
Professor and Head
Department of Electronics and Communication Engineering

Assam University
Silchar

DESIGN,
SYNTHESIS, AND

SIMULATION

Debaprasad Das

VHDL

© Oxford University Press. All rights reserved.

Oxfo
rd

 U
niversi

ty
 Pre

ss

3
Oxford University Press is a department of the University of Oxford.

It furthers the University’s objective of excellence in research, scholarship,
and education by publishing worldwide. Oxford is a registered trademark of

Oxford University Press in the UK and in certain other countries.

Published in India by
Oxford University Press

Ground Floor, 2/11, Ansari Road, Daryaganj, New Delhi 110002, India

© Oxford University Press 2018

The moral rights of the author/s have been asserted.

First published in 2018

All rights reserved. No part of this publication may be reproduced, stored in
a retrieval system, or transmitted, in any form or by any means, without the

prior permission in writing of Oxford University Press, or as expressly permitted
by law, by licence, or under terms agreed with the appropriate reprographics

rights organization. Enquiries concerning reproduction outside the scope of the
above should be sent to the Rights Department, Oxford University Press, at the

address above.

You must not circulate this work in any other form
and you must impose this same condition on any acquirer.

ISBN-13: 978-0-19-809329-9
ISBN-10: 0-19-809329-2

Typeset in AGaramondPro-Regular
by MacroTex Solutions, Chennai

Printed in India by Magic International (P) Ltd., Greater Noida

Cover image: VLADGRIN / Shutterstock

Third-party website addresses mentioned in this book are provided
by Oxford University Press in good faith and for information only.

Oxford University Press disclaims any responsibility for the material contained therein.

© Oxford University Press. All rights reserved.

Oxfo
rd

 U
niversi

ty
 Pre

ss

Solved Examples
Th e book comprises various solved
examples to provide readers with a
deep understanding of the concepts
discussed in the chapters.

Features of

Appendices
Appendices A, B, C, and D are
provided at the end of the book for
readers to gain additional knowledge.
Appendix A discusses design with
Xilinx FPGA, B covers lab exercises,
C consists of some mini projects, and
D includes versions of VHDL-87
and 93.

Material based on or adapted
from fi gures and text owned by
Xilinx, Inc., courtesy of Xilinx, Inc.
© Copyright Xilinx [2018].

Example 11.8. Write a VHDL testbench program to read the
input bit patterns from a fi le “fa2.vec” and generate the input
waveforms, simulate the design and write the simulated input/
outputs into another fi le “fa2.out”.
library ieee, std;
use ieee.std_logic_1164.all;
use ieee.std_logic_textio.all;
use std.textio.all;

✐

✐

“VHDLSample” — 2017/12/8 — 12:10 — page 308 — #10
✐

✐

✐

✐

✐

✐

308 VHDL: Design, Synthesis, and Simulation

writeline(OPF, OBUF);
wait;

end process;

end structural;

After the simulation the file fa2.out is created and the file contains the bit patterns as shown in Fig. 11.10. It
is a text file, which contains the simulation time, input bit patterns, simulated outputs, and expected outputs in
each line.

FIGURE 11.10 Content of fa2.out file

11.4 APPLYING INPUTS TO THE DESIGN UNDER TEST

In the previous section, we have learned how to generate input waveforms by various methods. Let us now explain
how to apply the input waveforms to the DUT. The following example illustrates this process.

EXAMPLE 11.9 Write a VHDL testbench program to test a two-input AND gate.

Solution

library ieee;
use ieee.std_logic_1164.all;

entity testbench is

end;

architecture structural of testbench is

signal A, B : std_logic := '0';
signal Y : std_logic;
component and21
port(a, b: in std_logic;

y : out std_logic);
end component;
begin

A <= '0', '1' after 100 ns, '0' after 200 ns;

✐

✐

“VHDLSample” — 2017/12/21 — 15:00 — page 539 — #539
✐

✐

✐

✐

✐

✐

Appendix A: Design with
Xilinx FPGA

A.1 OPEN PROJECT

In Xilinx ISE, create a project where all the VHDL programs can be stored. At first install Xilinx ISE in your PC.
It can be downloaded from the website of Xilinx.

After the installation, run the Xilinx ISE. To open a project click on File → New Project as shown in Fig. A.1.
Enter the name of the project in the Project Name field in the GUI shown in Fig. A.2, then click on the Next
button. A new GUI will appear as shown in Fig. A.3.

FIGURE A.1 Xilinx GUI for opening a project

✐

✐

“VHDLSample” — 2017/12/21 — 15:00 — page 556 — #556
✐

✐

✐

✐

✐

✐

Appendix B: Lab Exercises

B.1 BASIC LOGIC GATES

EXAMPLE B.1 Write a VHDL program to design a NOT gate.

Solution

library ieee;
use ieee.std_logic_1164.all;
entity inv11 is

port(a : in std_logic;
y : out std_logic);

end inv11;

architecture dataflow of inv11 is

begin

y <= not(a) after 5 ns;
end dataflow;

Figure B.1 shows the simulated waveforms of NOT gate.

FIGURE B.1 Simulated waveforms of NOT gate

EXAMPLE B.2 Write a VHDL program to design a OR gate.

Solution

library ieee;
use ieee.std_logic_1164.all;
entity OR21 is

port(A, B : in std_logic;
Y : out std_logic);

end OR21;

✐

✐

“VHDLSample” — 2017/12/21 — 15:00 — page 566 — #566
✐

✐

✐

✐

✐

✐

Appendix C: Mini Projects

C.1 BARREL SHIFTER

EXAMPLE C.1 Write a VHDL program for an 8-bit barrel shifter.

Solution

library ieee;
use ieee.std_logic_1164.all;

entity bshift is

port(a : in std_logic_vector(7 downto 0);
b : in std_logic_vector(2 downto 0);
y : out std_logic_vector(7 downto 0));

end bshift;

architecture structural of bshift is

component mux2to1 is

port(i0, i1, sel : in std_logic;
Y : out std_logic);

end component;

signal y1, y2 : std_logic_vector(7 downto 0);
signal log0 : std_logic := '0';

begin

m11 : mux2to1 port map(a(7), log0, b(2), y1(7));
m12 : mux2to1 port map(a(6), log0, b(2), y1(6));
m13 : mux2to1 port map(a(5), log0, b(2), y1(5));
m14 : mux2to1 port map(a(4), log0, b(2), y1(4));
m15 : mux2to1 port map(a(3), a(7), b(2), y1(3));
m16 : mux2to1 port map(a(2), a(6), b(2), y1(2));
m17 : mux2to1 port map(a(1), a(5), b(2), y1(1));
m18 : mux2to1 port map(a(0), a(4), b(2), y1(0));

m21 : mux2to1 port map(y1(7), log0, b(1), y2(7));
m22 : mux2to1 port map(y1(6), log0, b(1), y2(6));
m23 : mux2to1 port map(y1(5), y1(7), b(1), y2(5));
m24 : mux2to1 port map(y1(4), y1(6), b(1), y2(4));
m25 : mux2to1 port map(y1(3), y1(5), b(1), y2(3));
m26 : mux2to1 port map(y1(2), y1(4), b(1), y2(2));
m27 : mux2to1 port map(y1(1), y1(3), b(1), y2(1));
m28 : mux2to1 port map(y1(0), y1(2), b(1), y2(0));

✐

✐

“VHDLSample” — 2017/12/21 — 15:00 — page 578 — #578
✐

✐

✐

✐

✐

✐

Appendix D: Versions of
VHDL: 87 and 93

D.1 PACKAGE STANDARD

package STANDARD is

-- Predefined enumeration types:
type BOOLEAN is (FALSE, TRUE);

-- The predefined operators for this type are as follows:
-- function "and" (anonymous, anonymous: BOOLEAN) return BOOLEAN;
-- function "or" (anonymous, anonymous: BOOLEAN) return BOOLEAN;
-- function "nand" (anonymous, anonymous: BOOLEAN) return BOOLEAN;
-- function "nor" (anonymous, anonymous: BOOLEAN) return BOOLEAN;
-- function "xor" (anonymous, anonymous: BOOLEAN) return BOOLEAN;
-- function "xnor" (anonymous, anonymous: BOOLEAN) return BOOLEAN;
-- function "not" (anonymous: BOOLEAN) return BOOLEAN;
-- function "=" (anonymous, anonymous: BOOLEAN) return BOOLEAN;
-- function "/=" (anonymous, anonymous: BOOLEAN) return BOOLEAN;
-- function "<" (anonymous, anonymous: BOOLEAN) return BOOLEAN;
-- function "<=" (anonymous, anonymous: BOOLEAN) return BOOLEAN;
-- function ">" (anonymous, anonymous: BOOLEAN) return BOOLEAN;
-- function ">=" (anonymous, anonymous: BOOLEAN) return BOOLEAN;

type BIT is ('0', '1');
-- The predefined operators for this type are as follows:
-- function "and" (anonymous, anonymous: BIT) return BIT;
-- function "or" (anonymous, anonymous: BIT) return BIT;
-- function "nand" (anonymous, anonymous: BIT) return BIT;
-- function "nor" (anonymous, anonymous: BIT) return BIT;
-- function "xor" (anonymous, anonymous: BIT) return BIT;
-- function "xnor" (anonymous, anonymous: BIT) return BIT;
-- function "not" (anonymous: BIT) return BIT;
-- function "=" (anonymous, anonymous: BIT) return BOOLEAN;
-- function "/=" (anonymous, anonymous: BIT) return BOOLEAN;
-- function "<" (anonymous, anonymous: BIT) return BOOLEAN;
-- function "<=" (anonymous, anonymous: BIT) return BOOLEAN;
-- function ">" (anonymous, anonymous: BIT) return BOOLEAN;
-- function ">=" (anonymous, anonymous: BIT) return BOOLEAN;

-- The predefined operators for this type are as follows:
-- function "=" (anonymous, anonymous: CHARACTER) return BOOLEAN;
-- function "/=" (anonymous, anonymous: CHARACTER) return BOOLEAN;

© Oxford University Press. All rights reserved.

Oxfo
rd

 U
niversi

ty
 Pre

ss

Illustrations
Each chapter includes fi gures and
tables supporting text for readers
to get better understanding of the
concepts.

✐

✐

“VHDLSample” — 2017/12/8 — 23:52 — page 442 — #63
✐

✐

✐

✐

✐

✐

442 VHDL: Design, Synthesis, and Simulation

Memory is always specified as m × n, where m is the number of locations and n is the number of bits in each
location. Each memory location is uniquely identified by a set of bits, called address. The set of bits stored in a
memory location is called word.

19.3 MEMORY ORGANIZATION

Figure 19.2 shows the typical organization of a semiconductor memory circuit. It contains a number of registers
(m = 256), each containing n = 8 bits. To uniquely identify each memory location, there is an address associated
to it. The size of address is 8-bit, and the range of address is from 00H to FFH . Each location contains an 8-bit
word. For example, the memory location 04H contains the word D1H .

A set of 8 bits is known as one byte and a set of 4 bits is known as one nibble. The memory shown in Fig. 19.2
can store 256 × 8 bits or 256 bytes of memory. Depending on the size of the address, the number of location
increases in 2’s power and so the memory capacity. Table 19.1 shows the relationship between the memory capacity
and required address bits. Note that the Intel 8085 microprocessor has 16-bit address and it can store 64 kB of
memory.

TABLE 19.1 Memory capacity and
required address bits

Capacity Number of address bits

2 byte 1

4 byte 2

8 byte 3

16 byte 4

32 byte 5

64 byte 6

128 byte 7

256 byte 8

512 byte 9

1024 byte 10

1024 byte = 1 kilo byte = 1 kB

2 kB 11

4 kB 12

8 kB 13

16 kB 14

32 kB 15

64 kB 16

The schematic of a memory is shown in Fig. 19.3. There is a set of input lines, called address lines or address
bus. To perform read or write operation, the address is specified in the address lines or address bus. There is another
set of input/output lines, called data bus. The data bus is used for reading and writing. During the read operation,
the data is copied from the memory location into the data bus, whereas during the write operation, the data is
copied from the data bus into the memory location. In addition to these address and data lines, the memory also
has a few control lines: CS, RD, andWR.

✐

✐

“VHDLSample” — 2017/12/8 — 23:52 — page 441 — #62
✐

✐

✐

✐

✐

✐

Memories and Buses 19

LEARNING OBJECTIVES

After completing this chapter, the reader will be able to understand the following:

 Memory

 Memory organization

 Read-only memory

 Random accessmemory

 Bus

 Interfacingmemory to microprocessor

bus

19.1 INTRODUCTION

In this chapter, we shall describe how to design memory and bus architecture using VHDL. Figure 19.1 shows a
typical microprocessor system with memory, input–output (I/O), and bus architecture.

MPU

MemoryI/O

Address bus

Data bus

Control bus

FIGURE 19.1 Block diagram of a microprocessor system

19.2 MEMORY

Memory is a special class of digital circuit, which is used to store binary information. The process of storing
information into thememory is known aswrite operation. The process of retrieval of information from thememory
is called the read operation. Memory can be classified into the following types based on their operation.

• Read-only memory (ROM)
• Read/write memory (R/WM) or Random access memory (RAM)Chapter-end Exercises

Th e book covers enough chapter-end
exercises, such as fi ll in the blanks,
multiple choice questions, true or
false, short-answer type questions,
and long-answer type questions for
readers to test their knowledge.

✐

✐

“VHDLSample” — 2017/12/4 — 16:48 — page 372 — #96
✐

✐

✐

✐

✐

✐

372 VHDL: Design, Synthesis, and Simulation

EXERCISES

Fill in the Blanks

13.1 Testing cost is maximum at level of
testing.
(a) System
(b) Field
(c) Board
(d) Wafer

13.2 BIST means .
(a) Board Integrated System Testing
(b) Built-in System Test
(c) Built-in self-test
(d) Board in self-test

13.3 An n-bit LFSR will cycle through .
(a) 2n − 1 states
(b) 2n states
(c) 2n−1 states
(d) 2! states

13.4 JTAG means .
(a) Joint Test Action Group
(b) Joint Telecom Agency
(c) Junior Test Activity Guide
(d) Joint Test Activity Group

13.5 BST was originally developed by .
(a) JTAG
(b) JETAG
(c) IEEE
(d) ANSI

Multiple-choice Type Questions

13.1 Cost of the die depends on
(a) Wafer cost
(b) Number of die per wafer
(c) Yield
(d) All of these

13.2 What is the fix mechanism for slower circuit
operation than predicted?
(a) Slow clock
(b) Raise VDD
(c) Either (a) or (b) or both
(d) None of these

13.3 The input test vectors used to test a module using a
testbench are
(a) available in a file
(b) computed on the fly
(c) neither (a) nor (b)
(d) either (a) or (b)

13.4 Stuck-at-0 fault indicates that a node is shorted to
(a) VDD
(b) Ground

(c) Floating
(d) Open

13.5 Stuck-at-1 fault indicates that a node is shorted to
(a) VDD
(b) Ground
(c) Floating
(d) Open

State True or False

13.1 IDDQ is very simple way of checking any shorts
between power and ground.

13.2 Boundary scan test is used to test the ICs at the
board level.

13.3 Yield increases as the chip area increases.
13.4 As defect density reduces yield also reduces.
13.5 Cost per chip decreases as the volume of chip

increases.
13.6 Signature analysis can detect all faults.
13.7 Final contents of signature register are known as

signature.

Short-answer Type Questions

13.1 Draw the architecture of BST and explain the
operation. Why is BST required?

13.2 Draw the BILBO-Built-in Logic Block
Observation/BIST Architecture and explain the
different modes of operation.

13.3 What is a signature analyzer? Draw the architecture
of an LFSR-Linear Feedback Shift Register for the
following characteristic polynomial 1 + x + x4.

13.4 What is a CFSR-Complete Feedback Shift Register?
Explain how an LFSR can be converted to a CFSR.

13.5 What do you mean by BIST-Built-in Self-test.
Explain it with necessary circuit diagrams.

13.6 What is a scan flip-flop? Explain the working of scan
flip-flop with necessary circuit diagram. What is a
scan chain?

13.7 What do you mean by DFT-Design for Testability?
Discuss the different DFT methodologies.

13.8 What are the verification methods? Discuss them in
brief.

Long-answer Type Questions

13.1 What is ATPG- Automatic Test Pattern Generation?
Name a few algorithms for ATPG.

13.2 (a) Draw the serial-scan architecture and explain the
operating principle. What are the merits and
demerits of the serial-scan architecture?

Summary
Th e chapter-end summary presents
all the important concepts explained
in the chapter in the form of points.
Th is helps to provide a quick grasp of
concepts learnt in each chapter.

✐

✐

“VHDLSample” — 2017/12/4 — 16:48 — page 371 — #95
✐

✐

✐

✐

✐

✐

Verification and Testing 371

Y =

(

1 +
Ad

α

)−α

(13.9)

For an unclustered model, Equation (13.9) reduces to:

Y = e−Ad (13.10)

EXAMPLE 13.83 Consider a wafer with defect density d = 1.25 defects/cm2, α = 0.5 and chip area A = 8 mm

× 8 mm = 0.64 cm2. Find out the yield.

Solution

Yield can be calculated according to Equation (13.2) as follows:

Y =

(

1 +
0.64 × 1.25

0.5

)−0.5

= 0.62 (13.11)

EXAMPLE 13.84 Now suppose that the process uses 8-inch wafers.
The cost of processing a wafer is $100
Each wafer has 500 chips
(a) Calculate the processing cost per chip.
(b) Calculate the processing cost if DFT is included which increases the chip area by 10%.

Solution

(a) Processing cost per chip is:

Cost per chip =
$100

500 × 0.62
= 32 Cent (13.12)

(b) Assuming the chip size is increased by 10% after DFT is included. Yield is then:

Y =

(

1 +
0.64 × 1.1 × 1.25

0.5

)−0.5

= 0.60 (13.13)

Hence, 2% reduction in yield after DFT is included. With DFT, a wafer contains 500/1.1 = 454 chips. Therefore,
the processing cost is:

Cost per chip =
$100

454 × 0.60
= 36 Cent (13.14)

The cost is increased by 12.5% over no DFT.

SUMMARY

1. Verification is the process of checking the
circuit while it is being designed.

2. Cost of testing increases exponentially as
moved from the wafer level to the field level.

3. The faults in ICs are due to manufacturing
defects of ICs. These are modeled to identify
different types of fault.

4. Themost popular faultmodels are stuck-at-1
and stuck-at-0 faults.

5. Scan test uses scan flip-flop has a scan input
other than normal input. When ICs have to
be scanned, scan input is selected.

6. Boundary scan test is used to test the ICs at
the board level.

7. Built-in self-test introduces extra circuits in a
chip for testing purpose.

8. Yield is the ratio of defect-free chips to the
total number of chips manufactured.

the Book

© Oxford University Press. All rights reserved.

Oxfo
rd

 U
niversi

ty
 Pre

ss

Preface
VHDL is a hardware description language that is extensively used for design, synthesis, and simulation of digital
logic circuits. The language is different from other programming languages in that it supports the most important
feature of concurrent statements. In normal programming languages, the statements are executed sequentially,
however, in VHDL the statements can be executed concurrently. VHDL is very popular in both academics as
well as industry.

VHDL is a case insensitive language. It has a syntax and certain keywords similar to other programming
languages, and can support different data types and data objects. It also supports different modelling styles—
dataflow, behavioural, structural, and mixed. These modelling styles are provided in order to support the different
levels of hardware abstraction.

I have always thought that there should be a book on VHDL in which the purpose of the book will not be
just to learn the language but to learn how to design using VHDL. Therefore, I have designed the book from the
perspective of digital design techniques.

After going through the basics of writing codes in VHDL, students will be able to design efficient programs
too since the book has a lot of programming examples and exercises. The students will also develop a basic
understanding about digital logic circuits and the concepts of hardware design.

About the book
VHDL: Design, Synthesis, and Simulation is designed as a textbook for undergraduate students of electronics
and communication engineering, computer science and engineering, and information technology, as well as
postgraduate students of computer applications. It will also help the students of allied engineering disciplines.
The objective of the book is to introduce the concepts of digital logic design, and then help students apply these
concepts in VHDL programs and develop applications for real world problems. Starting with basic logic gates,
the book explains how to design logic circuits up to the complexity of a central processing unit. This will help
students to get used to the techniques and applications of VHDL. After discussing digital logic circuits, the
book then elucidates the basics of hardware description language. It is also useful as a reference and resource to
professional hardware designers working on VHDL and other similar languages.

It explains the primary and basic constructs, data objects, data types, operators, various modelling styles
and different statements, functions, procedures, attributes, and configurations in subsequent chapters. Different
modelling styles are presented with the concepts on how to choose and when to use which modelling style.
Different types of statements are discussed with suitable examples so that the students understand the applicability
of the statements for different applications. Delay modelling is presented for gate delay and interconnect delay.
Verification of logic circuits and testing methodologies are discussed. Numerous design examples including
memory, finite state machines, arithmetic logic unit (ALU), and microcontroller are provided to explain the
design concepts behind developing systems with higher complexity. Design with programmable logic devices, field
programmable gate array, and complex programmable logic device are included so that students can understand
the concepts of system level realization. Writing testbench programs is explained in a separate chapter with a
variety of approaches for developing testbench programs for testing the digital logic circuits. A separate chapter

© Oxford University Press. All rights reserved.

Oxfo
rd

 U
niversi

ty
 Pre

ss

viii Preface

on Verilog HDL is provided at the end to help students port already written VHDL programs for a system into
Verilog programs, if the situation demands so.

In order to further improve the understanding of the subject, numerous objective and subjective type
questions, and programming exercises are provided at the end of each chapter.

key feAtures
•   Simple and lucid explanations for basic concepts of digital logic design using illustrations and examples for

easy understanding
•   A lot of compiled and tested programs along with their outputs to help students improve their programming

skills
•   Case studies within the text to demonstrate the implementation of the concepts learnt in various chapters
•   Numerous  chapter-end exercises including fill in the blanks, true/false, multiple choice questions with

answers, short-answer type questions, and long-answer type questions for self-check and practice
•   Point-wise summary at the end of each chapter and Glossary of key terms at the end of the book to help

students quickly revise the important concepts

orgAnizAtion of the book
The book is divided into 21 chapters and 4 appendices.

Chapter 1 provides an introduction to digital logic design. For a brief recapitulation of the students, the Boolean
algebra, basic logic gates, and different combinational and sequential logic circuits are discussed. After that the
finite state machines, memory, and control logic are discussed. Finally, the basics of algorithmic state machine is
also explained in the chapter.

Chapter 2 is the introduction to VHDL language. It starts with the historical background of development of
VHDL followed by basic language syntax. Then it presents data objects, data types, and operators supported
by the language. Different hardware modelling styles are discussed next. Various statements such as concurrent
statements, sequential statements, different control and looping statements, signal and variable assignments,
block statement, etc. are discussed in this chapter.

Chapter 3 deals with the dataflow modelling of the digital logic circuits. After introduction, it presents dataflow
modelling of basic logic gates, followed by different combinational logic circuits. It also presents dataflow
modelling using block statements. Finally, dataflow modelling of multiplier and divider is presented.

Chapter 4 deals with behavioural modelling. The concept of behavioural modelling with the help of sequential
statements is presented in this chapter. Starting with combinational logic circuits, the sequential logic circuits such
as shift registers, counters, and memory design using behavioural modelling is explained with suitable examples.
The chapter ends with the design of ALU and traffic light controller example.

Chapter 5 presents the structural modelling of digital logic circuits. It discusses the hierarchical description using
component declaration and instantiation. Logic circuits at a higher level such as adder, subtractor, multiplier,
shift register, barrel shifter are discussed. Design of bigger size multiplexer/decoder using smaller size multiplexer/
decoder is presented at the end.

Chapter 6 discusses the mixed modelling style which is a combination of dataflow, behavioural, and structural
modelling styles. Several examples of mixed modelling styles are presented to explain the necessity of such a
style.

Chapter 7 deals with concurrent statements. It presents block statement, process statement, procedural call
statement, signal assignment statement, assertion statement, component instantiation statement, and generate
statement with suitable examples.

© Oxford University Press. All rights reserved.

Oxfo
rd

 U
niversi

ty
 Pre

ss

Preface ix

Chapter 8 deals with sequential statements. It presents wait statement, report statement, different types of signal
assignment statements, and different types of variable assignment statements, if, case, loop, exit, next, return, and
null statements.

Chapter 9 introduces the advanced features of VHDL. It discusses several attributes, group, configuration,
subprogram, procedure, operator overloading, alias declaration, signatures, guarded signal, and qualified
expression.

Chapter 10 presents the design of ALU. It first illustrates the concept with the help of 1-bit ALU, then it discusses
the behavioural design of 16-bit ALU followed by structural design of ALU. Each of the individual blocks is
designed first and finally, the blocks are integrated to design the ALU.

Chapter 11 elucidates on model simulation. After all these chapters, the students must learn how to verify the
functionality of the design. It introduces the concept of testbench and then generation of input stimulus using
different schemes. It also presents how to check the outputs. Different types of testbench are presented with
examples. Finally, it discusses event driven simulation and cycle based simulation techniques.

Chapter 12 introduces delay modelling in VHDL. It explains the two kinds of delay in digital circuits- delay
associated with logic gates called delay, and delay associated with interconnects/wires called interconnect delay.
The chapter presents how effectively these two kinds of delay can be modelled in VHDL. Finally, the setup and
hold time checks of a sequential element are also discussed.

Chapter 13 introduces the concepts of verification and testing of digital logic circuits. Several verification methods
such as simulation, formal verification, and static timing analysis have been discussed. Next the testing of logic
circuits, fault models, different testing techniques, and algorithms are presented in this chapter.

Chapter 14 is about synthesis of digital logic circuits. It is basically to explain the process of implementing the
design on a FPGA chip. The examples of different synthesis illustrate the idea behind the allocation of resources
available in FPGA system. Different constraints used for synthesis are also discussed.

Chapter 15 presents placement and routing techniques. When design is synthesized, it is then mapped to the
available logic blocks and then routing is done to make the interconnections between the logic blocks. Different
placement and routing algorithms are explained in this chapter.

Chapter 16 elucidates the file handling features of VHDL. It explains how to declare a file, and open and close a
file. The reading and writing procedures are explained with suitable examples. File handling capability is mainly
useful for writing testbench programs.

Chapter 17 is all about floating point arithmetic. It explains different number system representations and then
how to represent floating point numbers. The operations such as addition and multiplication with floating point
numbers are discussed with suitable examples.

Chapter 18 discusses the basics of programmable logic devices such as PLD, SPLD, CPLD, and FPGA. It explains
the architecture of basic FPGA and CPLD devices. Finally, it describes the process of FPGA based digital design.

Chapter 19 discusses the modelling of memory and bus. Different types of memories such as ROM, RAM,
SRAM, DRAM, and Dual port RAM are discussed. The concept of buses and modelling of buses is discussed
with suitable examples.

Chapter 20 presents several design examples. It starts with different types of multiplier, followed by divider, then
memory, and state machines. The concept of microprogramming, UART design, design of microcontroller, and
finally a vending machine are explained with VHDL programs.

Chapter 21 is the last chapter of the book and explains Verilog. Verilog is another hardware description language
(HDL). To give the students a flavour of the language, basic features of Verilog, different types of modelling and
statements, and a few examples are provided.

© Oxford University Press. All rights reserved.

Oxfo
rd

 U
niversi

ty
 Pre

ss

x Preface

The four appendices namely, Appendix A discusses the design with Xilinx FPGA, Appendix B includes some
laboratory exercises, Appendix C provides a few mini projects, and Appendix D covers versions of VHDL: 87
and 93.

online resources
To help teachers and students, the book is accompanied with the following online resources that are available at
http://oupinheonline.com/book/das-VHDL/9780198093299:

For Faculty For Students
•  Chapter-wise PPTs
•  Chapter-wise solutions for select problems

•  Some important codes from different chapters

Acknowledgments
I am blessed to have great teachers during my undergraduate and postgraduate studies from Contai P. K. College,
Institute of Radiophysics and Electronics, Jadavpur University, and Indian Institute of Engineering Science
and Technology (formerly Bengal Engineering and Science University), Shibpur, who have always been a great
inspiration in my life. I am also fortunate to have had great colleagues while working in Texas Instruments,
Bangalore and Meghnad Saha Institute of Technology, Kolkata, who were always supportive of my decisions. It is
my pleasure to express my heartfelt indebtedness to all of them.

The writing of this textbook was a challenging task for which a lot of help was required from many people.
Fortunately, I have had the fine support of my family, friends, and fellow members of the teaching and non-
teaching staff at the Triguna Sen School of Technology, Assam University, Silchar.

I pay my tribute to my parents, Smt. Pratima Das and (Late) Sri Birendranath Das, who were a source
of abiding inspiration and divine blessings for me. I am especially thankful to my wife, Joyita, and my loving
daughters Adrija and Adrisha, who have been very patient and cooperative in letting me realize my dreams. My
sincere thanks to all my dear students, friends, and all well-wishers, for their inspiration in writing this book.

Last but not the least, I thank the editorial team at Oxford University Press, India for their help and support.
Your comments and suggestions for the improvement of the book are welcome. You can connect with me at

dasdebaprasad@yahoo.co.in.

Debaprasad Das

© Oxford University Press. All rights reserved.

Oxfo
rd

 U
niversi

ty
 Pre

ss

Brief Contents
Preface vii
Features of the Book iv
Detailed Contents xii

 1. introduction to digital logic design 1
 2. introduction to Vhdl 77
 3. dataflow modeling 114
 4. behavioral modeling 141
 5. structural modeling 161
 6. mixed modeling 192
 7. concurrent statements 202
 8. sequential statements 215
 9. Advanced Vhdl 228
10. Arithmetic logic unit design 273
11. model simulation 298
12. delay modeling 322
13. Verification and testing 344
14. synthesis 370
15. Place and route 396
16. file i/o 402
17. floating-point Arithmetic 415
18. design with fPgA and cPld 426
19. memories and buses 437
20. design examples 454
21. introduction to Verilog 510

Appendix A: Design with Xilinx FPGA 539
Appendix B: Lab Exercises 554
Appendix C: Mini Projects 565
Appendix D: Versions of VHDL: 87 and 93 576
References 583
Index 585

© Oxford University Press. All rights reserved.

Oxfo
rd

 U
niversi

ty
 Pre

ss

Detailed Contents
Preface vii
Features of the Book iv
Brief Contents xi

1. introduction to digital logic design 1
1.1 introduction 1
1.2 boolean Algebra 3

1.2.1 Boolean Theorems 3
1.3 basic logic gates 3

1.3.1 NOT Gate 4
1.3.2 AND Gate 4
1.3.3 OR Gate 5
1.3.4 XOR Gate 5
1.3.5 NAND Gate 6
1.3.6 NOR Gate 7
1.3.7 XNOR Gate 7
1.3.8 Universal Gates 8
1.3.9 AND-OR-INVERT (AOI) Gate 11
1.3.10 OR-AND-INVERT (OAI) Gate 11
1.3.11 Buffer Gate 11
1.3.12 Tri-state Logic Gate 12
1.3.13 Multi-bit Tri-state Buffer 13
1.3.14 Bus 14
1.3.15 Bus Holder Circuit 14
1.3.16 Bidirectional Buffer 15

1.4 combinational logic circuits 15
1.4.1 Half-adder 16
1.4.2 Full-adder 16
1.4.3 Full-adder using Half-adders 17
1.4.4 n-Bit Serial Adder 18
1.4.5 n-Bit Parallel Adder 18
1.4.6 Carry Look-ahead Adder 19
1.4.7 Subtractor 20
1.4.8 Half-subtractor 21
1.4.9 Full-subtractor 22
1.4.10 Adder/Subtractor Circuit 23
1.4.11 Multiplexer 24
1.4.12 Demultiplexer 28

1.4.13 Decoder 29
1.4.14 Encoder 30
1.4.15 Comparator 31
1.4.16 Code Converter 33
1.4.17 Parity Generator and Checker 34
1.4.18 Array Multiplier 36
1.4.19 Programmable Logic Device 37
1.4.20 Sequential PLD 42
1.4.21 Keypad Scanner 43
1.4.22 Features of PLD 45
1.4.23 One/Zero Detector 45
1.4.24 Barrel Shifter 45

1.5 sequential logic circuits 46
1.5.1 SR Flip-flop 47
1.5.2 SR Flip-flop with Clock Input 48
1.5.3 JK Flip-Flop 49
1.5.4 Master-slave Flip-flop 50
1.5.5 D Flip-flop 50
1.5.6 T Flip-flop 51
1.5.7 Flip-flop Characteristics 51
1.5.8 Registers 52
1.5.9 Shift Register 52
1.5.10 SISO Shift Register 53
1.5.11 PISO Shift Register 53
1.5.12 PIPO Shift Register 54
1.5.13 SIPO Shift Register 54
1.5.14 Counters 54
1.5.15 Asynchronous/Ripple Counter 55
1.5.16 Synchronous Counter 56

1.6 finite-state machine 57
1.6.1 Example of FSM 57
1.6.2 Design of an FSM 59
1.6.3 State Reduction 61
1.6.4 State Encoding 63

© Oxford University Press. All rights reserved.

Oxfo
rd

 U
niversi

ty
 Pre

ss

Detailed Contents xiii

1.6.5 State Assignment 64
1.6.6 Moore Machine 64
1.6.7 Mealy Machine 64

1.7 memory 65
1.7.1 Units of Memory 65
1.7.2 Architecture of Memory 65
1.7.3 Types of Memories 66

1.8 control logic circuits 66
1.9 Algorithmic state machine 67

1.9.1 State Diagram vs. ASM Chart 68
1.9.2 Realization of ASM Chart 68
1.9.3 Linked State Machine 69

2. introduction to Vhdl 77
2.1 introduction 77
2.2 historical background 77
2.3 introduction to Vhdl 78

2.3.1 Entity 78
2.3.2 Architecture 79

2.4 basic language syntax 79
2.4.1 Comments 79
2.4.2 Identifiers 79
2.4.3 Keywords 80

2.5 data objects 81
2.5.1 Syntax for Data Objects 81
2.5.2 Signal Data Objects 81
2.5.3 Constant Data Objects 82
2.5.4 Variable Data Objects 82
2.5.5 File Data Objects 82
2.5.6 Other Data Objects 82

2.6 data object Values 83
2.7 data types 83

2.7.1 Bit and Bit_Vector Types 83
2.7.2 STD_LOGIC and STD_LOGIC_

VECTOR Types 84
2.7.3 STD_ULOGIC Type 84
2.7.4 SIGNED and UNSIGNED Types 84
2.7.5 Integer Type 85
2.7.6 Boolean Type 85
2.7.7 Enumeration Type 85
2.7.8 Floating Point Type 85
2.7.9 Physical Types 86
2.7.10 Array Type 86
2.7.11 File Type 87
2.7.12 Access Type 87
2.7.13 Record Type 87
2.7.14 Subtype 87

2.8 operators in Vhdl 88
2.8.1 Logical Operators 88
2.8.2 Adding Operators 88
2.8.3 Shift Operators 89
2.8.4 Relational Operators 90
2.8.5 Multiplying Operators 90
2.8.6 Sign Operators 91
2.8.7 Miscellaneous Operators 91
2.8.8 Operator Precedence 91

2.9 hardware modeling 92
2.9.1 Entity Declaration 92
2.9.2 Architecture Body 93
2.9.3 Configuration Declaration 93
2.9.4 Package Declaration 96
2.9.5 Package Body 96

2.10 Attributes 96
2.10.1 Predefined Attributes 97
2.10.2 User-defined Attributes 97

2.11 statements in Vhdl 97
2.11.1 Signal Assignment Statements 97
2.11.2 Variable Assignment Statement 97
2.11.3 Wait Statement 98

2.12 component declaration 98
2.13 component instantiation 98
2.14 generic declarations 99
2.15 concurrent statements 100

2.15.1 Concurrent Signal Assignment
Statement 100

2.15.2 Conditional Signal Assignment
Statement 100

2.15.3 Selected Signal Assignment
Statement 100

2.15.4 Block Statement 101
2.15.5 Concurrent Assertion Statement 101

2.16 sequential statements 101
2.16.1 Process Statement 101
2.16.2 if Statement 102
2.16.3 Case Statement 102
2.16.4 Generate Statement 104
2.16.5 if-generate Statement 106
2.16.6 Select Statement 107
2.16.7 Loop Statement 108
2.16.8 Exit Statement 109
2.16.9 Next Statement 109
2.16.10 Assertion Statement 110
2.16.11 Report Statement 110
2.16.12 NULL Statement 110

© Oxford University Press. All rights reserved.

Oxfo
rd

 U
niversi

ty
 Pre

ss

xiv Detailed Contents

2.17 library 110
2.18 Package 111
2.19 using library and Package in

Vhdl 111

3. dataflow modeling 114
3.1 introduction 114
3.2 entity declaration 114
3.3 Architecture body 115
3.4 concurrent statement 115

3.4.1 Signal Declaration 115
3.4.2 Signal Assignment Statements 116

3.5 dataflow modeling of basic logic
gates 118
3.5.1 Dataflow Model of NOT Gate 118
3.5.2 Dataflow Model of AND Gate 119
3.5.3 Dataflow Model of OR Gate 119
3.5.4 Dataflow Model of NAND

Gate 119
3.5.5 Dataflow Model of NOR Gate 120
3.5.6 Dataflow Model of XOR Gate 121
3.5.7 Dataflow Model of XNOR Gate 121

3.6 datapath design 121
3.6.1 Half-adder using Dataflow Modeling

Style 122
3.6.2 n-bit Adder using Dataflow

Modeling 123
3.6.3 Subtractor using Dataflow

Modeling 124
3.6.4 Comparator using Dataflow

Modeling 127
3.6.5 Parity Generator and Checker 128
3.6.6 Decoder using Dataflow

Modeling 130
3.6.7 Multiplexer using Dataflow

Modeling 132
3.6.8 SR Latch using Dataflow

Modeling 134
3.6.9 Tri-stated Inverting Buffer using Block

Statement 135
3.6.10 D Flip-flop using Block

Statement 136
3.6.11 Signed Binary Multiplier 137
3.6.12 Divider 137

4. behavioral modeling 141
4.1 introduction 141
4.2 sequential statements 141

4.2.1 Process Statement 142
4.2.2 Variable Assignment Statement 143
4.2.3 List of Sequential Statements 143

4.3 full-adder 144
4.4 d flip-flop with reset input 145
4.5 2:1 multiplexer 146
4.6 8-bit binary counter 147
4.7 2:4 decoder 148
4.8 A logic circuit to count number of

1’s in a stream of bits 148
4.9 circular shift register 150
4.10 serial-in-serial-out shift register 152
4.11 memory 153

4.11.1 Read-only Memory 153
4.11.2 Read-write Memory 154

4.12 Arithmetic logic unit 155
4.13 traffic light controller 157

5. structural modeling 161
5.1 introduction 161
5.2 hierarchy description 161

5.2.1 Generics 162
5.2.2 Component Declaration 162
5.2.3 Component Instantiation 163
5.2.4 Generate Statement 163

5.3 full-adder using structural modeling
style 164

5.4 serial Adder 166
5.5 Parallel Adder—ripple carry

Adder 168
5.6 carry look-ahead Adder 170
5.7 full-subtractor 172
5.8 Adder or subtractor circuit 174
5.9 unsigned Array multiplier 176
5.10 one or zero detector 179
5.11 barrel shifter 181
5.12 design of 16:1 multiplexer using 4:1

multiplexers 183
5.13 4:16 decoder using 2:4 decoders 186
5.14 serial-in-parallel-out 4-bit shift

register 189

6. mixed modeling 192
6.1 introduction 192
6.2 full-adder 192

6.2.1 Alternate Mixed Modeling of Full-
adder 193

© Oxford University Press. All rights reserved.

Oxfo
rd

 U
niversi

ty
 Pre

ss

Detailed Contents xv

6.3 2:4 decoder with enable input 194
6.4 t flip-flop using d flip-flop 196
6.5 linear feedback shift register 197
6.6 scan flip-flop 199

7. concurrent statements 202
7.1 introduction 202
7.2 Primary concurrent statements 202

7.2.1 Block Statement 202
7.2.2 Process Statement 204

7.3 other concurrent statements 205
7.3.1 Concurrent Procedure Call

Statement 205
7.3.2 Concurrent Signal Assignment

Statement 206
7.3.3 Concurrent Assertion Statement 207
7.3.4 Component Instantiation

Statements 209
7.3.5 Generate Statement 210

8. sequential statements 215
8.1 introduction 215
8.2 Process statement 215

8.2.1 Wait Statement 216
8.3 Assertion statement 219
8.4 report statement 220
8.5 signal Assignment statement 220

8.5.1 Simple Signal Assignment 220
8.5.2 Conditional Signal Assignment 220
8.5.3 Selected Signal Assignment 221

8.6 Variable Assignment statement 221
8.6.1 Simple Variable Assignment 221
8.6.2 Conditional Variable

Assignment 221
8.6.3 Selected Variable Assignment 221

8.7 Procedural call statement 222
8.8 if statement 222
8.9 case statement 223
8.10 loop statement 224

8.10.1 For Loop 224
8.10.2 While Loop 225

8.11 exit statement 225
8.12 next statement 225
8.13 return statement 226
8.14 null statement 226

9. Advanced Vhdl 228
9.1 introduction 228

9.2 Attributes 228
9.2.1 Predefined Attribute 229
9.2.2 Value Attributes 229
9.2.3 Function Attributes 232
9.2.4 Signal Attributes 235
9.2.5 Type Attribute 238
9.2.6 Range Attributes 239
9.2.7 User-defined Attributes 239

9.3 group 241
9.4 configurations 242

9.4.1 Default Binding 242
9.4.2 Configuration Specification 243
9.4.3 Configuration Declaration 247

9.5 subprograms 252
9.5.1 Functions 252
9.5.2 Nine-valued Resolution 258
9.5.3 Composite-type Resolution 260
9.5.4 Resolved Signal 260

9.6 Procedures 261
9.7 subprogram declaration 262
9.8 subprogram overloading 264
9.9 operator overloading 265
9.10 Alias declaration 267
9.11 signatures 267
9.12 guarded signal 268
9.13 Qualified expression 269

10. Arithmetic logic unit design 273
10.1 introduction 273
10.2 one bit Alu 273
10.3 behavioral design of 16-bit Alu 274
10.4 structural design of Alu 276

10.4.1 Design of Component to Perform
Logical Operations 278

10.4.2 Design of Component
to Perform Arithmetic
Operations 282

10.4.3 Complement and Transfer
Operations Component 286

10.4.4 Shift Operations Component 290
10.4.5 Design of Control Logic 291
10.4.6 8-bit ALU design 293

11. model simulation 298
11.1 introduction 298
11.2 testbench 298
11.3 generation of input stimulus 299

11.3.1 Clock Waveform Generation 299

© Oxford University Press. All rights reserved.

Oxfo
rd

 U
niversi

ty
 Pre

ss

xvi Detailed Contents

11.3.2 Non-clock Waveform
Generation 301

11.3.3 Generation of Waveforms using
Vector Table 302

11.3.4 Reading Input Vectors From a
File 303

11.3.5 Writing Results into a File 304
11.4 Applying inputs to the design under

test 307
11.5 output checking 308
11.6 types of testbenches 309

11.6.1 Example of Stimulus-only
Testbench 310

11.6.2 Example of Full Testbench 311
11.6.3 Hybrid Testbench 314
11.6.4 Fast Testbench 315

11.7 file name as input 317
11.8 simulator-specific testing with

modelsim simulator 318
11.9 comparison between different types

of testbenches 319
11.10 event-driven simulation 319
11.11 cycle-based simulation 320

12. delay modeling 322
12.1 introduction 322
12.2 delay in digital circuits 322
12.3 modeling wire delay or interconnect

delay 323
12.4 modeling inertial delay 324
12.5 default delay 326
12.6 modeling gate delay 327
12.7 gate delay using generic map 328
12.8 Pin-specific delay modeling 332
12.9 transition-dependent delay

modeling 333
12.10 derating of Propagation

delay depending on load
capacitance 334

12.11 setup and hold time check in d-flip-
flop 336

13. Verification and testing 344
13.1 introduction 344
13.2 Verification 344

13.2.1 Simulation 346

13.2.2 Formal Verification 346
13.2.3 Static Timing Analysis 347

13.3 testing 347
13.3.1 Controllability and

Observability 347
13.4 fault models 348

13.4.1 Equivalent Fault 348
13.5 combinational logic testing 348
13.6 sequential logic testing 350

13.6.1 Time-frame Expansion Method 351
13.6.2 Simulation-based Method 352

13.7 design for test 352
13.7.1 Ad Hoc Testing 352

13.8 scan test 353
13.8.1 Clocked Scan Cell 353
13.8.2 Level-sensitive Scan Design Scan

Cell 354
13.9 boundary scan test 355
13.10 built-in self-test 356

13.10.1 Linear Feedback Shift
Register 356

13.10.2 Signature Analyzer 361
13.10.3 Built-in Logic Block Observer 365

13.11 test generation 366
13.11.1 Automatic Test-pattern

Generation 366
13.11.2 Random Test Generation 366

13.12 yield 366

14. synthesis 370
14.1 introduction 370
14.2 register transfer level synthesis 371
14.3 logic synthesis 371
14.4 field Programmable gate Array

synthesis 373
14.5 synthesis of a combinational logic

using concurrent statements 373
14.6 synthesis of a combinational logic

using sequential statements 374
14.7 synthesis of a sequential logic using

sequential statements 375
14.8 synthesis of a d flip-flop with

Asynchronous reset using sequential
statements 377

14.9 synthesis of 4:1 multiplexer 378

© Oxford University Press. All rights reserved.

Oxfo
rd

 U
niversi

ty
 Pre

ss

Detailed Contents xvii

14.10 constraints 379
14.10.1 Timing Constraints 379
14.10.2 Resource Constraints 381

14.11 synthesizable vs unsynthesizable
code 382
14.11.1 Purely Combinational Circuits 383
14.11.2 Purely Sequential 383
14.11.3 Purely Synchronous with

Asynchronous Set/Reset 384
14.12 synthesis examples 385

14.12.1 Full-adder 385
14.12.2 Full-subtractor 386
14.12.3 3:8 Decoder 387
14.12.4 8:1 Multiplexer 389
14.12.5 9-Bit Odd Parity

Generator 390
14.12.6 D Flip-flop 391
14.12.7 T Flip-flop 391
14.12.8 MAC Design 392

15. Place and route 396
15.1 introduction 396

15.1.1 Translation 397
15.1.2 Mapping 397
15.1.3 Place and Route 397

15.2 Place and route in fPgA 397
15.3 Placement Algorithm 398

15.3.1 Min-cut Placement Algorithm 398
15.3.2 Greedy Algorithm/Cluster

Growth 398
15.3.3 Iterative Simulated Annealing 399
15.3.4 Genetic Algorithm 399

15.4 routing Algorithm 399
15.4.1 Maze Routing Algorithm 399
15.4.2 PathFinder Algorithm 400
15.4.3 A* Algorithm 400

15.5 Versatile Place and route 400

16. file i/o 402
16.1 introduction 402
16.2 file declaration 402
16.3 Package teXtio 402
16.4 file opening and closing 403
16.5 reading from a file 404
16.6 writing into a file 404
16.7 file declared in subprogram 407

16.8 file name as generic or command
line Argument 408

16.9 reading file name from standard
input 410

16.10 memory initialization from a file 411

17. floating-point Arithmetic 415
17.1 introduction 415
17.2 real numbers 415

17.2.1 Fractions 415
17.2.2 Fixed Point Numbers 416

17.3 floating-point number 416
17.4 floating-point Addition 419
17.5 floating-point multiplication 422

18. design with fPgA and cPld 426
18.1 introduction 426
18.2 Programmable logic devices 426
18.3 sequential Programmable logic

devices or sPld 427
18.4 complex Programmable logic devices

or cPld 427
18.5 Xilinx 9500 series 427
18.6 Altera complex Programmable logic

devices Architecture 429
18.7 field Programmable gate Array or

fPgA 429
18.8 Xilinx fPgA 430

18.8.1 Xilinx XC2000 FPGA 430
18.9 comparison between cPld and

fPgA devices 433
18.10 design with Xilinx fPgA 433

19. memories and buses 437
19.1 introduction 437
19.2 memory 437
19.3 memory organization 438
19.4 read-only memory 439
19.5 random Access memory 441

19.5.1 Static Random Access
Memory 442

19.5.2 Dynamic Random Access
Memory 442

19.5.3 Memory Array 443
19.5.4 Dual-port Random Access

Memory 443
19.6 bus 446

© Oxford University Press. All rights reserved.

Oxfo
rd

 U
niversi

ty
 Pre

ss

xviii Detailed Contents

19.6.1 Bidirectional Bus 446
19.7 interfacing memory to microprocessor

bus 447
19.7.1 486 Bus Model 449

20. design examples 454
20.1 introduction 454
20.2 multiplier 454

20.2.1 Unsigned Array Multiplier 454
20.2.2 Signed Multiplier 457
20.2.3 Baugh-Wooley Multiplier 458
20.2.4 Booth Multiplier 462

20.3 divider 467
20.3.1 Unsigned Divider 468

20.4 carry look-Ahead Adder 471
20.5 first-in first-out memory 474
20.6 state machines 479

20.6.1 Moore Machine 479
20.6.2 Mealy Machine 480

20.7 case study: dice game 482
20.8 microprogramming 483

20.8.1 Microprogramming Example 485
20.9 uArt design 488
20.10 microcontroller cPu 495
20.11 complete microcontroller 499
20.12 bus Arbitration 503
20.13 case study: Vending machine 503

21. introduction to Verilog 510
21.1 introduction 510
21.2 basic Verilog syntax 510
21.3 some other Verilog syntax 511
21.4 operators in Verilog 511
21.5 Verilog data types 511
21.6 numbers in Verilog 512

21.6.1 Integer Constants 512
21.6.2 Real Constants 512

21.7 strings 512
21.8 four-Value logic 512

21.9 behavioral modeling 513
21.9.1 Behavioral Modeling using Boolean

Expression 513
21.9.2 Propagation Delay 513

21.10 structural modeling 514
21.11 delay modeling in Verilog 515

21.11.1 Inertial Delay 516
21.11.2 Transport Delay 516
21.11.3 Min:Nom:Max Delay Modeling in

Verilog 518

21.12 truth table model with Verilog (user-
defined Primitive) 519

21.13 Verilog statements 519
21.13.1 Assignment Statements 519
21.13.2 Sequential Block 520
21.13.3 Wait Statement 520
21.13.4 Control Statements 521

21.14 Procedures in Verilog 523
21.15 combinational logic in Verilog 524
21.16 sequential logic in Verilog 524

21.16.1 Modeling of Edge-sensitive Flip-
flops 524

21.16.2 Blocking and Non-blocking
Assignment Statement 525

21.17 testbenches in Verilog 525
21.18 example designs in Verilog 527

21.18.1 Half-adder 527
21.18.2 2:1 Multiplexer with 4-Bit Bus

Input 528
21.18.3 D Flip-Flop 528
21.18.4 8-Bit Register 529
21.18.5 4-Bit Counter 529
21.18.6 Clock Generator 530
21.18.7 Seven-segment Display 531
21.18.8 Moore Machine 533
21.18.9 Mealy Machine 534
21.18.10 Hex Keyboard Encoder

Circuit 535

Appendix A: Design with Xilinx FPGA 539
Appendix B: Lab Exercises 554
Appendix C: Mini Projects 565
Appendix D: Versions of VHDL: 87 and 93 576
References 583
Index 585

© Oxford University Press. All rights reserved.

Oxfo
rd

 U
niversi

ty
 Pre

ss

✐

✐

“VHDLSample” — 2018/2/21 — 17:09 — page 1 — #1
✐

✐

✐

✐

✐

✐

Introduction to Digital Logic
Design 1

LEARNING OBJECTIVES

After completing this chapter, the reader will be able to understand the following:

 Boolean algebra

 Basic logic gates

 Combinational logic circuits

 Sequential logic circuits

 Finite state machine

 Memory

 Control logic circuits

 Algorithmic state machine

1.1 INTRODUCTION

In early ages, human beings used to live in caves, kill animals, and eat raw flesh. With time, they learned how
to light fire and make weapons with stones. This age is termed as Stone Age. After the Stone Age, they started
learning the use of metals. They made weapons and ornaments with metals, such as Copper and Bronze (alloy of
Copper and Tin). This age is termed as Bronze Age. Then they found a harder metal called Iron. The Iron Age was
dominated after the Bronze Age. But now it is the Age of Semiconductor. During the nineteenth and twentieth
centuries, there has been tremendous growth in electronics and communication technology. It first started with Sir
J. C. Bose when he invented first semiconductor detector or Galena detector during the year 1894–1898. Today,
we live in the age of modern electronics and communication. We are fully surrounded by electronic gadgets.
Starting from the cell phones, camera, watch, toys to personnel computers, all work using the digital technology.
Although all practical signals are analog in nature, they are converted to digital because of many advantages of
digital technology.

The main purpose of this book is to provide key concepts behind the digital circuit design and learn how to
design a complete digital system with the help of formal hardware description language (HDL). Digital circuits
are often called logic circuits because of their principle of working is binary in nature. When a large number of
such logic circuits are manufactured on a single piece of semiconductor, we get an integrated circuit (IC). The
ICs that are used in various electronic gadgets contain huge number of such logic circuits. The technology that
is used to manufacture such a large integrated circuit is very-large-scale integration (VLSI) technology. Figure 1.1
illustrates the VLSI design flow where the initial few steps are elaborated in detail.

The very first step is to describe the system from an idea or a concept of end product. This is followed by the
architecture or functional design of the system. Then the logic design takes place, which implements the whole big
system by using basic logic gates. Once the logical design is finalized, the physical design step starts in which all
the circuit components are designed physically and connected by wires within a given chip area. This is followed
by the generation of layout of the chip which is nothing but the description of geometrical drawing of the chip.
The next step is to generate mask, which can be thought like a negative of photograph. The mask is then taken

© Oxford University Press. All rights reserved.

Oxfo
rd

 U
niversi

ty
 Pre

ss

✐

✐

“VHDLSample” — 2018/2/21 — 17:09 — page 2 — #2
✐

✐

✐

✐

✐

✐

2 VHDL: Design, Synthesis, and Simulation

Test bench/
Test vectors

Design
constraints

Gate level
netlst

Standard
cell library

Test bench
Test vectors

Functionality Specifications

Functional/
Architecture

design

Functional
verification

Logic
synthesis

Idea/Concept
of a product

Functional
design

Logical design

Physical design

Layout

Mask

Chip
fabrication

Manufactured
die

Physical verfication

Packaging and
testing

End product:
integrated
circuit(IC)

FIGURE 1.1 Complete process of making integrated circuit

to the manufacturing unit where wafers are processed to create patterns on them, and the dies are manufactured.
The dies are tested and packaged, and the chips are made ready for use. These entire set of steps is very much
complex and exhaustive. To know more about the steps, you can refer any text book on VLSI design [Das15].
This paragraph just gives some basic idea about the process of chip design. The important aspect of the diagram
is to emphasize the starting step of the design flow. It is required to first describe the behavior of the system using
a formal language and therefore we need a language that can describe the behavior of the system efficiently. That
is how the concept of a HDL came. VHDL is a formal HDL that is very popular in both academia and industry.

VHDL is used to describe digital logic circuits at different levels of hierarchy starting from very basic gate level
up to the system level. The designers can describe the logic circuits in the form of Boolean expressions, or using
the behavioral statements that describe the truth table, or using structural description using the components of the
design. It can be used for synthesis of the design, timing analysis, and functional verification by doing simulation.

Before we start describing the details of the language, let us first discuss the digital circuits. This course on
digital logic circuit design is usually taught in early semester of the undergraduate course. In this chapter, we shall
discuss the concepts of digital logic circuit design.

The digital logic circuit works on two states: one state is called a logic high or logic 1 and the other one is
called a logic low or logic 0. The logic states can be described by several ways—such as voltage, current, switch
mechanical positions, and light on/off state. The logic circuits have finite number of inputs and finite number
of outputs. Depending on the inputs, the outputs are either at logic high or at low state. Generally, digital logic
circuits are classified into two types: one is called combinational logic and the other one is called sequential logic.
In the combinational logic, the outputs are entirely dependent on the present inputs, whereas, in the sequential
circuit, the outputs depend on present inputs as well the past output states. Therefore, the combinational circuits
are memory-less circuits and the sequential circuits have memory.

© Oxford University Press. All rights reserved.

Oxfo
rd

 U
niversi

ty
 Pre

ss

✐

✐

“VHDLSample” — 2018/2/21 — 17:09 — page 3 — #3
✐

✐

✐

✐

✐

✐

Introduction to Digital Logic Design 3

1.2 BOOLEAN ALGEBRA

Boolean algebra was first introduced by George Boole in 1854. It defines different types of logical operations and
works with variables called Boolean variables. The value of the Boolean variables can be either TRUE/HIGH or
FALSE/LOW. The digital systems work on binary inputs and produce binary output. In binary system, a TRUE
or HIGH state is represented as logic 1 and a FALSE or LOW state is represented as logic 0 in positive logic. In
negative logic, a HIGH state is represented by logic 0 and a LOW state is represented by logic 1.

The basic laws of Boolean algebra are shown in Table 1.1.

TABLE 1.1 Basic laws of
Boolean algebra

A + 0 = A A · 0 = 0

A + 1 = 1 A · 1 = A

A + A = A A · A = A

A + A = 1 A · A = 0

1.2.1 Boolean Theorems

Boolean algebra supports three basic laws of simple algebra. These laws are stated as follows:
1. Commutative law:

A + B = B + A (1.1)

A · B = B · A (1.2)

2. Associative law:

A + (B + C) = (A + B) + C (1.3)

A · (B · C) = (A · B) · C (1.4)

3. Distributive law:

A · (B + C) = A · B + A · C (1.5)

A + B · C = (A + B) · (A + C) (1.6)

DeMorgan’s theorems are also very important Boolean theorems, which are extensively used in simplifying the
Boolean expressions. These are as follows:

A + B = A · B (1.7)

A · B = A + B (1.8)

1.3 BASIC LOGIC GATES

In binary logic, logical operations are used between the binary variables to determine the final output. There are
three basic logical operations: NOT, AND, and OR. The electronic circuit that performs the binary operation is
called a logic gate.

© Oxford University Press. All rights reserved.

Oxfo
rd

 U
niversi

ty
 Pre

ss

✐

✐

“VHDLSample” — 2018/2/21 — 17:09 — page 4 — #4
✐

✐

✐

✐

✐

✐

4 VHDL: Design, Synthesis, and Simulation

All digital logic circuits are based on three primary logic gates: NOT, AND, and OR gates. Any logic
functionality can be achieved by these three primary logic functions. Typically, digital circuits work on the principle
of binary logic where there are only two logic values: logic 1 and logic 0. In positive logic, logic 1 is represented by a
high-voltage level and logic 0 is represented by a low-voltage level, whereas, in negative logic, logic 1 is represented
by a low-voltage level and logic 0 is represented by a high-voltage level. In this book, we shall use positive logic
unless stated otherwise.

1.3.1 NOT Gate

A NOT gate has one input and one output. The symbol of NOT gate is shown in Fig. 1.2.

A Y

FIGURE 1.2 Symbol of NOT gate

The output (Y) of NOT gate is the complement of the input (A). The Boolean expression of a NOT gate is
described as follows:

Y = A (1.9)

The truth table of NOT gate is shown in Table 1.2.

TABLE 1.2 Truth table of NOT gate

A Y

0 1
1 0

The NOT gate is also known as inverter.

1.3.2 AND Gate

The AND gate has many inputs and one output. The symbols of two-input and three-input AND gates are shown
in Fig. 1.3.

A

(a) (b)

A

B C
YY B

FIGURE 1.3 Symbol of AND gate: (a) two-input, (b) three-input

The Boolean expression of the output (Y) for a two-input AND gate is given as follows:

Y = A · B (1.10)

The truth table of two-input AND gate is shown in Table 1.3.
The AND logic function is associative; that is, any AND function with more than two inputs can be realized

using two-input AND functions. For example,

Y (A,B,C) = (A · B) · C = A · (B · C) (1.11)

© Oxford University Press. All rights reserved.

Oxfo
rd

 U
niversi

ty
 Pre

ss

✐

✐

“VHDLSample” — 2018/2/21 — 17:09 — page 5 — #5
✐

✐

✐

✐

✐

✐

Introduction to Digital Logic Design 5

TABLE 1.3 Truth
table of AND gate

Inputs Output

A B Y

0 0 0

0 1 0

1 0 0

1 1 1

1.3.3 OR Gate

The OR gate has many inputs and one output. The symbols of two-input and three-input OR gates are shown in
Fig. 1.4.

A

(a) (b)

A

B C
YY B

FIGURE 1.4 Symbol of OR gate: (a) two-input, (b) three-input

The Boolean expression of the output (Y) for a two-input OR gate is given as follows:

Y = A + B (1.12)

The truth table of two-input OR gate is shown in Table 1.4.

TABLE 1.4 Truth
table of OR gate

Inputs Output

A B Y

0 0 0

0 1 1

1 0 1

1 1 1

The OR logic function is associative; that is, any OR function with more than two inputs can be realized using
two-input OR functions. For example,

Y (A,B,C) = (A + B) + C = A + (B + C) (1.13)

1.3.4 XOR Gate

The XOR gate has two or more inputs and one output. The symbols of two-input and three-input XOR gates are
shown in Fig. 1.5.

© Oxford University Press. All rights reserved.

Oxfo
rd

 U
niversi

ty
 Pre

ss

✐

✐

“VHDLSample” — 2018/2/21 — 17:09 — page 6 — #6
✐

✐

✐

✐

✐

✐

6 VHDL: Design, Synthesis, and Simulation

A

(a) (b)

A

B C
YY B

FIGURE 1.5 Symbol of XOR gate: (a) two-input, (b) three-input

The Boolean expression of the output (Y) for a two-input XOR gate is given as follows:

Y = A ⊕ B = AB + AB (1.14)

The truth table of two-input XOR gate is shown in Table 1.5.

TABLE 1.5 Truth
table of XOR gate

Inputs Output

A B Y

0 0 0

0 1 1

1 0 1

1 1 0

The XOR logic function is associative; that is, any XOR function with more than two inputs can be realized
using two-input XOR functions. For example,

Y (A,B,C) = (A ⊕ B) ⊕ C = A ⊕ (B ⊕ C) (1.15)

1.3.5 NAND Gate

The NAND gate has two inputs and one output. The symbol of NAND gate is shown in Fig. 1.6(a).

A

B

(a) (b)

Y
A

B
Y

FIGURE 1.6 (a) Symbol of NAND gate and (b) its equivalent representation

ANAND gate is equivalent to an AND gate followed by a NOT gate as illustrated in Fig. 1.6(b). The Boolean
expression of the output (Y) for a NAND gate is given as follows:

Y = A · B = A + B (1.16)

The truth table of NAND gate is shown in Table 1.6.
The NAND logic is not associative. The NAND function with more than two inputs cannot be realized using

two-input NAND gates.

© Oxford University Press. All rights reserved.

Oxfo
rd

 U
niversi

ty
 Pre

ss

✐

✐

“VHDLSample” — 2018/2/21 — 17:09 — page 7 — #7
✐

✐

✐

✐

✐

✐

Introduction to Digital Logic Design 7

TABLE 1.6 Truth
table of NAND gate

Inputs Output

A B Y

0 0 1

0 1 1

1 0 1

1 1 0

1.3.6 NOR Gate

The NOR gate has two inputs and one output. The symbols of NOR gate is shown in Fig. 1.7.

A

B

(a) (b)

Y
A

B
Y

FIGURE 1.7 (a) Symbol of NOR gate and (b) its equivalent representation

A NOR gate is equivalent to an OR gate followed by a NOT gate as illustrated in Fig. 1.7(b). The Boolean
expression of the output (Y) for a NOR gate is given as follows:

Y = (A + B) = A · B (1.17)

The truth table of NOR gate is shown in Table 1.7.

TABLE 1.7 Truth
table of NOR gate

Inputs Output

A B Y

0 0 1

0 1 0

1 0 0

1 1 0

The NOR logic is not associative. The NOR function with more than two inputs cannot be realized using
two-input NOR gates.

1.3.7 XNOR Gate

The XNOR gate has two or more inputs and one output. The symbols of two input and three input XNOR gates
are shown in Fig. 1.8.

The Boolean expression of the output (Y) for a two-input XNOR gate is given as follows:

Y = A ⊙ B = AB + A B (1.18)

© Oxford University Press. All rights reserved.

Oxfo
rd

 U
niversi

ty
 Pre

ss

✐

✐

“VHDLSample” — 2018/2/21 — 17:09 — page 8 — #8
✐

✐

✐

✐

✐

✐

8 VHDL: Design, Synthesis, and Simulation

A

(a) (b)

A

B C
YY B

FIGURE 1.8 Symbol of XNOR gate: (a) two-input, (b) three-input

The truth table of two-input XNOR gate is shown in Table 1.8.

TABLE 1.8 Truth
table of XNOR gate

Inputs Output

A B Y

0 0 1

0 1 0

1 0 0

1 1 1

The XNOR logic function is associative; that is, any XOR function with more than two inputs can be realized
using two-input XOR functions. For example,

Y (A,B,C) = (A ⊙ B) ⊙ C = A ⊙ (B ⊙ C) (1.19)

1.3.8 Universal Gates
The NAND and NOR logic gates are called universal gates because any logic function can be realized using only
either NAND or NOR gates.

EXAMPLE 1.1 Realize NOT gate using NAND gate.

Solution

The NOT gate can be realized using NAND gate as follows: The NAND gate has two inputs, whereas the NOT
gate has single input. If both inputs of NAND gate are shorted together, then the output of NAND gate is as
follows:

Y = A · B = A · A = A (1.20)

Figure 1.9 shows the NOT gate realized using a NAND gate.

A Y

FIGURE 1.9 NOT gate realized using NAND gate

EXAMPLE 1.2 Realize NOT gate using NOR gate.

Solution

The NOT gate can be realized using NOR gate as follows: The NOR gate has two inputs, whereas the NOT gate
has single input. If both inputs of NOR gate are shorted together, then the output of NOR gate is as follows:

Y = A + B = A + A = A (1.21)

© Oxford University Press. All rights reserved.

Oxfo
rd

 U
niversi

ty
 Pre

ss

✐

✐

“VHDLSample” — 2018/2/21 — 17:09 — page 9 — #9
✐

✐

✐

✐

✐

✐

Introduction to Digital Logic Design 9

Figure 1.10 shows the NOT gate realized using a NOR gate.

A Y

FIGURE 1.10 NOT gate realized using NOR gate

EXAMPLE 1.3 Realize AND gate using NAND gate.

Solution

The AND gate can be realized using NAND gate as shown in Fig. 1.11.

A

B
Y

FIGURE 1.11 AND gate realized using NAND gate

EXAMPLE 1.4 Realize OR gate using NOR gate.

Solution

The OR gate can be realized using NOR gate as shown in Fig. 1.12.

A

B
Y

FIGURE 1.12 OR gate realized using NOR gate

EXAMPLE 1.5 Realize OR gate using NAND gate.

Solution

The OR gate can be realized using NAND as follows: The Boolean expression of NAND gate is given here.

F = A · B = A + B (1.22)

Now if A = X and B = Y , then it can be written as follows:

F = X + Y = X + Y (1.23)

Figure 1.13 shows the realization of OR gate using NAND gates.

X

Y

F

FIGURE 1.13 OR gate realized using NAND gate

EXAMPLE 1.6 Realize AND gate using NOR gate.

© Oxford University Press. All rights reserved.

Oxfo
rd

 U
niversi

ty
 Pre

ss

✐

✐

“VHDLSample” — 2018/2/21 — 17:09 — page 10 — #10
✐

✐

✐

✐

✐

✐

10 VHDL: Design, Synthesis, and Simulation

Solution

The AND gate can be realized using NOR gate as follows: The Boolean expression of NOR gate is given here.

F = A + B = A · B (1.24)

Now, if A = X and B = Y , then it can be written as follows:

F = X · Y = X · Y (1.25)

Figure 1.14 shows the realization of AND gate using NOR gates.

X

Y

F

FIGURE 1.14 AND gate realized using NOR gate

EXAMPLE 1.7 Realize XOR gate using NAND gate.

Solution

The XOR gate can be realized using NAND as follows: The Boolean expression of NAND gate is given here.

F = A · B = A + B (1.26)

Now, if A = XY and B = XY , then it can be written as follows:

F = XY + XY (1.27)

Figure 1.15 shows the realization of XOR gate using NAND gates.

X

Y
F

XY

X Y

FIGURE 1.15 XOR gate realized using NAND gate

EXAMPLE 1.8 Realize XNOR gate using NOR gate.

Solution

The XNOR gate can be realized using NOR as follows: The Boolean expression of NOR gate is given here.

F = A + B = A · B (1.28)

Now, if A = XY and B = XY , then it can be written as follows:

F = XY · XY = XY + X Y (1.29)

Figure 1.16 shows the realization of XNOR gate using NOR gates.

© Oxford University Press. All rights reserved.

Oxfo
rd

 U
niversi

ty
 Pre

ss

✐

✐

“VHDLSample” — 2018/2/21 — 17:09 — page 11 — #11
✐

✐

✐

✐

✐

✐

Introduction to Digital Logic Design 11

X

Y
F

XY

XY

FIGURE 1.16 XNOR gate realized using NOR gate

1.3.9 AND-OR-INVERT (AOI) Gate
The AOI gate is realized using a combination of AND, OR, and NOT gates. For example, the Boolean expression
given in Eq. (1.30) can be realized as shown in Fig. 1.17.

A

B

C

D

Y

FIGURE 1.17 AND-OR-INVERT gate

Y = AB + CD (1.30)

AOI is useful in realizing any Boolean expression expressed in sum-of-product (SOP) form.

1.3.10 OR-AND-INVERT (OAI) Gate
The OAI gate is realized using a combination of OR, AND, and NOT gates. For example, the Boolean expression
given in Eq. (1.31) can be realized as shown in Fig. 1.18.

A

B

C

D

Y

FIGURE 1.18 OR-AND-INVERT gate

Y = (A + B) · (C + D) (1.31)

OR-AND-INVERT is useful in realizing any Boolean expression expressed in product-of-sum (POS) form.

1.3.11 Buffer Gate
A buffer is a logic gate with one input and one output. The symbol of a buffer is shown in Fig. 1.19.

A Y

FIGURE 1.19 Buffer gate

© Oxford University Press. All rights reserved.

Oxfo
rd

 U
niversi

ty
 Pre

ss

✐

✐

“VHDLSample” — 2018/2/21 — 17:09 — page 12 — #12
✐

✐

✐

✐

✐

✐

12 VHDL: Design, Synthesis, and Simulation

It is implemented using two NOT gates connected in cascade. The Boolean expression for the output (Y) is
as follows:

Y = A (1.32)
The truth table of buffer is shown in Table 1.9.

TABLE 1.9 Truth table of buffer gate

A Y

0 0
1 1

A buffer is used in digital circuits to increase the drive capability of a logic gate. For example, let us consider
the scenario illustrated in Fig. 1.20. Here, the OR gate is driving four other logic gates.

Driver

LoadLoad

C
in1

C
in2

C
in3

C
in4

C
in1

C
in2

C
in3

C
in4

C
in

A
B

A
B

(a) (b)

Driver Buffer

FIGURE 1.20 Driver-load configuration: (a) without a buffer, (b) with a buffer

The effective load capacitance seen by the OR gate is the sum of the input capacitances of four gates. Thus,
the total load that the OR gate has to drive is given by Ct = Cin1 + Cin2 + Cin3 + Cin4. This is known as the
fan-out of the driver OR gate. If the drive strength of the driver gate is not enough, then the output of the driver
will not reach up to the logic high level. This may create logic failure in extreme case when the output of driver is
below the logic threshold. This problem can be solved by adding a buffer at the output of the driver. The buffer
has less input capacitance (Cin << Ct) as compared to Ct but has large drive strength so that its output will be
able to charge the effective load capacitance Ct up to the logic high level.

1.3.12 Tri-state Logic Gate
The tri-state logic gate has one data input, one control input, and one output. The control input can be active low
or active high. Figure 1.21 shows the symbols of tri-state logic gate with active low and active high control inputs.

A Y

C

A Y

C

(a) (b)

FIGURE 1.21 Symbol of tri-state logic gate: (a) active low control input, (b) active high control input

The truth table of tri-state logic gate is shown in Table 1.10. When the active low control input (C) is at logic
0, the buffer is enabled and the output (Y) is same as the input (A). When the active low control input is at logic 1,
the buffer is disabled and the output is at high impedance state, which is represented by ‘Z ’. The high impedance
state indicates that the output is neither ‘1’ nor ‘0’, that is, no current flows in this state. The tri-state buffer with
active high control input works in opposite way of the tri-state buffer with active low control input.

© Oxford University Press. All rights reserved.

Oxfo
rd

 U
niversi

ty
 Pre

ss

✐

✐

“VHDLSample” — 2018/2/21 — 17:09 — page 13 — #13
✐

✐

✐

✐

✐

✐

Introduction to Digital Logic Design 13

TABLE 1.10 Truth table of tri-state logic gate with active low
and active high inputs

Inputs Output Inputs Output

C (active low) A Y C (active high) A Y

0 0 1 0 0 Z

0 1 0 0 1 Z

1 0 Z 1 0 0

1 1 Z 1 1 1

1.3.13 Multi-bit Tri-state Buffer

A multi-bit tri-state buffer has multiple data inputs and outputs but only one control input. In Fig. 1.22, eight
tri-state buffers are connected in parallel with common control input. When control is enabled, all eight tri-state
buffers transfer their data inputs to their outputs. In the disable state, all the buffer outputs are in high impedance
stage.

A(0) Y(0)

A(3)

A(4)

A(5)

A(6)

A(1)

A(2)

Y(1)

Y(2)

Y(3)

Y(4)

Y(5)

Y(6)

A(7)

C

Y(7)

A Y

8 8

C

FIGURE 1.22 Multi-bit tri-state buffer

© Oxford University Press. All rights reserved.

Oxfo
rd

 U
niversi

ty
 Pre

ss

✐

✐

“VHDLSample” — 2018/2/21 — 17:09 — page 14 — #14
✐

✐

✐

✐

✐

✐

14 VHDL: Design, Synthesis, and Simulation

It is used in digital circuits where a bus is driven by multiple logic devices as illustrated in Fig. 1.23.

Bus
C1

8 8

8
Reg. 1

C2

8 8
Reg. 2

C3

8 8
Reg. 3

FIGURE 1.23 Bus architecture with tri-state buffer

In a digital system, it is common that many devices communicate with each other through common bus
architecture. Thus, the bus is driven by multiple drivers. However, during the operation, the data on the bus must
come from only one device, although there can be multiple devices reading from it. As multiple devices (such as
registers) produce output simultaneously and the devices are connected to common bus, there must be a way to
control which data gets on the bus, and which does not. The control of data that goes to the bus can be achieved
through tri-state buffer. Another possible solution is to use multiplexers, which we shall discuss later in this chapter.

1.3.14 Bus

In digital systems, there is a concept of bus architecture. A bus is a group of wires that are used to transmit data
from one device to another. For example, in microprocessor architecture, we learned about data bus, address bus,
and control bus. The bus size is simply the number of wires in the bus. A bus is schematically drawn by a line with
a dash across it. The number beside the dash represents the size of the bus. Figure 1.24 illustrates an 8-bit bus.

8
A[0:7]

FIGURE 1.24 Schematic of an 8-bit bus

The advantage of using bus is that multiple devices can be connected to a bus. Multiple devices can access/read
data from the bus simultaneously but they must write into the bus one at a time. There are mainly three kinds of
buses: data bus, address bus, and control bus. The data bus is used to read data from the memory or write into
the memory. The address bus is used to specify the address of the memory location from which the data is to be
read or the address of the memory location to which the data is to be written. Other than data and address buses,
there is a control bus, which is used to control the operations in a digital system. One important attribute of bus
is its speed. It defines how fast the data can be changed per second. The speed of the bus determines how fast the
central processing unit (CPU) can exchange data with the peripheral devices.

1.3.15 Bus Holder Circuit

In bus architecture, it can so happen that multiple devices can simultaneously attempt to write into the bus. This
can create erroneous data on the bus and in extreme case may damage the bus wiring. This problem is known as
bus contention. The opposite problem of bus contention is bus floating. When no devices drive the bus, the data
on the bus is unknown or floating. This floating condition also may damage the logic gates. In order to prevent
the bus floating condition, bus holder circuit is used. Bus holder is a weak latch circuit implemented by two NOT
gates connected back to back as shown in Fig. 1.25. It holds last value on a tri-state bus and is also known as bus

© Oxford University Press. All rights reserved.

Oxfo
rd

 U
niversi

ty
 Pre

ss

✐

✐

“VHDLSample” — 2018/2/21 — 17:09 — page 15 — #15
✐

✐

✐

✐

✐

✐

Introduction to Digital Logic Design 15

keeper circuit. As the bus keeper is made of weak inverters, it can easily be driven to change its output state. It
must be noted that although a bus holder works as a latch it must not be used as practical latches.

FIGURE 1.25 Bus holder circuit

1.3.16 Bidirectional Buffer

Sometimes it is required to have buffer that acts both as input buffer and as output buffer. This type of buffer is
known as bidirectional buffer. It has one data input and one data output port. The control input determines
whether to transfer the data output to the I/O pad or from I/O pad to the data input. The schematic of a
bidirectional buffer is shown in Fig. 1.26.

OE

D
out

D
in

From core logic

To core logic

pMOS

nMOS

I/O pad

VDD

FIGURE 1.26 Schematic of a bidirectional buffer

When the signal OE is high, both the NAND and the NOR gates are enabled. IfDout is logic high, the output
of NAND gate is low and the output of NOR gate is also low. So the pMOS is turned on and the nMOS is turned
off. Thus, the I/O pad is connected to VDD, that is, the signal Dout is transferred to I/O pad. WhenDout is logic
low, the output of NOR gate is high making the nMOS on and the output of NAND gate is high making pMOS
off. Thus, I/O pad is connected to ground, that is, the signal Dout is transferred to I/O pad. When the signal OE
is low, both the NAND and NOR gates are disabled. Both pMOS and nMOS transistors are off. Now the signal
from I/O pad is transferred to the core logic through Din.

1.4 COMBINATIONAL LOGIC CIRCUITS

The logic circuits without memory elements are called combinational logic circuits. In these circuits, the outputs
are entirely dependent upon the present input logic levels. Some of the examples of combinational circuits are
adder, subtractor, comparator, decoder, encoder, multiplexer, demultiplexer, parity generator, parity checker, code
converters, barrel shifters, etc.

In this section, we shall discuss the basic combinational circuits. The main steps of designing combinational
circuits are as follows:
1. Identify the number of input and output variables from the Boolean expressions or truth tables.

© Oxford University Press. All rights reserved.

Oxfo
rd

 U
niversi

ty
 Pre

ss

✐

✐

“VHDLSample” — 2018/2/21 — 17:09 — page 16 — #16
✐

✐

✐

✐

✐

✐

16 VHDL: Design, Synthesis, and Simulation

2. Minimize the Boolean expressions using Karnaugh-map method or Quine-McCluskey method.
3. Implement the simplified Boolean expressions using basic logic gates.

1.4.1 Half-adder

A half-adder is a logic circuit that adds two bits. It has two inputs A and B, and two outputs Sum and Carry. The
behavior of half-adder is expressed in the form of truth table as shown in Table 3.2.

TABLE 1.11 Truth table of half-adder

Input bits A + B Output bits

A B In decimal In binary Carry (×21) Sum (×20)

0 0 0 00 0 0

0 1 1 01 0 1

1 0 1 01 0 1

1 1 2 10 1 0

When two bits are added, the maximum sum is 2. Thus, two bits are required to represent the sum. Out of
these two bits, carry has a binary weight of 21 and sum has a binary weight of 20. The Sum and Carry are expressed
as follows:

Sum = AB + AB = A ⊕ B (1.33)

Carry = AB (1.34)

From the expressions of Sum and Carry, it is clear that to implement the half-adder simply one two-input
XOR and two-input AND gates are required. The structure of a half-adder is shown in Fig. 1.27.

B

A
Sum

Carry

FIGURE 1.27 Half-adder

1.4.2 Full-adder

A full-adder (FA) is a logic circuit, which adds three bits. When three bits are added, the maximum sum can be
3. Thus, two bits are required to represent the output. Out of these two bits, the bit with a binary weight of 21 is
known as carry (Cout) and the bit with a binary weight of 20 is known as sum (Sum). The behavior of FA can be
expressed in the form of truth table as shown in Table 1.12.

The Boolean expression for Sum of FA is as follows:

Sum = A BCin + ABC in + ABC in + ABCin (1.35)

= A(BCin + BC in) + A(BC in + BCin) (1.36)

= A · (B ⊕ Cin) + A · (B ⊕ Cin) (1.37)

= A ⊕ B ⊕ Cin (1.38)

© Oxford University Press. All rights reserved.

Oxfo
rd

 U
niversi

ty
 Pre

ss

✐

✐

“VHDLSample” — 2018/2/21 — 17:09 — page 17 — #17
✐

✐

✐

✐

✐

✐

Introduction to Digital Logic Design 17

TABLE 1.12 Truth table of full-adder

Input bits A + B + Cin Output bits

A B Cin In decimal In binary Carry (×21) Sum (×20)

0 0 0 0 00 0 0

0 0 1 1 01 0 1

0 1 0 1 01 0 1

0 1 1 2 10 1 0

1 0 0 1 01 0 1

1 0 1 2 10 1 0

1 1 0 2 10 1 0

1 1 1 3 11 1 1

The Boolean expression for Cout of FA is as follows:

Cout = ABCin + ABCin + ABCin + ABCin (1.39)

= BCin(A + A) + ACin(B + B) + AB(Cin + Cin) (1.40)

= AB + Cin(A + B) (1.41)

A full-adder can be represented at the gate level as shown in Fig. 1.28. In this implementation, only two-input
gates are used. Therefore, the number of logic stage is three for implementing the Cout output.

A

B Sum

C
out

C
in

FIGURE 1.28 Gate level representation of full-adder

1.4.3 Full-adder using Half-adders
A full-adder can be implemented using two half-adders. Let us explain this design with the help of the truth table
1.13.

It is observed that Sum output of the second half-adder is the final Sum output of FA. The final carry output
of FA can be obtained by ORing the Carry outputs of two half-adders. Therefore, the logic circuit of FA can be
implemented using two half-adders and one OR gate as illustrated in Fig. 1.29.

Sum2

A

B

Sum1

Sum

Half-adder 2 Carry2

Carry1
Half-adder 1

C
out

C
in

FIGURE 1.29 Full-adder using two half-adders and one OR gate

© Oxford University Press. All rights reserved.

Oxfo
rd

 U
niversi

ty
 Pre

ss

✐

✐

“VHDLSample” — 2018/2/21 — 17:09 — page 18 — #18
✐

✐

✐

✐

✐

✐

18 VHDL: Design, Synthesis, and Simulation

TABLE 1.13 Truth table of a full-adder

Input bits Outputs of first half-adder Outputs of second half-adder Final outputs

A B Cin
Carry1
=AB

Sum1
= A ⊕ B

Carry2
= Cin· Sum1

Sum2
=Cin⊕ Sum1

Cout

=Carry1+Carry2
Sum

=Sum2

0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 1 0 1

0 1 0 0 1 0 1 0 1

0 1 1 0 1 1 0 1 0

1 0 0 0 1 0 1 0 1

1 0 1 0 1 1 0 1 0

1 1 0 1 0 0 0 1 0

1 1 1 1 0 0 1 1 1

1.4.4 n-Bit Serial Adder

An n-bit adder adds to numbers of size n-bit each. It produces the result of size (n+1)-bit of which 1 bit is Carry and
n-bit Sum. The serial adder adds bit-by-bit serially. That is why it is known as serial adder. It is smallest hardware
for adding n-bit numbers. The size of the hardware is independent of the word size (n). The structure of a serial
adder is shown in Fig. 1.30.

Sum

Reset Clock

A
i

B
i

S
i

Carry
out C

i

Carry
out C

i−1

1- bit adder

C
out

Q

CLK

CLR

D

FIGURE 1.30 Serial binary adder

The basic components of a serial adder are one FA and oneD-type flip-flop (DFF). TheCout of FA is connected
to the D-input of DFF and Q-output of DFF is connected to the Cin input of FA so that it can be added with next
two bits. It adds numbers bit by bit with previous carry. Hence, to add n-bit numbers, it requires n clock pulses.

1.4.5 n-Bit Parallel Adder

A parallel adder adds two numbers in parallel. It uses as many full adders as the number of bits in n-bit word. It
can add two n-bit binary numbers with a previous carry. An n-bit parallel adder circuit is shown in Fig. 1.31. The
carry bit generated from one FA ripples through the next FA circuit. For this reason, it is also known as ripple
carry adder (RCA).

© Oxford University Press. All rights reserved.

Oxfo
rd

 U
niversi

ty
 Pre

ss

✐

✐

“VHDLSample” — 2018/2/21 — 17:09 — page 19 — #19
✐

✐

✐

✐

✐

✐

Introduction to Digital Logic Design 19

 A
n−1

 S
n−1

 S
n−2

 B
n−1

 C
n−1

 C
n−2

 C
n−3

 A
n−2 B

n−2

 S
0

 C
in

 A
0

 C
0

 B
0

1-bit adder 1-bit adder 1-bit adder

FIGURE 1.31 n-Bit parallel adder

If each FA takes time tcarry to evaluate Carry bit and time tsum to evaluate the Sum bit, the total delay for an
n-bit parallel adder will be as follows:

tadder = (n − 1)tcarry + tsum (1.42)

For long word size, this delay can be significantly large. Due to this reason, RCA is not preferred for signals
with long words.

1.4.6 Carry Look-ahead Adder

Ripple carry adder is slow as the final output carry depends on all the FA stages to generate the carry signals. If
τ is delay of each FA block, it takes nτ time to generate the final output carry. Carry look-ahead adder (CLA) is
one of the high-speed adder circuits that do not wait for each FA to generate the carry signals. Instead it finds the
carry signal ahead by using a carry look-ahead generator circuit. This way CLA can add two n-bit binary numbers
very fast.

Principle: The ith sum and carry of an FA in the RCA are given by the following equations:

Si = Ai ⊕ Bi ⊕ Ci−1 (1.43)

Ci = AiBi + BiCi−1 + AiCi−1 (1.44)

To generate the carry signal, let us introduce two auxiliary signals, generate and propagate, as given by the
following equations:

Gi = AiBi (1.45)

Pi = Ai + Bi (1.46)

Now, Eq. (1.44) can be written as follows:

Ci = Gi + PiCi−1 (1.47)

Similarly, Ci−1 can be written as follows:

Ci−1 = Gi−1 + Pi−1Ci−2 (1.48)

Substituting Eq. (1.48) in Eq. (1.47), we get

Ci = Gi + PiGi−1 + PiPi−1Ci−2 (1.49)

© Oxford University Press. All rights reserved.

Oxfo
rd

 U
niversi

ty
 Pre

ss

✐

✐

“VHDLSample” — 2018/2/21 — 17:09 — page 20 — #20
✐

✐

✐

✐

✐

✐

20 VHDL: Design, Synthesis, and Simulation

For a four-stage CLA, we can write the equation as follows:

C0 = G0 + P0Cin (1.50)

C1 = G1 + P1C0 = G1 + P1G0 + P1P0Cin (1.51)

The gate level structure of a 4-bit CLA circuit is shown in Fig. 1.32. All the sum and final carry bits are
generated using four-level logic. If the average propagation delay of each logic level is τ , then adder generates all
the output bits after 4τ time delay, which is independent of word size n.

 A
3

 P
3

 P
2

 G
3

 S
0

 S
1

 S
2

 S
3

 C
2

 C
3

 C
1

 C
0

 G
2

 P
1

 G
1

 G
0

 P
0

 B
3

 A
2

 B
2

 A
1

 B
1

 A
0

 B
0

C
in

C
out

FIGURE 1.32 4-Bit carry look-ahead adder

1.4.7 Subtractor

A subtractor is a logic circuit that subtracts two binary numbers. In digital logic, subtraction is performed using
addition technique where the subtrahend or negative number is represented in 2’s complement form.

In 2’s complement form, the most significant bit (MSB) is reserved to represent the sign of the number. If the
sign bit is ‘1’, the number is negative and if the sign bit is ‘0’ the number is positive. Table 3.3 shows the unsigned
and 2’s complement format for 4-bit numbers.

In 2’s complement form using n-bits, the range of decimal numbers that can be represented is from+(2n−1−1)
to −(2n−1).

© Oxford University Press. All rights reserved.

Oxfo
rd

 U
niversi

ty
 Pre

ss

✐

✐

“VHDLSample” — 2018/2/21 — 17:09 — page 21 — #21
✐

✐

✐

✐

✐

✐

Introduction to Digital Logic Design 21

TABLE 1.14 Binary number representation of +ve and −ve numbers

Decimal Unsigned form Signed form 2’s complement form

+8 − − −

+7 111 0111 0111

+6 110 0110 0110

+5 101 0101 0101

+4 100 0100 0100

+3 011 0011 0011

+2 010 0010 0010

+1 001 0001 0001

+0 000 0000 0000

−0 − 1000 −

−1 − 1001 1111

−2 − 1010 1110

−3 − 1011 1101

−4 − 1100 1100

−5 − 1101 1011

−6 − 1110 1010

−7 − 1111 1001

−8 − − 1000

1.4.8 Half-subtractor

A half-subtractor is a digital logic circuit that subtracts two binary bits. It subtracts B (subtrahend) from A
(minuend). It produces two output bits, difference and borrow. The truth table of a half-subtractor is shown
in Table 3.4.

TABLE 1.15 Truth table of half-subtractor

Input bits A − B Output bits

A B In decimal In binary Borrow (× − 21) Difference (×20)

0 0 0 00 0 0

0 1 −1 11 1 1

1 0 1 01 0 1

1 1 0 00 0 0

The Boolean expressions for difference and borrow are given by the following equations:

Difference = A ⊕ B (1.52)

Borrow = AB (1.53)

© Oxford University Press. All rights reserved.

Oxfo
rd

 U
niversi

ty
 Pre

ss

✐

✐

“VHDLSample” — 2018/2/21 — 17:09 — page 22 — #22
✐

✐

✐

✐

✐

✐

22 VHDL: Design, Synthesis, and Simulation

A schematic circuit of half-subtractor is shown in Fig. 1.33.

 A

 B
Difference

Borrow

FIGURE 1.33 Schematic of half-subtractor

1.4.9 Full-subtractor

A full-subtractor subtracts B (subtrahend) from A (minuend) taking into account the borrow of the previous stage
(Bin). The truth table of full-subtractor is shown in Table 3.5.

TABLE 1.16 Truth table of full-subtractor

Input bits A − B − Bin Output bits

A B Bin In decimal In binary Borrow (× − 21) Difference (×20)

0 0 0 0 00 0 0

0 0 1 −1 11 1 1

0 1 0 −1 11 1 1

0 1 1 −2 10 1 0

1 0 0 1 01 0 1

1 0 1 0 00 0 0

1 1 0 0 00 0 0

1 1 1 −1 11 1 1

A schematic circuit of full-subtractor is shown in Fig. 1.34.

 A

Borrow in

Borrow out

Difference B

FIGURE 1.34 Schematic of full-subtractor

© Oxford University Press. All rights reserved.

Oxfo
rd

 U
niversi

ty
 Pre

ss

✐

✐

“VHDLSample” — 2018/2/21 — 17:09 — page 23 — #23
✐

✐

✐

✐

✐

✐

Introduction to Digital Logic Design 23

1.4.10 Adder/Subtractor Circuit

In digital logic, the subtraction operation is performed by the addition of 2’s complement of the number to be
subtracted. Therefore, an adder circuit can add as well as subtract two binary numbers with a small modification
in the inputs. An adder/subtractor circuit implemented using an adder circuit with slight modification is shown
in Fig. 1.35.

 B0

1

M
u

x

 B
in C

out
/B

out

A

Sum / Difference

B

Adder

FIGURE 1.35 Adder/Subtractor circuit

Let us consider two 4-bit numbers A and B. The addition of A and B can be expressed as shown in Table
1.17. At first, the two least significant bits (LSBs), A0 and B0, are added with input carry Cin0 = 0 using an FA.
It produces the sum S0 and carry Cout0. Next, the 2SBs, A1 and B1, are added with input carry Cin1 = Cout0

using an FA. In this manner, 3SBs A2, B2 and MSBs A3, B3 are added with previous carries Cout1 and Cout2,
respectively.

TABLE 1.17 Carry propagation in a 4-bit adder

A3 A2 A1 A0

B3 B2 B1 B0

Cin3 = Cout2 Cin2 = Cout1 Cin1 = Cout0 Cin0 = 0

Cout = Cout3 S3 S2 S1 S0

Similarly, the subtraction of A and B can be expressed as shown in Table 1.18.

TABLE 1.18 Borrow propagation in a 4-bit subtractor

A3 A2 A1 A0

B3 B2 B1 B0

Bin3 = Bout2 Bin2 = Bout1 Bin1 = Bout0 Bin0 = 1

Bout = Bout3 D3 D2 D1 D0

The complete structure of a 4-bit adder/subtractor circuit is shown in Fig. 1.36.

© Oxford University Press. All rights reserved.

Oxfo
rd

 U
niversi

ty
 Pre

ss

✐

✐

“VHDLSample” — 2018/2/21 — 17:09 — page 24 — #24
✐

✐

✐

✐

✐

✐

24 VHDL: Design, Synthesis, and Simulation

 B
3

 C
3

 C
out

 C
2

 C
1

 C
in

 A
3 A

2 A
1

 A
0

 B
2

 B
1

 B
0

 S
0

 S
1

 S
2

 S
3

1-bit adder 1-bit adder 1-bit adder 1-bit adder

FIGURE 1.36 4-Bit adder/subtractor circuit

1.4.11 Multiplexer

A multiplexer is a combinational logic circuit with multiple data input lines and single output line. It passes one of
its data input to the output. The select input lines determine which data input will go to the output. Multiplexer
is also known as MUX. In general, with n select inputs, a MUX has 2n data inputs and one output. It is denoted
as 2n : 1 MUX. A 4:1 MUX has two select inputs, four data inputs, and one output line. Figure 1.37 shows the
symbol of 4:1 MUX.

00

10

4:1
MUX Y Output lineData input lines

Select input lines

01

I0

I1

I2

I3 11

1 0

S1 S0{

{

FIGURE 1.37 4:1 Multiplexer

The operation of the 4:1 MUX is illustrated with the help of Table 1.19.

1. When S1 = 0 and S0 = 0, I0 input goes to the output, that is, Y = I0S1 S0.
2. When S1 = 0 and S0 = 1, I1 input goes to the output, that is, Y = I1S1 S0.
3. When S1 = 1 and S0 = 0, I2 input goes to the output, that is, Y = I2S1 S0.
4. When S1 = 1 and S0 = 1, I3 input goes to the output, that is, Y = I3S1 S0.

© Oxford University Press. All rights reserved.

Oxfo
rd

 U
niversi

ty
 Pre

ss

✐

✐

“VHDLSample” — 2018/2/21 — 17:09 — page 25 — #25
✐

✐

✐

✐

✐

✐

Introduction to Digital Logic Design 25

The truth table of 4:1 MUX is shown in Table 1.19.

TABLE 1.19 Truth table
of 4:1 MUX

Select inputs Output

S1 S0 Y

0 0 I0

0 1 I1

1 0 I2

1 1 I3

The Boolean expression of the output of 4:1 MUX is given by the following equation:

Y = I0S1 S0 + I1S1 S0 + I2S1 S0 + I3S1 S0 (1.54)

The 4:1 MUX can be implemented using basic logic gates as shown in Fig. 1.38.

 S
0 S

1

 I
0

 Y

 I
1

 I
2

 I
3

FIGURE 1.38 Logic circuit of 4:1 MUX

EXAMPLE 1.9 Design a 16:1 MUX using 4:1 MUXs.

Solution

A 16:1 MUX has 16 data input lines and 4 select input lines. The 16:1 MUX can be implemented using five 4:1
MUXs as shown in Fig. 1.39.

© Oxford University Press. All rights reserved.

Oxfo
rd

 U
niversi

ty
 Pre

ss

✐

✐

“VHDLSample” — 2018/2/21 — 17:09 — page 26 — #26
✐

✐

✐

✐

✐

✐

26 VHDL: Design, Synthesis, and Simulation

 I
0

4:1 MUX

Y

 I
1

 I
2

 I
3

 S
1

 S
0

 I
4

4:1 MUX
 I

5

 I
6

 I
7

 S
1

 S
0

4:1 MUX

 S
3

 S
2

 I
8

4:1 MUX
 I

9

 I
10

 I
11

 S
1

 S
0

 I
12

4:1 MUX
 I

13

 I
14

 I
15

 S
1

 S
0

FIGURE 1.39 Design of 16:1 MUX using 4:1 MUXs

EXAMPLE 1.10 (a) Design a two-input XOR gate using 4:1 MUX; (b) repeat the same using 2:1 MUX.

Solution

(a) The truth table of a two-input XOR gate is given by Table 1.20. The table illustrates how the XOR gate can
be realized using 4:1 MUX. Two select inputs act as primary inputs A and B of the XOR logic. The data inputs
are set to the desired logic values for each combination of the select inputs.

A 4:1 MUX has two select inputs, S1 and S0. For each combination of the select inputs, output is determined
by the data inputs. For example, when S1 = 0 and S0 = 0, input I0 is selected at the output. Again, for two-input
XOR gate, when A = 0 and B = 0, output Y = 0. Therefore, if we make S1 = A and S0 = B and connect

© Oxford University Press. All rights reserved.

Oxfo
rd

 U
niversi

ty
 Pre

ss

✐

✐

“VHDLSample” — 2018/2/21 — 17:09 — page 27 — #27
✐

✐

✐

✐

✐

✐

Introduction to Digital Logic Design 27

TABLE 1.20 Truth table of an XOR gate implemented using 4:1 MUX

Truth table XOR gate Truth table 4:1 MUX implementing an XOR logic

Inputs Output Select inputs Output Required inputs of 4:1 MUX

A B Y S1 S0 Y S1 = A and S0 = B

0 0 0 0 0 I0 I0 = 0

0 1 1 0 1 I1 I1 = 1

1 0 1 1 0 I2 I2 = 1

1 1 0 1 1 I3 I3 = 0

logic 0 to input I0, then it produces the first row in the truth table of XOR gate. In this way, we can implement
two-input XOR gate using 4:1 MUX as shown in Fig. 1.40(a). When all the select lines of a MUX are used as the
inputs to implement any combinational logic, the design style is known as type-0 design.

(b) Let us now implement a two-input XOR gate using 2:1MUX. In 2:1 MUX, there is only one select input.
Therefore, only one input (preferably A) can act as select input and the other input B must be connected to data
inputs. As shown in Table 1.21, in a two-input XOR gate, it is observed that

1. when A = 0, Y = B, and
2. when A = 1, Y = B

TABLE 1.21 Truth table of 2:1 MUX

Inputs Output Output Select input Output Required inputs of 2:1 MUX

A B Y Y S Y S = A

0
0

0
1

0
1

Y = B if A = 0 0 I0 I0 = B

1
1

0
1

1
0

Y = B if A = 1 1 I1 I1 = B

Therefore, we can implement two-input XOR gate by connecting A to S, B to I0, and B to I1 as shown in
Fig. 1.40(b). When one of the inputs of the combinational circuit to be implemented using MUX, is removed
from the select lines, the design style is known as type-1 design.

 I
0
= 0

 I
0
= B

 S
1
= A S

= A S

0
= B

 I
1
= 1

 I
2
= 1

 I
3
= 0

4:1
MUX

2:1
MUX

Y

(a) (b)

Y
I

1
= B

FIGURE 1.40 Two-input XOR gate implemented using (a) 4:1 MUX (b) 2:1 MUX

© Oxford University Press. All rights reserved.

Oxfo
rd

 U
niversi

ty
 Pre

ss

✐

✐

“VHDLSample” — 2018/2/21 — 17:09 — page 28 — #28
✐

✐

✐

✐

✐

✐

28 VHDL: Design, Synthesis, and Simulation

1.4.12 Demultiplexer

A demultiplexer has a logic circuit, which does the reverse operation of a multiplexer. It has a single data input line
and 2n output lines. The data input goes to one of the output lines depending on the select input lines. A 1 : 2n

demultiplexer has 2n output lines and n select lines. A demultiplexer is also known as DEMUX. A 1:4 DEMUX
is shown in Fig. 1.41.

 Y
0

 Y
1

 Y
2

 Y
3

 S
1

 S
0

1:4
DEMUXI

FIGURE 1.41 1:4 Demultiplexer

The operation of 1:4 DEMUX is illustrated in Table 1.22.

1. When S1 = 0 and S0 = 0, I input goes to the output Y 0, that is, Y 0 = IS1 S0.
2. When S1 = 0 and S0 = 1, I input goes to the output Y 1, that is, Y 1 = IS1 S0.
3. When S1 = 1 and S0 = 0, I input goes to the output Y 2, that is, Y 2 = IS1 S0.
4. When S1 = 1 and S0 = 1, I input goes to the output Y 3, that is, Y 3 = IS1 S0.

TABLE 1.22 Truth table of 1:4
DEMUX

Select inputs Outputs

S1 S0 Y3 Y2 Y1 Y0

0 0 0 0 0 I

0 1 0 0 I 0

1 0 0 I 0 0

1 1 I 0 0 0

The 1:4 DEMUX can be implemented using basic logic gates as shown in Fig. 1.42.

 S
0 S

1

 I

 I

 I

 I

 Y
0

 Y
1

 Y
2

 Y
3

FIGURE 1.42 Logic circuit of 1:4 DEMUX

© Oxford University Press. All rights reserved.

Oxfo
rd

 U
niversi

ty
 Pre

ss

✐

✐

“VHDLSample” — 2018/2/21 — 17:09 — page 29 — #29
✐

✐

✐

✐

✐

✐

Introduction to Digital Logic Design 29

1.4.13 Decoder

A decoder is a combinational logic circuit with n input lines and 2n output lines. Depending on the input
combinations, one of the output lines becomes logic 1 and the remaining outputs become logic 0. For example, a
2:4 decoder has two input lines and four output lines as shown in Fig. 1.43.

 Y
0

 Y
1

 Y
2

 Y
3

 D
0

 D
1 2:4

Decoder

FIGURE 1.43 2:4 Decoder

The operation of a 2:4 decoder is illustrated in Table 1.23.

1. When D1 = 0 and D0 = 0, Y 0 = 1 and Y 3 = Y 2 = Y 1 = 0. Thus, Y 0 = D1D0.
2. When D1 = 0 and D0 = 1, Y 1 = 1 and Y 3 = Y 2 = Y 0 = 0. Thus, Y 1 = D1D0.
3. When D1 = 1 and D0 = 0, Y 2 = 1 and Y 3 = Y 1 = Y 0 = 0. Thus, Y 2 = D1D0.
4. When D1 = 1 and D0 = 1, Y 3 = 1 and Y 2 = Y 1 = Y 0 = 0. Thus, Y 3 = D1D0.

TABLE 1.23 Truth table of 2:4
decoder

Inputs Outputs

D1 D0 Y3 Y2 Y1 Y0

0 0 0 0 0 1

0 1 0 0 1 0

1 0 0 1 0 0

1 1 1 0 0 0

A 2:4 decoder can be realized using basic logic gates as shown in Fig. 1.44.

 D
0D

1

 Y
0

 Y
1

 Y
2

 Y
3

FIGURE 1.44 Logic circuit of 2:4 decoder

A decoder with n inputs implements 2n minterms at the output. For example, a 2:4 decoder with inputs A
and B implements four outputs as m0, m1, m2, and m3, where m0 = AB, m1 = AB, m2 = AB, and m3 = AB.

© Oxford University Press. All rights reserved.

Oxfo
rd

 U
niversi

ty
 Pre

ss

✐

✐

“VHDLSample” — 2018/2/21 — 17:09 — page 30 — #30
✐

✐

✐

✐

✐

✐

30 VHDL: Design, Synthesis, and Simulation

Thus, it can be used to implement any Boolean expression of two inputs. Similarly, in general a decoder with n
inputs can implement any Boolean function of n input variables.

EXAMPLE 1.11 Design a full-adder using 3:4 decoder.

Solution

A full-adder has three inputs: A, B, and Cin. The Boolean expressions for its outputs Sum and Cout are given as
follows:

Sum = ABCin + ABCin + AB Cin + ABCin = m1 + m2 + m4 + m7 (1.55)

Cout = ABCin + ABCin + ABCin + ABCin = m3 + m5 + m6 + m7 (1.56)
Thus, sum can be implemented by ORing four minterms: m1, m2, m4, andm7, and Cout can be implemented

by ORing four minterms: m3, m5, m6, and m7 as shown in Fig. 1.45.

A

3:8
Decoder

Sum

C
out

B

C
in

 D
0

 m
0

 m
1

 m
2

 m
3

 m
4

 m
5

 m
6

 m
7

 D
1

 D
2

FIGURE 1.45 Full-adder implemented using a 3:8 decoder and two 4-input OR gates

1.4.14 Encoder
The encoder is a logic circuit that does the reverse operation of a decoder. It has 2n input lines and n output lines.
For example, a 4:2 encoder has four input lines and two output lines as shown in Fig. 1.46. The operation of 4:2
encoder is illustrated in Table 1.24.

 D
0 4:2

Encoder
 Y

0

 Y
1

 D
1

 D
2

 D
3

FIGURE 1.46 4:2 Encoder

TABLE 1.24 Truth table of 4:2
encoder

Inputs Outputs

D3 D2 D1 D0 Y1 Y0

0 0 0 1 0 0

0 0 1 0 0 1

0 1 0 0 1 0

1 0 0 0 1 1

© Oxford University Press. All rights reserved.

Oxfo
rd

 U
niversi

ty
 Pre

ss

✐

✐

“VHDLSample” — 2018/2/21 — 17:09 — page 31 — #31
✐

✐

✐

✐

✐

✐

Introduction to Digital Logic Design 31

The Boolean expressions for the outputs of a 4:2 encoder are given as follows:

Y 0 = D1 + D3 (1.57)
and

Y 1 = D2 + D3 (1.58)
The logic circuit that implements a 4:2 encoder is shown in Fig. 1.47.

 Y
0

 Y
1

 D
0

 D
1

 D
2

 D
3

FIGURE 1.47 Logic circuit of 4:2 encoder

1.4.15 Comparator

A comparator is a digital logic circuit that compares two numbers A and B and produces three outputs Y 2, Y 1,
and Y 0 to indicate the following relations between A and B:
1. Y 2 = 1, Y 1 = 0, and Y 0 = 0 if A > B.
2. Y 2 = 0, Y 1 = 1, and Y 0 = 0 if A = B.
3. Y 2 = 0, Y 1 = 0, and Y 0 = 1 if A < B.

Figure 1.48 shows a 4-bit comparator.

 A
0

 Y
2
= A > B

 Y
1
= A = B

 Y
0
= A < B

4-bit
comparator A

1

 A
2

 A
3

 B
0

 B
1

 B
2

 B
3

FIGURE 1.48 4-Bit comparator

EXAMPLE 1.12 Design a 2-bit comparator circuit using basic logic gates.

Solution

The functionality of a 2-bit comparator is described in Table 3.6.
The Boolean expressions for the outputs can be obtained using Karnaugh map method as follows:

Y 2 = A1B1 + A0B0(A1 + B1) (1.59)

Y 1 = (A1 B1 + A1B1)(A0B0 + A0B0) (1.60)

Y 0 = A1B1 + A0B0(A1 + B1) (1.61)

© Oxford University Press. All rights reserved.

Oxfo
rd

 U
niversi

ty
 Pre

ss

✐

✐

“VHDLSample” — 2018/2/21 — 17:09 — page 32 — #32
✐

✐

✐

✐

✐

✐

32 VHDL: Design, Synthesis, and Simulation

TABLE 1.25 Truth table of a 2-bit
comparator

Inputs Outputs

A1 A0 B1 B0 Y2 Y1 Y0

0 0 0 0 0 1 0

0 0 0 1 0 0 1

0 0 1 0 0 0 1

0 0 1 1 0 0 1

0 1 0 0 1 0 0

0 1 0 1 0 1 0

0 1 1 0 0 0 1

0 1 1 1 0 0 1

1 0 0 0 1 0 0

1 0 0 1 1 0 0

1 0 1 0 0 1 0

1 0 1 1 0 0 1

1 1 0 0 1 0 0

1 1 0 1 1 0 0

1 1 1 0 1 0 0

1 1 1 1 0 1 0

Figure 1.49 shows the implementation of the 2-bit comparator.

 A
0

 B
1

 B
0

 Y
2

 Y
0

 Y
1

 A
1

1 1A B

1 1A B

0 0A B

0 0A B

1 1A B+

1 1A B+

FIGURE 1.49 Logic circuit of a 2-bit comparator

© Oxford University Press. All rights reserved.

Oxfo
rd

 U
niversi

ty
 Pre

ss

✐

✐

“VHDLSample” — 2018/2/21 — 17:09 — page 33 — #33
✐

✐

✐

✐

✐

✐

Introduction to Digital Logic Design 33

1.4.16 Code Converter

A code converter is a logic circuit that converts a binary code to another binary code. For example, binary-to-grey
code converter converts binary inputs to grey outputs. The truth table of the binary-to-grey code converter is
shown in Table 1.26.

TABLE 1.26 Truth table of binary-to-grey
code converter

Inputs Outputs

B3 B2 B1 B0 G3 G2 G1 G0

0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 1

0 0 1 0 0 0 1 1

0 0 1 1 0 0 1 0

0 1 0 0 0 1 1 0

0 1 0 1 0 1 1 1

0 1 1 0 0 1 0 1

0 1 1 1 0 1 0 0

1 0 0 0 1 1 0 0

1 0 0 1 1 1 0 1

1 0 1 0 1 1 1 1

1 0 1 1 1 1 1 0

1 1 0 0 1 0 1 0

1 1 0 1 1 0 1 1

1 1 1 0 1 0 0 1

1 1 1 1 1 0 0 0

The Boolean expression for the outputs obtained using K-map method is as follows:

G3 = B3 (1.62)

G2 = B3 ⊕ B2 (1.63)

G1 = B2 ⊕ B1 (1.64)

G0 = B1 ⊕ B0 (1.65)

Figure 1.50 shows the logic circuit for binary-to-grey code converter.

© Oxford University Press. All rights reserved.

Oxfo
rd

 U
niversi

ty
 Pre

ss

✐

✐

“VHDLSample” — 2018/2/21 — 17:09 — page 34 — #34
✐

✐

✐

✐

✐

✐

34 VHDL: Design, Synthesis, and Simulation

B
2

B
3 G

3

G
2

G
1

G
0

B
1

B
0

FIGURE 1.50 Logic circuit of binary-to-grey code converter

1.4.17 Parity Generator and Checker

Parity generation and checking are two processes adopted in the transmitter and receiver to detect any error in
the process of data transmission from the transmitter to the receiver. An extra bit is added at the transmitter. This
extra bit is known as parity bit. There are two different parity generation and checking process. These are even
parity and odd parity. In even parity, the parity bit added to make to number of ‘1’s even in a binary data. In odd
parity, the parity bit added to make to number of ‘1’s odd in a binary data. At the receiver end, if the received data
does not match with the parity type followed at the transmitter, then an error is detected. Parity generator is the
circuit that generates the parity bit, whereas parity checker is the circuit that checks the parity.

Parity Generator
Let us consider the case of even parity. Thus, the number of ‘1’ in the binary data to be even including the parity
bit. The truth table for a 3-bit even parity generator is given in Table 1.27.

TABLE 1.27 Truth table of even
parity generator

Inputs Outputs

3-bit data inputs Even parity bit

D2 D1 D0 P

0 0 0 0

0 0 1 1

0 1 0 1

0 1 1 0

1 0 0 1

1 0 1 0

1 1 0 0

1 1 1 1

The Boolean expression for the parity bit P is obtained using K-map method as follows:

P = D2 ⊕ D1 ⊕ D0 (1.66)

Figure 1.51(a) shows the logic circuit of 3-bit even parity generator.

© Oxford University Press. All rights reserved.

Oxfo
rd

 U
niversi

ty
 Pre

ss

✐

✐

“VHDLSample” — 2018/2/21 — 17:09 — page 35 — #35
✐

✐

✐

✐

✐

✐

Introduction to Digital Logic Design 35

D
2 D

2

D
1 D

1

D
0 D

0

P

P

C

(b)(a)

FIGURE 1.51 (a) Logic circuit of 3-bit even parity generator, (b) logic circuit of 4-bit even parity checker

Parity Checker
A parity checker checks if the parity is maintained in the binary data after the transmission. The output of parity
checker is logic 1 when an error is detected in the transmitted data. Let us consider the 3-bit binary data with
parity bit that is transmitted. Table 1.28 shows the truth table of 4-bit parity checker.

TABLE 1.28 Truth table of even parity checker

Inputs Outputs

4-bit data inputs Output of even parity checker

D2 D1 D0 P C

0 0 0 0 0

0 0 0 1 1

0 0 1 0 1

0 0 1 1 0

0 1 0 0 1

0 1 0 1 0

0 1 1 0 0

0 1 1 1 1

1 0 0 0 1

1 0 0 1 0

1 0 1 0 0

1 0 1 1 1

1 1 0 0 0

1 1 0 1 1

1 1 1 0 1

1 1 1 1 0

The Boolean expression for the parity checker output C is obtained using K-map method as follows:

C = D2 ⊕ D1 ⊕ D0 ⊕ P (1.67)

Figure 1.51(b) shows the logic circuit of 4-bit even parity checker.

© Oxford University Press. All rights reserved.

Oxfo
rd

 U
niversi

ty
 Pre

ss

✐

✐

“VHDLSample” — 2018/2/21 — 17:09 — page 36 — #36
✐

✐

✐

✐

✐

✐

36 VHDL: Design, Synthesis, and Simulation

1.4.18 Array Multiplier

Multipliers are the most useful building blocks after the adders in digital signal processor (DSP) or arithmetic
computing systems. A multiplier has two binary inputs—one is called Multiplicand and the other is called
Multiplier. It has one binary output, which is the product of Multiplicand and Multiplier. If A and B are the
two 4-bit numbers, then their product can be written as follows:

P =

3
∑

i=0

ai2
i ×

3
∑

j=0

bj2
j (1.68)

The 4×4-bit multiplication is illustrated in Fig. 1.52.

a3

a3b0
a3b1

a3b2 a2b2 a1b2 a0b2
a0b3a1b3a2b3a3b3

p7 p6 p5 p4 p3 p2 p1 p0

a2b1 a1b1 a0b1
a2b0 a1b0 a0b0

Partial
products}

b3 b2 b1 b0

a2 a1 a0 = A (Multiplicand)
×

= P (Product)

= B (Multiplier)

FIGURE 1.52 Process of 4×4-bit multiplication

In general, the multiplier can be either unsigned type or signed type. An unsigned multiplier takes two binary
inputs in unsigned format and produces product in unsigned format. The signed multiplier takes two binary
inputs in 2’s complement format and produces result in 2’s complement format.

An unsigned arraymultiplier design is based on simple pen and paper method of multiplication. That is taking
bit by bit from the multiplier, the partial products are generated by multiplying the bit to the multiplicand. Then
the partial products are written in rows by shifting each row by one bit position to the right. The partial product
rows are added column wise. Figure 1.53 illustrates the logic circuit of an unsigned array multiplier.

a
3
b

0

a
3
b

1

a
3
b

2

a
3
b

3

P
3

P
2

P
1

P
0

P
4

P
5

P
6

P
7

a
2
b

0
a

1
b

0
a

0
b

0

0 0

0

0

+ + +

+ + +

+ + +

+ + +

2 1a b 1 1a b 0 1a b

2 2a b 0 2a b

0 3a b2 3a b 1 3a b

1 2a b

FIGURE 1.53 Unsigned array multiplier

© Oxford University Press. All rights reserved.

Oxfo
rd

 U
niversi

ty
 Pre

ss

✐

✐

“VHDLSample” — 2018/2/21 — 17:09 — page 37 — #37
✐

✐

✐

✐

✐

✐

Introduction to Digital Logic Design 37

1.4.19 Programmable Logic Device

Programmable logic devices (PLDs) are standard products but can be programmed to function in a specific
application. The programming can be done either by end user or by the manufacturer. The PLDs that are
programmed by the manufacturer are known as mask-programmable logic devices (MPLDs). The PLDs that are
programmed by the end user are called field-programmable logic devices (FPLDs).The architecture of PLDs is very
regular and fixed. It cannot be changed by the end user. The PLDs have wide range of applications and have low
risk and cost in manufacturing in large volume. Hence, the PLDs are cheaper. As the PLDs are pre-manufactured,
tested, and placed in inventory in advance, the design cycle time is very short. The PLDs are classified into three
categories based on the architecture and programmability. They are given as follows:

1. Read-only Memory (ROM)
2. Programmable Logic Array (PLA)
3. Programmable Array Logic (PAL)

This section describes the architecture of PLDs and their applications.

Read-only Memory
Read-only memory is a storage device, which can be programmed once. Once it is programmed, the data remains
intact and can be read as many times as possible. The stored data is not lost even if the power is removed, unlike
random access memory (RAM). The structure of a ROM is shown in Fig. 1.54.

2n word lines

n
 i

n
p

u
ts

m outputs

Address
decoder

OR memory
array{

{
-

-

-

-

-

-

- - -

FIGURE 1.54 2n × m ROM architecture

It consists of an address decoder with n input lines and programmable OR array with m output lines. The
decoder produces minterms based on the n input lines. The minterms are ORed through programmable switches,
which can be made ON or OFF to select a particular minterm. The programmable switches can be implemented
by either bipolar, CMOS, nMOS, or pMOS technologies.

EXAMPLE 1.13 Design a combinational circuit using ROM that takes 3-bit number and produces outputs
as the square of the input numbers.

Solution

Let us first derive the truth table of the combinational circuit that takes 3-bit number and produces its square as
the output.

The three input bits are A2, A1, and A0, which can have at most eight combinations starting from 000 to
111. The maximum value of input is 7 when squared the result is 49. Therefore, the maximum decimal equivalent
value is 49, which require six bits for representation. Hence, the combinational circuit would require at most six

© Oxford University Press. All rights reserved.

Oxfo
rd

 U
niversi

ty
 Pre

ss

✐

✐

“VHDLSample” — 2018/2/21 — 17:09 — page 38 — #38
✐

✐

✐

✐

✐

✐

38 VHDL: Design, Synthesis, and Simulation

output bits, which are represented as Y 5, Y 4, Y 3, Y 2, Y 1, and Y 0. The truth table of the circuit is shown in
Table 1.29.

TABLE 1.29 Truth table of the circuit of Example 1.13

Inputs Outputs

A2 A1 A0 Decimal Y5 Y4 Y3 Y2 Y1 Y0 Decimal

0 0 0 0 0 0 0 0 0 0 0

0 0 1 1 0 0 0 0 0 1 1

0 1 0 2 0 0 0 1 0 0 4

0 1 1 3 0 0 1 0 0 1 9

1 0 0 4 0 1 0 0 0 0 16

1 0 1 5 0 1 1 0 0 1 25

1 1 0 6 1 0 0 1 0 0 36

1 1 1 7 1 1 0 0 0 1 49

Out of six output bits, two bits Y 1 and Y 0 can be implemented directly, as Y 1 is always zero and Y 0 is same
as input A0. The remaining four bits Y 5, Y 4, Y 3, and Y 2 can be implemented using an 8×4 ROM as shown in
Fig. 1.55.

A2

A1

A0

(a) (b)

Y5

A2 A1 A0 Y5 Y4 Y3 Y2

0
0
0
0
1
1
1
1

0
0
0
0
0
0
1
1

0
0
0
0
1
1
0
1

0
0
0
1
0
1
0
0

0
0
1
0
0
0
1
0

0
0
1
1
0
0
1
1

0
1
0
1
0
1
0
1

8 × 4 ROM

Y4

Y3

Y2

Y1

Y0

FIGURE 1.55 Implementation of the combinational circuit of Example 1.13, (a) Simplified form of the
circuit using ROM (b) ROM truth table

Programmable Logic Array
Programmable logic array (PLA) is an integrated circuit chip used for two-level combinational logic circuits. It
consists of an AND array followed by an OR array. Both the AND array and the OR array are programmable.
The architecture of PLA is shown in Fig. 1.56.

The AND array, also called AND plane, implements the product terms and the OR array, also called OR
plane, implements the sum of product (SOP) terms. In PLA, both the arrays are programmable. PLA has limited
number of product terms, not the minterms. Hence, to implement a logic using PLA, a minimal SOP form should
be derived so that the logic can be implemented using the available product terms.

© Oxford University Press. All rights reserved.

Oxfo
rd

 U
niversi

ty
 Pre

ss

✐

✐

“VHDLSample” — 2018/2/21 — 17:09 — page 39 — #39
✐

✐

✐

✐

✐

✐

Introduction to Digital Logic Design 39

p Product terms

n
 i

n
p

u
ts

m outputs

AND array OR memory
array{

{

-

-

-

-

-

-

- - -

FIGURE 1.56 PLA architecture in block diagram

EXAMPLE 1.14 Implement the following Boolean functions using a PLA.

F1 = AB + AC + BC (1.69)

F2 = ABC + AC (1.70)

Solution

In the given functions, there are four AND terms: AB, AC , BC , and ABC . These AND terms can be implemented
in the AND plane of PLA. The AND terms are then ORed to implement the function F1 and F2. To implement
the product terms of the functions F1 and F2, the AND plane is programmed as shown in Fig. 1.57. The AND
terms are then ORed by the OR array program as shown in Fig. 1.57. The cross-point having ‘X ’ indicates an
electrical connection between the horizontal and the vertical wires.

A

AC

B

BC

C

F1 F2

AB

ABC

FIGURE 1.57 PLA architecture in block diagram

© Oxford University Press. All rights reserved.

Oxfo
rd

 U
niversi

ty
 Pre

ss

✐

✐

“VHDLSample” — 2018/2/21 — 17:09 — page 40 — #40
✐

✐

✐

✐

✐

✐

40 VHDL: Design, Synthesis, and Simulation

EXAMPLE 1.15 Implement the following Boolean functions using PLA.

Sum(A,B,Cin) =
∑

m(1, 2, 4, 7) (1.71)

Cout(A,B,Cin) =
∑

m(3, 5, 6, 7) (1.72)

Solution

The Boolean expressions for the given functions can be written as follows:

Sum = ABCin + ABCin + AB Cin + ABCin (1.73)

Cout = AB + ACin + BCin (1.74)

The functionality of a PLA to implement these functions can be represented in the form of a table as shown
in Table 1.30.

TABLE 1.30 PLA implementation table

Product terms Inputs Outputs

A B Cin Sum Cout

ABCin 0 0 1 1 0

ABCin 0 1 0 1 0

ABCin 1 0 0 1 0

ABCin 1 1 1 1 0

AB 1 1 - 0 1

ACin 1 - 1 0 1

BCin - 1 1 0 1

Inputs are represented by 1 for true form, 0 for complement form, and - for don’t care. The outputs are
represented by 1 if the term is present in the function and 0 if the term is absent in the function. A simplified
form of PLA is shown in Fig. 1.58.

The connection between a vertical and horizontal line is represented by a cross-point ‘X ’.

Programmable Array Logic
Programmable array logic (PAL) is another class of PLD with AND array followed by OR array, where the AND
array is programmable but the OR array is fixed. The PAL architecture is shown in Fig. 1.59.

The OR array has permanently programmed connections as shown by dots in Fig. 1.59. The OR plane cannot
be programmed. In the aforementioned PAL architecture, each OR gate has two inputs; hence, the SOP must
have two product terms. Remember unlike PLA the product terms cannot be shared between the OR gates. Each
function must be simplified individually to reduce the product terms to maximum two. If the SOP expression
contains more than two product terms, each OR gate can be used to implement the function partially and then
summed using additional OR gate to implement the complete function. The following example illustrates the
implementation of Boolean functions using PAL.

© Oxford University Press. All rights reserved.

Oxfo
rd

 U
niversi

ty
 Pre

ss

✐

✐

“VHDLSample” — 2018/2/21 — 17:09 — page 41 — #41
✐

✐

✐

✐

✐

✐

Introduction to Digital Logic Design 41

A

AC
in

ABC
in

BC
in

B

AB

Cin

Sum C
out

in
ABC

in
ABC

in
ABC

FIGURE 1.58 Simplified form of PLA implementing Boolean functions for Sum and Cout

A2 A1 A0

Y2Y3 Y1 Y0

Programmable
AND array

Fixed
OR array

FIGURE 1.59 PAL architecture

© Oxford University Press. All rights reserved.

Oxfo
rd

 U
niversi

ty
 Pre

ss

✐

✐

“VHDLSample” — 2018/2/21 — 17:09 — page 42 — #42
✐

✐

✐

✐

✐

✐

42 VHDL: Design, Synthesis, and Simulation

EXAMPLE 1.16 Implement the following Boolean logic using PAL.

F1(A,B,C) =
∑

m(1, 3, 4, 5, 6, 7) (1.75)

F2(A,B,C) =
∑

m(0, 1, 4, 5, 6) (1.76)

F3(A,B,C) =
∑

m(1, 2, 5) (1.77)

F4(A,B,C) =
∑

m(0, 1, 3, 7) (1.78)

Solution

Let us first find out a minimum SOP form of the given function using the Karnaugh map method. The K-maps
and the corresponding minimum SOP forms are shown in Fig. 1.60.

A

BC

(a) F1 = A + C

00

0

1

01 11 10

0 0

1 1

A

BC
00

0

1

01 11 10

0 1

0 0

1 0

01

A

BC
00

0

1

01 11 10

1 0

0 0

1 1

10

A

BC
00

0

1

01 11 10

0

1

0

0

(b) 2F AC B= +

(c) 3F BC ABC= +
(d) 4F AB BC= +

1 1

11

1

1

1

1

FIGURE 1.60 K-map minimization of functions of Example 1.16

We can see that each Boolean function has two product terms. Hence, the simple three-input four-output PAL
architecture as shown in Fig. 1.59 can be used to implement the four Boolean functions. The PAL implementation
is shown in Fig. 1.61. The AND plane is programmed to generate the product terms. The connections between
the vertical and the horizontal lines in the AND plane are represented by ‘X ’.

In ROM-based design, the addition of input signal increases the ROM size by two times. This in turn doubles
the size of the AND and OR array. But in case of PLA or PAL additional input can easily be accommodated
without doubling the size. Commercially available PAL can have at most 22 input lines.

1.4.20 Sequential PLD

The PLDs that we have discussed contain only combinational logic gates but no sequential elements or flip-flops.
But digital systems are to be designed using both combinational and sequential circuits. Hence, to implement
sequential programmable devices, flip-flops must be used externally with PLDs. In order to avoid the external
use of flip-flops, the sequential PLDs (SPLDs) are developed with D or JK flip-flops. The sequential PLD is also
known as simple PLD or simply SPLD. The SPLD architecture is mostly based on combinational PAL and DFF.
The section of a SPLD that implements one SOP output through register is known as macrocell. A macrocell is
shown in Fig. 1.62.

© Oxford University Press. All rights reserved.

Oxfo
rd

 U
niversi

ty
 Pre

ss

✐

✐

“VHDLSample” — 2018/2/21 — 17:09 — page 43 — #43
✐

✐

✐

✐

✐

✐

Introduction to Digital Logic Design 43

A B C

F2F1

A

C

BC

F3 F4

Programmable
AND array

Fixed
OR array

B

BC

AC

ABC

AB

FIGURE 1.61 PAL implementation of Boolean functions of Example 1.16

OECLK

D Q

Q

CLK

FIGURE 1.62 Typical macrocell architecture

The AND–OR array is similar to the PAL architecture. The output of AND–OR array is passed through a
DFF triggered by a clock signal CLK. The final output is available through a tri-state buffer controlled by output-
enabled signal OE. The true and complemented form of the output signal is fed back to the input of the AND
array. This provides the previous state of the output signal. A typical SPLD chip has 8–10 macrocells.

1.4.21 Keypad Scanner

Keypad scanner is used to enter data manually in different electronic systems, such as digital telephone, computer
keyboard, and different embedded systems developed using microprocessor andmicrocontrollers. We shall discuss

© Oxford University Press. All rights reserved.

Oxfo
rd

 U
niversi

ty
 Pre

ss

✐

✐

“VHDLSample” — 2018/2/21 — 17:09 — page 44 — #44
✐

✐

✐

✐

✐

✐

44 VHDL: Design, Synthesis, and Simulation

the design of a keypad scanner. The schematic of the keypad is shown in Fig. 1.63. It has total 12 numbers of
keys: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, *, 0, and #. There are four row lines: R0, R1, R2, and R3, and three column lines:
C2, C1, and C0. When a key is pressed, a connection is established between the corresponding row and column
lines. All the row lines are connected to ground through resistors. When no key is pressed, all the row lines are
connected to ground, that is, R0 = R1 = R2 = R3 = 0. When a column line is pulled to high voltage, if any key

C
2

1 2
R

0

C
1

C
0

Keypad
scanner

Clock

Y0

Y1

Y2
Y3

V

R
1

R
2

R
3

3

7 8 9

∗ 0 #

4 5 6

FIGURE 1.63 Schematic of a keypad scanner

is pressed in that column, the corresponding row will be pulled to high voltage and the other rows will remain at
0 V. For example, let the column line C0 is pulled to high voltage and key ‘1’ is pressed. In this case, row R0 will
be high and the other rows R3, R2, and R1 will remain at 0 V. So the scanner will detect that key ‘1’ is pressed.
Table 1.31 shows the input–outputs of the keypad scanner.

TABLE 1.31 Keypad scanner input–outputs

Key R3 R2 R1 R0 C0 C1 C2 Code (Y3Y2Y1Y0)

1 0001 100 0001

2 0001 010 0010

3 0001 001 0011

4 0010 100 0100

5 0010 010 0101

6 0010 001 0110

7 0100 100 0111

8 0100 010 1000

9 0100 001 1001

* 1000 100 1010

0 1000 010 0000

1000 001 1011

© Oxford University Press. All rights reserved.

Oxfo
rd

 U
niversi

ty
 Pre

ss

✐

✐

“VHDLSample” — 2018/2/21 — 17:09 — page 45 — #45
✐

✐

✐

✐

✐

✐

Introduction to Digital Logic Design 45

The keypad scanner performs three operations. Firstly, it detects whether a key is pressed. Secondly, it identifies
which key is pressed. Then it generates a unique code for the key that is pressed.

At first, it pulls up all the column lines to high and check if any key is pressed by sensing the row lines. If no
key is pressed, all the row lines will remain at 0 V which indicates that no key is pressed. If any key is pressed, any
one of the four row lines will be pulled high that means a valid key is pressed. So it will set V = 1. To identify
which key is pressed, it pulls up the column lines one by one and detects the key. The signal V indicates that the
generated code is valid. It remains high for one clock cycle to indicate a valid code in the output signals: Y 3, Y 2,
Y 1, and Y 0.

1.4.22 Features of PLD

The biggest advantage of using PLDs is that it reduces the total cost of the system. The design cycle time using
PLDs is very fast and therefore the time-to-market of the final product is less. The risks associated in the product
development using PLDs are also less. Any last minute change can easily be accommodated without redesigning
the circuit boards. The cost involved in printed circuit board (PCB) design, assembly, test, and repair is also very
less when PLDs are used, as the design usually requires fewer components.

The features of the PLDs are also enhanced to accommodate multitude of designs. They are capable of
performing control functions, bus interface, memory interface, and DSP. They have grown in density, variety,
and complexity. The state-of-the-art PLDs can handle designs of hundreds of thousands of gates to even a million
gates. It is being used to design larger portions of the system, even in some case the entire systems on chip (SoC).
Therefore, the PLDs have a great future in days to come.

1.4.23 One/Zero Detector

A zero-detector circuit detects if all the input bits are logic 0. Similarly, a one-detector circuit detects if all the input
bits are logic 1. Figure 1.64 shows the schematic of one and zero detectors.

A7
A6

A5
A4

A3
A2

A1

F1

(a) (b)

F0

A0

A7
A6

A5
A4
A3
A2
A1
A0

FIGURE 1.64 (a) One detector (b) Zero detector

In one detector, when all inputs are at logic 1, the output is 1. Otherwise, the output is zero. Thus, it detects
all ones at the input. In zero detector, when all inputs are at logic 0, the output is 1. Thus, it detects all zeros at
the input.

1.4.24 Barrel Shifter

The one-bit shifter can shift data by one bit position in one clock cycle. But it is often required to shift data by
more than one bit position in one clock cycle in DSP or general-purpose processors. The multi-bit shift is achieved
using a barrel shifter. The advantage of the barrel shifter is that any bit in a word can connect to any other bit, so
that large bit shifts can be completed in a single operation.

Let us consider an 8-bit barrel shifter as shown in Fig. 1.65. It has one 8-bit data input A and 8-bit data output
B, with a 3-bit control input B. Table 5.4 illustrates the data shifting in an 8-bit barrel shifter.

© Oxford University Press. All rights reserved.

Oxfo
rd

 U
niversi

ty
 Pre

ss

✐

✐

“VHDLSample” — 2018/2/21 — 17:09 — page 46 — #46
✐

✐

✐

✐

✐

✐

46 VHDL: Design, Synthesis, and Simulation

0

0 a7

b1

b0

b2

a6 a5 a4 a3 a2 a1 a0

4-bit
right shift

2-bit
right shift

1-bit
right shift

1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

0 1

y7

0 1 0 1 0 1 0 1 0 1 0 1 0 1

0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

y6 y5 y4 y3 y2 y1 y0

FIGURE 1.65 Schematic of an 8-bit barrel shifter

TABLE 1.32 Shifting operations of an 8-bit barrel shifter

Sl. No. Inputs Outputs Shift operation

b2 b1 b0 y7 y6 y5 y4 y3 y2 y1 y0

1 0 0 0 a7 a6 a5 a4 a3 a2 a1 a0 No shift

2 0 0 1 0 a7 a6 a5 a4 a3 a2 a1 Shift right by 1 bit

3 0 1 0 0 0 a7 a6 a5 a4 a3 a2 Shift right by 2 bit

4 0 1 1 0 0 0 a7 a6 a5 a4 a3 Shift right by 3 bit

5 1 0 0 0 0 0 0 a7 a6 a5 a4 Shift right by 4 bit

6 1 0 1 0 0 0 0 0 a7 a6 a5 Shift right by 5 bit

7 1 1 0 0 0 0 0 0 0 a7 a6 Shift right by 6 bit

8 1 1 1 0 0 0 0 0 0 0 a7 Shift right by 7 bit

1.5 SEQUENTIAL LOGIC CIRCUITS

The sequential circuits are the type of digital circuits where the present output states depend on the present input
states as well as on the past output states. In other words, in the sequential circuits, the outputs are function of
the input logic levels as well the time when the inputs were applied. Let us understand the concept of temporal
dependency of the outputs by the following circuit shown in Fig. 1.66.

R

S

Q

Q

FIGURE 1.66 Example of a sequential circuit using NAND gates

In this digital circuit, there are two inputs R and S and two outputs Q and Q . When both the inputs are at
logic 0, both the outputs are at logic 1. When R = 0 and S = 1, the output Q = 1, and the output Q = 0.

© Oxford University Press. All rights reserved.

Oxfo
rd

 U
niversi

ty
 Pre

ss

✐

✐

“VHDLSample” — 2018/2/21 — 17:09 — page 47 — #47
✐

✐

✐

✐

✐

✐

Introduction to Digital Logic Design 47

Alternately, when R = 1 and S = 0, the output Q = 0, and the output Q= 1. But when both the inputs are
at logic 1, the outputs cannot be decided directly. In this condition, the outputs will be decided based on their
previous logic levels. Let us assume, previouslyQ = 0 andQ= 1. Now the inputs are R = S = 1. Since, previously
Q = 0, Q will remain at logic 1, and as Q remains at logic 1, Q will remain at logic 0. Therefore, the outputs
hold their previous states. Similarly, if the outputs were Q = 1 and Q= 0, now also they will remain as they are if
the inputs are R = S = 1. The functionality of this circuit is illustrated in Table 1.33.

TABLE 1.33 Truth table of SR flip-flop

Inputs Previous outputs Present outputs State of the FF

S R Q Q Q Q

0 0 X X 1 1 Not allowed

0 1 X X 0 1 Reset

1 0 X X 1 0 Set

1 1 0 1 0 1 Hold

1 1 1 0 1 0 Hold

X— indicates don’t care condition

This example introduces the main concepts of the sequential circuit, that is, the temporal dependency of the
outputs. For the present input conditions S = R = 1, the outputs depend on whether the past states were 10 or
01.

In order to maintain the temporal dependency of the input and output states, an extra input, which is known
as clock (CLK). Depending on whether the inputs are in synchronous with the clock input, the sequential circuits
are classified into two types: synchronous and asynchronous.

1.5.1 SR Flip-flop

Generally, a flip-flop is a sequential circuit with one or more inputs and two complementary outputs Q and Q .
SR flip-flop is a flip-flop with two inputs S and R, where S indicates set and R indicates reset. When the input
S = 1 and R = 0, the flip-flop outputs QQ = 10 and when the input S = 0 and R = 1, the flip-flop outputs
QQ = 01. Figure 1.67 shows the symbol of SR flip-flop.

R

Flip-flop

S

Q

Q

FIGURE 1.67 Symbol of SR flip-flop

The SR flip-flop can be implemented either using NAND gates or using NOR gates. The NAND-based SR
flip-flop is shown in Fig. 1.66. The NOR-based SR flip-flop is shown in Fig. 1.68.

The operation of the SR flip-flop using NOR gates is illustrated in Table 1.34.
The SR flip-flop is known as SR latch as the data is latched in the logic circuit for some input combinations.

© Oxford University Press. All rights reserved.

Oxfo
rd

 U
niversi

ty
 Pre

ss

✐

✐

“VHDLSample” — 2018/2/21 — 17:09 — page 48 — #48
✐

✐

✐

✐

✐

✐

48 VHDL: Design, Synthesis, and Simulation

R

S

Q

Q

FIGURE 1.68 SR flip-flop using NOR gates

TABLE 1.34 Truth table of SR flip-flop

Inputs Previous outputs Present outputs State of the FF

S R Q Q Q Q

0 0 1 0 1 0 Hold

0 0 0 1 0 1 Hold

0 1 X X 0 1 Reset

1 0 X X 1 0 Set

1 1 X X 0 0 Not allowed

X—indicates don’t care condition

1.5.2 SR Flip-flop with Clock Input

The SR flip-flop explained before works asynchronously. There is no clock input. This makes the flip-flop outputs
to change anytime the input changes. This is OKwhen the flip-flop is operated separately. However, in a digital cir-
cuit, a flip-flop alone does not work. There are plenty of other gates both combinational and sequential. The inputs
of a particular SR flip-flop come from the outputs of some other logic. As the inputs come from different paths,
they encounter different path delays and reach at the inputs at different time. As we have seen before, the output
changes anytime the input changes in a flip-flop, which causes incorrect output to be latched/stored in the flip-flop.

Let us consider an examination hall where each student coming to the hall in different time. If we allow the
examination to start for each student as they come in, there will be a total chaos. In order to make sure that
the examination happens properly, we fix up a time at which all students must reach to the examination hall.
Therefore, we need a clock and the event must be synchronized with the clock.

In the digital circuits also, wemust use a clock to ensure proper operations of sequential circuit. Let us illustrate
this with the following example shown in Fig. 1.69.

R

CLK

S
Q

Q1

QQ1

First stage Second stage

FIGURE 1.69 Clocked SR flip-flop

When the clock input CLK = 0, the outputs of the NAND gates in the first stage (Q1 and Q1) are at logic
1. This makes outputs of NAND gates in the second stage to hold their previous states. In this condition, the
outputs Q and Q do not change their values even if the inputs R and S change their values.

© Oxford University Press. All rights reserved.

Oxfo
rd

 U
niversi

ty
 Pre

ss

✐

✐

“VHDLSample” — 2018/2/21 — 17:09 — page 49 — #49
✐

✐

✐

✐

✐

✐

Introduction to Digital Logic Design 49

When the clock input CLK = 1, the outputs of the NAND gates at the first stage depends on the inputs R
and S. If S = 1 and R = 0, then Q1 = 0 and Q1= 1, which makes Q = 1 and Q= 0. If S = 0 and R = 1, then
Q1 = 1 and Q1= 0, which makes Q = 0 and Q= 1.

When S = R = 0, the outputs Q and Q hold their previous values.
When S = R = 1, both Q1 andQ1 are at logic 0. This makes both outputs Q andQ to become 1. However,

depending on which one becomes 1 first, the other will be decided. Therefore, this is a race condition between
the outputs. Therefore, the outputs are termed as forbidden for the inputs S = R = 1.

1.5.3 JK Flip-Flop

The race condition of the SR flip-flop is overcome in the JK flip-flop. Figure 1.70 shows the JK flip-flop using
NAND gates.

K

CLK

J

First stage Second stage

Q
Q1

QQ1

FIGURE 1.70 JK flip-flop

In the first stage, two 3-input NAND gates are used. The outputs Q and Q are fed back to the inputs at first
stage. When CLK = 0, the outputs of the first stage Q1 and Q1 are at logic 1. This makes the outputs of the
flip-flop to hold their previous states. When CLK = 1, the outputs of the first stage Q1 and Q1 depend on the
inputs and previous outputs. Under CLK = 1 condition, the operation of the flip-flop is explained as follows:

1. When J = K = 0, Q1 = Q1 = 1, therefore, outputs Q and Q hold their previous states.
2. When J = 0, K = 1, Q1 = 1. If Q = 1, then Q1 = 0. This makes Q = 0 and Q = 1.
3. When J = 1, K = 0, Q1= 1. If Q = 1, then Q = 0. This makes Q = 1 and Q remains at 0.
4. When J = 1 and K = 1, Q1 and Q1 are decided based on Q and Q . If we assume that Q = 0 and Q = 1,

then Q1 = 0 and Q1= 1. This makes Q = 1 and Q = 0. Thus, outputs toggle. If we assume that Q = 1 and
Q = 0, then Q1 = 1 and Q1 = 0. This makes Q = 0 and Q = 1. Thus, also outputs toggle.

The operation of JK flip-flop is summarized in Table 1.35.

TABLE 1.35 Truth table of JK flip-flop

Inputs Previous outputs Present outputs State of the FF

J K Qn Qn Qn+1 Qn+1

0 0 0 1 0 1 Hold

0 0 1 0 1 0 Hold

0 1 X X 0 1 Reset

1 0 X X 1 0 Set

1 1 0 1 1 0 Toggle

1 1 1 0 0 1 Toggle

© Oxford University Press. All rights reserved.

Oxfo
rd

 U
niversi

ty
 Pre

ss

✐

✐

“VHDLSample” — 2018/2/21 — 17:09 — page 50 — #50
✐

✐

✐

✐

✐

✐

50 VHDL: Design, Synthesis, and Simulation

1.5.4 Master-slave Flip-flop

When J = K = 1 in JK flip-flop, the output toggles. As long as the clock pulse is at logic 1 state, the outputs
keep toggling and at the end of clock pulse the outputs become unpredictable. This is known as race-around
condition. One way to solve this problem is by reducing the duration of clock pulse less than the delay of the
flip-flop. However, it is very difficult to design such a clock pulse with a very low duty cycle. The other way to
solve the race-around condition is by using master-slave flip-flop.

Two SR flip-flops are taken in cascade to form the master-slave flip-flop as shown in Fig. 1.71. The first flip-
flop is called master, whereas the second one is called slave. The clock signal (CLK) directly goes to the clock input
of master flip-flop and inverted clock signal (CLK) goes to the clock input of slave flip-flop.

When clock signal is at logic high level (CLK = 1), the outputs of the master Qm and (Qm) are determined
depending on its inputs Sm and Rm. Under this condition, the outputs of the slave Qs and (Qs) do not change.
When clock signal goes to logic low level or (CLK)=1, the outputs of slave are determined by its inputs Ss and Rs.
Under this condition, the outputs of the master Qm and (Qm) do not change.

Therefore, the master-slave flip-flop only changes its final outputs when clock signal goes from logic high to
low level. Thus, it is called edge-triggered flip-flop. The master-salve flip-flop shown in Fig. 1.71 is a negative edge-
triggered flip-flop as it changes its output only when clock makes 1→0 transition. There is positive edge-triggered
flip-flop also which changes its output when clock makes 0→1 transition.

S
m

SR
flip-flop

CLK

SR

flip-flop

Q
m Q

s

S
s

R
sR

m

CLK

mQ

sQ

FIGURE 1.71 Master-slave flip-flop

1.5.5 D Flip-flop

A JK flip-flop is converted into a DFF or delay flip-flop with the configuration shown in Fig. 1.72. It has two
inputs: one is clock input and the other one is D or data input.

D

CLK

QJ

K
Q

FIGURE 1.72 D flip-flop using JK flip-flop

We have seen that the Q output of JK flip-flop is logic 1 when J = 1 and K = 0, and is logic 0 when J = 0
and K = 1. In other words, we can say that Q = J when K = J . Thus, a NOT gate connected between J and K

© Oxford University Press. All rights reserved.

Oxfo
rd

 U
niversi

ty
 Pre

ss

✐

✐

“VHDLSample” — 2018/2/21 — 17:09 — page 51 — #51
✐

✐

✐

✐

✐

✐

Introduction to Digital Logic Design 51

input to make K = J . When D = 1, J = 1, and K = 0 which makes Q = 1 and Q=0. WhenD = 0, J = 0 and
K = 1 which makes Q = 0 and Q=1.

The purpose of the DFF is to work as a delay element as the output follows the input only after a delay. That
is why it is also known as delay flip-flop.

1.5.6 T Flip-flop

A T flip-flop stands for toggle flip-flop. It has two inputs: one is clock input (CLK) and the other one is T input.
It is also constructed from JK flip-flop as shown in Fig. 1.73.

T

CLK

QJ

K
Q

FIGURE 1.73 T flip-flop using JK flip-flop

In a JK flip-flop when both the inputs are in same logic level, that is, J = K , the outputs either remain in
the same state or complement themselves. When J = K = 1, the outputs toggle, that is, Qn+1 = Qn. When
J = K = 0, the outputs hold their previous state, that is, Qn+1 = Qn. Therefore, a JK flip-flop is converted into
a T flip-flop by shorting its two inputs.

1.5.7 Flip-flop Characteristics

A flip-flop is characterized by the following parameters:

Propagation Delay
It is also known as Clock-to-Q time delay, which means the propagation time delay between the clock signal and
the Q output.

Set-up Time
It is the minimum time before the clock edge the inputs must arrive. Let us consider an example of examination
hall to explain the concept of set-up time. Suppose an examination hall where the examination will start at 10 AM.
The examinees must enter the examination hall 30 minutes before the examination starts and will not be allowed
to leave the hall. So 30 minutes is the set-up time for the examination. Nobody will be allowed to appear in the
examination if he/she comes after 9:30 AM. Similarly, in case of a flip-flop, the data must arrive before the clock
pulse by a specified period of time and must not change their values.

Hold Time
It is the minimum time after the clock edge and the inputs must not change their values.

Maximum Clock Frequency
It is the maximum frequency of the clock signal that can be applied to the flip-flop. It depends on the propagation
delay and set-up time.

© Oxford University Press. All rights reserved.

Oxfo
rd

 U
niversi

ty
 Pre

ss

✐

✐

“VHDLSample” — 2018/2/21 — 17:09 — page 52 — #52
✐

✐

✐

✐

✐

✐

52 VHDL: Design, Synthesis, and Simulation

Asynchronous Active Pulse Width
The minimum pulse width of the asynchronous inputs like preset and clear input signals.

Figure 1.74 illustrates propagation delay, set-up time, and hold time of a flip-flop.

D input

Q output

CLK

T
holdT

set-up

T
CLK-to-Q

FIGURE 1.74 Illustration of propagation delay, set-up time, and hold time

1.5.8 Registers

A flip-flop can store or register a single bit. Therefore, a flip-flop is known as one-bit register. When a number of
flip-flops connected in cascade, a multi-bit register is formed. In anN -bit register, there isN number of flip-flops.
In anN -bit register, it is often required to shift data from one register to another. An array of flip-flops that allows
the shifting of data is called a shift register.

1.5.9 Shift Register

A shift register is a chain of flip-flops where the input data is propagated through the chain by applying the clock
pulses.

A 4-bit shift register is shown in Fig. 1.75. There are four positive edge-triggered DFFs connected in series.
The clock input is common to all the flip-flops. At the positive edge of the clock signal, the input signal goes to the
output of the first flip-flop, the output of the first flip-flop goes to the output of the second flip-flop; the output
of the second flip-flop goes to the output of the third flip-flop, and so on. Figure 1.76 shows the shifting of data
with the clock pulse.

Q0
D1D0

Input

Clock

D2 D3
FF0 FF1 FF2 FF3

Q1 Q2 Q3

0Q 1Q 2Q 3Q

FIGURE 1.75 4-Bit shift register

Shift registers are generally of the following four types:

1. Serial-in-serial-out (SISO)
2. Parallel-in-serial-out (PISO)
3. Parallel-in-parallel-out (PIPO)
4. Serial-in-parallel-out (SIPO)

© Oxford University Press. All rights reserved.

Oxfo
rd

 U
niversi

ty
 Pre

ss

✐

✐

“VHDLSample” — 2018/2/21 — 17:09 — page 53 — #53
✐

✐

✐

✐

✐

✐

Introduction to Digital Logic Design 53

Clock pulse Input bits

0
1
2
3
4
5

6
7
8

0 0 0

Q0 Q1 Q2 Q3

0

0 0 0
0
0
0

0

0
0

0

0
00

0

0

0

1 1
1

1

1
1

1

1
1

1

1
1

1

1
1

FIGURE 1.76 Propagation of data in a SISO shift register

1.5.10 SISO Shift Register

In a SISO shift register, data is entered at one edge of the chain of shift registers and is retrieved at the other end.
An example of SISO shift register is depicted in Fig. 1.76.

1.5.11 PISO Shift Register

In a PISO shift register, data is entered to all the flip-flops in parallel but is retrieved serially at the output end.
A 4-bit PISO shift register with load and shift capability is shown in Fig. 1.77. It has four parallel data input

lines, one Shift/Load control line, clock input, and one serial data output line.

Parallel data input

Clock

Serial data
output

Shift/Load

Q0

D1

D1

G1 G2 G3 G4 G5 G6

G9G8G7

D0

G0

D0

D2

D2

D3

D3

FF0 FF1 FF2 FF3

Q1 Q2 Q3

0Q 2Q 3Q1Q

FIGURE 1.77 PISO shift register

Shift Operation

When the Shift/Load control line is held at logic 1, AND gates, G1, G3, and G5, are enabled. With the clock
pulse, data fromQ0 goes toD1,Q1 goes toD2, andQ2 goes to D3. Therefore, the data is shifted serially through
the chain of flip-flops.

Load Operation

When the Shift/Load control line is held at logic 0, AND gates, G2, G4, and G6, are enabled. The four data
inputs, D0, D1, D2, and D3, are applied to the data input of flip-flops, and with the clock pulse, the data is
loaded into the register.

© Oxford University Press. All rights reserved.

Oxfo
rd

 U
niversi

ty
 Pre

ss

✐

✐

“VHDLSample” — 2018/2/21 — 17:09 — page 54 — #54
✐

✐

✐

✐

✐

✐

54 VHDL: Design, Synthesis, and Simulation

1.5.12 PIPO Shift Register

The PIPO shift register has a set of parallel data input lines and a set of parallel data output lines. The input data is
entered in parallel into the register. After one clock pulse, the data is shifted at the output in parallel. An example
of 4-bit PIPO shift register is shown in Fig. 1.78.

Parallel data
input

Clock

Parallel data
output

Q0

Q0 Q1 Q2 Q3

D0

D0 D1 D2 D3

FF0

0Q

D1 D2 D3

FF1 FF2 FF3

Q1 Q2 Q3

2Q 3Q1Q

FIGURE 1.78 PIPO shift register

All four flip-flops are operated by a common clock. Four input bits D0 through D3 are applied to flip-flops
FF0 through FF3, and the outputs Q0 through Q3 are taken out in parallel. When the clock pulse is applied,
four inputs are stored in the flip-flops simultaneously and are available simultaneously at the outputs.

1.5.13 SIPO Shift Register

In SIPO shift register, input data is entered serially but the outputs are taken in parallel. A 4-bit SIPO shift register
is shown in Fig. 1.79.

Input

Clock

Q0

Q0 Q1 Q2 Q3

D0
FF0

0Q

D1 D2 D3
FF1 FF2 FF3

Q1 Q2 Q3

2Q 3Q1Q

FIGURE 1.79 SIPO shift register

It works very much like a SISO shift register. Only difference is that the outputs of every flip-flop are available
as primary output.

1.5.14 Counters

Counter is a sequential circuit that undergoes a sequence of predefined states by the application of clock pulses.
They are constructed using flip-flops and other combinational logic gates. The number of states of a counter is
determined by the number of flip-flops used to design the counter. The following are the two types of counters:
1. Asynchronous counter: In this counter, the external clock is applied to only the first flip-flop and the clock

inputs of rest of the flip-flops are fed by the output of the preceding flip-flops. Asynchronous counter is also
known as ripple counter.

© Oxford University Press. All rights reserved.

Oxfo
rd

 U
niversi

ty
 Pre

ss

✐

✐

“VHDLSample” — 2018/2/21 — 17:09 — page 55 — #55
✐

✐

✐

✐

✐

✐

Introduction to Digital Logic Design 55

2. Synchronous counter: In this counter, all the flip-flops are operated simultaneously/synchronously by the
external clock signal.

1.5.15 Asynchronous/Ripple Counter

A 3-bit ripple counter is shown in Fig. 1.80. It is constructed using three positive edge triggered JK flip-flops. The
J and K inputs are held at logic 1 to keep the flip-flops in toggle mode. In each positive transition in their clock
input each flip-flop just toggles its output. The external clock is applied to the first flip-flop FF0 that toggles its
output in every positive edge of the clock pulse as shown in Fig. 1.81.

FF0

J
0

K
0

K
1

K
2

J
1 J

2
11

CLK

1 1

1

1

FF1 FF2

Q0

0Q

Q1 Q2

2Q1Q

FIGURE 1.80 Three-bit ripple counter

CLK

Q1

Q0 0 1 1

1

1

1

1 1 1

1 1

11 1

1

1

1T 2T 3T 4T 5T 6T 7T 8T 9T

0

0

0

0 0

0 0

0

0

0

0000
Q2

FIGURE 1.81 Waveforms of 3-bit ripple counter

Initially, let us assume that all the flip-flops are at reset state, that is, Q2Q1Q0 = 000. Now we apply the
external clock pulse at the clock input of the first flip-flop. In the first positive edge (at time 1T), FF0 changes its
output Q0 from logic 0 to logic 1. As Q0 is connected to clock input of the second flip-flop, it also changes its
output Q1 from logic 0 to logic 1. Similarly, the third flip-flop also changes its output Q2 from logic 0 to logic 1.
Hence, after the first positive edge of external clock, the state of the counter becomes Q2Q1Q0 = 111.

At time 2T , Q0 goes from logic 1 to logic 0. But this 1→0 transition in Q0 does not trigger FF1, and Q1
remains at logic 1 and therefore Q2 also remains at logic 1. So after the second positive edge of the clock the state
of the counter becomes Q2Q1Q0 = 110. After the third positive edge, Q0 goes back to logic 1 creating a 0→1
transition at clock input of FF1. Thus, FF1 toggles and Q1 becomes logic 0. But Q2 remains at logic 1.

After the third positive edge of the clock, the state of the counter becomes Q2Q1Q0 = 101. In this manner,
the counter goes through a sequence of states till all the flip-flops go to reset state as shown in Fig. 1.82. After
the eight clock pulses, the counter goes back to its initial state of 000. Thus, this counter is also known as mod-8
counter. The sequence of states indicates that this counter acts as a binary down counter, starting from 111 state
down to 000 state.

This counter can be made to count in up direction if the clock input of the second flip-flop onwards is taken
from the Q output of the preceding flip-flop instead Q output.

© Oxford University Press. All rights reserved.

Oxfo
rd

 U
niversi

ty
 Pre

ss

✐

✐

“VHDLSample” — 2018/2/21 — 17:09 — page 56 — #56
✐

✐

✐

✐

✐

✐

56 VHDL: Design, Synthesis, and Simulation

000

111

110

101

100

011

010

001

FIGURE 1.82 Sequence of states of 3-bit ripple counter

1. If flip-flops are positive edge triggered and Q output feeds the clock of the next flip-flop, the counter counts
downward.

2. If flip-flops are positive edge triggered and Q output feeds the clock of the next flip-flop, the counter counts
upward.

3. If flip-flops are negative edge triggered and Q output feeds the clock of the next flip-flop, the counter counts
upward.

4. If flip-flops are negative edge triggered and Q output feeds the clock of the next flip-flop, the counter counts
downward.

1.5.16 Synchronous Counter
Synchronous counter is another type of counter where all the flip-flops are operated by the same clock. The
common clock triggers all the flip-flops simultaneously/synchronously. The state of the flip-flop is decided by the
JK inputs. If J = K = 0, the flip-flops hold their previous states. If J = K = 1, the flip-flops toggle.

A 3-bit synchronous counter is shown in Fig. 1.83. There are three positive edge triggered JK flip-flops. The
external clock signal is applied to all the flip-flops to be triggered simultaneously. The first flip-flop FF0 is in toggle
mode as J0 = K 0 = 1. Therefore, FF0 toggles in every positive edge of clock pulse. FF1 toggles only when Q0
becomes 1 and there is a positive edge of the clock pulse. FF2 toggles when both Q0 and Q1 are at logic 1 and
there is a positive edge of the clock pulse.

FF0

J0

K0 K1 K2

J1 J21

CLK

1

FF1 FF2

FF3

Q0

0Q

Q1 Q2

2Q1Q

FIGURE 1.83 3-Bit synchronous counter

The timing diagram of the clock pulse and flip-flop outputs are shown in Fig. 1.84. Initially, let us assume that
the flip-flops are in reset state, that is, Q2Q1Q0 = 000. After the first positive edge of clock pulse, Q0 becomes
1, and the counter goes from state 000 to 001. In the second positive edge of clock pulse, Q1 becomes 1 as Q0
was at logic 1, and now Q0 becomes 0. Counter goes to state 010. In this manner, the counter counts from 000
to 111. After the eighth clock pulse, it goes back to its initial state 000.

© Oxford University Press. All rights reserved.

Oxfo
rd

 U
niversi

ty
 Pre

ss

✐

✐

“VHDLSample” — 2018/2/21 — 17:09 — page 57 — #57
✐

✐

✐

✐

✐

✐

Introduction to Digital Logic Design 57

CLK

Q1

Q0
0 1 1

0

0

1

0 0 1

0 1

11 1

0

0

1T 2T 3T 4T 5T 6T 7T 8T 9T

0

0

0

1 0

0 0

1

0

0

0111
Q2

FIGURE 1.84 Waveforms of 3-bit synchronous counter

1.6 FINITE-STATE MACHINE

In general, a sequential circuit contains a number of flip-flops and some combinational logic gates. The sequential
circuit undergoes a sequence of binary states. Therefore, sequential circuit is also known as finite-state machine
(FSM). Figure 1.85 shows the structure of a FSM in general. It consists of two parts: a combinational logic portion
and a bunch of flip-flops.

Inputs

Combinational
logic circuit

Flip-flops

Clock

Outputs

FIGURE 1.85 General FSM

Finite-state machines are classified into two following types:
1. Moore state machine—in this FSM, the outputs are determined by only the internal states.
2. Mealy state machine—in this FSM, the outputs are determined by the internal states as well as the inputs.

1.6.1 Example of FSM

Figure 1.86 shows an FSM. The outputs of an FSM are determined by its inputs, and the present state of the
flip-flops. The next states of the flip-flops are also determined by the inputs and the present state of the flip-flops.
The behavior of an FSM is fully specified by a graphical representation called state diagram. Figure 1.87 shows a
state diagram of an FSM. It consists of a number of states that the FSM will follow in sequence by the application
of inputs and the corresponding outputs of the FSM are also described.

The input and output of the FSM are x and y, respectively. There are two DFFs with outputs Q0 and Q1.
The present and next states of the flip-flops are Q1(n)Q0(n) and Q1(n + 1)Q0(n + 1), respectively. From the
circuit diagram, we can write the following state equations:

Q0(n + 1) = x ⊕ Q0(n) (1.79)

Q1(n + 1) = x ⊕ Q0(n) (1.80)

© Oxford University Press. All rights reserved.

Oxfo
rd

 U
niversi

ty
 Pre

ss

✐

✐

“VHDLSample” — 2018/2/21 — 17:09 — page 58 — #58
✐

✐

✐

✐

✐

✐

58 VHDL: Design, Synthesis, and Simulation

Q0
x

y

Q1

CLK

FIGURE 1.86 Example of an FSM

00

0/0 0/0
0/0

0/0

1/0
1/0

1/1

1/0

01

1110

FIGURE 1.87 State diagram

The output y is expressed as follows:

y = xQ0(n)Q1(n) (1.81)

The states are represented by circles enclosed with the corresponding state value. The transitions between the
states are represented by directed lines. The lines are associated with a notation like x/y where x indicates logic
value of the input and y indicates the logic value of the output. For example, 1/0 indicates that input is logic 1
and output is logic 0.

From the state transition diagram, we can derive the state table as shown in Table 1.36. There are four columns
for present state, input, next state, and output.

TABLE 1.36 State table

Present state Input Next state Output

Q1 Q0 x Q1 Q0 y

0 0 0 1 0 0

0 0 1 1 1 0

0 1 0 1 1 0

0 1 1 1 0 0

1 0 0 0 0 0

1 0 1 1 1 1

1 1 0 0 1 0

1 1 1 1 0 0

© Oxford University Press. All rights reserved.

Oxfo
rd

 U
niversi

ty
 Pre

ss

✐

✐

“VHDLSample” — 2018/2/21 — 17:09 — page 59 — #59
✐

✐

✐

✐

✐

✐

Introduction to Digital Logic Design 59

1.6.2 Design of an FSM

Let us design an FSM as described by the state diagram shown in Fig. 1.88. We can implement the FSM using
four steps described as follows:

000

001

010

011

100

101

110

111

FIGURE 1.88 State diagram of a 3-bit binary up-counter

Step 1: The first design step is to derive the state table of the circuit from the given state diagram. Let us assume
three bits as Q2, Q1, and Q0 where Q2 is MSB. The state table can be derived as shown in Table 1.37.

TABLE 1.37 State table of 3-bit binary
up-counter

Clock pulse Present state Next state

Q2 Q1 Q0 Q2 Q1 Q0

1 0 0 0 0 0 1

2 0 0 1 0 1 0

3 0 1 0 0 1 1

4 0 1 1 1 0 0

5 1 0 0 1 0 1

6 1 0 1 1 1 0

7 1 1 0 1 1 1

8 1 1 1 0 0 0

The initial state of the circuit is ‘000’. After every clock pulse, the circuit goes from the present state to the
next state. For example, after the first clock pulse, the circuit goes from the state ‘000’ to ‘001’. After the second
clock pulse, the circuit goes from the state ‘001’ to ‘010’. In this manner, after the eighth clock pulse, the circuit
goes back to its initial state ‘000’.

Step 2: Let us design the circuit using JK flip-flops. Therefore, we need to see how a JK flip-flop changes its
state for the inputs J and K . This is described by its state transition table shown in Table 1.38.

In Table 1.38, Q(n) is the present state and Q(n + 1) is the next state. The letter ‘X ’ indicates don’t care
condition.

Using the Table 1.38, we can rewrite Table 1.37 with required inputs for every state transition as shown in
Table 1.39.

© Oxford University Press. All rights reserved.

Oxfo
rd

 U
niversi

ty
 Pre

ss

✐

✐

“VHDLSample” — 2018/2/21 — 17:09 — page 60 — #60
✐

✐

✐

✐

✐

✐

60 VHDL: Design, Synthesis, and Simulation

TABLE 1.38 State transition table for JK
flip-flop

Output transitions Required inputs

Q(n) → Q(n + 1) J K

0 → 0 0 X

0 → 1 1 X

1 → 0 X 1

1 → 1 X 0

TABLE 1.39 State table of 3-bit binary up-counter

Clock pulse Present state Next state Required inputs

Q2 Q1 Q0 Q2 Q1 Q0 J2 K2 J1 K1 J0 K0

1 0 0 0 0 0 1 0 X 0 X 1 X

2 0 0 1 0 1 0 0 X 1 X X 1

3 0 1 0 0 1 1 0 X X 0 1 X

4 0 1 1 1 0 0 1 X X 1 X 1

5 1 0 0 1 0 1 X 0 0 X 1 X

6 1 0 1 1 1 0 X 0 1 X X 1

7 1 1 0 1 1 1 X 0 X 0 1 X

8 1 1 1 0 0 0 X 1 X 1 X 1

Step 3: The next step is to obtain the Boolean expressions for J and K inputs using the Karnaughmap method
as illustrated in Fig. 1.89.

00
0 0 00

1
1

X X X X

01 11 10
Q1Q0

J2 = Q1 Q0

Q2

00
0
0

10
1 X X

X
X
X

01 11 10
Q1Q0

J1 = Q0

Q2

00
1 X 10

1
X

1 X X 1

01 11 10
Q1Q0

J0 = 1

Q2

00

00 0
0
1 1

X X X X
01 11 10

Q1Q0

K2 = Q1 Q0

Q2

00

0X X
0
1 1

X X 1 0
01 11 10

Q1Q0

K1 = Q0

Q2

00

XX 1
0
1 1

X 1 1 X
01 11 10

Q1Q0

K0 = 1

Q2

FIGURE 1.89 Karnaugh maps for J and K inputs

Step 4: Using the expressions for J and K inputs, the circuit is implemented as shown in Fig. 1.90.

© Oxford University Press. All rights reserved.

Oxfo
rd

 U
niversi

ty
 Pre

ss

✐

✐

“VHDLSample” — 2018/2/21 — 17:09 — page 61 — #61
✐

✐

✐

✐

✐

✐

Introduction to Digital Logic Design 61

Q1Q0J01

1

CLK

K0

J1

K1

J2

K2

Q2

FIGURE 1.90 Circuit diagram for 3-bit up-counter

1.6.3 State Reduction

It is the technique of reducing the number of states of an FSM without disturbing the behavior of the FSM. The
reduction of state will ultimately reduce the required number of logic gates and flip-flops in the design.

Sometimes, different states of an FSM are equivalent to each other and they can be combined into a single state.
Two states of an FSM are equivalent if and only if, for any input, they have identical outputs and the corresponding
next states are equivalent.

Let us consider an example of FSM represented by a finite state diagram shown in Fig. 1.91. The corresponding
state table is shown in Table 1.40. The states s4 and s6 are equivalent as they have identical next state and
output for both inputs. So we can replace the states s4 and s6 with s46 in the state table and remove one of
these states.

0/0

0/0

0/0

0/0

0/0

0/0

0/0
1/1 1/1

1/1

1/1

1/1

1/0

1/0

1/0

s0

s1 s2

s4s3

s5

s5

FIGURE 1.91 FSM with seven states

Now if we look at Table 1.41 we find that the states s3 and s5 are equivalent as they have identical next state
and same output for both inputs. So we replace states s3 and s5 by s35 and remove one of them from the state

© Oxford University Press. All rights reserved.

Oxfo
rd

 U
niversi

ty
 Pre

ss

✐

✐

“VHDLSample” — 2018/2/21 — 17:09 — page 62 — #62
✐

✐

✐

✐

✐

✐

62 VHDL: Design, Synthesis, and Simulation

TABLE 1.40 State table of the FSM shown in
Fig. 1.91

Present state Next state Output

x = 0 x = 1 x = 0 x = 1

s0 s0 s1 0 0

s1 s2 s3 0 0

s2 s0 s3 0 0

s3 s4 s5 0 1

s4 s0 s5 0 1

s5 s6 s5 0 1

s6 s0 s5 0 1

TABLE 1.41 State table of the FSM after
removal of one state

Present state Next state Output

x = 0 x = 1 x = 0 x = 1

s0 s0 s1 0 0

s1 s2 s3 0 0

s2 s0 s3 0 0

s3 s46 s5 0 1

s46 s0 s5 0 1

s5 s46 s5 0 1

table. After this, we do not find any other equivalent states in Table 1.42. Finally, we rename the equivalent states
s35 as s3 and s46 as s4 and rewrite the state table in Table 1.43 and redraw the state diagram in Fig. 1.92.

TABLE 1.42 State table of the FSM after
removal of two states

Present state Next state Output

x = 0 x = 1 x = 0 x = 1

s0 s0 s1 0 0

s1 s2 s35 0 0

s2 s0 s35 0 0

s35 s46 s35 0 1

s46 s0 s35 0 1

© Oxford University Press. All rights reserved.

Oxfo
rd

 U
niversi

ty
 Pre

ss

✐

✐

“VHDLSample” — 2018/2/21 — 17:09 — page 63 — #63
✐

✐

✐

✐

✐

✐

Introduction to Digital Logic Design 63

TABLE 1.43 State table of the FSM after
renaming of equivalent states

Present state Next state Output

x = 0 x = 1 x = 0 x = 1

s0 s0 s1 0 0

s1 s2 s3 0 0

s2 s0 s3 0 0

s3 s4 s3 0 1

s4 s0 s3 0 1

0/0

0/0

0/0

0/0

0/0 1/1 1/0

1/0

1/0

1/1

s0

s4 s1 s2

s3

FIGURE 1.92 FSM with five states

1.6.4 State Encoding

Determining the binary representations of the sates of an FSM is the state encoding problem. State encoding
determines the size of the design and speed of the design. Encoding length is the number of bits required to
represent the states.

The simplest encodingmethod is to encode a state by setting a corresponding bit to 1 and setting the remaining
bits to 0. This is known as 1-hot state encoding.

The minimum length codes uses nb = log2ns bits to represent each state where ns is the number of states. This
code assigns states in binary counting order.

Another encoding technique is to use the Gray code. Gray code one advantage in that there is only one change
required in going from one state to the next state.

The three different encoding techniques for state assignment of Fig. 1.92 are illustrated in Table 1.44.

TABLE 1.44 Different state encoding
techniques

State 1-hot code Binary code Gray code

s0 00001 000 000

s1 00010 001 001

s2 00100 010 011

s3 01000 011 010

s4 10000 100 110

© Oxford University Press. All rights reserved.

Oxfo
rd

 U
niversi

ty
 Pre

ss

✐

✐

“VHDLSample” — 2018/2/21 — 17:09 — page 64 — #64
✐

✐

✐

✐

✐

✐

64 VHDL: Design, Synthesis, and Simulation

1.6.5 State Assignment

We have discussed the technique to reduce the number of states of an FSM. In the previous section, we have
found that a seven-state FSM is converted into a five-state FSM using the state reduction technique. We have also
learned that how each of the states can be encoded into a binary pattern. Now question arises which state should
be assigned to which binary pattern? For example, the state s0 can be assigned to any one of the possible binary
patterns.

The appropriate choice of the binary patterns to the states has an impact on reducing the required number of
logic gates to implement the logic circuit. The minimum number of DFFs required to implement the logic circuit
is related to the number of states in the logic circuit which is given as follows:

2n ≥ m, (1.82)

where n is the number of DFFs and m is the number of state. For example, if there are six states in a state
machine, it will require minimum three DFFs. If there are four states in a state machine, it will require minimum
two DFFs. Now it is possible to assign these four states to the binary patterns in 24 numbers of ways. The number
of combinations of binary patterns to be assigned to m number of states can be expressed as follows:

N =
2n!

(2n − m)!
(1.83)

For example, in four-state FSM, N = 22!/(22 − 4)! = 24 number of combinations are possible to assign the
four states.

1.6.6 Moore Machine

A Moore machine is an FSM in which the output depends only on the present state. It does not depend on the
inputs. A three-state Moore machine is shown in Fig. 1.93.

S0 S1

S2

FIGURE 1.93 State diagram of a typical Moore machine

1.6.7 Mealy Machine

Mealy machine is another FSM in which the output depends on the present state as well as on the input. A three-
state Mealy machine is described by state diagram as shown in Fig. 1.94. It has one input x and one output y.

S0

x = 1
x = 1

x = 1

x = 0

x = 0

x = 0

S1
S2

FIGURE 1.94 State diagram of a Mealy machine

© Oxford University Press. All rights reserved.

Oxfo
rd

 U
niversi

ty
 Pre

ss

✐

✐

“VHDLSample” — 2018/2/21 — 17:09 — page 65 — #65
✐

✐

✐

✐

✐

✐

Introduction to Digital Logic Design 65

1.7 MEMORY

Memory is a logic circuit that is used to store binary information. Normally, flip-flops or latches are used as storage
elements. In dynamic memory, binary information is stored in capacitors.

1.7.1 Units of Memory

The smallest unit of memory is bit. It is either logic 1 or logic 0. A group of 8-bits is known as one byte and a
group of 4-bits is known as one nibble. Typically, memory size is specified in kilobytes, megabytes, gigabytes, or
in terabytes as shown in Table 1.45.

TABLE 1.45 Typical units of memory

Memory size Actual amount in byte Actual amount in bit

1 kilobyte = 1 kB 1024 8×1024

1 megabyte = 1 MB 1024×1024 8×1024×1024

1 gigabyte = 1 GB 1024×1024×1024 8×1024×1024×1024

1 terabyte = 1 TB 1024×1024×1024×1024 8×1024×1024×1024×1024

A word is a group of bits that holds complete unit of information.

1.7.2 Architecture of Memory

A unit that stores one bit is known as a memory cell. A memory is an array of cells as illustrated in Fig. 1.95.

00000

D
7

D
6
D

5
D

4
D

3
D

2
D

1
D

0

Memory location/
address

Content of memory
location 00010

00001

00010

00000

00011

00100

00101
00111

01000

11110

11111

FIGURE 1.95 Memory array architecture

1. Address—The address of memory is the location where the binary data is stored. One location stores one word
of information. If 2n words can be stored in a memory, then its address size is n-bit. For example, a memory
with 32 words has 5 address bits.

2. Data—The binary information stored in a memory location is called data or one memory word. It can be one
byte, two bytes, three bytes, or n-bytes (n is an integer) of binary information.

3. Read—A memory read operation means data retrieval from the memory. To read the memory, a memory
location is to be provided along the read control signal.

© Oxford University Press. All rights reserved.

Oxfo
rd

 U
niversi

ty
 Pre

ss

✐

✐

“VHDLSample” — 2018/2/21 — 17:09 — page 66 — #66
✐

✐

✐

✐

✐

✐

66 VHDL: Design, Synthesis, and Simulation

4. Write—A memory write operation means storing data into the memory. To write into the memory, a memory
location, data to be written, and write control are needed. Write operation is also called programming.

1.7.3 Types of Memories

Memories are broadly classified into the following four types:

1. Sequential access memory (SAM)
2. Random access memory (RAM)
3. Read only memory (ROM)
4. Content addressable memory (CAM)

In SAM, the data is read sequentially from the memory. Thus, read access time varies from one memory
location to the other memory location.

In RAM, the data is read randomly from any memory location. The read access time is equal for all memory
locations. RAM supports both read and write operations. Thus, it is also known as read write memory (RWM).
RAMs are of two types: static RAM (SRAM) and dynamic RAM (DRAM). In SRAM, data is stored in a latch that
stores data for an indefinite amount of time as long as power supply is on. In DRAM, data is stored on the parasitic
stray capacitors in which data is lost after a period of time. Therefore, in DRAM data needs to be refreshed after
regular interval of time.

Read only memory has only provision of memory read, and it does not support write operation. It is one-time
programmable.

The CAM operates differently than RAM or ROM. In CAM, address of a memory is accessed for a given
search data. It compares search data against a table of stored data and returns the address of the matching data. The
search operation performed by CAM is much faster than the software search. Therefore, CAMs are used to replace
software in search-intensive applications such as Internet routers, data compression, and database acceleration.

1.8 CONTROL LOGIC CIRCUITS

Control logic circuit controls the operation of a digital circuit. For example, an adder/subtractor is controlled by a
control signal to either add two operands or subtract one operand from the other. In a bidirectional shift register,
the shifting of data is controlled by a control signal. The circuit associated with the controlling operation is the
control logic circuit. In a processor, there is a control unit that provides timing and control signals to process
different operations depending on the instructions.

A simple adder/subtractor circuit with a control input is shown in Fig. 1.96. The circuit has two parts: an adder
section and a control section. The circuit adds to numbers A and B if the control input Cin = 0 and subtracts B

Add/Subtract
control section

C
in

 (control onput)

B
3

C
out

A
3

C
3

C
2

C
1

A
2

A
1

A
0

S0S1S2S3

B
2

B
1

B
0

Adder section

1-bit
adder

1-bit
adder

1-bit
adder

1-bit
adder

FIGURE 1.96 Adder/subtractor circuit with a control input

© Oxford University Press. All rights reserved.

Oxfo
rd

 U
niversi

ty
 Pre

ss

✐

✐

“VHDLSample” — 2018/2/21 — 17:09 — page 67 — #67
✐

✐

✐

✐

✐

✐

Introduction to Digital Logic Design 67

from A if the control input Cin = 1. Thus, with the help of control section, the adder circuit can add or subtract
depending on the control input. More complex control circuits are discussed in later chapters of the book.

1.9 ALGORITHMIC STATE MACHINE

Algorithmic state machine (ASM) is a logic circuit comprised both sequential and combinational logic parts. The
main task of ASM is to control a digital system to perform the steps of a procedure or an algorithm. The behavior
or functionality of an ASM is described by a chart called ASM chart. ASM chart has three basic elements:

1. State box
2. Decision box
3. Conditional box

A state box is represented by a rectangle with one input and one output. The operation of state box is written
inside the rectangle. The name of the state is specified at the top-left corner of the box. The binary code assigned
to a state box is written at the top-right corner of the box. Figure 1.97 shows a state box.

S
1 100 binary codeState

Y = 1

FIGURE 1.97 State box S1

A decision box is represented by a diamond-shaped box or rhombus with one input and two output branches.
The condition is written inside the rhombus. If the condition is true (or logic 1), the operation control follows
one exit path (Exit path 1), and if the condition is false (or logic 0), the operation control follows another exit
path (Exit path 2). Figure 1.98 shows a decision box.

Condition
1

Exit path 1 Exit path 2

0

FIGURE 1.98 Decision box

A conditional box is represented by an oval-shaped box with one input coming from the exit path of a decision
box and one output. Figure 1.99 shows a conditional box.

Conditional
output

From exit path of decision box

FIGURE 1.99 Conditional box

© Oxford University Press. All rights reserved.

Oxfo
rd

 U
niversi

ty
 Pre

ss

✐

✐

“VHDLSample” — 2018/2/21 — 17:09 — page 68 — #68
✐

✐

✐

✐

✐

✐

68 VHDL: Design, Synthesis, and Simulation

1.9.1 State Diagram vs. ASM Chart

A state diagram can be translated into an ASM chart or vice-versa. Let us consider a state diagram shown in
Fig. 1.100. The state machine has three states: S2, S1, S0 and one input x. The operation starts with the state S0.

x = 0

S
0

0

1

1

1

0

S
1

S
2

FIGURE 1.100 State diagram

1. At state S0, if the input x = 1, the next state is S1, else the next state is S0 itself.
2. At state S1, if the input x = 1, the next state is S2, else the next state is S1 itself.
3. At state S2, if the input x = 1, the next state is S0, else the next state is S1.

A corresponding ASM chart can be derived as shown in Fig. 1.101.

S
1

S
0

1

S
2

0

01

01

x

x

x

FIGURE 1.101 ASM chart

1.9.2 Realization of ASM Chart

An ASM chart is very much like a state diagram to represent the operation of state machine. Therefore, the
sequential circuit implementation technique can be used to realize ASM chart of low or medium complexity.
However, for ASM chart with a large number of states some special method is used.

EXAMPLE 1.17 Realize the ASM chart shown in Fig. 1.101.

© Oxford University Press. All rights reserved.

Oxfo
rd

 U
niversi

ty
 Pre

ss

✐

✐

“VHDLSample” — 2018/2/21 — 17:09 — page 69 — #69
✐

✐

✐

✐

✐

✐

Introduction to Digital Logic Design 69

Solution

There are three states in the ASM chart. Therefore, we need at least 2-bits to represent each state. Hence, there
will be two flip-flops in the circuit. Let us assume that flip-flops are DFF with outputsQ1 andQ0. The state table
for the ASM chart can be written as shown in Table 1.46.

TABLE 1.46 State table for Example 1.17

Input Present state Next state

x Q1(n) Q0(n) Q1(n + 1) Q0(n + 1)

0 0 0 0 0

1 0 0 0 1

0 0 1 0 1

1 0 1 1 0

0 1 0 0 1

1 1 0 0 0

The Boolean expression for the outputs of the next state can be obtained using K-map method as follows:

Q1(n + 1) = xQ0(n) (1.84)

Q0(n + 1) = xQ1(n) + xQ0(n) + xQ1(n)Q0(n) (1.85)

Figure 1.102 realizes the ASM chart shown in Fig. 1.101.

x

CLK

D
1

D
0

Q
1

Q
0

Q
0

Q
1

FIGURE 1.102 Logic circuit that realizes ASM chart shown in Fig. 1.101

1.9.3 Linked State Machine

A state machine with a large number of states and large complexity is often broken into smaller state machines.
These smaller state machines are linked together to form the complete state machine.

© Oxford University Press. All rights reserved.

Oxfo
rd

 U
niversi

ty
 Pre

ss

✐

✐

“VHDLSample” — 2018/2/21 — 17:09 — page 70 — #70
✐

✐

✐

✐

✐

✐

70 VHDL: Design, Synthesis, and Simulation

SUMMARY

1. NOT, OR, AND, NOR, NAND, XOR, and
XNOR are the basic logic gates.

2. NAND and NOR are the universal gates.
Any Boolean expression can be realized using
either of the universal gates.

3. Multiplexer has many inputs to single out-
put signal flow depending on select lines,
whereas demultiplexer has single input to
many output signal flow.

4. Combinational logic circuit does not have
any clock input.

5. Sequential logic circuits are operated using
clock input as well as data inputs.

6. In JK flip-flop, there is no forbidden state.
7. D flip-flop is used as a unit delay element in

digital filter architecture.
8. Algorithmic state machine is a generic rep-

resentation of an FSM at the algorithmic
level.

9. Control logic is an important part of a digital
logic circuit that controls the operation of the
circuit.

EXERCISES

Fill in the Blanks

1.1 Universal logic gates are .
(a)AND & OR
(b)NOT & OR
(c)NAND & NOR
(d)XOR & NOR

1.2 A full-adder is a adder.
(a)2-bit
(b)3-bit
(c)4-bit
(d)1-bit

1.3 gates are not associative.
(a)NAND & NOR
(b)AND & OR
(c)XOR & XNOR
(d)NOT & OR

1.4 The outputs of sequential logic circuits depend on
.

(a)present inputs
(b)present inputs and past outputs
(c)present and past inputs
(d)present inputs and future outputs

1.5 Both AND array and OR array are programmable in
.

(a)PLA
(b)PAL
(c)ROM
(d)PLD

Multiple-choice Type Questions

1.1 XOR logic can be implemented using only
(a)AND gates
(b)NAND gates

(c)OR gates
(d)NOT gates

1.2 The minimum number of NOR gates required to
implement XNOR logic is
(a) four
(b)two
(c) three
(d)five

1.3 JK flip-flop has
(a) all valid input combinations
(b)two valid input combinations
(c) three valid input combinations
(d)one valid input combinations

1.4 Master-slave flip-flop is
(a) edge-triggered flip-flop
(b)level-sensitive flip-flop
(c)both (a) and (b)
(d)none of these

1.5 Multiplexer has
(a)many input lines and single output line
(b)one input line and many output lines
(c)many input lines and many output lines
(d)all of these

1.6 Parity generator circuits are used in
(a) transmitter
(b)receiver
(c)both transmitter and receiver
(d)none of these

1.7 In synchronous circuits, all flip-flops are operated by
(a) common clock
(b)different clock
(c)multiple clock
(d)no clock

© Oxford University Press. All rights reserved.

Oxfo
rd

 U
niversi

ty
 Pre

ss

✐

✐

“VHDLSample” — 2018/2/21 — 17:09 — page 71 — #71
✐

✐

✐

✐

✐

✐

Introduction to Digital Logic Design 71

1.8 The sum-of-product (SOP) form of logical expression
is most suitable for designing logic circuits using only
(a)XOR gates
(b)AND gates
(c)NAND gates
(d)NOR gates

1.9 Which of the following flip-flops is used as a latch?
(a) JK flip-flop
(b)D flip-flop
(c)RS flip-flop
(d)T flip-flop

1.10 The initial state of a mod-16 down counter is 0110.
The state after 37 clock pulse will be
(a)0000
(b)0110
(c)0101
(d)0001

1.11 In a D type latch when enable input is high and
D = 1, the output will be
(a)0
(b)1
(c)don’t care
(d)blocked

1.12 The frequency of the pulse at point A in Fig. 1.103 is

100 kHz
Clock

10-bit
ring

counter

4-bit
parallel
counter

A
Mod-20
ripple

counter

FIGURE 1.103 Diagram for Problem 12

(a)10 kHz
(b)31.25 kHz
(c)50 kHz
(d)5 kHz

1.13 An example of weighted code is
(a)Excess-3 code
(b)ASCII code
(c)Hamming code
(d)8421 code

1.14 The minimum number of NAND gates required to
design a full-adder is
(a)5
(b)9
(c)6
(d)10

1.15 A decoder with enable input can be used as
(a) encoder
(b)parity generator
(c)NAND gate
(d)demultiplexer

1.16 The output of a logic gate 1 when all its inputs are at
logic 0. The gate is either
(a)NAND or XOR gate

(b)NOR or XOR gate
(c)AND or XNOR gate
(d)NOR or XNOR gate

1.17 JK flip-flop has
(a)one stable state
(b)two stable states
(c)no stable state
(d)none of these

1.18 The operation which is cumulative but not associative
is
(a)AND
(b)XOR
(c)NAND
(d)NOT

1.19 The number of XOR gates required for conversion of
11011 to its equivalent gray code is
(a)2
(b)4
(c)3
(d)5

1.20 A message is 010101. For even parity generator, the
parity bit to be added to the message is
(a)0
(b)1
(c)0 and 1
(d)none of these

1.21 The output Y in the circuit shown in Fig. 1.104 is
always 1 when

P

Q

R

Y

FIGURE 1.104 Diagram for Problem 21

(a) two or more of the inputs are 0
(b)two or more of the inputs are 1
(c) any odd number of the inputs is 0
(d)any odd number of the inputs is 1

1.22 The logic function implemented by the circuit shown
in Fig. 1.105 is

4:1 MUX

S
1

I
1

I
0

I
2

I
3 S

0

Y F

P Q

FIGURE 1.105 Diagram for Problem 22

© Oxford University Press. All rights reserved.

Oxfo
rd

 U
niversi

ty
 Pre

ss

✐

✐

“VHDLSample” — 2018/2/21 — 17:09 — page 72 — #72
✐

✐

✐

✐

✐

✐

72 VHDL: Design, Synthesis, and Simulation

(a)F = AND(P,Q)
(b)F = OR(P,Q)
(c)F = XNOR(P,Q)
(d)F = XOR(P,Q)

1.23 When the output Y in the circuit shown in Fig. 1.106
is 1, it implies that data has

DData

Clock

Q D Q Y

Q Q

FIGURE 1.106 Diagram for Problem 23

(a) changed from 0 to 1
(b)changed from 1 to 0
(c) changed in either direction
(d)not changed

1.24 Two D flip-flops are connected as a synchronous
counter that goes through the following sequence.
00 → 11 → 01 → 10 → 00 → · · · The
connections to the inputs DA and DB are
(a)DA = QB , DB = QA

(b)DA = QA, DB = QB

(c)DA = (QAQB + QAQB , DB = QA

(d)DA = (QAQB + QAQB), DB = QB

1.25 Match the logic gates in column A with their
equivalent in column B in Fig. 1.107.

Coloumn A

4.

3.

2.

1.P.

Q.

R.

S.

Coloumn B

FIGURE 1.107 Diagram for Problem 25

(a)P-2, Q-4, R-1, S-3
(b)P-4, Q-2, R-1, S-3
(c)P-2, Q-4, R-3, S-1
(d)P-4, Q-2, R-3, S-1

1.26 For the output F to be 1 in the logic circuit shown in
Fig. 1.108, the input combination should be

A

B

F

C

FIGURE 1.108 Diagram for Problem 26

(a)A = 1, B = 1, C = 0
(b)A = 1, B = 0, C = 0
(c)A = 0, B = 1, C = 0
(d)A = 0, B = 0, C = 1

1.27 Assuming that all flip-flops are in reset state initially,
the count sequence observed at QA in the circuit
shown in Fig. 1.109 is

Output

D
A

Q
A

D
B

Q
B

D
C

Q
C

AQ
BQ CQ

FIGURE 1.109 Diagram for Problem 27

(a)0010111...
(b)0001011...
(c)0101111...
(d)0110100...

1.28 The Boolean function realized by the logic circuit
shown in Fig. 1.110 is

4:1 MUX

S
1

I
1

I
0

I
2

I
3

S
0

Y F(A, B, C, D)

A

C

D

B

FIGURE 1.110 Diagram for Problem 28

(a)F =
∑

m(0, 1, 3, 5, 9, 10, 14)

© Oxford University Press. All rights reserved.

Oxfo
rd

 U
niversi

ty
 Pre

ss

✐

✐

“VHDLSample” — 2018/2/21 — 17:09 — page 73 — #73
✐

✐

✐

✐

✐

✐

Introduction to Digital Logic Design 73

(b)F =
∑

m(0, 1, 3, 5, 9, 10, 14)
(c)F =

∑

m(1, 2, 4, 5, 11, 14, 15)
(d)F =

∑

m(2, 3, 5, 7, 8, 9, 12)
1.29 If X = 1 in the following logic expression, then

X +Z{Y + (Z + XY)}{X +Z(X +Y)} = 1 (1.86)

(a)Y = Z
(b)Y = Z
(c)Z = 1
(d)Z = 0

1.30 What are the minimum numbers of 2-to-1
multiplexers required to generate a two-input AND
gate and a two-input XOR gate?
(a)1 and 2
(b)1 and 3
(c)1 and 1
(d)2 and 2

1.31 In the two-latch circuits shown in Fig. 1.111, the
inputs (P1, P2) for both the latches are first made (0,
1) and then, after a few seconds, made (1, 1). The
corresponding stable outputs (Q1, Q2) are

P
1

P
1Q

1 Q
1

Q
2

Q
2P

2 P
2

FIGURE 1.111 Diagram for Problem 31

(a)NAND: first (0,1) then (0,1) NOR: first (1,0) then
(0,0)

(b)NAND: first (1,0) then (1,0) NOR: first (1,0) then
(1,0)

(c)NAND: first (1,0) then (1,0) NOR: first (1,0) then
(0,0)

(d)NAND: first (1,0) then (1,1) NOR: first (0,1) then
(0,1)

1.32 What are the counting states (Q1, Q2) for the counter
shown below?

K
1

K
2

J
1

Clock

J
2

1

Q
1

Q
1

Q
2

Q
2

2
Q

1
Q

FIGURE 1.112 Diagram for Problem 32

(a)11, 10, 00, 11, 10, · · ·
(b)01, 10, 11, 00, 01, · · ·

(c)00, 11, 01, 10, 00, · · ·
(d)01, 10, 00, 01, 10, · · ·

1.33 Which of the following Boolean expression correctly
represents the relation between P, Q , R, and M1?

P
Q X

Y

Z

M
1

R

FIGURE 1.113 Diagram for Problem 33

(a)M1 = (P OR Q) XOR R
(b)M1 = (P AND Q) XOR R
(c)M1 = (P NOR Q) XOR R
(d)M1 = (P XOR Q) XOR R

1.34 For the circuit shown in Fig. 1.114, I0 − I3 are inputs
to the 4:1 multiplexer. R (MSB) and S are control bits.

4:1 MUX

I
2

I
3

I
1

I
0

Z

P

P

P

P

Q

R S

Q

FIGURE 1.114 Diagram for Problem 34

The output Z can be represented by
(a)PQ + PQS + Q R S
(b)PQ + PQR + P Q S
(c)PQ R + PQR + PQRS + Q R S
(d)PQR + PQRS + PQ RS + Q R S

1.35 For each of the positive edge-triggered JK flip-flop
used in Fig. 1.115, the propagation delay is �T .

CLK

CLK
1

1

1 1

1

0

J
0

t
1

Q
0

Q
1

K
0

T
t

J
1

K
1

FIGURE 1.115 Diagram for Problem 35

© Oxford University Press. All rights reserved.

Oxfo
rd

 U
niversi

ty
 Pre

ss

✐

✐

“VHDLSample” — 2018/2/21 — 17:09 — page 74 — #74
✐

✐

✐

✐

✐

✐

74 VHDL: Design, Synthesis, and Simulation

Which of the following waveforms shown in Fig.
1.116 correctly represent the output at Q1?

a)

b)

c)

d)

1

2T
0

1t T+∆

1

4T

0

1 2t T+ ∆

1t T+∆

1

4T

0

1

2T
0

1 2t T+ ∆

FIGURE 1.116 Waveforms for Problem 35

1.36 For the circuit shown in Fig. 1.117, D has a transition
from 0 to 1 after CLK changes from 1 to 0. Assume
gate delays to be negligible.

1

1

0 CLK

D

Q

0

Q

FIGURE 1.117 Waveforms for Problem 36

Which of the following statement is true?
(a)Q goes to 1 at the CLK transition and stays at 1.
(b)Q goes to 0 at the CLK transition and stays at 0.
(c)Q goes to 1 at the CLK transition and goes to 0

when D goes to 1.
(d)Q goes to 0 at the CLK transition and goes to 1

when D goes to 1.
1.37 The Boolean function Y = AB + CD is to be realized

using only two-input NAND gates. The minimum
number of gate required is
(a)2
(b)3
(c)4
(d)5

1.38 In the circuit shown in Fig. 1.118, X is given by

4-to-1
MUX

0

1

1

0
S

1

I
1

I
0

I
2

I
3

S
0

Y

A B

4-to-1
MUX

0

1

1

0
S

1

I
1

I
0

I
2

I
3

S
0

Y X

C

FIGURE 1.118 Waveforms for Problem 38

(a)X = AB C + ABC + ABC + ABC
(b)X = ABC + ABC + ABC + AB C
(c)X = AB + BC + AC
(d)X = A B + B C + AC

1.39 The following binary values were applied to the X and
Y inputs of the NAND latch shown in Fig. 1.119 in
the sequence indicated below: X = 0, Y = 1; X = 0, Y
= 0; X = 1, Y = 1. The corresponding stable P, Q
outputs will be

X
P

QY

FIGURE 1.119 Waveforms for Problem 39

(a)P = 1, Q = 0; P = 1, Q = 0; P = 1, Q = 0 or
P = 0, Q = 1

(b)P = 1, Q = 0; P = 0, Q = 1 or P = 0, Q = 1;
P = 0, Q = 1

(c)P = 1, Q = 0; P = 1, Q = 1; P = 1, Q = 0 or
P = 0, Q = 1

(d)P = 1, Q = 0; P = 1, Q = 1; P = 1, Q = 1
1.40 For the circuit shown in Fig. 1.120, the counter state

(Q1Q0) follows the sequence

D
0

D
1

Q
0

Clock

Q
1

FIGURE 1.120 Waveforms for Problem 40

(a)00, 01, 10, 11, 00, · · ·
(b)00, 01, 10, 00, 10, · · ·
(c)00, 01, 11, 00, 01, · · ·
(d)00, 10, 11, 00, 10, · · ·

© Oxford University Press. All rights reserved.

Oxfo
rd

 U
niversi

ty
 Pre

ss

✐

✐

“VHDLSample” — 2018/2/21 — 17:09 — page 75 — #75
✐

✐

✐

✐

✐

✐

Introduction to Digital Logic Design 75

State True or False

1.1 Barrel shifter is a sequential circuit.
1.2 In Moore state machine, the outputs are determined

by only the internal states.
1.3 Setup time is the time after the clock transition when

data must not change.
1.4 The outputs toggle in a T flip-flop when its T-input is

at logic 1.
1.5 Ripple counter is an asynchronous counter.

Short-answer Type Questions

1.1 Design a 4:16 decoder using 3:8 decoders.
1.2 Implement two-input XOR function using minimum

number of two-input NAND gates.
1.3 Design a full-subtractor using 4:1 multiplexer.
1.4 Perform the conversion from SR to JK flip-flop.
1.5 Realize a full-subtractor using only NOR gates.
1.6 Draw a BCD adder circuit to add two BCD numbers

maximum up to 9. The outputs of this adder should
also be in BCD.

1.7 Construct a 2-bit comparator using only decoder.
1.8 What is the main difference between a latch and a

flip-flop?
1.9 Design a full-adder using 3:8 decoder and other logic

gates.
1.10 Explain the race-around condition of JK flip-flop.

Long-answer Type Questions

1.1 (a) Design a mod-10 synchronous binary up-counter
using JK flip-flop and other necessary gates. (b)
Calculate the propagation delay for 4-bit synchronous
binary up-counter when JK flip-flops are connected
in series and parallel. Given that the propagation

delay of the flip-flop is 30 ns and the other logic gates
have equal propagation delay of 20 ns.

1.2 (a) Draw the circuit for a 4-bit Johnson counter using
D flip-flop and explain its operation. Draw its timing
diagram. How does the timing diagram differ from
that of a Ring counter? (b) Perform the conversion
from D flip-flop to JK flip-flop.

1.3 (a) Distinguish between ROM, PLA, and PAL. (b)
Design a combinational circuit using an 8 × 4 ROM
that accepts a 3-bit number and generates an output
binary number equal to the square of the input
number. (c) Draw a logic diagram of master-slave JK
flip-flop. Why is it called so?

1.4 (a) Write down the difference between combinational
logic circuit and sequential logic circuit. (b) Design a
mod-14 asynchronous up/down counter using JK
flip-flop.

1.5 (a) Design a combinational circuit that accepts a
BCD input and generates Excess-3 as output using
ROM. (b) Design and explain the operation of a 4-bit
universal register.

1.6 (a) Write down the excitation table of JK and D
flip-flops. Derive the excitation equation for these
flip-flops. (b) Design a full-subtractor using a
full-adder and NOT gates.

1.7 Obtain the ASM chart for the following state
transitions: (a) If x = 0, control goes from state S1 to
state S2; if x = 1, generate a conditional operation
and go from S1 to S2. (b) If x = 1, control goes from
S1 to S2 and then to S3; if x = 0, control goes from
S1 to S3. (c) Start from state S1; then: if xy = 00, go
to state S2; if xy = 01, go to state S3; if xy = 10, go
to state S1; otherwise, go to state S3.

1.8 Design a mod-8 up/down counter.

© Oxford University Press. All rights reserved.

Oxfo
rd

 U
niversi

ty
 Pre

ss

✐

✐

“VHDLSample” — 2018/2/21 — 17:09 — page 76 — #76
✐

✐

✐

✐

✐

✐

76 VHDL: Design, Synthesis, and Simulation

ANSWERS

Fill in the Blanks

1.1 1.2 1.3 1.4 1.5

(c) (b) (a) (b) (a)

Multiple-choice Type Questions

1.1 1.2 1.3 1.4 1.5 1.6

(b) (a) (a) (a) (a) (a)

1.7 1.8 1.9 1.10 1.11 1.12

(a) (c) (c) (d) (b) (b)

1.13 1.14 1.15 1.16 1.17 1.18

(d) (b) (d) (d) (b) (c)

1.19 1.20 1.21 1.22 1.23 1.24

(b) (b) (b) (d) (a) (d)

1.25 1.26 1.27 1.28 1.29 1.30

(d) (d) (d) (d) (d) (a)

1.31 1.32 1.33 1.34 1.35 1.36

(c) (c) (d) (a) (b) (a)

1.37 1.38 1.39 1.40

(b) (a) (c) (b)

True or False

1.1 1.2 1.3 1.4 1.5

(f) (t) (f) (t) (t)

© Oxford University Press. All rights reserved.

Oxfo
rd

 U
niversi

ty
 Pre

ss

