 8-bit Subtracts the 8-bit data Immediate Two bytes SUI 2AH
from the contents of the
accumulator

SBI 8-bit Subtracts the 8-bit data ~ Immediate =~ Two bytes SBI 5CH

and the borrow from the
contents of the
accumulator

ADD R Adds the contents of the Register One byte ADD C

register to the contents direct
of the accumulator

(Contd)

© Oxford University Press. All rights reserved.

Microprocessors—Evolution and Introduction to 8085 35

Table 1.9 Arithmetic instructions (Contd)

Mnemonics Tasks performed on Addressing Instruction Example
execution mode length
ADCR Adds the contents of the Register One byte ADCE

register and the carry to direct
the contents of the
accumulator

SUBR Subtracts the contents of Register One byte SUBB
the register from that of direct
the accumulator

SBB R Subtracts the contents Register One byte SBB C
of the register and the direct
borrow from that of the
accumulator

DAD Rp Adds the contents of the Register One byte DADB
register pair to that of the direct
H and L registers

INR R Increments the register ~ Register One byte INR B
by 1 direct

INX Rp Increments the register ~ Register One byte INX B
pair by 1 direct

DCRR Decrements the register Register One byte DCRE
by 1 direct

DCX Rp Decrements the register Register One byte DCX D
pair by 1 direct

ADD M Adds the contents of the Indirect One byte ADD M

memory location pointed
to by the HL register pair
to that of the accumulator

ADCM Adds the contents of the Indirect One byte ADCM
memory location pointed
to by the HL register pair
and the carry to that of
the accumulator
SUB M Subtracts the contents of Indirect One byte SUB M
the memory location
pointed to by the HL
register pair from that
of the accumulator
SBB M Subtracts the borrow and Indirect One byte SBBM
the contents of the
memory location pointed
to by the HL pair from
that of the accumulator

(Contd)

© Oxford University Press. All rights reserved.

36 Microprocessors and Interfacing

Table 1.9 Arithmetic instructions (Contd)

Mnemonics Tasks performed on Addressing Instruction Example
execution mode length
INR M Increments the memory Indirect One byte INR M

location pointed to by the
HL register pair by 1

DCRM Decrements the memory Indirect One byte DCRM

location pointed to by the
HL register pair by 1

DAA Converts the contents of Implicit One byte DAA

the accumulator from
binary to BCD (Decimal-
Adjust Accumulator)

The following points list some key features of arithmetic operations:

(1)
(i1)
(iii)
(iv)
(v)
(vi)

For arithmetic operations, one of the data must be stored in the accumulator
and the other given or addressed in the instruction.

Add-with-carry instructions are used for multi-byte and higher-order byte
addition.

Similarly, subtract-with-borrow instructions are used in multi-byte and
higher-order byte subtraction.

Increment and decrement instructions can be operated not only on the
accumulator, but also on other registers including memory locations.

The contents of a register pair can be incremented or decremented using INX
and DCX instructions.

DAA is the 8085 instruction that supports BCD addition. The addition of
BCD data is done like binary addition, using the ADD instruction. DAA is
used to convert the result of the binary addition of BCD numbers into a BCD
number. This instruction cannot be used to directly convert binary numbers
into BCD numbers.

1.14.4 Logical Instructions

The most important logical instructions supported by the 8085 are AND, OR,
EXOR, and NOT. The complete list is given in Table 1.10.

Table 1.10 Logical instructions

Mnemonics Tasks performed on execution Addressing Instruction Example

mode length

ANI 8-bit The 8-bit data is logically ANDed Immediate Two bytes ~ ANI OFH

with the contents of the accumulator.

XRI 8-bit The 8-bit data is logically EXORed = Immediate Two bytes ~ XRIO01H

with the contents of the accumulator.

ORI 8-bit The 8-bit data is logically ORed Immediate Two bytes ORI 80H

with the contents of the accumulator.
(Contd)

© Oxford University Press. All rights reserved.

Microprocessors—Evolution and Introduction to 8085 37

Table 1.10 Logical instructions (Contd)

Mnemonics Tasks performed on execution

ANAR The contents of the register are
logically ANDed with the contents
of the accumulator.

XRAR The contents of the register are
logically EXORed with the contents
of the accumulator.

ORAR The contents of the register are
logically ORed with the contents
of the accumulator.

ANAM The contents of the memory
location pointed to by the HL
register pair is logically ANDed
with the contents of the accumulator.

XRAM The contents of the memory
location pointed to by the HL
register pair is logically EXORed
with the contents of the accumulator.

ORAM The contents of the memory
location pointed to by the HL
register pair is logically ORed
with the contents of the accumulator.

RLC Rotates the bits of the accumulator
left by one position

RRC Rotates the bits of the accumulator
right by one position

RAL Rotates the bits of the accumulator
left by one position, through the carry

RAR Rotates the bits of the accumulator

right by one position, through the carry

CPI 8-bit Compares the 8-bit data with the
contents of the accumulator

CMPR Compares the contents of the register
with that of the accumulator

Addressing Instruction

mode

Register
direct

Register
direct

Register
direct

Indirect

Indirect

Indirect

Implicit

Implicit

Implicit

Implicit

Immediate

Register
direct

CMP M Compares the contents of the memory Indirect

location pointed to by the HL register
pair with that of the accumulator

CMA Complements the contents of the
accumulator

CMC Complements the carry

STC Sets the carry

Implicit

Implicit
Implicit

length
One byte

One byte

One byte

One byte

One byte

One byte

One byte
One byte
One byte
One byte
Two bytes
One byte

One byte

One byte

One byte
One byte

Example

ANAC

XRAD

ORAE

ANAM

XRAM

ORAM

RLC

RRC

RAL

RAR

CPI FFH

CMP B

CMPM

CMA

CMC
STC

© Oxford University Press. All rights reserved.

38 Microprocessors and Interfacing

For logical operations, one of the data must be stored in the accumulator and the
other given or addressed in the instruction. Logical operations can be performed
with immediate data, data stored in a register, or indirectly addressed memory
location content.

Besides the instructions already mentioned, two types of rotate instructions
are available in the 8085. One set—RLC and RRC—rotates the accumulator
contents within itself. The RLC instruction shifts the accumulator content left by
one bit. In the process, the most significant bit of the accumulator becomes the
least significant bit. The RRC instruction shifts the accumulator content right by
one bit.

The other set of rotate instructions—RAL and RAR—rotates the accumulator
content along with the carry flag. The RAL instruction shifts the accumulator
content left by one bit and in the process, the most significant bit will be shifted to
the carry flag and the carry flag content will be shifted to the least significant bit of
the accumulator.

The instruction set of the 8085 supports a compare instruction for comparing
the magnitude of two binary numbers. The compare instructions are used to
compare the accumulator content with the operand specified in the instruction.
CPI instruction uses immediate addressing and CMP uses registers or indirectly
addressed memory location for comparing with the accumulator. The result of the
compare instruction is indicated in the flag register, as follows:

If[(A) — operand] = 0, i.e., (A) = operand, the zero flag is set.

If [(A) — operand] <0, i.e., (A) < operand, the carry flag is set.

If [(A) — operand] > 0, i.e., (A) > operand, the zero and carry flags are reset.

1.14.5 Branching Instructions

Branching instructions are used to transfer the program execution to a different
address. Branching instructions are of two types—jump instructions and
subroutine instructions. The jump instructions merely transfer the execution from
one location in the program to another, whereas the subroutine instructions in the
main program transfer execution to a new location and also return to the main
program. Return instructions are used for this purpose. The branching can take
place unconditionally or conditionally, based on the flag conditions shown in
Table 1.11. PCHL instruction is a special instruction used to branch to the address
stored in the HL register pair.

RST n is the restart instruction supported by the 8085. Upon execution of the
RST n instruction, the program execution will be transferred to the address given
by n x 8. For example, RST 4 instruction will transfer the execution to the address
0020H which is the hexadecimal equivalent of 32 (in decimal form).

In machine code or opcode, thel6-bit or 4 hex digit addresses in the branching
instructions are given such that the lower-order byte of the address follows the
higher-order byte. For example, JMP 8030H is coded as C3 30 80. The opcode for
JMP, C3, is stored first, followed by 30 and then by 80.

© Oxford University Press. All rights reserved.

Microprocessors—Evolution and Introduction to 8085 39

Table 1.11 Branching instructions

Mnemonics Tasks performed on Instruction Example

execution length
JMP 16-bit Jump unconditionally Three bytes JMP 9500
JC 16-bit Jump if carry is set Three bytes JC 9500
IJNC 16-bit Jump on no carry Three bytes IJNC 9500
JP 16-bit Jump on positive Three bytes JP 9500
IM 16-bit Jump on minus Three bytes IM 9500
JZ 16-bit Jump on zero Three bytes JZ. 9500
INZ16-bit Jump on no zero Three bytes INZ 9500
JPE 16-bit Jump on parity even Three bytes JPE 9500
JPO 16-bit Jump on parity odd Three bytes JPO 9500
CALL 16-bit Call unconditionally Three bytes CALL 9500
CC 16-bit Call on carry Three bytes CC 9500
CNC 16-bit Call on no carry Three bytes CNC 9500
CP 16-bit Call on positive Three bytes CP 9500
CM 16-bit Call on minus Three bytes CM 9500
CZ 16-bit Call on zero Three bytes CZ 9500
CNZ 16-bit Call on no zero Three bytes CNZ 9500
CPE 16-bit Call on parity even Three bytes CPE 9500
CPO 16-bit Call on parity odd Three bytes CPO 9500
RET Return unconditionally One byte RET
RC Return on carry One byte RC
RNC Return on no carry One byte RNC
RP Return on positive One byte RP
RM Return on minus One byte RM
RZ Return on zero One byte RZ
RNZ Return on no zero One byte RNZ
RPE Return on parity even One byte RPE
RPO Return on parity odd One byte RPO
PCHL Copy HL contents to One byte PCHL

the program counter
RST 0/1/2/3/4/5/6/7 Restart One byte RST 5

1.14.6 Machine Control Instructions

Machine control instructions are used to control the microprocessor execution
and functioning and are listed in Table 1.12. They are explained in detail in the
following points:

(i) NOP means no operation. When this instruction is executed, nothing is done;
no changes occur in the contents of the registers. The program counter alone
is incremented to fetch and execute the next instruction.

(i) HLT instruction is used to halt the execution of the program. The operation
of the microprocessor is suspended when HLT instruction is executed. The
only way to exit the halt state is to apply the hardware reset signal.

© Oxford University Press. All rights reserved.

40 Microprocessors and Interfacing

(iii) Interrupts are disabled and enabled using DI and EI signals, respectively.
Once the DI instruction has been executed, the processor ignores any
interrupt request received. To enable interrupts again, the EI instruction has
to be executed.

(iv) The SIM instruction is used to send serial data on the serial output data
(SOD) line of the microprocessor and the RIM instruction is used to receive
serial data on the serial input data (SID) line of the processor. The SIM and
RIM instructions are also associated with the setting and reading of interrupt
masks for RST hardware interrupts.

Table 1.12 Machine control instructions

Mnemonics Tasks performed on execution Addressing Instruction
mode length
NOP No operation Implicit One byte
HLT Halts the microprocessor execution Implicit One byte
DI Disables interrupts Implicit One byte
El Enables interrupts Implicit One byte
RIM Reads interrupt mask Implicit One byte
SIM Sets interrupt mask Implicit One byte

1.15 SAMPLE PROGRAMS
1. Write an assembly language program to add two numbers.

The program given in Table 1.13 uses immediate addressing for the two data to be
added. The data to be added are stored in memory locations 8001H and 8003H.
The sum is stored in the memory location 8500H. This program assumes that no
carry is generated from the addition.

Table 1.13 Program for adding two 8-bit numbers

Memory Machine code/ Labels Mnemonics with Comments

address Opcode operands

8000 3E START: MVIA,32H ; Load the first number in

8001 32 the accumulator.

8002 Co6 ADI 64H ; Add the second number with
8003 64 the contents of the accumulator.
8004 32 STA 8500H ; Store the sum in the memory
8005 00 location 8500H.

8006 85

8007 76 HLT ; Terminate program execution.

2. Write an assembly language program to add two numbers of 16 bits each.

This program also uses immediate addressing for loading the data in the processor
registers. The sum is stored in the memory locations 8500H and 8501H, as shown
in Table 1.14.

© Oxford University Press. All rights reserved.

Microprocessors—Evolution and Introduction to 8085 41

Table 1.14 Program for adding two |6-bit numbers

Memory
address

8000
8001
8002
8003
8004
8005
8006

8007
8008
8009
800A

Machine
code/
Opcode

21
SF
80
01
3A
12
09

22
00
85
76

Labels Mnemonics with
operands

START: LXIH, 805FH

LXI B, 123AH

DADB

SHLD 8500H

HLT

Comments

; Load the first 16-bit number in
the HL register pair.

; Load the next number in the BC
register pair.

; Add the two numbers using
double addition instruction.

; Store the result in the HL pair in
the memory locations 8500H and
8501H.

; Terminate program execution.

3. Write an assembly language program to add the two numbers stored in the
memory locations 8500H and 8501H and store the result in 8502H.

This program uses indirect addressing instructions to load the numbers to be
added in the processor registers. The carry, if generated, is ignored. The program
is shown in Table 1.15.

Table I.15 Program for adding two numbers from memory

Memory
address

8000
8001
8002
8003
8004
8005
8006

8007

8008

Machine
code/
Opcode

21
00
85
7E
23
86
23

77

76

Labels Mnemonics with
operands

START: LXIH, 8500H

MOV A, M
INX H
ADD M
INX H

MOV M, A

HLT

Comments

; Initialize HL register pair to point
to the memory location of the
first number.

; Load the first number in the
accumulator.

; Increment the HL pair to point to
the memory location of the next
number.

; Add the two numbers.

; Increment the HL pair to point to
the next memory location.

; Store the contents of the
accumulator in the memory location
pointed to by the HL register pair.

; Terminate program execution.

© Oxford University Press. All rights reserved.

42 Microprocessors and Interfacing

1.16 INSTRUCTION EXECUTION

The 8085 microprocessor is designed to fetch the instruction pointed to by the
program counter, and then decode and execute the instruction within the processor.
If necessary, further operand fetch takes place before completing the execution.
Each instruction, as we have already seen, has two parts—operation code (known
as opcode) and operand. The opcode is a command such as ADD and the operand
is an object to be operated on, such as a byte or the contents of a register.
Instruction cycle is the time taken by the processor to complete the execution
of an instruction. An instruction cycle consists of one to six machine cycles.
Machine cycle is the time required to complete one operation—accessing either
the memory or an I/O device. A machine cycle consists of three to six T-states.
T-state is the time corresponding to one clock period. The T-state is the basic
unit used to calculate the time taken for execution of instructions and programs in
a processor.
To execute a program, the 8085 performs various operations such as opcode fetch,
operand fetch, and memory read/write or 1/O read/write. The microprocessor’s
external communication function can be divided into three categories:
(i) Memory read/write (if) /O read/write
(ii1) Interrupt request acknowledge

POINTS TO REMEMBER

e The microprocessor is an electronic circuit that functions as the central processing
unit (CPU) of a computer, providing computational control.

e The microprocessor is the controlling element in a computer system. The
microprocessor performs data transfers, does simple arithmetic and logical
operations, and makes simple decisions.

e The basic operation of the microprocessor is to fetch instructions stored in the
memory and execute them one by one in sequence.

Microprocessors are used in almost all advanced electronic systems.
Microcontrollers are advanced forms of microprocessors, with memory and ports
present within the chip.

e A microcomputer system is made by interfacing memory and I/O devices to a
microprocessor.

e Microprocessor evolution is classified into five generations. The processors that are
currently in use belong to the fifth generation.

e The microprocessor is a semiconductor device consisting of electronic logic
circuits manufactured using either large-scale integration (LSI) or very large-scale
integration (VLSI) technique. It works at a fixed clock frequency.

e Abus is a collection of wires connecting two or more chips.

e A typical microprocessor communicates with memory and other input/output
devices using three buses—address bus, data bus, and control bus.

o Salient features of the 8085 microprocessor manufactured by Intel
= [t is an 8-bit microprocessor.
= It has a 16-bit address bus (A0—A15) and hence, can address up to 2!¢ = 65,536

bytes (64 KB).

© Oxford University Press. All rights reserved.

Microprocessors—Evolution and Introduction to 8085 43

= The 8085 has a multiplexed bus (AD0-AD7), which is used as the lower-order
address bus and the data bus. It can be de-multiplexed using a latch and the ALE
signal.

= The data bus is a group of eight lines (D0-D7).

= |t supports external interrupt request.

= [t has a 16-bit program counter (PC) and a 16-bit stack pointer (SP).

= [t has six 8-bit general-purpose registers, which can be arranged in pairs as BC,
DE, and HL.

= Jtrequires a +5 V power supply and operates at 3 MHz clock frequency.

= [t contains 40 pins and is available as a dual in-line package (DIP).

= |t has five flags—sign, zero, auxiliary carry, parity, and carry.

e The microprocessor operations related to data manipulation can be summarized in

the following four functions:
(i) Transferring data
(if) Performing arithmetic operations
(iii) Performing logical operations
(iv) Testing for a given condition and altering the program sequence

o The instructions are classified into three groups according to word size: one-, two-,
and three-byte instructions.

e An instruction has two parts—opcode (operation to be performed) and operand
(data to be operated on). The operand can be data (8-bit or 16-bit), addresses,
registers, or implicit in the opcode. The method of specifying an operand (directly,
indirectly, etc.) is called addressing mode.

o The instructions are executed in steps of machine cycles and each machine cycle
requires many T-states.

KEY TERMS

Accumulator It is an 8-bit register; it is a part of the ALU and is the most important
register. It is used to store 8-bit data and to perform arithmetic and logical operations.
The output of an operation is also stored in the accumulator. The accumulator is
identified as register A.

Address bus This bus carries the binary number (i.e., the address) used to access
a memory location. Binary data can then be written into or read from the addressed
memory location. The address bus consists of 16 wires and can, therefore, handle 16
bits.

Addressing mode It is the method of specifying the data to be operated on by the
instruction.

Bus It is a group of conducting lines that carry data, address, and control signals
Clock speed This determines how many instructions per second the processor can
execute. It is specified in megahertz (MHz).

Control bus This bus has various lines for coordinating and controlling
microprocessor operations. For example, RD and WR lines.

Data bus This bus carries data in binary form between the microprocessor and
external units such as memory. Typical size is eight or 16 bits.

DMA controller Tt is used to take control of the system bus by placing a high signal
on the Hold pin.

Flag It is a flip-flop used to store information about the status of the processor and
the status of the instruction executed most recently.

© Oxford University Press. All rights reserved.

44 Microprocessors and Interfacing

Hold and HLDA These signals are used for direct memory access (DMA) type
of data transfer. The Hold request makes the 8085 drive all its tri-stated pins to high
impedance state. The HLDA signal goes high to acknowledge the receipt of the Hold
signal.

Immediate addressing It transfers the operand given in the instruction—a byte or
word—to the destination register or memory location.

Implied addressing In this addressing mode, the instruction itself specifies the data
to be operated on.

IN This instruction is used to move data from an I/O port to the accumulator.
Indirect addressing It transfers a byte or word between a register and a memory
location addressed by another register.

Instruction cycle It is the time required to execute an instruction.

IO/M signal This signal is used to differentiate memory access and 1/O access. For
input/output instructions it is high; for memory reference instructions it is low.

JMP and CALL JMP instruction permanently changes the program counter. CALL
instruction leaves information on the stack so that the original program execution
sequence can be resumed.

Machine cycle It is the time required to access the memory or input/output devices.
Memory direct addressing It moves a byte or word between a memory location
and a register.

Opcode 1t is the part of the instruction that specifies the operation to be performed.
Operand It is the data on which the operation is performed.

OUT This instruction is used to move data from the accumulator to an 1/0O port.
Ready It is an input signal to the processor. It is used by the memory or 1/O devices
to get extra time for data transfer or to introduce wait states in the bus cycles.
Register direct addressing It transfers a copy of a byte or word from a source
register to a destination register.

Timing diagram It is a graphical representation of the time taken by each instruction
for execution. The execution time is represented in T-states.

Trap Itis anon-maskable interrupt of the 8085 and is not disabled by processor reset
or after reorganization of interrupt.

T-state Itisthe basic unitused to calculate the time taken for execution of instructions
and programs in a processor. It is the time corresponding to one clock period.

REVIEW QUESTIONS

What is the main function of a computer?

Name any three input devices of a computer.

Name any two output devices of a computer.

Name any three storage devices of a computer.

Name any three places where computers can be used.

Draw a block diagram of a computer and label its components.
Who developed the world’s first microprocessor?

What is the data bus width of the 8085 microprocessor?

When did Intel introduce the Pentium 4 microprocessor?
What is the amount of memory that the Pentium 4 processor can address?
What are the basic units of a microprocessor?

. What is the function of microprocessor in a system?

»—
PO YXXNNN W

— =
&

© Oxford University Press. All rights reserved.

13.

14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24.

25.
26.
27.
28.
29.

30.

31.
32.

33.
34.
35.

36.
37.

38.

39.
40.

41.
42.
43.
44.
45.
46.

47.

48.

Microprocessors—Evolution and Introduction to 8085 45

How many memory locations can be addressed by a microprocessor with 14
address lines?

Name any two types of memories that are used in a computer.

Define computer hardware.

Define computer software.

What is the role of CPU in a computer?

What are input and output devices?

Describe and draw the diagram of Von—Neumann model.

Define the following abbreviations: CPU, RAM, and ROM

Name any three features of the 8085.

What are the operations performed by the ALU of the 8085?

What are the various registers in the 8085?

What is a flag? List its types. What is the structure of the flag register? Explain
each flag with an example.

List the 16-bit registers of the 8085 microprocessor.

What is a bus?

Why is the data bus bidirectional?

How are the signals of the 8085 classified?

How are clock signals generated in the 8085? What is the frequency of the internal
clock?

How does the 8085 processor differentiate a memory access (read/write) signal
from an 1/O access (read/write) signal?

Why is crystal a preferred clock source?

Which interrupt has the highest priority in the 8085? What is the priority of the
other interrupts?

When and where is the Ready signal used?

What are Hold and HLDA? How are they used?

Draw a general block diagram of a microprocessor-based system. Explain briefly
the various blocks of the system. Give some examples of the types of devices used
for each block.

What is a microprocessor? Sketch and explain the various pins of the 8085.
Explain the operation of these 8085 signals: Ready, S1 and SO, Hold and HLDA,
and ALE.

Explain the architecture of the 8085 with the help of its internal block schematic
diagram.

List the four categories of 8085 instructions that are used for data manipulation.
Define opcode and operand. Identify the opcode and the operand in the instruction
MOV H, L.

Explain the instruction XCHG.

What is an instruction? List any four arithmetic instructions and their uses.
Define stack. Explain the instructions related to stack operations.

When is the instruction XRA A used?

How many operations are there in the instruction set of the 8085 microprocessor?
Explain with examples the different instruction formats, based on the length of the
instructions.

List the four instructions which control the interrupt structure of the 8085
microprocessor.

What is the last instruction executed in a program? Why?

© Oxford University Press. All rights reserved.

46

49.
50.
S1.

52.
53.
54.

AR

Microprocessors and Interfacing

What is the significance of XCHG and SPHL instructions?

Explain the operation carried out when the 8085 executes the instruction RST 0.
What is addressing? What are the various addressing modes available in the
8085?

Explain direct addressing with an example.

Explain implied addressing with an example.

What are the machine cycles in the 8085 microprocessor?

THINK AND ANSWER

Compare the instructions CALL and PUSH.

What is the difference between the shift and rotate instructions?

How many address lines are there in a 4096 x 8 EPROM chip?

Explain the difference between the instructions JMP and CALL.

If the instructions CALL and RET were not available in the 8085, would it still be
possible to write subroutines? How would the subroutine be called? How would
one return to the main program?

© Oxford University Press. All rights reserved.

