

�

�

������������ � ��������� � �
��� � ��
� �
 � 	�

�

�

�

�

�

�

������������ �� ������� ����� ������ ��

����� ���� ����� ����� �� �� ��� ���� ��
�������� �����
	� ���

����� ����� ��� ���� ����� ����� ��� ���
������
�

� �
 ��� �	�
�

�
���� ������ ������

���� ������ ����
���

���� 	� ��� ���

� � � � � � � � � � � � ��� � � � �

� � � � � � � � � � �

� � � � � � � � � � �

� � � � � � � � � � �

� � � � � � � � � � �

��
�� � �� ����� � �� ���� �� �•�•���• ��� •�••� •�• �� ��� �•��� ��•�� �• ­€
���‚ ƒ� ���• •�„� •� ��� ���������
�•�…����� ­€
��� �•��
 †�� ‡ˆ �• •��•� �� ‰�
‚ �‚†�Š�‹‚ Œ��� ��� ��� •����� ����• �• � ‡ˆ �•� �•�• �• ���
�����• �� ��������� ��„ ���•��������� ��
��� ��� •�•�
� •�„�� �• Ž��•� �• �„��…� •�•�
�‚

Š•‹ ��� �• ��• ��������� � �•�…����� ­€
��� �•��
 ��� ‡ˆ ‚ ƒ� ��� ‡ˆ � ���•� �• ���„ ��� •����� �����‚
‘��•�•�•�� ���„ ��� ����� Š�•�•�•�•�„ � ‹ ��� ��� �• •����� ����� ��• ��� ����• ����� � ��•� •� ��������• �� •���
�����•‚ ’• •��•� �� ‘�•�� �‚��� �� � �•�…����� ­€
���� �� �• �••�•“�• ����

�‚ •��� � � �� � � � � ��•
�‚ •��� � � �� � � �

����� ���� ����� ����� �� �	� ���

�
���� ������ ������ ������

��� ������ ����
���

���� 	� ��� ���

� � � � � � � � �
�
�

�
�

�
� � � � �� � � � � � � � � � �

�
�

�
�

�
� � � � �� � � � � � � � � � �

‘��•�•�•�� •� ��� ��������� �•�…����� ­€
��� •„ ���������
 � �� � � � �� � �� ��• � �� � � �• •��•� ��
‰�
‚ �‚†�Š•‹‚ Œ��� ��� �• ��� �����• �• ��� ���•��������� ��•���� �� •� ����������• �•��
 ‡ˆ � �• •���“�•
••�� ��� •����� ����•� ��� •�•�
� •�„�� �• Ž��•� �• �„��…� •�•�
�‚

�� �� ���

�� �� ���

�� �� ���
�� ������ �� ���

�� �� ���
�� �� ���
�� �� ���

���
���

���
���

�

��� ���

�
� �� ���

������ ���� ������
�� ��� ���� ��
�������� ����� ���
	� ��� ��� �	� ���

© Oxford University Press. All rights reserved.

Oxfo
rd

 U
niversi

ty
 Pre

ss

✐

✐

“VHDLSample” — 2018/2/21 — 17:09 — page 28 — #28
✐

✐

✐

✐

✐

✐

28 VHDL: Design, Synthesis, and Simulation

1.4.12 Demultiplexer

A demultiplexer has a logic circuit, which does the reverse operation of a multiplexer. It has a single data input line
and 2n output lines. The data input goes to one of the output lines depending on the select input lines. A 1 : 2n

demultiplexer has 2n output lines and n select lines. A demultiplexer is also known as DEMUX. A 1:4 DEMUX
is shown in Fig. 1.41.

 Y
0

 Y
1

 Y
2

 Y
3

 S
1

 S
0

1:4
DEMUXI

FIGURE 1.41 1:4 Demultiplexer

The operation of 1:4 DEMUX is illustrated in Table 1.22.

1. When S1 = 0 and S0 = 0, I input goes to the output Y 0, that is, Y 0 = IS1 S0.
2. When S1 = 0 and S0 = 1, I input goes to the output Y 1, that is, Y 1 = IS1 S0.
3. When S1 = 1 and S0 = 0, I input goes to the output Y 2, that is, Y 2 = IS1 S0.
4. When S1 = 1 and S0 = 1, I input goes to the output Y 3, that is, Y 3 = IS1 S0.

TABLE 1.22 Truth table of 1:4
DEMUX

Select inputs Outputs

S1 S0 Y3 Y2 Y1 Y0

0 0 0 0 0 I

0 1 0 0 I 0

1 0 0 I 0 0

1 1 I 0 0 0

The 1:4 DEMUX can be implemented using basic logic gates as shown in Fig. 1.42.

 S
0 S

1

 I

 I

 I

 I

 Y
0

 Y
1

 Y
2

 Y
3

FIGURE 1.42 Logic circuit of 1:4 DEMUX

© Oxford University Press. All rights reserved.

Oxfo
rd

 U
niversi

ty
 Pre

ss

✐

✐

“VHDLSample” — 2018/2/21 — 17:09 — page 29 — #29
✐

✐

✐

✐

✐

✐

Introduction to Digital Logic Design 29

1.4.13 Decoder

A decoder is a combinational logic circuit with n input lines and 2n output lines. Depending on the input
combinations, one of the output lines becomes logic 1 and the remaining outputs become logic 0. For example, a
2:4 decoder has two input lines and four output lines as shown in Fig. 1.43.

 Y
0

 Y
1

 Y
2

 Y
3

 D
0

 D
1 2:4

Decoder

FIGURE 1.43 2:4 Decoder

The operation of a 2:4 decoder is illustrated in Table 1.23.

1. When D1 = 0 and D0 = 0, Y 0 = 1 and Y 3 = Y 2 = Y 1 = 0. Thus, Y 0 = D1D0.
2. When D1 = 0 and D0 = 1, Y 1 = 1 and Y 3 = Y 2 = Y 0 = 0. Thus, Y 1 = D1D0.
3. When D1 = 1 and D0 = 0, Y 2 = 1 and Y 3 = Y 1 = Y 0 = 0. Thus, Y 2 = D1D0.
4. When D1 = 1 and D0 = 1, Y 3 = 1 and Y 2 = Y 1 = Y 0 = 0. Thus, Y 3 = D1D0.

TABLE 1.23 Truth table of 2:4
decoder

Inputs Outputs

D1 D0 Y3 Y2 Y1 Y0

0 0 0 0 0 1

0 1 0 0 1 0

1 0 0 1 0 0

1 1 1 0 0 0

A 2:4 decoder can be realized using basic logic gates as shown in Fig. 1.44.

 D
0D

1

 Y
0

 Y
1

 Y
2

 Y
3

FIGURE 1.44 Logic circuit of 2:4 decoder

A decoder with n inputs implements 2n minterms at the output. For example, a 2:4 decoder with inputs A
and B implements four outputs as m0, m1, m2, and m3, where m0 = AB, m1 = AB, m2 = AB, and m3 = AB.

© Oxford University Press. All rights reserved.

Oxfo
rd

 U
niversi

ty
 Pre

ss

✐

✐

“VHDLSample” — 2018/2/21 — 17:09 — page 30 — #30
✐

✐

✐

✐

✐

✐

30 VHDL: Design, Synthesis, and Simulation

Thus, it can be used to implement any Boolean expression of two inputs. Similarly, in general a decoder with n
inputs can implement any Boolean function of n input variables.

EXAMPLE 1.11 Design a full-adder using 3:4 decoder.

Solution

A full-adder has three inputs: A, B, and Cin. The Boolean expressions for its outputs Sum and Cout are given as
follows:

Sum = ABCin + ABCin + AB Cin + ABCin = m1 + m2 + m4 + m7 (1.55)

Cout = ABCin + ABCin + ABCin + ABCin = m3 + m5 + m6 + m7 (1.56)
Thus, sum can be implemented by ORing four minterms: m1, m2, m4, andm7, and Cout can be implemented

by ORing four minterms: m3, m5, m6, and m7 as shown in Fig. 1.45.

A

3:8
Decoder

Sum

C
out

B

C
in

 D
0

 m
0

 m
1

 m
2

 m
3

 m
4

 m
5

 m
6

 m
7

 D
1

 D
2

FIGURE 1.45 Full-adder implemented using a 3:8 decoder and two 4-input OR gates

1.4.14 Encoder
The encoder is a logic circuit that does the reverse operation of a decoder. It has 2n input lines and n output lines.
For example, a 4:2 encoder has four input lines and two output lines as shown in Fig. 1.46. The operation of 4:2
encoder is illustrated in Table 1.24.

 D
0 4:2

Encoder
 Y

0

 Y
1

 D
1

 D
2

 D
3

FIGURE 1.46 4:2 Encoder

TABLE 1.24 Truth table of 4:2
encoder

Inputs Outputs

D3 D2 D1 D0 Y1 Y0

0 0 0 1 0 0

0 0 1 0 0 1

0 1 0 0 1 0

1 0 0 0 1 1

© Oxford University Press. All rights reserved.

Oxfo
rd

 U
niversi

ty
 Pre

ss

✐

✐

“VHDLSample” — 2018/2/21 — 17:09 — page 31 — #31
✐

✐

✐

✐

✐

✐

Introduction to Digital Logic Design 31

The Boolean expressions for the outputs of a 4:2 encoder are given as follows:

Y 0 = D1 + D3 (1.57)
and

Y 1 = D2 + D3 (1.58)
The logic circuit that implements a 4:2 encoder is shown in Fig. 1.47.

 Y
0

 Y
1

 D
0

 D
1

 D
2

 D
3

FIGURE 1.47 Logic circuit of 4:2 encoder

1.4.15 Comparator

A comparator is a digital logic circuit that compares two numbers A and B and produces three outputs Y 2, Y 1,
and Y 0 to indicate the following relations between A and B:
1. Y 2 = 1, Y 1 = 0, and Y 0 = 0 if A > B.
2. Y 2 = 0, Y 1 = 1, and Y 0 = 0 if A = B.
3. Y 2 = 0, Y 1 = 0, and Y 0 = 1 if A < B.

Figure 1.48 shows a 4-bit comparator.

 A
0

 Y
2
= A > B

 Y
1
= A = B

 Y
0
= A < B

4-bit
comparator A

1

 A
2

 A
3

 B
0

 B
1

 B
2

 B
3

FIGURE 1.48 4-Bit comparator

EXAMPLE 1.12 Design a 2-bit comparator circuit using basic logic gates.

Solution

The functionality of a 2-bit comparator is described in Table 3.6.
The Boolean expressions for the outputs can be obtained using Karnaugh map method as follows:

Y 2 = A1B1 + A0B0(A1 + B1) (1.59)

Y 1 = (A1 B1 + A1B1)(A0B0 + A0B0) (1.60)

Y 0 = A1B1 + A0B0(A1 + B1) (1.61)

© Oxford University Press. All rights reserved.

Oxfo
rd

 U
niversi

ty
 Pre

ss

✐

✐

“VHDLSample” — 2018/2/21 — 17:09 — page 32 — #32
✐

✐

✐

✐

✐

✐

32 VHDL: Design, Synthesis, and Simulation

TABLE 1.25 Truth table of a 2-bit
comparator

Inputs Outputs

A1 A0 B1 B0 Y2 Y1 Y0

0 0 0 0 0 1 0

0 0 0 1 0 0 1

0 0 1 0 0 0 1

0 0 1 1 0 0 1

0 1 0 0 1 0 0

0 1 0 1 0 1 0

0 1 1 0 0 0 1

0 1 1 1 0 0 1

1 0 0 0 1 0 0

1 0 0 1 1 0 0

1 0 1 0 0 1 0

1 0 1 1 0 0 1

1 1 0 0 1 0 0

1 1 0 1 1 0 0

1 1 1 0 1 0 0

1 1 1 1 0 1 0

Figure 1.49 shows the implementation of the 2-bit comparator.

 A
0

 B
1

 B
0

 Y
2

 Y
0

 Y
1

 A
1

1 1A B

1 1A B

0 0A B

0 0A B

1 1A B+

1 1A B+

FIGURE 1.49 Logic circuit of a 2-bit comparator

© Oxford University Press. All rights reserved.

Oxfo
rd

 U
niversi

ty
 Pre

ss

✐

✐

“VHDLSample” — 2018/2/21 — 17:09 — page 33 — #33
✐

✐

✐

✐

✐

✐

Introduction to Digital Logic Design 33

1.4.16 Code Converter

A code converter is a logic circuit that converts a binary code to another binary code. For example, binary-to-grey
code converter converts binary inputs to grey outputs. The truth table of the binary-to-grey code converter is
shown in Table 1.26.

TABLE 1.26 Truth table of binary-to-grey
code converter

Inputs Outputs

B3 B2 B1 B0 G3 G2 G1 G0

0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 1

0 0 1 0 0 0 1 1

0 0 1 1 0 0 1 0

0 1 0 0 0 1 1 0

0 1 0 1 0 1 1 1

0 1 1 0 0 1 0 1

0 1 1 1 0 1 0 0

1 0 0 0 1 1 0 0

1 0 0 1 1 1 0 1

1 0 1 0 1 1 1 1

1 0 1 1 1 1 1 0

1 1 0 0 1 0 1 0

1 1 0 1 1 0 1 1

1 1 1 0 1 0 0 1

1 1 1 1 1 0 0 0

The Boolean expression for the outputs obtained using K-map method is as follows:

G3 = B3 (1.62)

G2 = B3 ⊕ B2 (1.63)

G1 = B2 ⊕ B1 (1.64)

G0 = B1 ⊕ B0 (1.65)

Figure 1.50 shows the logic circuit for binary-to-grey code converter.

© Oxford University Press. All rights reserved.

Oxfo
rd

 U
niversi

ty
 Pre

ss

✐

✐

“VHDLSample” — 2018/2/21 — 17:09 — page 34 — #34
✐

✐

✐

✐

✐

✐

34 VHDL: Design, Synthesis, and Simulation

B
2

B
3 G

3

G
2

G
1

G
0

B
1

B
0

FIGURE 1.50 Logic circuit of binary-to-grey code converter

1.4.17 Parity Generator and Checker

Parity generation and checking are two processes adopted in the transmitter and receiver to detect any error in
the process of data transmission from the transmitter to the receiver. An extra bit is added at the transmitter. This
extra bit is known as parity bit. There are two different parity generation and checking process. These are even
parity and odd parity. In even parity, the parity bit added to make to number of ‘1’s even in a binary data. In odd
parity, the parity bit added to make to number of ‘1’s odd in a binary data. At the receiver end, if the received data
does not match with the parity type followed at the transmitter, then an error is detected. Parity generator is the
circuit that generates the parity bit, whereas parity checker is the circuit that checks the parity.

Parity Generator
Let us consider the case of even parity. Thus, the number of ‘1’ in the binary data to be even including the parity
bit. The truth table for a 3-bit even parity generator is given in Table 1.27.

TABLE 1.27 Truth table of even
parity generator

Inputs Outputs

3-bit data inputs Even parity bit

D2 D1 D0 P

0 0 0 0

0 0 1 1

0 1 0 1

0 1 1 0

1 0 0 1

1 0 1 0

1 1 0 0

1 1 1 1

The Boolean expression for the parity bit P is obtained using K-map method as follows:

P = D2 ⊕ D1 ⊕ D0 (1.66)

Figure 1.51(a) shows the logic circuit of 3-bit even parity generator.

© Oxford University Press. All rights reserved.

Oxfo
rd

 U
niversi

ty
 Pre

ss

✐

✐

“VHDLSample” — 2018/2/21 — 17:09 — page 35 — #35
✐

✐

✐

✐

✐

✐

Introduction to Digital Logic Design 35

D
2 D

2

D
1 D

1

D
0 D

0

P

P

C

(b)(a)

FIGURE 1.51 (a) Logic circuit of 3-bit even parity generator, (b) logic circuit of 4-bit even parity checker

Parity Checker
A parity checker checks if the parity is maintained in the binary data after the transmission. The output of parity
checker is logic 1 when an error is detected in the transmitted data. Let us consider the 3-bit binary data with
parity bit that is transmitted. Table 1.28 shows the truth table of 4-bit parity checker.

TABLE 1.28 Truth table of even parity checker

Inputs Outputs

4-bit data inputs Output of even parity checker

D2 D1 D0 P C

0 0 0 0 0

0 0 0 1 1

0 0 1 0 1

0 0 1 1 0

0 1 0 0 1

0 1 0 1 0

0 1 1 0 0

0 1 1 1 1

1 0 0 0 1

1 0 0 1 0

1 0 1 0 0

1 0 1 1 1

1 1 0 0 0

1 1 0 1 1

1 1 1 0 1

1 1 1 1 0

The Boolean expression for the parity checker output C is obtained using K-map method as follows:

C = D2 ⊕ D1 ⊕ D0 ⊕ P (1.67)

Figure 1.51(b) shows the logic circuit of 4-bit even parity checker.

© Oxford University Press. All rights reserved.

Oxfo
rd

 U
niversi

ty
 Pre

ss

✐

✐

“VHDLSample” — 2018/2/21 — 17:09 — page 36 — #36
✐

✐

✐

✐

✐

✐

36 VHDL: Design, Synthesis, and Simulation

1.4.18 Array Multiplier

Multipliers are the most useful building blocks after the adders in digital signal processor (DSP) or arithmetic
computing systems. A multiplier has two binary inputs—one is called Multiplicand and the other is called
Multiplier. It has one binary output, which is the product of Multiplicand and Multiplier. If A and B are the
two 4-bit numbers, then their product can be written as follows:

P =

3
∑

i=0

ai2
i ×

3
∑

j=0

bj2
j (1.68)

The 4×4-bit multiplication is illustrated in Fig. 1.52.

a3

a3b0
a3b1

a3b2 a2b2 a1b2 a0b2
a0b3a1b3a2b3a3b3

p7 p6 p5 p4 p3 p2 p1 p0

a2b1 a1b1 a0b1
a2b0 a1b0 a0b0

Partial
products}

b3 b2 b1 b0

a2 a1 a0 = A (Multiplicand)
×

= P (Product)

= B (Multiplier)

FIGURE 1.52 Process of 4×4-bit multiplication

In general, the multiplier can be either unsigned type or signed type. An unsigned multiplier takes two binary
inputs in unsigned format and produces product in unsigned format. The signed multiplier takes two binary
inputs in 2’s complement format and produces result in 2’s complement format.

An unsigned arraymultiplier design is based on simple pen and paper method of multiplication. That is taking
bit by bit from the multiplier, the partial products are generated by multiplying the bit to the multiplicand. Then
the partial products are written in rows by shifting each row by one bit position to the right. The partial product
rows are added column wise. Figure 1.53 illustrates the logic circuit of an unsigned array multiplier.

a
3
b

0

a
3
b

1

a
3
b

2

a
3
b

3

P
3

P
2

P
1

P
0

P
4

P
5

P
6

P
7

a
2
b

0
a

1
b

0
a

0
b

0

0 0

0

0

+ + +

+ + +

+ + +

+ + +

2 1a b 1 1a b 0 1a b

2 2a b 0 2a b

0 3a b2 3a b 1 3a b

1 2a b

FIGURE 1.53 Unsigned array multiplier

© Oxford University Press. All rights reserved.

Oxfo
rd

 U
niversi

ty
 Pre

ss

✐

✐

“VHDLSample” — 2018/2/21 — 17:09 — page 37 — #37
✐

✐

✐

✐

✐

✐

Introduction to Digital Logic Design 37

1.4.19 Programmable Logic Device

Programmable logic devices (PLDs) are standard products but can be programmed to function in a specific
application. The programming can be done either by end user or by the manufacturer. The PLDs that are
programmed by the manufacturer are known as mask-programmable logic devices (MPLDs). The PLDs that are
programmed by the end user are called field-programmable logic devices (FPLDs).The architecture of PLDs is very
regular and fixed. It cannot be changed by the end user. The PLDs have wide range of applications and have low
risk and cost in manufacturing in large volume. Hence, the PLDs are cheaper. As the PLDs are pre-manufactured,
tested, and placed in inventory in advance, the design cycle time is very short. The PLDs are classified into three
categories based on the architecture and programmability. They are given as follows:

1. Read-only Memory (ROM)
2. Programmable Logic Array (PLA)
3. Programmable Array Logic (PAL)

This section describes the architecture of PLDs and their applications.

Read-only Memory
Read-only memory is a storage device, which can be programmed once. Once it is programmed, the data remains
intact and can be read as many times as possible. The stored data is not lost even if the power is removed, unlike
random access memory (RAM). The structure of a ROM is shown in Fig. 1.54.

2n word lines

n
 i

n
p

u
ts

m outputs

Address
decoder

OR memory
array{

{
-

-

-

-

-

-

- - -

FIGURE 1.54 2n × m ROM architecture

It consists of an address decoder with n input lines and programmable OR array with m output lines. The
decoder produces minterms based on the n input lines. The minterms are ORed through programmable switches,
which can be made ON or OFF to select a particular minterm. The programmable switches can be implemented
by either bipolar, CMOS, nMOS, or pMOS technologies.

EXAMPLE 1.13 Design a combinational circuit using ROM that takes 3-bit number and produces outputs
as the square of the input numbers.

Solution

Let us first derive the truth table of the combinational circuit that takes 3-bit number and produces its square as
the output.

The three input bits are A2, A1, and A0, which can have at most eight combinations starting from 000 to
111. The maximum value of input is 7 when squared the result is 49. Therefore, the maximum decimal equivalent
value is 49, which require six bits for representation. Hence, the combinational circuit would require at most six

© Oxford University Press. All rights reserved.

Oxfo
rd

 U
niversi

ty
 Pre

ss

✐

✐

“VHDLSample” — 2018/2/21 — 17:09 — page 38 — #38
✐

✐

✐

✐

✐

✐

38 VHDL: Design, Synthesis, and Simulation

output bits, which are represented as Y 5, Y 4, Y 3, Y 2, Y 1, and Y 0. The truth table of the circuit is shown in
Table 1.29.

TABLE 1.29 Truth table of the circuit of Example 1.13

Inputs Outputs

A2 A1 A0 Decimal Y5 Y4 Y3 Y2 Y1 Y0 Decimal

0 0 0 0 0 0 0 0 0 0 0

0 0 1 1 0 0 0 0 0 1 1

0 1 0 2 0 0 0 1 0 0 4

0 1 1 3 0 0 1 0 0 1 9

1 0 0 4 0 1 0 0 0 0 16

1 0 1 5 0 1 1 0 0 1 25

1 1 0 6 1 0 0 1 0 0 36

1 1 1 7 1 1 0 0 0 1 49

Out of six output bits, two bits Y 1 and Y 0 can be implemented directly, as Y 1 is always zero and Y 0 is same
as input A0. The remaining four bits Y 5, Y 4, Y 3, and Y 2 can be implemented using an 8×4 ROM as shown in
Fig. 1.55.

A2

A1

A0

(a) (b)

Y5

A2 A1 A0 Y5 Y4 Y3 Y2

0
0
0
0
1
1
1
1

0
0
0
0
0
0
1
1

0
0
0
0
1
1
0
1

0
0
0
1
0
1
0
0

0
0
1
0
0
0
1
0

0
0
1
1
0
0
1
1

0
1
0
1
0
1
0
1

8 × 4 ROM

Y4

Y3

Y2

Y1

Y0

FIGURE 1.55 Implementation of the combinational circuit of Example 1.13, (a) Simplified form of the
circuit using ROM (b) ROM truth table

Programmable Logic Array
Programmable logic array (PLA) is an integrated circuit chip used for two-level combinational logic circuits. It
consists of an AND array followed by an OR array. Both the AND array and the OR array are programmable.
The architecture of PLA is shown in Fig. 1.56.

The AND array, also called AND plane, implements the product terms and the OR array, also called OR
plane, implements the sum of product (SOP) terms. In PLA, both the arrays are programmable. PLA has limited
number of product terms, not the minterms. Hence, to implement a logic using PLA, a minimal SOP form should
be derived so that the logic can be implemented using the available product terms.

© Oxford University Press. All rights reserved.

Oxfo
rd

 U
niversi

ty
 Pre

ss

✐

✐

“VHDLSample” — 2018/2/21 — 17:09 — page 39 — #39
✐

✐

✐

✐

✐

✐

Introduction to Digital Logic Design 39

p Product terms

n
 i

n
p

u
ts

m outputs

AND array OR memory
array{

{

-

-

-

-

-

-

- - -

FIGURE 1.56 PLA architecture in block diagram

EXAMPLE 1.14 Implement the following Boolean functions using a PLA.

F1 = AB + AC + BC (1.69)

F2 = ABC + AC (1.70)

Solution

In the given functions, there are four AND terms: AB, AC , BC , and ABC . These AND terms can be implemented
in the AND plane of PLA. The AND terms are then ORed to implement the function F1 and F2. To implement
the product terms of the functions F1 and F2, the AND plane is programmed as shown in Fig. 1.57. The AND
terms are then ORed by the OR array program as shown in Fig. 1.57. The cross-point having ‘X ’ indicates an
electrical connection between the horizontal and the vertical wires.

A

AC

B

BC

C

F1 F2

AB

ABC

FIGURE 1.57 PLA architecture in block diagram

© Oxford University Press. All rights reserved.

Oxfo
rd

 U
niversi

ty
 Pre

ss

✐

✐

“VHDLSample” — 2018/2/21 — 17:09 — page 40 — #40
✐

✐

✐

✐

✐

✐

40 VHDL: Design, Synthesis, and Simulation

EXAMPLE 1.15 Implement the following Boolean functions using PLA.

Sum(A,B,Cin) =
∑

m(1, 2, 4, 7) (1.71)

Cout(A,B,Cin) =
∑

m(3, 5, 6, 7) (1.72)

Solution

The Boolean expressions for the given functions can be written as follows:

Sum = ABCin + ABCin + AB Cin + ABCin (1.73)

Cout = AB + ACin + BCin (1.74)

The functionality of a PLA to implement these functions can be represented in the form of a table as shown
in Table 1.30.

TABLE 1.30 PLA implementation table

Product terms Inputs Outputs

A B Cin Sum Cout

ABCin 0 0 1 1 0

ABCin 0 1 0 1 0

ABCin 1 0 0 1 0

ABCin 1 1 1 1 0

AB 1 1 - 0 1

ACin 1 - 1 0 1

BCin - 1 1 0 1

Inputs are represented by 1 for true form, 0 for complement form, and - for don’t care. The outputs are
represented by 1 if the term is present in the function and 0 if the term is absent in the function. A simplified
form of PLA is shown in Fig. 1.58.

The connection between a vertical and horizontal line is represented by a cross-point ‘X ’.

Programmable Array Logic
Programmable array logic (PAL) is another class of PLD with AND array followed by OR array, where the AND
array is programmable but the OR array is fixed. The PAL architecture is shown in Fig. 1.59.

The OR array has permanently programmed connections as shown by dots in Fig. 1.59. The OR plane cannot
be programmed. In the aforementioned PAL architecture, each OR gate has two inputs; hence, the SOP must
have two product terms. Remember unlike PLA the product terms cannot be shared between the OR gates. Each
function must be simplified individually to reduce the product terms to maximum two. If the SOP expression
contains more than two product terms, each OR gate can be used to implement the function partially and then
summed using additional OR gate to implement the complete function. The following example illustrates the
implementation of Boolean functions using PAL.

© Oxford University Press. All rights reserved.

Oxfo
rd

 U
niversi

ty
 Pre

ss

✐

✐

“VHDLSample” — 2018/2/21 — 17:09 — page 41 — #41
✐

✐

✐

✐

✐

✐

Introduction to Digital Logic Design 41

A

AC
in

ABC
in

BC
in

B

AB

Cin

Sum C
out

in
ABC

in
ABC

in
ABC

FIGURE 1.58 Simplified form of PLA implementing Boolean functions for Sum and Cout

A2 A1 A0

Y2Y3 Y1 Y0

Programmable
AND array

Fixed
OR array

FIGURE 1.59 PAL architecture

© Oxford University Press. All rights reserved.

Oxfo
rd

 U
niversi

ty
 Pre

ss

✐

✐

“VHDLSample” — 2018/2/21 — 17:09 — page 42 — #42
✐

✐

✐

✐

✐

✐

42 VHDL: Design, Synthesis, and Simulation

EXAMPLE 1.16 Implement the following Boolean logic using PAL.

F1(A,B,C) =
∑

m(1, 3, 4, 5, 6, 7) (1.75)

F2(A,B,C) =
∑

m(0, 1, 4, 5, 6) (1.76)

F3(A,B,C) =
∑

m(1, 2, 5) (1.77)

F4(A,B,C) =
∑

m(0, 1, 3, 7) (1.78)

Solution

Let us first find out a minimum SOP form of the given function using the Karnaugh map method. The K-maps
and the corresponding minimum SOP forms are shown in Fig. 1.60.

A

BC

(a) F1 = A + C

00

0

1

01 11 10

0 0

1 1

A

BC
00

0

1

01 11 10

0 1

0 0

1 0

01

A

BC
00

0

1

01 11 10

1 0

0 0

1 1

10

A

BC
00

0

1

01 11 10

0

1

0

0

(b) 2F AC B= +

(c) 3F BC ABC= +
(d) 4F AB BC= +

1 1

11

1

1

1

1

FIGURE 1.60 K-map minimization of functions of Example 1.16

We can see that each Boolean function has two product terms. Hence, the simple three-input four-output PAL
architecture as shown in Fig. 1.59 can be used to implement the four Boolean functions. The PAL implementation
is shown in Fig. 1.61. The AND plane is programmed to generate the product terms. The connections between
the vertical and the horizontal lines in the AND plane are represented by ‘X ’.

In ROM-based design, the addition of input signal increases the ROM size by two times. This in turn doubles
the size of the AND and OR array. But in case of PLA or PAL additional input can easily be accommodated
without doubling the size. Commercially available PAL can have at most 22 input lines.

1.4.20 Sequential PLD

The PLDs that we have discussed contain only combinational logic gates but no sequential elements or flip-flops.
But digital systems are to be designed using both combinational and sequential circuits. Hence, to implement
sequential programmable devices, flip-flops must be used externally with PLDs. In order to avoid the external
use of flip-flops, the sequential PLDs (SPLDs) are developed with D or JK flip-flops. The sequential PLD is also
known as simple PLD or simply SPLD. The SPLD architecture is mostly based on combinational PAL and DFF.
The section of a SPLD that implements one SOP output through register is known as macrocell. A macrocell is
shown in Fig. 1.62.

© Oxford University Press. All rights reserved.

Oxfo
rd

 U
niversi

ty
 Pre

ss

✐

✐

“VHDLSample” — 2018/2/21 — 17:09 — page 43 — #43
✐

✐

✐

✐

✐

✐

Introduction to Digital Logic Design 43

A B C

F2F1

A

C

BC

F3 F4

Programmable
AND array

Fixed
OR array

B

BC

AC

ABC

AB

FIGURE 1.61 PAL implementation of Boolean functions of Example 1.16

OECLK

D Q

Q

CLK

FIGURE 1.62 Typical macrocell architecture

The AND–OR array is similar to the PAL architecture. The output of AND–OR array is passed through a
DFF triggered by a clock signal CLK. The final output is available through a tri-state buffer controlled by output-
enabled signal OE. The true and complemented form of the output signal is fed back to the input of the AND
array. This provides the previous state of the output signal. A typical SPLD chip has 8–10 macrocells.

1.4.21 Keypad Scanner

Keypad scanner is used to enter data manually in different electronic systems, such as digital telephone, computer
keyboard, and different embedded systems developed using microprocessor andmicrocontrollers. We shall discuss

© Oxford University Press. All rights reserved.

Oxfo
rd

 U
niversi

ty
 Pre

ss

✐

✐

“VHDLSample” — 2018/2/21 — 17:09 — page 44 — #44
✐

✐

✐

✐

✐

✐

44 VHDL: Design, Synthesis, and Simulation

the design of a keypad scanner. The schematic of the keypad is shown in Fig. 1.63. It has total 12 numbers of
keys: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, *, 0, and #. There are four row lines: R0, R1, R2, and R3, and three column lines:
C2, C1, and C0. When a key is pressed, a connection is established between the corresponding row and column
lines. All the row lines are connected to ground through resistors. When no key is pressed, all the row lines are
connected to ground, that is, R0 = R1 = R2 = R3 = 0. When a column line is pulled to high voltage, if any key

C
2

1 2
R

0

C
1

C
0

Keypad
scanner

Clock

Y0

Y1

Y2
Y3

V

R
1

R
2

R
3

3

7 8 9

∗ 0 #

4 5 6

FIGURE 1.63 Schematic of a keypad scanner

is pressed in that column, the corresponding row will be pulled to high voltage and the other rows will remain at
0 V. For example, let the column line C0 is pulled to high voltage and key ‘1’ is pressed. In this case, row R0 will
be high and the other rows R3, R2, and R1 will remain at 0 V. So the scanner will detect that key ‘1’ is pressed.
Table 1.31 shows the input–outputs of the keypad scanner.

TABLE 1.31 Keypad scanner input–outputs

Key R3 R2 R1 R0 C0 C1 C2 Code (Y3Y2Y1Y0)

1 0001 100 0001

2 0001 010 0010

3 0001 001 0011

4 0010 100 0100

5 0010 010 0101

6 0010 001 0110

7 0100 100 0111

8 0100 010 1000

9 0100 001 1001

* 1000 100 1010

0 1000 010 0000

1000 001 1011

© Oxford University Press. All rights reserved.

Oxfo
rd

 U
niversi

ty
 Pre

ss

✐

✐

“VHDLSample” — 2018/2/21 — 17:09 — page 45 — #45
✐

✐

✐

✐

✐

✐

Introduction to Digital Logic Design 45

The keypad scanner performs three operations. Firstly, it detects whether a key is pressed. Secondly, it identifies
which key is pressed. Then it generates a unique code for the key that is pressed.

At first, it pulls up all the column lines to high and check if any key is pressed by sensing the row lines. If no
key is pressed, all the row lines will remain at 0 V which indicates that no key is pressed. If any key is pressed, any
one of the four row lines will be pulled high that means a valid key is pressed. So it will set V = 1. To identify
which key is pressed, it pulls up the column lines one by one and detects the key. The signal V indicates that the
generated code is valid. It remains high for one clock cycle to indicate a valid code in the output signals: Y 3, Y 2,
Y 1, and Y 0.

1.4.22 Features of PLD

The biggest advantage of using PLDs is that it reduces the total cost of the system. The design cycle time using
PLDs is very fast and therefore the time-to-market of the final product is less. The risks associated in the product
development using PLDs are also less. Any last minute change can easily be accommodated without redesigning
the circuit boards. The cost involved in printed circuit board (PCB) design, assembly, test, and repair is also very
less when PLDs are used, as the design usually requires fewer components.

The features of the PLDs are also enhanced to accommodate multitude of designs. They are capable of
performing control functions, bus interface, memory interface, and DSP. They have grown in density, variety,
and complexity. The state-of-the-art PLDs can handle designs of hundreds of thousands of gates to even a million
gates. It is being used to design larger portions of the system, even in some case the entire systems on chip (SoC).
Therefore, the PLDs have a great future in days to come.

1.4.23 One/Zero Detector

A zero-detector circuit detects if all the input bits are logic 0. Similarly, a one-detector circuit detects if all the input
bits are logic 1. Figure 1.64 shows the schematic of one and zero detectors.

A7
A6

A5
A4

A3
A2

A1

F1

(a) (b)

F0

A0

A7
A6

A5
A4
A3
A2
A1
A0

FIGURE 1.64 (a) One detector (b) Zero detector

In one detector, when all inputs are at logic 1, the output is 1. Otherwise, the output is zero. Thus, it detects
all ones at the input. In zero detector, when all inputs are at logic 0, the output is 1. Thus, it detects all zeros at
the input.

1.4.24 Barrel Shifter

The one-bit shifter can shift data by one bit position in one clock cycle. But it is often required to shift data by
more than one bit position in one clock cycle in DSP or general-purpose processors. The multi-bit shift is achieved
using a barrel shifter. The advantage of the barrel shifter is that any bit in a word can connect to any other bit, so
that large bit shifts can be completed in a single operation.

Let us consider an 8-bit barrel shifter as shown in Fig. 1.65. It has one 8-bit data input A and 8-bit data output
B, with a 3-bit control input B. Table 5.4 illustrates the data shifting in an 8-bit barrel shifter.

© Oxford University Press. All rights reserved.

Oxfo
rd

 U
niversi

ty
 Pre

ss

✐

✐

“VHDLSample” — 2018/2/21 — 17:09 — page 46 — #46
✐

✐

✐

✐

✐

✐

46 VHDL: Design, Synthesis, and Simulation

0

0 a7

b1

b0

b2

a6 a5 a4 a3 a2 a1 a0

4-bit
right shift

2-bit
right shift

1-bit
right shift

1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

0 1

y7

0 1 0 1 0 1 0 1 0 1 0 1 0 1

0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

y6 y5 y4 y3 y2 y1 y0

FIGURE 1.65 Schematic of an 8-bit barrel shifter

TABLE 1.32 Shifting operations of an 8-bit barrel shifter

Sl. No. Inputs Outputs Shift operation

b2 b1 b0 y7 y6 y5 y4 y3 y2 y1 y0

1 0 0 0 a7 a6 a5 a4 a3 a2 a1 a0 No shift

2 0 0 1 0 a7 a6 a5 a4 a3 a2 a1 Shift right by 1 bit

3 0 1 0 0 0 a7 a6 a5 a4 a3 a2 Shift right by 2 bit

4 0 1 1 0 0 0 a7 a6 a5 a4 a3 Shift right by 3 bit

5 1 0 0 0 0 0 0 a7 a6 a5 a4 Shift right by 4 bit

6 1 0 1 0 0 0 0 0 a7 a6 a5 Shift right by 5 bit

7 1 1 0 0 0 0 0 0 0 a7 a6 Shift right by 6 bit

8 1 1 1 0 0 0 0 0 0 0 a7 Shift right by 7 bit

1.5 SEQUENTIAL LOGIC CIRCUITS

The sequential circuits are the type of digital circuits where the present output states depend on the present input
states as well as on the past output states. In other words, in the sequential circuits, the outputs are function of
the input logic levels as well the time when the inputs were applied. Let us understand the concept of temporal
dependency of the outputs by the following circuit shown in Fig. 1.66.

R

S

Q

Q

FIGURE 1.66 Example of a sequential circuit using NAND gates

In this digital circuit, there are two inputs R and S and two outputs Q and Q . When both the inputs are at
logic 0, both the outputs are at logic 1. When R = 0 and S = 1, the output Q = 1, and the output Q = 0.

© Oxford University Press. All rights reserved.

Oxfo
rd

 U
niversi

ty
 Pre

ss

✐

✐

“VHDLSample” — 2018/2/21 — 17:09 — page 47 — #47
✐

✐

✐

✐

✐

✐

Introduction to Digital Logic Design 47

Alternately, when R = 1 and S = 0, the output Q = 0, and the output Q= 1. But when both the inputs are
at logic 1, the outputs cannot be decided directly. In this condition, the outputs will be decided based on their
previous logic levels. Let us assume, previouslyQ = 0 andQ= 1. Now the inputs are R = S = 1. Since, previously
Q = 0, Q will remain at logic 1, and as Q remains at logic 1, Q will remain at logic 0. Therefore, the outputs
hold their previous states. Similarly, if the outputs were Q = 1 and Q= 0, now also they will remain as they are if
the inputs are R = S = 1. The functionality of this circuit is illustrated in Table 1.33.

TABLE 1.33 Truth table of SR flip-flop

Inputs Previous outputs Present outputs State of the FF

S R Q Q Q Q

0 0 X X 1 1 Not allowed

0 1 X X 0 1 Reset

1 0 X X 1 0 Set

1 1 0 1 0 1 Hold

1 1 1 0 1 0 Hold

X— indicates don’t care condition

This example introduces the main concepts of the sequential circuit, that is, the temporal dependency of the
outputs. For the present input conditions S = R = 1, the outputs depend on whether the past states were 10 or
01.

In order to maintain the temporal dependency of the input and output states, an extra input, which is known
as clock (CLK). Depending on whether the inputs are in synchronous with the clock input, the sequential circuits
are classified into two types: synchronous and asynchronous.

1.5.1 SR Flip-flop

Generally, a flip-flop is a sequential circuit with one or more inputs and two complementary outputs Q and Q .
SR flip-flop is a flip-flop with two inputs S and R, where S indicates set and R indicates reset. When the input
S = 1 and R = 0, the flip-flop outputs QQ = 10 and when the input S = 0 and R = 1, the flip-flop outputs
QQ = 01. Figure 1.67 shows the symbol of SR flip-flop.

R

Flip-flop

S

Q

Q

FIGURE 1.67 Symbol of SR flip-flop

The SR flip-flop can be implemented either using NAND gates or using NOR gates. The NAND-based SR
flip-flop is shown in Fig. 1.66. The NOR-based SR flip-flop is shown in Fig. 1.68.

The operation of the SR flip-flop using NOR gates is illustrated in Table 1.34.
The SR flip-flop is known as SR latch as the data is latched in the logic circuit for some input combinations.

© Oxford University Press. All rights reserved.

Oxfo
rd

 U
niversi

ty
 Pre

ss

✐

✐

“VHDLSample” — 2018/2/21 — 17:09 — page 48 — #48
✐

✐

✐

✐

✐

✐

48 VHDL: Design, Synthesis, and Simulation

R

S

Q

Q

FIGURE 1.68 SR flip-flop using NOR gates

TABLE 1.34 Truth table of SR flip-flop

Inputs Previous outputs Present outputs State of the FF

S R Q Q Q Q

0 0 1 0 1 0 Hold

0 0 0 1 0 1 Hold

0 1 X X 0 1 Reset

1 0 X X 1 0 Set

1 1 X X 0 0 Not allowed

X—indicates don’t care condition

1.5.2 SR Flip-flop with Clock Input

The SR flip-flop explained before works asynchronously. There is no clock input. This makes the flip-flop outputs
to change anytime the input changes. This is OKwhen the flip-flop is operated separately. However, in a digital cir-
cuit, a flip-flop alone does not work. There are plenty of other gates both combinational and sequential. The inputs
of a particular SR flip-flop come from the outputs of some other logic. As the inputs come from different paths,
they encounter different path delays and reach at the inputs at different time. As we have seen before, the output
changes anytime the input changes in a flip-flop, which causes incorrect output to be latched/stored in the flip-flop.

Let us consider an examination hall where each student coming to the hall in different time. If we allow the
examination to start for each student as they come in, there will be a total chaos. In order to make sure that
the examination happens properly, we fix up a time at which all students must reach to the examination hall.
Therefore, we need a clock and the event must be synchronized with the clock.

In the digital circuits also, wemust use a clock to ensure proper operations of sequential circuit. Let us illustrate
this with the following example shown in Fig. 1.69.

R

CLK

S
Q

Q1

QQ1

First stage Second stage

FIGURE 1.69 Clocked SR flip-flop

When the clock input CLK = 0, the outputs of the NAND gates in the first stage (Q1 and Q1) are at logic
1. This makes outputs of NAND gates in the second stage to hold their previous states. In this condition, the
outputs Q and Q do not change their values even if the inputs R and S change their values.

© Oxford University Press. All rights reserved.

Oxfo
rd

 U
niversi

ty
 Pre

ss

✐

✐

“VHDLSample” — 2018/2/21 — 17:09 — page 49 — #49
✐

✐

✐

✐

✐

✐

Introduction to Digital Logic Design 49

When the clock input CLK = 1, the outputs of the NAND gates at the first stage depends on the inputs R
and S. If S = 1 and R = 0, then Q1 = 0 and Q1= 1, which makes Q = 1 and Q= 0. If S = 0 and R = 1, then
Q1 = 1 and Q1= 0, which makes Q = 0 and Q= 1.

When S = R = 0, the outputs Q and Q hold their previous values.
When S = R = 1, both Q1 andQ1 are at logic 0. This makes both outputs Q andQ to become 1. However,

depending on which one becomes 1 first, the other will be decided. Therefore, this is a race condition between
the outputs. Therefore, the outputs are termed as forbidden for the inputs S = R = 1.

1.5.3 JK Flip-Flop

The race condition of the SR flip-flop is overcome in the JK flip-flop. Figure 1.70 shows the JK flip-flop using
NAND gates.

K

CLK

J

First stage Second stage

Q
Q1

QQ1

FIGURE 1.70 JK flip-flop

In the first stage, two 3-input NAND gates are used. The outputs Q and Q are fed back to the inputs at first
stage. When CLK = 0, the outputs of the first stage Q1 and Q1 are at logic 1. This makes the outputs of the
flip-flop to hold their previous states. When CLK = 1, the outputs of the first stage Q1 and Q1 depend on the
inputs and previous outputs. Under CLK = 1 condition, the operation of the flip-flop is explained as follows:

1. When J = K = 0, Q1 = Q1 = 1, therefore, outputs Q and Q hold their previous states.
2. When J = 0, K = 1, Q1 = 1. If Q = 1, then Q1 = 0. This makes Q = 0 and Q = 1.
3. When J = 1, K = 0, Q1= 1. If Q = 1, then Q = 0. This makes Q = 1 and Q remains at 0.
4. When J = 1 and K = 1, Q1 and Q1 are decided based on Q and Q . If we assume that Q = 0 and Q = 1,

then Q1 = 0 and Q1= 1. This makes Q = 1 and Q = 0. Thus, outputs toggle. If we assume that Q = 1 and
Q = 0, then Q1 = 1 and Q1 = 0. This makes Q = 0 and Q = 1. Thus, also outputs toggle.

The operation of JK flip-flop is summarized in Table 1.35.

TABLE 1.35 Truth table of JK flip-flop

Inputs Previous outputs Present outputs State of the FF

J K Qn Qn Qn+1 Qn+1

0 0 0 1 0 1 Hold

0 0 1 0 1 0 Hold

0 1 X X 0 1 Reset

1 0 X X 1 0 Set

1 1 0 1 1 0 Toggle

1 1 1 0 0 1 Toggle

© Oxford University Press. All rights reserved.

Oxfo
rd

 U
niversi

ty
 Pre

ss

✐

✐

“VHDLSample” — 2018/2/21 — 17:09 — page 50 — #50
✐

✐

✐

✐

✐

✐

50 VHDL: Design, Synthesis, and Simulation

1.5.4 Master-slave Flip-flop

When J = K = 1 in JK flip-flop, the output toggles. As long as the clock pulse is at logic 1 state, the outputs
keep toggling and at the end of clock pulse the outputs become unpredictable. This is known as race-around
condition. One way to solve this problem is by reducing the duration of clock pulse less than the delay of the
flip-flop. However, it is very difficult to design such a clock pulse with a very low duty cycle. The other way to
solve the race-around condition is by using master-slave flip-flop.

Two SR flip-flops are taken in cascade to form the master-slave flip-flop as shown in Fig. 1.71. The first flip-
flop is called master, whereas the second one is called slave. The clock signal (CLK) directly goes to the clock input
of master flip-flop and inverted clock signal (CLK) goes to the clock input of slave flip-flop.

When clock signal is at logic high level (CLK = 1), the outputs of the master Qm and (Qm) are determined
depending on its inputs Sm and Rm. Under this condition, the outputs of the slave Qs and (Qs) do not change.
When clock signal goes to logic low level or (CLK)=1, the outputs of slave are determined by its inputs Ss and Rs.
Under this condition, the outputs of the master Qm and (Qm) do not change.

Therefore, the master-slave flip-flop only changes its final outputs when clock signal goes from logic high to
low level. Thus, it is called edge-triggered flip-flop. The master-salve flip-flop shown in Fig. 1.71 is a negative edge-
triggered flip-flop as it changes its output only when clock makes 1→0 transition. There is positive edge-triggered
flip-flop also which changes its output when clock makes 0→1 transition.

S
m

SR
flip-flop

CLK

SR

flip-flop

Q
m Q

s

S
s

R
sR

m

CLK

mQ

sQ

FIGURE 1.71 Master-slave flip-flop

1.5.5 D Flip-flop

A JK flip-flop is converted into a DFF or delay flip-flop with the configuration shown in Fig. 1.72. It has two
inputs: one is clock input and the other one is D or data input.

D

CLK

QJ

K
Q

FIGURE 1.72 D flip-flop using JK flip-flop

We have seen that the Q output of JK flip-flop is logic 1 when J = 1 and K = 0, and is logic 0 when J = 0
and K = 1. In other words, we can say that Q = J when K = J . Thus, a NOT gate connected between J and K

© Oxford University Press. All rights reserved.

Oxfo
rd

 U
niversi

ty
 Pre

ss

✐

✐

“VHDLSample” — 2018/2/21 — 17:09 — page 51 — #51
✐

✐

✐

✐

✐

✐

Introduction to Digital Logic Design 51

input to make K = J . When D = 1, J = 1, and K = 0 which makes Q = 1 and Q=0. WhenD = 0, J = 0 and
K = 1 which makes Q = 0 and Q=1.

The purpose of the DFF is to work as a delay element as the output follows the input only after a delay. That
is why it is also known as delay flip-flop.

1.5.6 T Flip-flop

A T flip-flop stands for toggle flip-flop. It has two inputs: one is clock input (CLK) and the other one is T input.
It is also constructed from JK flip-flop as shown in Fig. 1.73.

T

CLK

QJ

K
Q

FIGURE 1.73 T flip-flop using JK flip-flop

In a JK flip-flop when both the inputs are in same logic level, that is, J = K , the outputs either remain in
the same state or complement themselves. When J = K = 1, the outputs toggle, that is, Qn+1 = Qn. When
J = K = 0, the outputs hold their previous state, that is, Qn+1 = Qn. Therefore, a JK flip-flop is converted into
a T flip-flop by shorting its two inputs.

1.5.7 Flip-flop Characteristics

A flip-flop is characterized by the following parameters:

Propagation Delay
It is also known as Clock-to-Q time delay, which means the propagation time delay between the clock signal and
the Q output.

Set-up Time
It is the minimum time before the clock edge the inputs must arrive. Let us consider an example of examination
hall to explain the concept of set-up time. Suppose an examination hall where the examination will start at 10 AM.
The examinees must enter the examination hall 30 minutes before the examination starts and will not be allowed
to leave the hall. So 30 minutes is the set-up time for the examination. Nobody will be allowed to appear in the
examination if he/she comes after 9:30 AM. Similarly, in case of a flip-flop, the data must arrive before the clock
pulse by a specified period of time and must not change their values.

Hold Time
It is the minimum time after the clock edge and the inputs must not change their values.

Maximum Clock Frequency
It is the maximum frequency of the clock signal that can be applied to the flip-flop. It depends on the propagation
delay and set-up time.

© Oxford University Press. All rights reserved.

Oxfo
rd

 U
niversi

ty
 Pre

ss

✐

✐

“VHDLSample” — 2018/2/21 — 17:09 — page 52 — #52
✐

✐

✐

✐

✐

✐

52 VHDL: Design, Synthesis, and Simulation

Asynchronous Active Pulse Width
The minimum pulse width of the asynchronous inputs like preset and clear input signals.

Figure 1.74 illustrates propagation delay, set-up time, and hold time of a flip-flop.

D input

Q output

CLK

T
holdT

set-up

T
CLK-to-Q

FIGURE 1.74 Illustration of propagation delay, set-up time, and hold time

1.5.8 Registers

A flip-flop can store or register a single bit. Therefore, a flip-flop is known as one-bit register. When a number of
flip-flops connected in cascade, a multi-bit register is formed. In anN -bit register, there isN number of flip-flops.
In anN -bit register, it is often required to shift data from one register to another. An array of flip-flops that allows
the shifting of data is called a shift register.

1.5.9 Shift Register

A shift register is a chain of flip-flops where the input data is propagated through the chain by applying the clock
pulses.

A 4-bit shift register is shown in Fig. 1.75. There are four positive edge-triggered DFFs connected in series.
The clock input is common to all the flip-flops. At the positive edge of the clock signal, the input signal goes to the
output of the first flip-flop, the output of the first flip-flop goes to the output of the second flip-flop; the output
of the second flip-flop goes to the output of the third flip-flop, and so on. Figure 1.76 shows the shifting of data
with the clock pulse.

Q0
D1D0

Input

Clock

D2 D3
FF0 FF1 FF2 FF3

Q1 Q2 Q3

0Q 1Q 2Q 3Q

FIGURE 1.75 4-Bit shift register

Shift registers are generally of the following four types:

1. Serial-in-serial-out (SISO)
2. Parallel-in-serial-out (PISO)
3. Parallel-in-parallel-out (PIPO)
4. Serial-in-parallel-out (SIPO)

© Oxford University Press. All rights reserved.

Oxfo
rd

 U
niversi

ty
 Pre

ss

✐

✐

“VHDLSample” — 2018/2/21 — 17:09 — page 53 — #53
✐

✐

✐

✐

✐

✐

Introduction to Digital Logic Design 53

Clock pulse Input bits

0
1
2
3
4
5

6
7
8

0 0 0

Q0 Q1 Q2 Q3

0

0 0 0
0
0
0

0

0
0

0

0
00

0

0

0

1 1
1

1

1
1

1

1
1

1

1
1

1

1
1

FIGURE 1.76 Propagation of data in a SISO shift register

1.5.10 SISO Shift Register

In a SISO shift register, data is entered at one edge of the chain of shift registers and is retrieved at the other end.
An example of SISO shift register is depicted in Fig. 1.76.

1.5.11 PISO Shift Register

In a PISO shift register, data is entered to all the flip-flops in parallel but is retrieved serially at the output end.
A 4-bit PISO shift register with load and shift capability is shown in Fig. 1.77. It has four parallel data input

lines, one Shift/Load control line, clock input, and one serial data output line.

Parallel data input

Clock

Serial data
output

Shift/Load

Q0

D1

D1

G1 G2 G3 G4 G5 G6

G9G8G7

D0

G0

D0

D2

D2

D3

D3

FF0 FF1 FF2 FF3

Q1 Q2 Q3

0Q 2Q 3Q1Q

FIGURE 1.77 PISO shift register

Shift Operation

When the Shift/Load control line is held at logic 1, AND gates, G1, G3, and G5, are enabled. With the clock
pulse, data fromQ0 goes toD1,Q1 goes toD2, andQ2 goes to D3. Therefore, the data is shifted serially through
the chain of flip-flops.

Load Operation

When the Shift/Load control line is held at logic 0, AND gates, G2, G4, and G6, are enabled. The four data
inputs, D0, D1, D2, and D3, are applied to the data input of flip-flops, and with the clock pulse, the data is
loaded into the register.

© Oxford University Press. All rights reserved.

Oxfo
rd

 U
niversi

ty
 Pre

ss

✐

✐

“VHDLSample” — 2018/2/21 — 17:09 — page 54 — #54
✐

✐

✐

✐

✐

✐

54 VHDL: Design, Synthesis, and Simulation

1.5.12 PIPO Shift Register

The PIPO shift register has a set of parallel data input lines and a set of parallel data output lines. The input data is
entered in parallel into the register. After one clock pulse, the data is shifted at the output in parallel. An example
of 4-bit PIPO shift register is shown in Fig. 1.78.

Parallel data
input

Clock

Parallel data
output

Q0

Q0 Q1 Q2 Q3

D0

D0 D1 D2 D3

FF0

0Q

D1 D2 D3

FF1 FF2 FF3

Q1 Q2 Q3

2Q 3Q1Q

FIGURE 1.78 PIPO shift register

All four flip-flops are operated by a common clock. Four input bits D0 through D3 are applied to flip-flops
FF0 through FF3, and the outputs Q0 through Q3 are taken out in parallel. When the clock pulse is applied,
four inputs are stored in the flip-flops simultaneously and are available simultaneously at the outputs.

1.5.13 SIPO Shift Register

In SIPO shift register, input data is entered serially but the outputs are taken in parallel. A 4-bit SIPO shift register
is shown in Fig. 1.79.

Input

Clock

Q0

Q0 Q1 Q2 Q3

D0
FF0

0Q

D1 D2 D3
FF1 FF2 FF3

Q1 Q2 Q3

2Q 3Q1Q

FIGURE 1.79 SIPO shift register

It works very much like a SISO shift register. Only difference is that the outputs of every flip-flop are available
as primary output.

1.5.14 Counters

Counter is a sequential circuit that undergoes a sequence of predefined states by the application of clock pulses.
They are constructed using flip-flops and other combinational logic gates. The number of states of a counter is
determined by the number of flip-flops used to design the counter. The following are the two types of counters:
1. Asynchronous counter: In this counter, the external clock is applied to only the first flip-flop and the clock

inputs of rest of the flip-flops are fed by the output of the preceding flip-flops. Asynchronous counter is also
known as ripple counter.

© Oxford University Press. All rights reserved.

Oxfo
rd

 U
niversi

ty
 Pre

ss

✐

✐

“VHDLSample” — 2018/2/21 — 17:09 — page 55 — #55
✐

✐

✐

✐

✐

✐

Introduction to Digital Logic Design 55

2. Synchronous counter: In this counter, all the flip-flops are operated simultaneously/synchronously by the
external clock signal.

1.5.15 Asynchronous/Ripple Counter

A 3-bit ripple counter is shown in Fig. 1.80. It is constructed using three positive edge triggered JK flip-flops. The
J and K inputs are held at logic 1 to keep the flip-flops in toggle mode. In each positive transition in their clock
input each flip-flop just toggles its output. The external clock is applied to the first flip-flop FF0 that toggles its
output in every positive edge of the clock pulse as shown in Fig. 1.81.

FF0

J
0

K
0

K
1

K
2

J
1 J

2
11

CLK

1 1

1

1

FF1 FF2

Q0

0Q

Q1 Q2

2Q1Q

FIGURE 1.80 Three-bit ripple counter

CLK

Q1

Q0 0 1 1

1

1

1

1 1 1

1 1

11 1

1

1

1T 2T 3T 4T 5T 6T 7T 8T 9T

0

0

0

0 0

0 0

0

0

0

0000
Q2

FIGURE 1.81 Waveforms of 3-bit ripple counter

Initially, let us assume that all the flip-flops are at reset state, that is, Q2Q1Q0 = 000. Now we apply the
external clock pulse at the clock input of the first flip-flop. In the first positive edge (at time 1T), FF0 changes its
output Q0 from logic 0 to logic 1. As Q0 is connected to clock input of the second flip-flop, it also changes its
output Q1 from logic 0 to logic 1. Similarly, the third flip-flop also changes its output Q2 from logic 0 to logic 1.
Hence, after the first positive edge of external clock, the state of the counter becomes Q2Q1Q0 = 111.

At time 2T , Q0 goes from logic 1 to logic 0. But this 1→0 transition in Q0 does not trigger FF1, and Q1
remains at logic 1 and therefore Q2 also remains at logic 1. So after the second positive edge of the clock the state
of the counter becomes Q2Q1Q0 = 110. After the third positive edge, Q0 goes back to logic 1 creating a 0→1
transition at clock input of FF1. Thus, FF1 toggles and Q1 becomes logic 0. But Q2 remains at logic 1.

After the third positive edge of the clock, the state of the counter becomes Q2Q1Q0 = 101. In this manner,
the counter goes through a sequence of states till all the flip-flops go to reset state as shown in Fig. 1.82. After
the eight clock pulses, the counter goes back to its initial state of 000. Thus, this counter is also known as mod-8
counter. The sequence of states indicates that this counter acts as a binary down counter, starting from 111 state
down to 000 state.

This counter can be made to count in up direction if the clock input of the second flip-flop onwards is taken
from the Q output of the preceding flip-flop instead Q output.

© Oxford University Press. All rights reserved.

Oxfo
rd

 U
niversi

ty
 Pre

ss

✐

✐

“VHDLSample” — 2018/2/21 — 17:09 — page 56 — #56
✐

✐

✐

✐

✐

✐

56 VHDL: Design, Synthesis, and Simulation

000

111

110

101

100

011

010

001

FIGURE 1.82 Sequence of states of 3-bit ripple counter

1. If flip-flops are positive edge triggered and Q output feeds the clock of the next flip-flop, the counter counts
downward.

2. If flip-flops are positive edge triggered and Q output feeds the clock of the next flip-flop, the counter counts
upward.

3. If flip-flops are negative edge triggered and Q output feeds the clock of the next flip-flop, the counter counts
upward.

4. If flip-flops are negative edge triggered and Q output feeds the clock of the next flip-flop, the counter counts
downward.

1.5.16 Synchronous Counter
Synchronous counter is another type of counter where all the flip-flops are operated by the same clock. The
common clock triggers all the flip-flops simultaneously/synchronously. The state of the flip-flop is decided by the
JK inputs. If J = K = 0, the flip-flops hold their previous states. If J = K = 1, the flip-flops toggle.

A 3-bit synchronous counter is shown in Fig. 1.83. There are three positive edge triggered JK flip-flops. The
external clock signal is applied to all the flip-flops to be triggered simultaneously. The first flip-flop FF0 is in toggle
mode as J0 = K 0 = 1. Therefore, FF0 toggles in every positive edge of clock pulse. FF1 toggles only when Q0
becomes 1 and there is a positive edge of the clock pulse. FF2 toggles when both Q0 and Q1 are at logic 1 and
there is a positive edge of the clock pulse.

FF0

J0

K0 K1 K2

J1 J21

CLK

1

FF1 FF2

FF3

Q0

0Q

Q1 Q2

2Q1Q

FIGURE 1.83 3-Bit synchronous counter

The timing diagram of the clock pulse and flip-flop outputs are shown in Fig. 1.84. Initially, let us assume that
the flip-flops are in reset state, that is, Q2Q1Q0 = 000. After the first positive edge of clock pulse, Q0 becomes
1, and the counter goes from state 000 to 001. In the second positive edge of clock pulse, Q1 becomes 1 as Q0
was at logic 1, and now Q0 becomes 0. Counter goes to state 010. In this manner, the counter counts from 000
to 111. After the eighth clock pulse, it goes back to its initial state 000.

© Oxford University Press. All rights reserved.

Oxfo
rd

 U
niversi

ty
 Pre

ss

✐

✐

“VHDLSample” — 2018/2/21 — 17:09 — page 57 — #57
✐

✐

✐

✐

✐

✐

Introduction to Digital Logic Design 57

CLK

Q1

Q0
0 1 1

0

0

1

0 0 1

0 1

11 1

0

0

1T 2T 3T 4T 5T 6T 7T 8T 9T

0

0

0

1 0

0 0

1

0

0

0111
Q2

FIGURE 1.84 Waveforms of 3-bit synchronous counter

1.6 FINITE-STATE MACHINE

In general, a sequential circuit contains a number of flip-flops and some combinational logic gates. The sequential
circuit undergoes a sequence of binary states. Therefore, sequential circuit is also known as finite-state machine
(FSM). Figure 1.85 shows the structure of a FSM in general. It consists of two parts: a combinational logic portion
and a bunch of flip-flops.

Inputs

Combinational
logic circuit

Flip-flops

Clock

Outputs

FIGURE 1.85 General FSM

Finite-state machines are classified into two following types:
1. Moore state machine—in this FSM, the outputs are determined by only the internal states.
2. Mealy state machine—in this FSM, the outputs are determined by the internal states as well as the inputs.

1.6.1 Example of FSM

Figure 1.86 shows an FSM. The outputs of an FSM are determined by its inputs, and the present state of the
flip-flops. The next states of the flip-flops are also determined by the inputs and the present state of the flip-flops.
The behavior of an FSM is fully specified by a graphical representation called state diagram. Figure 1.87 shows a
state diagram of an FSM. It consists of a number of states that the FSM will follow in sequence by the application
of inputs and the corresponding outputs of the FSM are also described.

The input and output of the FSM are x and y, respectively. There are two DFFs with outputs Q0 and Q1.
The present and next states of the flip-flops are Q1(n)Q0(n) and Q1(n + 1)Q0(n + 1), respectively. From the
circuit diagram, we can write the following state equations:

Q0(n + 1) = x ⊕ Q0(n) (1.79)

Q1(n + 1) = x ⊕ Q0(n) (1.80)

© Oxford University Press. All rights reserved.

Oxfo
rd

 U
niversi

ty
 Pre

ss

✐

✐

“VHDLSample” — 2018/2/21 — 17:09 — page 58 — #58
✐

✐

✐

✐

✐

✐

58 VHDL: Design, Synthesis, and Simulation

Q0
x

y

Q1

CLK

FIGURE 1.86 Example of an FSM

00

0/0 0/0
0/0

0/0

1/0
1/0

1/1

1/0

01

1110

FIGURE 1.87 State diagram

The output y is expressed as follows:

y = xQ0(n)Q1(n) (1.81)

The states are represented by circles enclosed with the corresponding state value. The transitions between the
states are represented by directed lines. The lines are associated with a notation like x/y where x indicates logic
value of the input and y indicates the logic value of the output. For example, 1/0 indicates that input is logic 1
and output is logic 0.

From the state transition diagram, we can derive the state table as shown in Table 1.36. There are four columns
for present state, input, next state, and output.

TABLE 1.36 State table

Present state Input Next state Output

Q1 Q0 x Q1 Q0 y

0 0 0 1 0 0

0 0 1 1 1 0

0 1 0 1 1 0

0 1 1 1 0 0

1 0 0 0 0 0

1 0 1 1 1 1

1 1 0 0 1 0

1 1 1 1 0 0

© Oxford University Press. All rights reserved.

Oxfo
rd

 U
niversi

ty
 Pre

ss

✐

✐

“VHDLSample” — 2018/2/21 — 17:09 — page 59 — #59
✐

✐

✐

✐

✐

✐

Introduction to Digital Logic Design 59

1.6.2 Design of an FSM

Let us design an FSM as described by the state diagram shown in Fig. 1.88. We can implement the FSM using
four steps described as follows:

000

001

010

011

100

101

110

111

FIGURE 1.88 State diagram of a 3-bit binary up-counter

Step 1: The first design step is to derive the state table of the circuit from the given state diagram. Let us assume
three bits as Q2, Q1, and Q0 where Q2 is MSB. The state table can be derived as shown in Table 1.37.

TABLE 1.37 State table of 3-bit binary
up-counter

Clock pulse Present state Next state

Q2 Q1 Q0 Q2 Q1 Q0

1 0 0 0 0 0 1

2 0 0 1 0 1 0

3 0 1 0 0 1 1

4 0 1 1 1 0 0

5 1 0 0 1 0 1

6 1 0 1 1 1 0

7 1 1 0 1 1 1

8 1 1 1 0 0 0

The initial state of the circuit is ‘000’. After every clock pulse, the circuit goes from the present state to the
next state. For example, after the first clock pulse, the circuit goes from the state ‘000’ to ‘001’. After the second
clock pulse, the circuit goes from the state ‘001’ to ‘010’. In this manner, after the eighth clock pulse, the circuit
goes back to its initial state ‘000’.

Step 2: Let us design the circuit using JK flip-flops. Therefore, we need to see how a JK flip-flop changes its
state for the inputs J and K . This is described by its state transition table shown in Table 1.38.

In Table 1.38, Q(n) is the present state and Q(n + 1) is the next state. The letter ‘X ’ indicates don’t care
condition.

Using the Table 1.38, we can rewrite Table 1.37 with required inputs for every state transition as shown in
Table 1.39.

© Oxford University Press. All rights reserved.

Oxfo
rd

 U
niversi

ty
 Pre

ss

✐

✐

“VHDLSample” — 2018/2/21 — 17:09 — page 60 — #60
✐

✐

✐

✐

✐

✐

60 VHDL: Design, Synthesis, and Simulation

TABLE 1.38 State transition table for JK
flip-flop

Output transitions Required inputs

Q(n) → Q(n + 1) J K

0 → 0 0 X

0 → 1 1 X

1 → 0 X 1

1 → 1 X 0

TABLE 1.39 State table of 3-bit binary up-counter

Clock pulse Present state Next state Required inputs

Q2 Q1 Q0 Q2 Q1 Q0 J2 K2 J1 K1 J0 K0

1 0 0 0 0 0 1 0 X 0 X 1 X

2 0 0 1 0 1 0 0 X 1 X X 1

3 0 1 0 0 1 1 0 X X 0 1 X

4 0 1 1 1 0 0 1 X X 1 X 1

5 1 0 0 1 0 1 X 0 0 X 1 X

6 1 0 1 1 1 0 X 0 1 X X 1

7 1 1 0 1 1 1 X 0 X 0 1 X

8 1 1 1 0 0 0 X 1 X 1 X 1

Step 3: The next step is to obtain the Boolean expressions for J and K inputs using the Karnaughmap method
as illustrated in Fig. 1.89.

00
0 0 00

1
1

X X X X

01 11 10
Q1Q0

J2 = Q1 Q0

Q2

00
0
0

10
1 X X

X
X
X

01 11 10
Q1Q0

J1 = Q0

Q2

00
1 X 10

1
X

1 X X 1

01 11 10
Q1Q0

J0 = 1

Q2

00

00 0
0
1 1

X X X X
01 11 10

Q1Q0

K2 = Q1 Q0

Q2

00

0X X
0
1 1

X X 1 0
01 11 10

Q1Q0

K1 = Q0

Q2

00

XX 1
0
1 1

X 1 1 X
01 11 10

Q1Q0

K0 = 1

Q2

FIGURE 1.89 Karnaugh maps for J and K inputs

Step 4: Using the expressions for J and K inputs, the circuit is implemented as shown in Fig. 1.90.

© Oxford University Press. All rights reserved.

Oxfo
rd

 U
niversi

ty
 Pre

ss

✐

✐

“VHDLSample” — 2018/2/21 — 17:09 — page 61 — #61
✐

✐

✐

✐

✐

✐

Introduction to Digital Logic Design 61

Q1Q0J01

1

CLK

K0

J1

K1

J2

K2

Q2

FIGURE 1.90 Circuit diagram for 3-bit up-counter

1.6.3 State Reduction

It is the technique of reducing the number of states of an FSM without disturbing the behavior of the FSM. The
reduction of state will ultimately reduce the required number of logic gates and flip-flops in the design.

Sometimes, different states of an FSM are equivalent to each other and they can be combined into a single state.
Two states of an FSM are equivalent if and only if, for any input, they have identical outputs and the corresponding
next states are equivalent.

Let us consider an example of FSM represented by a finite state diagram shown in Fig. 1.91. The corresponding
state table is shown in Table 1.40. The states s4 and s6 are equivalent as they have identical next state and
output for both inputs. So we can replace the states s4 and s6 with s46 in the state table and remove one of
these states.

0/0

0/0

0/0

0/0

0/0

0/0

0/0
1/1 1/1

1/1

1/1

1/1

1/0

1/0

1/0

s0

s1 s2

s4s3

s5

s5

FIGURE 1.91 FSM with seven states

Now if we look at Table 1.41 we find that the states s3 and s5 are equivalent as they have identical next state
and same output for both inputs. So we replace states s3 and s5 by s35 and remove one of them from the state

© Oxford University Press. All rights reserved.

Oxfo
rd

 U
niversi

ty
 Pre

ss

✐

✐

“VHDLSample” — 2018/2/21 — 17:09 — page 62 — #62
✐

✐

✐

✐

✐

✐

62 VHDL: Design, Synthesis, and Simulation

TABLE 1.40 State table of the FSM shown in
Fig. 1.91

Present state Next state Output

x = 0 x = 1 x = 0 x = 1

s0 s0 s1 0 0

s1 s2 s3 0 0

s2 s0 s3 0 0

s3 s4 s5 0 1

s4 s0 s5 0 1

s5 s6 s5 0 1

s6 s0 s5 0 1

TABLE 1.41 State table of the FSM after
removal of one state

Present state Next state Output

x = 0 x = 1 x = 0 x = 1

s0 s0 s1 0 0

s1 s2 s3 0 0

s2 s0 s3 0 0

s3 s46 s5 0 1

s46 s0 s5 0 1

s5 s46 s5 0 1

table. After this, we do not find any other equivalent states in Table 1.42. Finally, we rename the equivalent states
s35 as s3 and s46 as s4 and rewrite the state table in Table 1.43 and redraw the state diagram in Fig. 1.92.

TABLE 1.42 State table of the FSM after
removal of two states

Present state Next state Output

x = 0 x = 1 x = 0 x = 1

s0 s0 s1 0 0

s1 s2 s35 0 0

s2 s0 s35 0 0

s35 s46 s35 0 1

s46 s0 s35 0 1

© Oxford University Press. All rights reserved.

Oxfo
rd

 U
niversi

ty
 Pre

ss

✐

✐

“VHDLSample” — 2018/2/21 — 17:09 — page 63 — #63
✐

✐

✐

✐

✐

✐

Introduction to Digital Logic Design 63

TABLE 1.43 State table of the FSM after
renaming of equivalent states

Present state Next state Output

x = 0 x = 1 x = 0 x = 1

s0 s0 s1 0 0

s1 s2 s3 0 0

s2 s0 s3 0 0

s3 s4 s3 0 1

s4 s0 s3 0 1

0/0

0/0

0/0

0/0

0/0 1/1 1/0

1/0

1/0

1/1

s0

s4 s1 s2

s3

FIGURE 1.92 FSM with five states

1.6.4 State Encoding

Determining the binary representations of the sates of an FSM is the state encoding problem. State encoding
determines the size of the design and speed of the design. Encoding length is the number of bits required to
represent the states.

The simplest encodingmethod is to encode a state by setting a corresponding bit to 1 and setting the remaining
bits to 0. This is known as 1-hot state encoding.

The minimum length codes uses nb = log2ns bits to represent each state where ns is the number of states. This
code assigns states in binary counting order.

Another encoding technique is to use the Gray code. Gray code one advantage in that there is only one change
required in going from one state to the next state.

The three different encoding techniques for state assignment of Fig. 1.92 are illustrated in Table 1.44.

TABLE 1.44 Different state encoding
techniques

State 1-hot code Binary code Gray code

s0 00001 000 000

s1 00010 001 001

s2 00100 010 011

s3 01000 011 010

s4 10000 100 110

© Oxford University Press. All rights reserved.

Oxfo
rd

 U
niversi

ty
 Pre

ss

✐

✐

“VHDLSample” — 2018/2/21 — 17:09 — page 64 — #64
✐

✐

✐

✐

✐

✐

64 VHDL: Design, Synthesis, and Simulation

1.6.5 State Assignment

We have discussed the technique to reduce the number of states of an FSM. In the previous section, we have
found that a seven-state FSM is converted into a five-state FSM using the state reduction technique. We have also
learned that how each of the states can be encoded into a binary pattern. Now question arises which state should
be assigned to which binary pattern? For example, the state s0 can be assigned to any one of the possible binary
patterns.

The appropriate choice of the binary patterns to the states has an impact on reducing the required number of
logic gates to implement the logic circuit. The minimum number of DFFs required to implement the logic circuit
is related to the number of states in the logic circuit which is given as follows:

2n ≥ m, (1.82)

where n is the number of DFFs and m is the number of state. For example, if there are six states in a state
machine, it will require minimum three DFFs. If there are four states in a state machine, it will require minimum
two DFFs. Now it is possible to assign these four states to the binary patterns in 24 numbers of ways. The number
of combinations of binary patterns to be assigned to m number of states can be expressed as follows:

N =
2n!

(2n − m)!
(1.83)

For example, in four-state FSM, N = 22!/(22 − 4)! = 24 number of combinations are possible to assign the
four states.

1.6.6 Moore Machine

A Moore machine is an FSM in which the output depends only on the present state. It does not depend on the
inputs. A three-state Moore machine is shown in Fig. 1.93.

S0 S1

S2

FIGURE 1.93 State diagram of a typical Moore machine

1.6.7 Mealy Machine

Mealy machine is another FSM in which the output depends on the present state as well as on the input. A three-
state Mealy machine is described by state diagram as shown in Fig. 1.94. It has one input x and one output y.

S0

x = 1
x = 1

x = 1

x = 0

x = 0

x = 0

S1
S2

FIGURE 1.94 State diagram of a Mealy machine

© Oxford University Press. All rights reserved.

Oxfo
rd

 U
niversi

ty
 Pre

ss

✐

✐

“VHDLSample” — 2018/2/21 — 17:09 — page 65 — #65
✐

✐

✐

✐

✐

✐

Introduction to Digital Logic Design 65

1.7 MEMORY

Memory is a logic circuit that is used to store binary information. Normally, flip-flops or latches are used as storage
elements. In dynamic memory, binary information is stored in capacitors.

1.7.1 Units of Memory

The smallest unit of memory is bit. It is either logic 1 or logic 0. A group of 8-bits is known as one byte and a
group of 4-bits is known as one nibble. Typically, memory size is specified in kilobytes, megabytes, gigabytes, or
in terabytes as shown in Table 1.45.

TABLE 1.45 Typical units of memory

Memory size Actual amount in byte Actual amount in bit

1 kilobyte = 1 kB 1024 8×1024

1 megabyte = 1 MB 1024×1024 8×1024×1024

1 gigabyte = 1 GB 1024×1024×1024 8×1024×1024×1024

1 terabyte = 1 TB 1024×1024×1024×1024 8×1024×1024×1024×1024

A word is a group of bits that holds complete unit of information.

1.7.2 Architecture of Memory

A unit that stores one bit is known as a memory cell. A memory is an array of cells as illustrated in Fig. 1.95.

00000

D
7

D
6
D

5
D

4
D

3
D

2
D

1
D

0

Memory location/
address

Content of memory
location 00010

00001

00010

00000

00011

00100

00101
00111

01000

11110

11111

FIGURE 1.95 Memory array architecture

1. Address—The address of memory is the location where the binary data is stored. One location stores one word
of information. If 2n words can be stored in a memory, then its address size is n-bit. For example, a memory
with 32 words has 5 address bits.

2. Data—The binary information stored in a memory location is called data or one memory word. It can be one
byte, two bytes, three bytes, or n-bytes (n is an integer) of binary information.

3. Read—A memory read operation means data retrieval from the memory. To read the memory, a memory
location is to be provided along the read control signal.

© Oxford University Press. All rights reserved.

Oxfo
rd

 U
niversi

ty
 Pre

ss

✐

✐

“VHDLSample” — 2018/2/21 — 17:09 — page 66 — #66
✐

✐

✐

✐

✐

✐

66 VHDL: Design, Synthesis, and Simulation

4. Write—A memory write operation means storing data into the memory. To write into the memory, a memory
location, data to be written, and write control are needed. Write operation is also called programming.

1.7.3 Types of Memories

Memories are broadly classified into the following four types:

1. Sequential access memory (SAM)
2. Random access memory (RAM)
3. Read only memory (ROM)
4. Content addressable memory (CAM)

In SAM, the data is read sequentially from the memory. Thus, read access time varies from one memory
location to the other memory location.

In RAM, the data is read randomly from any memory location. The read access time is equal for all memory
locations. RAM supports both read and write operations. Thus, it is also known as read write memory (RWM).
RAMs are of two types: static RAM (SRAM) and dynamic RAM (DRAM). In SRAM, data is stored in a latch that
stores data for an indefinite amount of time as long as power supply is on. In DRAM, data is stored on the parasitic
stray capacitors in which data is lost after a period of time. Therefore, in DRAM data needs to be refreshed after
regular interval of time.

Read only memory has only provision of memory read, and it does not support write operation. It is one-time
programmable.

The CAM operates differently than RAM or ROM. In CAM, address of a memory is accessed for a given
search data. It compares search data against a table of stored data and returns the address of the matching data. The
search operation performed by CAM is much faster than the software search. Therefore, CAMs are used to replace
software in search-intensive applications such as Internet routers, data compression, and database acceleration.

1.8 CONTROL LOGIC CIRCUITS

Control logic circuit controls the operation of a digital circuit. For example, an adder/subtractor is controlled by a
control signal to either add two operands or subtract one operand from the other. In a bidirectional shift register,
the shifting of data is controlled by a control signal. The circuit associated with the controlling operation is the
control logic circuit. In a processor, there is a control unit that provides timing and control signals to process
different operations depending on the instructions.

A simple adder/subtractor circuit with a control input is shown in Fig. 1.96. The circuit has two parts: an adder
section and a control section. The circuit adds to numbers A and B if the control input Cin = 0 and subtracts B

Add/Subtract
control section

C
in

 (control onput)

B
3

C
out

A
3

C
3

C
2

C
1

A
2

A
1

A
0

S0S1S2S3

B
2

B
1

B
0

Adder section

1-bit
adder

1-bit
adder

1-bit
adder

1-bit
adder

FIGURE 1.96 Adder/subtractor circuit with a control input

© Oxford University Press. All rights reserved.

Oxfo
rd

 U
niversi

ty
 Pre

ss

✐

✐

“VHDLSample” — 2018/2/21 — 17:09 — page 67 — #67
✐

✐

✐

✐

✐

✐

Introduction to Digital Logic Design 67

from A if the control input Cin = 1. Thus, with the help of control section, the adder circuit can add or subtract
depending on the control input. More complex control circuits are discussed in later chapters of the book.

1.9 ALGORITHMIC STATE MACHINE

Algorithmic state machine (ASM) is a logic circuit comprised both sequential and combinational logic parts. The
main task of ASM is to control a digital system to perform the steps of a procedure or an algorithm. The behavior
or functionality of an ASM is described by a chart called ASM chart. ASM chart has three basic elements:

1. State box
2. Decision box
3. Conditional box

A state box is represented by a rectangle with one input and one output. The operation of state box is written
inside the rectangle. The name of the state is specified at the top-left corner of the box. The binary code assigned
to a state box is written at the top-right corner of the box. Figure 1.97 shows a state box.

S
1 100 binary codeState

Y = 1

FIGURE 1.97 State box S1

A decision box is represented by a diamond-shaped box or rhombus with one input and two output branches.
The condition is written inside the rhombus. If the condition is true (or logic 1), the operation control follows
one exit path (Exit path 1), and if the condition is false (or logic 0), the operation control follows another exit
path (Exit path 2). Figure 1.98 shows a decision box.

Condition
1

Exit path 1 Exit path 2

0

FIGURE 1.98 Decision box

A conditional box is represented by an oval-shaped box with one input coming from the exit path of a decision
box and one output. Figure 1.99 shows a conditional box.

Conditional
output

From exit path of decision box

FIGURE 1.99 Conditional box

© Oxford University Press. All rights reserved.

Oxfo
rd

 U
niversi

ty
 Pre

ss

✐

✐

“VHDLSample” — 2018/2/21 — 17:09 — page 68 — #68
✐

✐

✐

✐

✐

✐

68 VHDL: Design, Synthesis, and Simulation

1.9.1 State Diagram vs. ASM Chart

A state diagram can be translated into an ASM chart or vice-versa. Let us consider a state diagram shown in
Fig. 1.100. The state machine has three states: S2, S1, S0 and one input x. The operation starts with the state S0.

x = 0

S
0

0

1

1

1

0

S
1

S
2

FIGURE 1.100 State diagram

1. At state S0, if the input x = 1, the next state is S1, else the next state is S0 itself.
2. At state S1, if the input x = 1, the next state is S2, else the next state is S1 itself.
3. At state S2, if the input x = 1, the next state is S0, else the next state is S1.

A corresponding ASM chart can be derived as shown in Fig. 1.101.

S
1

S
0

1

S
2

0

01

01

x

x

x

FIGURE 1.101 ASM chart

1.9.2 Realization of ASM Chart

An ASM chart is very much like a state diagram to represent the operation of state machine. Therefore, the
sequential circuit implementation technique can be used to realize ASM chart of low or medium complexity.
However, for ASM chart with a large number of states some special method is used.

EXAMPLE 1.17 Realize the ASM chart shown in Fig. 1.101.

© Oxford University Press. All rights reserved.

Oxfo
rd

 U
niversi

ty
 Pre

ss

✐

✐

“VHDLSample” — 2018/2/21 — 17:09 — page 69 — #69
✐

✐

✐

✐

✐

✐

Introduction to Digital Logic Design 69

Solution

There are three states in the ASM chart. Therefore, we need at least 2-bits to represent each state. Hence, there
will be two flip-flops in the circuit. Let us assume that flip-flops are DFF with outputsQ1 andQ0. The state table
for the ASM chart can be written as shown in Table 1.46.

TABLE 1.46 State table for Example 1.17

Input Present state Next state

x Q1(n) Q0(n) Q1(n + 1) Q0(n + 1)

0 0 0 0 0

1 0 0 0 1

0 0 1 0 1

1 0 1 1 0

0 1 0 0 1

1 1 0 0 0

The Boolean expression for the outputs of the next state can be obtained using K-map method as follows:

Q1(n + 1) = xQ0(n) (1.84)

Q0(n + 1) = xQ1(n) + xQ0(n) + xQ1(n)Q0(n) (1.85)

Figure 1.102 realizes the ASM chart shown in Fig. 1.101.

x

CLK

D
1

D
0

Q
1

Q
0

Q
0

Q
1

FIGURE 1.102 Logic circuit that realizes ASM chart shown in Fig. 1.101

1.9.3 Linked State Machine

A state machine with a large number of states and large complexity is often broken into smaller state machines.
These smaller state machines are linked together to form the complete state machine.

© Oxford University Press. All rights reserved.

Oxfo
rd

 U
niversi

ty
 Pre

ss

✐

✐

“VHDLSample” — 2018/2/21 — 17:09 — page 70 — #70
✐

✐

✐

✐

✐

✐

70 VHDL: Design, Synthesis, and Simulation

SUMMARY

1. NOT, OR, AND, NOR, NAND, XOR, and
XNOR are the basic logic gates.

2. NAND and NOR are the universal gates.
Any Boolean expression can be realized using
either of the universal gates.

3. Multiplexer has many inputs to single out-
put signal flow depending on select lines,
whereas demultiplexer has single input to
many output signal flow.

4. Combinational logic circuit does not have
any clock input.

5. Sequential logic circuits are operated using
clock input as well as data inputs.

6. In JK flip-flop, there is no forbidden state.
7. D flip-flop is used as a unit delay element in

digital filter architecture.
8. Algorithmic state machine is a generic rep-

resentation of an FSM at the algorithmic
level.

9. Control logic is an important part of a digital
logic circuit that controls the operation of the
circuit.

EXERCISES

Fill in the Blanks

1.1 Universal logic gates are .
(a)AND & OR
(b)NOT & OR
(c)NAND & NOR
(d)XOR & NOR

1.2 A full-adder is a adder.
(a)2-bit
(b)3-bit
(c)4-bit
(d)1-bit

1.3 gates are not associative.
(a)NAND & NOR
(b)AND & OR
(c)XOR & XNOR
(d)NOT & OR

1.4 The outputs of sequential logic circuits depend on
.

(a)present inputs
(b)present inputs and past outputs
(c)present and past inputs
(d)present inputs and future outputs

1.5 Both AND array and OR array are programmable in
.

(a)PLA
(b)PAL
(c)ROM
(d)PLD

Multiple-choice Type Questions

1.1 XOR logic can be implemented using only
(a)AND gates
(b)NAND gates

(c)OR gates
(d)NOT gates

1.2 The minimum number of NOR gates required to
implement XNOR logic is
(a) four
(b)two
(c) three
(d)five

1.3 JK flip-flop has
(a) all valid input combinations
(b)two valid input combinations
(c) three valid input combinations
(d)one valid input combinations

1.4 Master-slave flip-flop is
(a) edge-triggered flip-flop
(b)level-sensitive flip-flop
(c)both (a) and (b)
(d)none of these

1.5 Multiplexer has
(a)many input lines and single output line
(b)one input line and many output lines
(c)many input lines and many output lines
(d)all of these

1.6 Parity generator circuits are used in
(a) transmitter
(b)receiver
(c)both transmitter and receiver
(d)none of these

1.7 In synchronous circuits, all flip-flops are operated by
(a) common clock
(b)different clock
(c)multiple clock
(d)no clock

© Oxford University Press. All rights reserved.

Oxfo
rd

 U
niversi

ty
 Pre

ss

✐

✐

“VHDLSample” — 2018/2/21 — 17:09 — page 71 — #71
✐

✐

✐

✐

✐

✐

Introduction to Digital Logic Design 71

1.8 The sum-of-product (SOP) form of logical expression
is most suitable for designing logic circuits using only
(a)XOR gates
(b)AND gates
(c)NAND gates
(d)NOR gates

1.9 Which of the following flip-flops is used as a latch?
(a) JK flip-flop
(b)D flip-flop
(c)RS flip-flop
(d)T flip-flop

1.10 The initial state of a mod-16 down counter is 0110.
The state after 37 clock pulse will be
(a)0000
(b)0110
(c)0101
(d)0001

1.11 In a D type latch when enable input is high and
D = 1, the output will be
(a)0
(b)1
(c)don’t care
(d)blocked

1.12 The frequency of the pulse at point A in Fig. 1.103 is

100 kHz
Clock

10-bit
ring

counter

4-bit
parallel
counter

A
Mod-20
ripple

counter

FIGURE 1.103 Diagram for Problem 12

(a)10 kHz
(b)31.25 kHz
(c)50 kHz
(d)5 kHz

1.13 An example of weighted code is
(a)Excess-3 code
(b)ASCII code
(c)Hamming code
(d)8421 code

1.14 The minimum number of NAND gates required to
design a full-adder is
(a)5
(b)9
(c)6
(d)10

1.15 A decoder with enable input can be used as
(a) encoder
(b)parity generator
(c)NAND gate
(d)demultiplexer

1.16 The output of a logic gate 1 when all its inputs are at
logic 0. The gate is either
(a)NAND or XOR gate

(b)NOR or XOR gate
(c)AND or XNOR gate
(d)NOR or XNOR gate

1.17 JK flip-flop has
(a)one stable state
(b)two stable states
(c)no stable state
(d)none of these

1.18 The operation which is cumulative but not associative
is
(a)AND
(b)XOR
(c)NAND
(d)NOT

1.19 The number of XOR gates required for conversion of
11011 to its equivalent gray code is
(a)2
(b)4
(c)3
(d)5

1.20 A message is 010101. For even parity generator, the
parity bit to be added to the message is
(a)0
(b)1
(c)0 and 1
(d)none of these

1.21 The output Y in the circuit shown in Fig. 1.104 is
always 1 when

P

Q

R

Y

FIGURE 1.104 Diagram for Problem 21

(a) two or more of the inputs are 0
(b)two or more of the inputs are 1
(c) any odd number of the inputs is 0
(d)any odd number of the inputs is 1

1.22 The logic function implemented by the circuit shown
in Fig. 1.105 is

4:1 MUX

S
1

I
1

I
0

I
2

I
3 S

0

Y F

P Q

FIGURE 1.105 Diagram for Problem 22

© Oxford University Press. All rights reserved.

Oxfo
rd

 U
niversi

ty
 Pre

ss

✐

✐

“VHDLSample” — 2018/2/21 — 17:09 — page 72 — #72
✐

✐

✐

✐

✐

✐

72 VHDL: Design, Synthesis, and Simulation

(a)F = AND(P,Q)
(b)F = OR(P,Q)
(c)F = XNOR(P,Q)
(d)F = XOR(P,Q)

1.23 When the output Y in the circuit shown in Fig. 1.106
is 1, it implies that data has

DData

Clock

Q D Q Y

Q Q

FIGURE 1.106 Diagram for Problem 23

(a) changed from 0 to 1
(b)changed from 1 to 0
(c) changed in either direction
(d)not changed

1.24 Two D flip-flops are connected as a synchronous
counter that goes through the following sequence.
00 → 11 → 01 → 10 → 00 → · · · The
connections to the inputs DA and DB are
(a)DA = QB , DB = QA

(b)DA = QA, DB = QB

(c)DA = (QAQB + QAQB , DB = QA

(d)DA = (QAQB + QAQB), DB = QB

1.25 Match the logic gates in column A with their
equivalent in column B in Fig. 1.107.

Coloumn A

4.

3.

2.

1.P.

Q.

R.

S.

Coloumn B

FIGURE 1.107 Diagram for Problem 25

(a)P-2, Q-4, R-1, S-3
(b)P-4, Q-2, R-1, S-3
(c)P-2, Q-4, R-3, S-1
(d)P-4, Q-2, R-3, S-1

1.26 For the output F to be 1 in the logic circuit shown in
Fig. 1.108, the input combination should be

A

B

F

C

FIGURE 1.108 Diagram for Problem 26

(a)A = 1, B = 1, C = 0
(b)A = 1, B = 0, C = 0
(c)A = 0, B = 1, C = 0
(d)A = 0, B = 0, C = 1

1.27 Assuming that all flip-flops are in reset state initially,
the count sequence observed at QA in the circuit
shown in Fig. 1.109 is

Output

D
A

Q
A

D
B

Q
B

D
C

Q
C

AQ
BQ CQ

FIGURE 1.109 Diagram for Problem 27

(a)0010111...
(b)0001011...
(c)0101111...
(d)0110100...

1.28 The Boolean function realized by the logic circuit
shown in Fig. 1.110 is

4:1 MUX

S
1

I
1

I
0

I
2

I
3

S
0

Y F(A, B, C, D)

A

C

D

B

FIGURE 1.110 Diagram for Problem 28

(a)F =
∑

m(0, 1, 3, 5, 9, 10, 14)

© Oxford University Press. All rights reserved.

Oxfo
rd

 U
niversi

ty
 Pre

ss

✐

✐

“VHDLSample” — 2018/2/21 — 17:09 — page 73 — #73
✐

✐

✐

✐

✐

✐

Introduction to Digital Logic Design 73

(b)F =
∑

m(0, 1, 3, 5, 9, 10, 14)
(c)F =

∑

m(1, 2, 4, 5, 11, 14, 15)
(d)F =

∑

m(2, 3, 5, 7, 8, 9, 12)
1.29 If X = 1 in the following logic expression, then

X +Z{Y + (Z + XY)}{X +Z(X +Y)} = 1 (1.86)

(a)Y = Z
(b)Y = Z
(c)Z = 1
(d)Z = 0

1.30 What are the minimum numbers of 2-to-1
multiplexers required to generate a two-input AND
gate and a two-input XOR gate?
(a)1 and 2
(b)1 and 3
(c)1 and 1
(d)2 and 2

1.31 In the two-latch circuits shown in Fig. 1.111, the
inputs (P1, P2) for both the latches are first made (0,
1) and then, after a few seconds, made (1, 1). The
corresponding stable outputs (Q1, Q2) are

P
1

P
1Q

1 Q
1

Q
2

Q
2P

2 P
2

FIGURE 1.111 Diagram for Problem 31

(a)NAND: first (0,1) then (0,1) NOR: first (1,0) then
(0,0)

(b)NAND: first (1,0) then (1,0) NOR: first (1,0) then
(1,0)

(c)NAND: first (1,0) then (1,0) NOR: first (1,0) then
(0,0)

(d)NAND: first (1,0) then (1,1) NOR: first (0,1) then
(0,1)

1.32 What are the counting states (Q1, Q2) for the counter
shown below?

K
1

K
2

J
1

Clock

J
2

1

Q
1

Q
1

Q
2

Q
2

2
Q

1
Q

FIGURE 1.112 Diagram for Problem 32

(a)11, 10, 00, 11, 10, · · ·
(b)01, 10, 11, 00, 01, · · ·

(c)00, 11, 01, 10, 00, · · ·
(d)01, 10, 00, 01, 10, · · ·

1.33 Which of the following Boolean expression correctly
represents the relation between P, Q , R, and M1?

P
Q X

Y

Z

M
1

R

FIGURE 1.113 Diagram for Problem 33

(a)M1 = (P OR Q) XOR R
(b)M1 = (P AND Q) XOR R
(c)M1 = (P NOR Q) XOR R
(d)M1 = (P XOR Q) XOR R

1.34 For the circuit shown in Fig. 1.114, I0 − I3 are inputs
to the 4:1 multiplexer. R (MSB) and S are control bits.

4:1 MUX

I
2

I
3

I
1

I
0

Z

P

P

P

P

Q

R S

Q

FIGURE 1.114 Diagram for Problem 34

The output Z can be represented by
(a)PQ + PQS + Q R S
(b)PQ + PQR + P Q S
(c)PQ R + PQR + PQRS + Q R S
(d)PQR + PQRS + PQ RS + Q R S

1.35 For each of the positive edge-triggered JK flip-flop
used in Fig. 1.115, the propagation delay is �T .

CLK

CLK
1

1

1 1

1

0

J
0

t
1

Q
0

Q
1

K
0

T
t

J
1

K
1

FIGURE 1.115 Diagram for Problem 35

© Oxford University Press. All rights reserved.

Oxfo
rd

 U
niversi

ty
 Pre

ss

✐

✐

“VHDLSample” — 2018/2/21 — 17:09 — page 74 — #74
✐

✐

✐

✐

✐

✐

74 VHDL: Design, Synthesis, and Simulation

Which of the following waveforms shown in Fig.
1.116 correctly represent the output at Q1?

a)

b)

c)

d)

1

2T
0

1t T+∆

1

4T

0

1 2t T+ ∆

1t T+∆

1

4T

0

1

2T
0

1 2t T+ ∆

FIGURE 1.116 Waveforms for Problem 35

1.36 For the circuit shown in Fig. 1.117, D has a transition
from 0 to 1 after CLK changes from 1 to 0. Assume
gate delays to be negligible.

1

1

0 CLK

D

Q

0

Q

FIGURE 1.117 Waveforms for Problem 36

Which of the following statement is true?
(a)Q goes to 1 at the CLK transition and stays at 1.
(b)Q goes to 0 at the CLK transition and stays at 0.
(c)Q goes to 1 at the CLK transition and goes to 0

when D goes to 1.
(d)Q goes to 0 at the CLK transition and goes to 1

when D goes to 1.
1.37 The Boolean function Y = AB + CD is to be realized

using only two-input NAND gates. The minimum
number of gate required is
(a)2
(b)3
(c)4
(d)5

1.38 In the circuit shown in Fig. 1.118, X is given by

4-to-1
MUX

0

1

1

0
S

1

I
1

I
0

I
2

I
3

S
0

Y

A B

4-to-1
MUX

0

1

1

0
S

1

I
1

I
0

I
2

I
3

S
0

Y X

C

FIGURE 1.118 Waveforms for Problem 38

(a)X = AB C + ABC + ABC + ABC
(b)X = ABC + ABC + ABC + AB C
(c)X = AB + BC + AC
(d)X = A B + B C + AC

1.39 The following binary values were applied to the X and
Y inputs of the NAND latch shown in Fig. 1.119 in
the sequence indicated below: X = 0, Y = 1; X = 0, Y
= 0; X = 1, Y = 1. The corresponding stable P, Q
outputs will be

X
P

QY

FIGURE 1.119 Waveforms for Problem 39

(a)P = 1, Q = 0; P = 1, Q = 0; P = 1, Q = 0 or
P = 0, Q = 1

(b)P = 1, Q = 0; P = 0, Q = 1 or P = 0, Q = 1;
P = 0, Q = 1

(c)P = 1, Q = 0; P = 1, Q = 1; P = 1, Q = 0 or
P = 0, Q = 1

(d)P = 1, Q = 0; P = 1, Q = 1; P = 1, Q = 1
1.40 For the circuit shown in Fig. 1.120, the counter state

(Q1Q0) follows the sequence

D
0

D
1

Q
0

Clock

Q
1

FIGURE 1.120 Waveforms for Problem 40

(a)00, 01, 10, 11, 00, · · ·
(b)00, 01, 10, 00, 10, · · ·
(c)00, 01, 11, 00, 01, · · ·
(d)00, 10, 11, 00, 10, · · ·

© Oxford University Press. All rights reserved.

Oxfo
rd

 U
niversi

ty
 Pre

ss

✐

✐

“VHDLSample” — 2018/2/21 — 17:09 — page 75 — #75
✐

✐

✐

✐

✐

✐

Introduction to Digital Logic Design 75

State True or False

1.1 Barrel shifter is a sequential circuit.
1.2 In Moore state machine, the outputs are determined

by only the internal states.
1.3 Setup time is the time after the clock transition when

data must not change.
1.4 The outputs toggle in a T flip-flop when its T-input is

at logic 1.
1.5 Ripple counter is an asynchronous counter.

Short-answer Type Questions

1.1 Design a 4:16 decoder using 3:8 decoders.
1.2 Implement two-input XOR function using minimum

number of two-input NAND gates.
1.3 Design a full-subtractor using 4:1 multiplexer.
1.4 Perform the conversion from SR to JK flip-flop.
1.5 Realize a full-subtractor using only NOR gates.
1.6 Draw a BCD adder circuit to add two BCD numbers

maximum up to 9. The outputs of this adder should
also be in BCD.

1.7 Construct a 2-bit comparator using only decoder.
1.8 What is the main difference between a latch and a

flip-flop?
1.9 Design a full-adder using 3:8 decoder and other logic

gates.
1.10 Explain the race-around condition of JK flip-flop.

Long-answer Type Questions

1.1 (a) Design a mod-10 synchronous binary up-counter
using JK flip-flop and other necessary gates. (b)
Calculate the propagation delay for 4-bit synchronous
binary up-counter when JK flip-flops are connected
in series and parallel. Given that the propagation

delay of the flip-flop is 30 ns and the other logic gates
have equal propagation delay of 20 ns.

1.2 (a) Draw the circuit for a 4-bit Johnson counter using
D flip-flop and explain its operation. Draw its timing
diagram. How does the timing diagram differ from
that of a Ring counter? (b) Perform the conversion
from D flip-flop to JK flip-flop.

1.3 (a) Distinguish between ROM, PLA, and PAL. (b)
Design a combinational circuit using an 8 × 4 ROM
that accepts a 3-bit number and generates an output
binary number equal to the square of the input
number. (c) Draw a logic diagram of master-slave JK
flip-flop. Why is it called so?

1.4 (a) Write down the difference between combinational
logic circuit and sequential logic circuit. (b) Design a
mod-14 asynchronous up/down counter using JK
flip-flop.

1.5 (a) Design a combinational circuit that accepts a
BCD input and generates Excess-3 as output using
ROM. (b) Design and explain the operation of a 4-bit
universal register.

1.6 (a) Write down the excitation table of JK and D
flip-flops. Derive the excitation equation for these
flip-flops. (b) Design a full-subtractor using a
full-adder and NOT gates.

1.7 Obtain the ASM chart for the following state
transitions: (a) If x = 0, control goes from state S1 to
state S2; if x = 1, generate a conditional operation
and go from S1 to S2. (b) If x = 1, control goes from
S1 to S2 and then to S3; if x = 0, control goes from
S1 to S3. (c) Start from state S1; then: if xy = 00, go
to state S2; if xy = 01, go to state S3; if xy = 10, go
to state S1; otherwise, go to state S3.

1.8 Design a mod-8 up/down counter.

© Oxford University Press. All rights reserved.

Oxfo
rd

 U
niversi

ty
 Pre

ss

✐

✐

“VHDLSample” — 2018/2/21 — 17:09 — page 76 — #76
✐

✐

✐

✐

✐

✐

76 VHDL: Design, Synthesis, and Simulation

ANSWERS

Fill in the Blanks

1.1 1.2 1.3 1.4 1.5

(c) (b) (a) (b) (a)

Multiple-choice Type Questions

1.1 1.2 1.3 1.4 1.5 1.6

(b) (a) (a) (a) (a) (a)

1.7 1.8 1.9 1.10 1.11 1.12

(a) (c) (c) (d) (b) (b)

1.13 1.14 1.15 1.16 1.17 1.18

(d) (b) (d) (d) (b) (c)

1.19 1.20 1.21 1.22 1.23 1.24

(b) (b) (b) (d) (a) (d)

1.25 1.26 1.27 1.28 1.29 1.30

(d) (d) (d) (d) (d) (a)

1.31 1.32 1.33 1.34 1.35 1.36

(c) (c) (d) (a) (b) (a)

1.37 1.38 1.39 1.40

(b) (a) (c) (b)

True or False

1.1 1.2 1.3 1.4 1.5

(f) (t) (f) (t) (t)

© Oxford University Press. All rights reserved.

Oxfo
rd

 U
niversi

ty
 Pre

ss

