
Associate Professor
Department of Information Science and Technology

College of Engineering, Guindy Campus
Anna University, Chennai

DESIGN AND
ANALYSIS OF
ALGORITHMS

Oxfo
rd

e ofof
AnnaAnnaU

niv
er

sit
y

sociate Profciate P
Information formatio
ff EngineeEngi

Un

ve
rs

Pr
es

sOO
HMHM

Oxford University Press is a department of the University of Oxford.
It furthers the University’s objective of excellence in research, scholarship,

and education by publishing worldwide. Oxford is a registered trade mark of
Oxford University Press in the UK and in certain other countries.

Published in India by
Oxford University Press

YMCA Library Building, 1 Jai Singh Road, New Delhi 110001, India

© Oxford University Press 2014

The moral rights of the author/s have been asserted.

First published in 2014

All rights reserved. No part of this publication may be reproduced, stored in
a retrieval system, or transmitted, in any form or by any means, without the

prior permission in writing of Oxford University Press, or as expressly permitted
by law, by licence, or under terms agreed with the appropriate reprographics

rights organization. Enquiries concerning reproduction outside the scope of the
above should be sent to the Rights Department, Oxford University Press, at the

address above.

You must not circulate this work in any other form
and you must impose this same condition on any acquirer.

ISBN-13: 978-0-19-809369-5
ISBN-10: 0-19-809369-1

Typeset in Times New Roman
by Ideal Publishing Solutions, Delhi

Printed in India by Radha Press, New Delhi 110031

Third-party website addresses mentioned in this book are provided
by Oxford University Press in good faith and for information only.

Oxford University Press disclaims any responsibility for the material contained therein.

Oxfo
rd

ebsite aite a
University Pversity P

Press disclaimdisclaim

Univ
er

sit
y

o

k in any otherin any oth
condition on anndition on an

-0-19-809369-519-80936
: 0-19-809369-1-19-80936

et in Times Newin Times
al Publishing Sl Publishin

ndia by Radha ndia by Rad

dressesdres
ss

Pr
es

sed, storestore
ns, withoutwithou

expressly pepressly pe
priate reproiate repro

outside theoutside the
d Universid Universi

11.8.1 M S T
The history of an MST is as interesting as its concept. In 1926, Otaker Boruvka formulated
the MST problem. A Polish mathematician, Vojtech Jarnik, described the problem in 1929
in a letter to Otaker Boruvka. The same problem was conceived independently by Kruskal
in 1956. ence, Kruskal rediscovered the problem. ater it was de ned independently by
Robert Prim in 1957 and by Edsger Dijkstra in 1958

C H A P T E R

1Introduc�on	to		

Algorithms C H A P T E R

18 Basics	of	Computa�onal	

Complexity

Features of the Book

Topical Coverage
The book provides

extensive coverage of

design techniques,
followed by discussions

Treatment of Concepts

are provided using

Algorit m Presenta on

in two ways, that is, step-
wise approach

pseudocode approach

understanding of the
logic behind solving a

 Example 11.12 Consider the graph G shown in Fig. 11.11. Construct an MST for the
given graph G using Kruskal’s algorithm.

The rst step in Kruskal’s algorithm is to sort all the edges and form an edge list,
say E. The edges of graph G shown in Fig. 11.21 are sorted and shown in Table 11.13.

Example 11.12

Since the disjoint set data structure is used, initialization takes at most (|V|) time. The time
complexity of the algorithm depends on the number of edges. As there are |E| edges, O(| E
|log| E |) time is required to sort these edges. The disjoint set takes at most 2| E | nd opera-
tions and |V | 1 operations. Therefore, the total complexity of Kruskal’s algorithm is at most
O(| E |log| E |) time.

Step 1: Create a node x by allocating memory for it.
Step 2: Assign the required value to the item part of node x.
 item(x) = value
Step 3: Set in the pointer to null.
 next(x) = null
Step 4: Return the node x.Algorithm create(L, x, value)

%% Input: List L and element x with 'value'
%% Output: Node x
Begin
 allot(x) %% Allot memory for node x with two elds item and next
 item(x) = value

next(x) = null

C H A P T E R

5Data	Structures—I

“Bad programmers worry about the code. Good programmers worry about data structures
C H A P T E R

11 Greedy	Algorithms

“Greed is all right, by the way... I think greed is healthy. You can be greedy
d till f l d b t lf ”

C H A P T E R

13Dynamic	Programming

Oxfo
r

ed, initiali
ends on the num

t these edge
refore, th

or
d

sh

lgorithm is
 in Fig. 11.2

O
oror

O

Univ
er

sit
y

er Boruvka formulaer Boruvka form
bed the problem ind the probl

ed independently byndependen
was de ned indepwas de ned i

er
s

UnUn
wn in Fig

as de ned

Un

yyy Pr
es

sssT E R

13s
sss

Glossary and Summary

given at the end of each
chapter to help readers

Revie ues ons
E ercises and

Addi onal Pro lems

the end of every chapter
to test the readers’

conceptual knowledge
and also enhance their

Crossword Puzzles
Crossword puzzles,

exercise at the end of each

readers to self-check their

 CROSSWORD

1

2

3

4 5

7

8

9 10

11

Historical Notes
Historical notes are

provided throughout the
The word algorithm is derived from the name of a Persian
mathematician, Abu Ja’fer Mohammed Ibn Musa al
Khowarizmi, who lived sometime around 780–850 AD. He
was from the town of Khowarazm, now in Uzbekistan. He
was a teacher of mathematics in Baghdad. He wrote a book

Europe. He also introduced the simple step-b
for addition, subtraction, multiplication, and
his book. The word algebra has also been d
the title of this book. When his book was t
Latin, his name was quoted as Algorismus

Box 1.1 Origin of the word ‘algorithm’

eorge Bernard Dantzig was born in 1914 at Portland,
Oregon, United States. His father became a professor of
mathematics at University of Maryland after World War
II. Dantzig’s biggest contribution is that he designed the
simplex method for solving LPPs. Apart from the simplex

duality theory. He worked with Fulkerson an
in formulating the travelling salesperson pro
linear programming and solved the TSP proble
49 cities at that time. In 197 , he was award
National Medal of Science, the highest honou

Box 17.2 George Bernard Dantzig

 GLOSSARY

Agent A performer of an algorithm
Algorist A person who is skilled in algorithm development
Algorithm A step-by-step procedure for solving a given

problem
Algorithm gap The difference between lower and upper

The process of provid
cal proof that the algorithm works correctly f

Algorithm validation The process of chec
ness of an algorithm, this is done by givin
it and checking its results with expected SUMMARY

 An algorithm is a step-by-step procedure for solving a
given problem.

 A computational problem is characterized by two
 factors speci cation of valid input and output param-

 Algorithm veri cation is a process of prov
ematical proof that the given algorithm wo
for all instances of data.

 A proof of an algorithm is said to exist if t

 REVIEW QUESTIONS

1.1 De ne an algorithm.
1.2 What are the characteristics of an algorithm
1.3 Survey the Internet and list out at least ve algorithms

that have huge impact on our daily lives.
1.4 What are the stages of problem solving

 1.8 What is the difference between algo
and algorithm validation

 1.9 How is an algorithm validated and
with an example.

1.10 State algorithm classi cations. Wha EXERCISES

1.1 Assume that there are two algorithms A and B for a
given problem P. The time complexity functions of algo-
rithms A and B are, respectively, 5n and log2n. Which
algorithm should be selected assuming that all other
conditions remain the same for both the problems

1 2 L h f l h di h

complexities of A, B, and C are 3n
respectively. Assume that the input i
Assume that the machine executes
per second. How much time will algo
C take Which algorithm will be the ADDITIONAL PROBLEM

1.1 John MacCormick had written a book titled Nine
Algorithms That Changed the Future: The Ingenious
Ideas that drive Today’s Computers, Princeton University
Press, Princeton, that had listed the nine wonderful
algorithms, namely, search engine indexing, page rank,

recognition, data compression, datab
signatures, that changed the world.

 (a) What are these algorithms Se
and nd what these algorithms

 (b) Identify one more algorithm that

Oxfo
rd

f
Oxpter

er
ge

rd
S
that

4 What a

rdrd
ive

rsi
ty
es

n algorithorit

m is said to exist if tm is said to exis

ity
t

Univn algorithm.
at are the char

y the Inte
h

iviv

Pr
eseses

sgiv

Pprovprov
wowoPPvvoo

Computers have become an integral part of our daily life in recent times. They have enormously impacted
our personal, professional, as well as social lives. Computers help us in tasks such as document editing,
Internet browsing, sending emails, making presentations, performing complex scienti c computations,
social networking, and playing games. Industries and government of ces use computers effectively in
production, e-governance, and e-commerce. Considering the increasing demand of computers in society,
schools, colleges, and universities have included computer education in their curriculum, to help students
become skilled in programming and developing applications which can be used to solve various business,
scienti c, and social problems.

Programming is a process of converting a given problem into an executable code for the computer. It
involves understanding, analysis, and solving problems to create an algorithm. Veri cation of the algorithm,
coding of the algorithm in a speci c programming language, testing, debugging, and maintaining the
source code are also part of the programming process. Therefore, in order to construct ef cient programs,
a ne understanding of algorithms is essential. An algorithm is a set of logical instructions for solving a
given problem. It is expected to give correct results for valid inputs and should be ef cient, consuming
less computer resources. An algorithm is implemented as a program using a programming language. A
well-designed algorithm runs faster and consumes lesser computer resources, namely time and space.
Therefore, expertise in programming is more related to ef ciency in problem-solving and effective de-
signing of algorithms, rather than developing codes with the help of programming languages. Though
programming languages are important, their role is just limited to the implementation of a well-designed
algorithm. For this reason, algorithms are a central theme of computer study.

In fact, history of algorithms is much older than that of computers, dating back to 3000 BC. The
ancient people of the Sumerian civilization were aware of basic numeric computation like addition. A
Sumerian tablet found in the Euphrates river showed how to partition a given quantity of wheat in a way
that each person receives the speci ed quantity. Such tablets were also used by ancient Babylonians
(2000 to 1650 BC). Mathematicians of this period such as Euclid, Al-Khwarizmi, Leonardo Pisano (also
known as Fibonacci), and others produced procedures that provided the foundations of the concepts of
algorithms. Later developments in the eld of algorithms were due to the contributions of Gottfried
Leibnitz, David Hilbert, and Alan Turing. The history of modern computers, however, only starts from
the 1940s. Thus, algorithms have played a very important role in the development of modern computing.

The study of algorithms, called algorithmics, includes three aspects—algorithm design, analysis, and
computational complexity of problems. Algorithm design is a creative activity. It includes various techniques
(such as divide-and-conquer, greedy approach, dynamic programming, backtracking) that help in producing
outputs at a faster pace by consuming lesser computer resources. Algorithm analysis is the estimation of
how much resource is required by the algorithm. Computational complexity deals with the analysis and
solvability of problems itself. A compulsory course on algorithms design and analysis is generally offered
to computer science and information technology students in most universities. The course aims to help
students create ef cient algorithms in common engineering design situations and analyse the asymptotic
performance of algorithms by using the important algorithmic design paradigms and methods of analysis.

ABOUT THE BOOK

Design and Analysis of Algorithms is designed to serve as a textbook for the rst level course in algorithms
that discusses all the fundamental and necessary information related to the three important aspects of

Oxfo
rd

vilizatlizat
uphrates rivrates riv

he speci ed he speci e
ematicians oaticians

and others pnd others
velopmentelopmen

rt, andrt, and

Univ
er

sit
yis a sa s

alid inputs aalid input
as a programs a program

lesser compusser com
ated to ef cied to ef c

codes with thcodes with
r role is just liole is ju

e a central tha central
ch older thach older

on weron w

Pr
es

sutable coable co
rithm. Verihm. Veri

ing, debuging, debu
in order ton order

et of let o

Preface vii

algorithm study using minimal mathematics and lucid language. This book is suitable for undergradu-
ate students of computer science and engineering (CSE) and information technology (IT), as well as
for postgraduate students of computer applications. It is also useful for diploma courses, competitive
examinations (like GATE), and recruitment interviews for this subject.

The book begins with an introduction to algorithms and problem-solving concepts followed by an
introduction to algorithm writing and analysis of iterative and recursive algorithms. In-depth explana-
tions and designing techniques of various types of algorithms used for problem-solving such as the
brute force technique, divide-and conquer-technique, decrease-and-conquer strategy, greedy approach,
transform-and-conquer strategy, dynamic programming, branch-and-bound approach, and backtracking,
are provided in the book. Subsequent chapters of the book delve into the discussion of string algorithms,
iterative improvement, linear programming, computability theory, NP-hard problems, NP- completeness,
probability analysis, randomized algorithms, approximation algorithms, and parallel algorithms, with
the appendices throwing light on basic mathematics and proof techniques.

The various design techniques have been elucidated with the help of numerous problems, solved
examples, and illustrations (including schematics, tables, and cartoons). The algorithms are presented in
plain English (informal algorithm presentation) and pseudocode approach (formal algorithm presenta-
tion) to make the book programming language-independent and easy-to-comprehend. The book includes
a variety of chapter-end pedagogical features such as point-wise summary, glossary, review questions,
exercises, and additional problems to help readers assimilate and implement the concepts learnt.

KEY FEATURES

 Provides simple and coherent explanations without using excessive theorems, proofs, and lemmas
 Detailed coverage for topics such as greedy approach, dynamic programming, transform-and-conquer

technique, decrease-and-conquer technique, linear programming, and randomized and approximation
algorithms

 Dedicated chapters on backtracking and branch-and-bound techniques, string matching algorithms,
and parallel algorithms

 Simple and judicious presentation of algorithms throughout the text in both informal and formal
forms, followed by the discussion of their complexity analysis

 Numerous review questions, exercises, and additional problems given at the end of each chapter to
help readers apply and practise the concepts learnt

 Includes glossary and point-wise summary at the end of each chapter to help readers quickly
recapitulate the important concepts

 Provides historical notes on various topics and crossword puzzles at the end of each chapter to elicit
learning interest in students

ORGANIZATION OF THE BOOK

The book consists of twenty chapters. A chapter-wise scheme of the book is presented here.
Chapter 1 provides an overview of algorithms. It introduces all the basic concepts of algorithms and

the fundamental stages of problem-solving. The chapter ends with the classi cation of algorithms.
Chapter 2 starts with the basic tools used for problem-solving. All the guidelines required for present-

ing the pseudocode and ow charts are provided along with many examples. The focus of this chapter
is to provide some practice on writing algorithms. The basics of recursion and algorithm correctness are
also covered in this chapter.

Chapter 3 covers the basics of algorithm complexity and analysis of iterative algorithms. Step count
and operation count methods used for analysing iterative algorithms are discussed in detail. Asymptotic

Oxfo
rd

ing ng

entation of ation of
discussion oscussion o

estions, ns, exeexe
and practisand practis
and poiand poi

rtan

Univ
er

sit
y

ise se
te and impe and im

ithout using eout usin
y approach, dyapproach,

que, linear prque, linea

nd brancnd bra

Pr
es

sf numeronumer
. The algorThe algor

proach (foroach (for
sy-to-comsy-to-com
ummaumm

ll

viii Preface

analysis is also discussed in detail. Finally, the chapter ends with the concept of analysing the ef ciency
of algorithms.

Chapter 4 discusses the analysis of recursive algorithms. It explains the basics of recurrence equations
along with the methods for solving them. Generating functions are also brie y discussed as part of this chapter.

Data structures are an important component of algorithms. Chapter 5 deals with the fundamentals
concepts related to data structures such as stacks, queues, linear lists, and linked lists. Trees and graphs
are also explained in this chapter. Chapter 6 covers advanced data structures used for organizing
large amounts of dynamic data. Binary search trees and AVL trees used for organizing dictionaries
are discussed in this chapter, in addition to priority queues and heaps. Finally, a discussion on disjoint
sets and amortized analysis is provided.

Chapter 7 deals with the brute force techniques, which use no special logic but instead follow an
intuitive way of solving problems using the problem statement. Various problems such as sequential
search, bubble sort, and selection sort that can be solved using this approach are explained. Some basic
computational geometry problems such as closest-pair and convex hull are also covered. The chapter
ends with the discussions on exhaustive searching problems such as 15-puzzle problem, 8-queen prob-
lem, magic square problem, knapsack problem, container loading problem, and assignment problem.

Chapter 8 discusses the divide-and-conquer design paradigm. Important problems such as quicksort,
merge sort, nding maximum and minimum, multiplication of long integers, Strassen matrix multiplica-
tion, tiling problem, closest-pair problem, and convex hull are solved using this technique. The chapter
ends with a discussion of the Fourier transform problem.

Chapter 9 explains the decrease-and-conquer technique, which is also known as the incremental or
inductive approach. Examples problems such as insertion sort, topological sort, generating permutations
and subsets, binary search, fake coin detection, and Russian peasant multiplication problem are used to
illustrate the decrease by constant and constant factor methods. Finally, discussions on interpolation search,
selection, and nding the median problems using the decrease by variable factor method are provided.

Chapter 10 deals with time space tradeoffs. The selection of one type of ef ciency over the other
and problems related to linear sorting and Hashing are discussed. The chapter ends with a discussion on
B-trees and their operations.

Chapter 11 explains the greedy approach concept. This chapter discusses important problems such as
coin change problem, scheduling, knapsack problem, optimal storage of tapes, Huffman code, minimum
spanning tree algorithms, and Dijkstra’s shortest path algorithm to illustrate the greedy approach.

Chapter 12 discusses the transform-and-conquer approach and its three basic techniques—instance
simpli cation, representation change, and problem reduction. Problems such as Gaussian elimination,
decomposition methods, nding determinant and matrix inverses are discussed. Heap sort, Horner’s
method, binary exponentiation algorithm, and reduction problems are also covered in this chapter.

Chapter 13 deals with dynamic programming. Important example problems such as Fibonacci prob-
lem, binomial coef cient multistage graph, Graph algorithms, Floyd-Warshall Algorithm, Bellman Ford
algorithms, travelling salesman problem, chain matrix multiplication, knapsack problem, and optimal
binary search tree problem are discussed to illustrate the dynamic programming concept. Finally, the
chapter concludes with the ow-shop scheduling algorithms.

Chapter 14 discusses backtracking algorithms. This chapter covers important problems such as N-queen
problem, Hamiltonian circuit problem, sum of subsets, vertex colouring problem, graph colouring prob-
lems, Graham scan, and generating permutations.

Chapter 15 explains branch-and-bound techniques. Search techniques using this concept are discussed.
Important problems such as assignment problem and 15-puzzle are covered and the chapter ends with a
discussion on traveling salesperson and knapsack problems.

Chapter 16 deals with the string algorithms. Some basic string algorithms such as nding the length
of strings, nding substrings, concatenation of two strings, longest common sequence, and pattern

Oxfo
rd

ng ag a

eedy approady approa
duling, knauling, kna

ms, and Dijkand Dijk
sses the transes the tra
entationentatio

Univ
er

sit
y

f lonon
are solveare solv

m.
hnique, whichique, w

nsertion sort, trtion sor
and Russian d Russi

nt factor methofactor m
ms using the dms using th

radeoffs. Thradeoffs. T
d Hashind Has

Pr
es

s
h a

are alsoe also
5-puzzle ppuzzle p

problem, anblem, an
ImportantImportant
g integg int

dd

Preface ix

recognition algorithms such as Rabin Karp, Harspool, Knuth Morris Pratt and Boyer Moore algorithms
are discussed in this chapter. Finally, approximate string matching algorithm is discussed.

Chapter 17 discusses the iterative approach and basics of linear programming. The linear programming
formulation of a problem and simplex method is discussed in this chapter. Minimization problem, prin-
ciple of duality, and max- ow problems are also explained. Finally, matching algorithms are considered
for better understanding of computational complexity.

Chapter 18 explains the basics of computational complexity and the upper and lower bound theory.
Decision problems, complexity classes, and reduction concepts are also discussed. This chapter also
covers theory of NP-complete problems and examples for proving NP-completeness.

Chapter 19 covers the basic concepts and types of both randomized and approximation algorithms.
Randomized algorithms are illustrated through examples such as hiring problem, primality testing, com-
parison of strings, and randomized quicksort. Approximation algorithms are illustrated through examples
based on heuristic, greedy, linear, and dynamic programming approaches.

Chapter 20 begins with an introduction to parallel processing and classi cation of parallel sys-
tems. It then discusses the fundamentals of parallel algorithms and parallel random access machine
(PRAM) model. The concept of parallelism is illustrated through examples related to parallel search-
ing, parallel sorting, and graph and matrix multiplication problems.

 There are two appendices in this book. Appendix A explains the basics of mathematics such as sets,
series and sequences, relations, functions, matrix algebra, and probability that are necessary for algorithm
study. Appendix B deals with mathematical logic and proof techniques.

ONLINE RESOURCES

To aid teachers and students, the book is accompanied by online resources that are available at http://
oupinheonline.com/book/sridhar-Design-Analysis-Algorithms/9780198093695. The content for the online
resources are as follows:

For Instructors
 PowerPoint slides
 Solutions manual

For Students
 Answers to the crossword puzzles

ACKNOWLEDGEMENTS

This book would not have been possible without the help and encouragement of many friends, colleagues,
and well-wishers. I thank all my students who motivated me by asking interesting questions related to
the subject. I acknowledge the assistance of my friend, P. Kanniappan, in typing the manuscripts and for
all his advice. I also express my gratitude to all my colleagues at the departments of Computer Science
and Engineering and Information Science and Technology, Anna niversity and National Institute of
Technology, Tiruchirapalli for reviewing my manuscripts and providing constructive suggestions for
improvement. I acknowledge all my reviewers whose feedback has helped making this book better. I
am also very thankful to the editorial team at Oxford niversity Press, India for providing valuable as-
sistance. My sincere thanks are also due to my family members, especially my wife, Dr N. Vasanthy, my
mother, Mrs Parameswari, my mother-in-law, Mrs Renuga, and my children, Shobika and Shreevarshika,
for their constant support and encouragement during the development of this book.

 S. Sridhar

Oxfo
rd

ssword psword

Univ
er

sit
y

ns thth
d probabild probab

oof techniquef techniqu

ompanied bympanied
nalysis-Algorinalysis-Alg

Pr
es

sclassi cssi c
parallel ranrallel ran

xamples remples re
lems.lems.
e basice ba

ii

Features of the Book iv

Preface vi

Detailed Contents xi

 1 Introduction to Algorithms 1

 2 Basics of Algorithm Writing 22

 3 Basics of Algorithm Analysis 58

 4 Mathematical Analysis of Recursive Algorithms 98

 5 Data Structures—I 141

 6 Data Structures—II 194

 7 Brute Force Approaches 231

 8 Divide-and-conquer Approach 262

 9 Decrease-and-conquer Approach 309

10 Time–Space Tradeoffs 342

11 Greedy Algorithms 372

12 Transform-and-conquer Approach 417

13 Dynamic Programming 455

14 Backtracking 517

15 Branch-and-bound Technique 543

16 String Algorithms 569

17 Iterative Improvement and Linear Programming 601

18 Basics of Computational Complexity 638

19 Randomized and Approximation Algorithms 663

20 Parallel Algorithms 705

Appendix A—Mathematical Basics 735

Appendix B—Proof Techniques 752

Bibliography 763

Index 766

Brief Contents

Oxfo
rd

Techniquechniqu

mss

Univ
er

sit
y Pr

es
s

Features of the Book iv
Preface vi
Brief Contents x

Detailed	Contents

1 Introduc on to Algorithms 1
1.1 Introduction 1
1.2 Need for Algorithmic Thinking 1
1.3 Overview of Algorithms 3

1.3.1 Computational Problems,
Instance, and Size 5

1.4 Need for Algorithm Ef ciency 7
1.5 Fundamental Stages of Problem

Solving 9
1.5.1 Understanding the Problem 9
1.5.2 Planning an Algorithm 9
1.5.3 Designing an Algorithm 11
1.5.4 Validating and Verifying an

Algorithm 11
1.5.5 Analysing an Algorithm 12
1.5.6 Implementing an Algorithm

and Performing Empirical
Analysis 14

1.5.7 Post (or Postmortem)
Analysis 14

1.6 Classi cation of Algorithms 15
1.6.1 Based on Implementation 15
1.6.2 Based on Design 16
1.6.3 Based on Area of

Specialization 17
1.6.4 Based on Tractability 18

2 Basics of Algorithm Wri ng 22
2.1 Tools for Problem-solving 22

2.1.1 Stepwise e nement or
Top-down design 23

2.1.2 Bottom-up Approach 24
2.1.3 Structured Programming 25

2.2 Algorithm Speci cations 26
2.2.1 Guidelines for Writing

Algorithms 27

2.3 Non-recursive Algorithms 31
2.3.1 Flowcharts 32

2.4 Basics of Recursion 42
2.5 Recursive Algorithms 43
2.6 Algorithm Correctness 52

3 Basics of Algorithm Analysis 58
3.1 Basics of Algorithm Complexity 58
3.2 Introduction to Time complexity 60

3.2.1 Random Access Machine 60
3.3 Analysis of Iterative Algorithms 62

3.3.1 Measuring Input Size 63
3.3.2 Measuring Running Time 63
3.3.3 Best-, Worst-, and

Average-case Complexity 71
3.4 Rate of Growth 73

3.4.1 Measuring Larger Inputs 73
3.4.2 Comparison Framework 74

3.5 Asymptotic Analysis 76
3.5.1 Asymptotic Notations 78
3.5.2 Asymptotic Rules 85
3.5.3 Asymptotic Complexity Classes 87

3.6 Space Complexity Analysis 88
3.7 Empirical Analysis and Algorithm

Visualization 88
3.7.1 Experimental Purpose 89
3.7.2 Statistical Tests 90

 Mathema cal Analysis of Recursive
Algorithms 98
4.1 Introduction to Recurrence

Equations 98
4.1.1 Linear Recurrences 99
4.1.2 Non-linear Recurrences 101

4.2 Formulation of Recurrence
Equations 103

Oxfo
rdem)

Algorithmsgorithms
n ImplementImplemen

on Designn Design
AreaArea

Univ
er

sit
y

1212

l l
14

3.2.2
3.33 AnalysAnal

3.3.13.3.1
3.3

Pr
es

s
rre

gorithm Anrithm A
cs of Algorof Algor

roduction roductio
RanR

xii Detailed Contents

4.3 Techniques for Solving
Recurrence Equations 106
4.3.1 Guess-and-verify Method 106
4.3.2 Substitution Method 109
4.3.3 Recurrence-tree Method 112
4.3.4 Difference Method 117

4.4 Solving Recurrence Equations
sing Polynomial Reduction 118

4.4.1 Solving Homogeneous
Equations 118

4.4.2 Solving Non-homogeneous
Equations 122

4.5 Generating Functions 123
4.5.1 Properties of Generating

Functions 124
4.6 Divide-and-conquer Recurrences 127

4.6.1 Master Theorem 127
4.6.2 Transformations 133
4.6.3 Conditional Asymptotics 135

5 Data Structures—I 141
5.1 Data Structures and Algorithms 141
5.2 Lists 142

5.2.1 Linear Lists and Arrays 143
5.2.2 Linked Lists 146

5.3 Stacks 152
5.3.1 Representation of and

Operations on Stacks 152
5.4 Queues 154

5.4.1 Queue Representation 154
5.5 Trees 157

5.5.1 Tree Terminologies 157
5.5.2 Classi cation of Trees 159
5.5.3 Binary Tree Representation 161
5.5.4 Binary Tree Operations 163

5.6 Graphs 167
5.6.1 Terminologies and

Types of Graphs 168
5.6.2 Graph Representation 172
5.6.3 Graph Traversal 174
5.6.4 Elementary Graph Algorithms 178
5.6.5 Spanning Tree and Minimum-cost

Spanning Tree 186

6 Data Structures—II 194
6.1 Introduction to Dictionary 194

6.1.1 Introduction to Binary
Search Tree 194

6.1.2 AVL Trees 200
6.2 Priority Queues and Heaps 206

6.2.1 Binary Heaps 207
6.2.2 Binomial Heaps 212
6.2.3 Fibonacci heap 218

6.3 Disjoint Sets 221
6.3.1 Representation and

Operations 221
6.4 Amortized Analysis 224

6.4.1 Aggregate Method 225
6.4.2 Accounting Method 226
6.4.3 Potential Method 226

7 Brute Force Approaches 231
7.1 Introduction 231

7.1.1 Advantages and
Disadvantages of Brute
Force Method 232

7.2 Sequential Search 232
7.2.1 Analysis of Recursion

Programs 234
7.2.2 Recursive Form of Linear

Search Algorithm 235
7.3 Sorting Problem 236

7.3.1 Classi cation of Sorting
Algorithms 237

7.3.2 Properties of Sorting
Algorithms 237

7.3.3 Bubble Sort 238
7.3.4 Selection Sort 242

7.4 Computational Geometry Problems 245
7.4.1 Closest-pair Problem 245
7.4.2 Convex Hull Problem 247

7.5 Exhaustive Searching 249
7.5.1 15-puzzle Problem 250
7.5.2 8-queen Problem 251
7.5.3 Magic Squares 252
7.5.4 Container Loading Problem 253
7.5.6 Assignment Problem 256

n of and n of and
s on Stacksn Stacks

e RepresenReprese

Univ
er

sit
y

1
141141
142142
14314
14

Brute ForcBrute Fo
7.17.1 IntroIntro

7

Pr
es

s
ion

d AnalysAnalys
Aggregate Mgregate M

2 AccountiAccount
4.34.3 PotenPote

Detailed Contents xiii

8 Divide-and-conquer Approach 262
8.1 Introduction 262

8.1.1 Recurrence Equation for
Divide and Conquer 263

8.1.2 Advantages and Disadvantages
of Divide-and-conquer
Paradigm 264

8.2 Merge Sort 264
8.3 Quicksort 269

8.3.1 Partitioning Algorithms 270
8.3.2 Variants of Quicksort 275

8.4 Finding Maximum and Minimum
Elements 277

8.5 Multiplication of Long Integers 280
8.6 Strassen Matrix Multiplication 284
8.7 Tiling Problem 288
8.8 Closest-pair Problem 291

8.8.1 Using Divide-and-conquer
Method 291

8.9 Convex Hull 293
8.9.1 Quickhull 293
8.9.2 Merge Hull 295

8.10 Fourier Transform 296
8.10.1 Polynomial Multiplication 296
8.10.2 Application of Fourier

Transform 298
8.10.3 Fast Fourier Transform 302

9 Decrease-and-conquer Approach 309
9.1 Introduction 309
9.2 Decrease by Constant Method 311

9.2.1 Insertion Sort 311
9.2.2 Topological Sort 315
9.2.3 Generating Permutations 321
9.2.4 Generating Subsets 323

9.3 Decrease by Constant Factor
Method 325
9.3.1 Binary Search 326
9.3.2 Fake Coin Detection 330
9.3.3 Russian Peasant

Multiplication Problem 331
9.4 Decrease by Variable

Factor Method 332

9.4.1 Interpolation Search 333
9.4.2 Selection and Ordered

Statistics 334
9.4.3 Finding Median 336

10 Time Space Tradeo s 342
10.1 Introduction to Time–Space

Tradeoffs 342
10.2 Linear Sorting 342

10.2.1 Counting Sort 342
10.2.2 Bucket Sort 347
10.2.3 Radix Sort 349

10.3 Hashing and Hash Tables 351
10.3.1 Properties of Hash

Functions 353
10.3.2 Hash Table Operations 354
10.3.3 Collision 356

10.4 B-trees 359
10.4.1 B-tree Balancing

Operations 361
10.4.2 B-tree Operations 363

11 Greedy Algorithms 372
11.1 Introduction to Greedy Approach 372

11.1.1 Components of Greedy
Algorithms 373

11.2 Suitability of Greedy Approach 374
11.3 Coin Change Problem 375
11.4 Scheduling Problems 376

11.4.1 Scheduling without
Deadline 377

11.4.2 Scheduling with Deadline 379
11.4.3 Activity Selection Problem 382

11.5 Knapsack Problem 384
11.6 Optimal Storage of Tapes 388
11.7 Optimal Tree Problems 390

11.7.1 Optimal Merge 390
11.7.2 Huffman Coding 393
11.7.3 Tree Vertex Splitting Problem 398

11.8 Optimal Graph Problems 401
11.8.1 Minimum Spanning Trees 401
11.8.2 Single-source Shortest-path

Problems 407

Oxfo
rd

rier er
8

r Transformr Transfor

nquer Appnquer App

onstonst

Univ
er

sit
y

3
29595
296296

ionon 29629

10.30
10.410.4 B-treeB-tr

10.410 4

1

Pr
es

s
So

and Hashd Hash
Properties roperties
FunctioFuncti

0.3.20.3.2 HashHa
33 C

xiv Detailed Contents

12 Transform-and-conquer Approach 417
12.1 Introduction to Transform and

Conquer 417
12.2 Introduction to Instance

Simpli cation 418
12.3 Matrix Operations 419

12.3.1 Gaussian Elimination
Method 420

12.3.2 LU Decomposition 427
12.3.3 Crout’s Method of

Decomposition 434
12.3.4 Finding Matrix Inverse 436
12.3.5 Finding Matrix

Determinant 439
12.4 Change of Representation 441

12.4.1 Heap Sort 441
12.4.2 Polynomial Evaluation

Using Horner’s Method 445
12.4.3 Binary Exponentiation 447

12.5 Problem Reduction 450

13 Dynamic Programming 455
13.1 Basics of Dynamic Programming 455

13.1.1 Components of Dynamic
Programming 456

13.1.2 Characteristics of Dynamic
Programming 458

13.2 Fibonacci Problem 460
13.3 Computing Binomial Coef cients 463
13.4 Multistage Graph Problem 466

13.4.1 Forward Computation
Procedure 467

13.4.2 Backward Computation
Procedure 471

13.5 Transitive Closure and Warshall
Algorithm 472
13.5.1 Finding Transitive Closure Using

Brute Force Approach 473
13.5.2 Finding Transitive Closure Using

Warshall Algorithm 473
13.5.3 Alternative Method to

Warshall Algorithm for
Finding Transitive Closure 476

13.6 Floyd–Warshall All Pairs
Shortest-path Algorithm 478
13.6.1 Shortest-path

Reconstruction 481
13.7 Bellman–Ford Algorithm 481
13.8 Travelling Salesperson Problem 486
13.9 Chain Matrix Multiplication 488

13.9.1 Dynamic Programming
Approach for Solving Chain
Matrix Multiplication
Problem 490

13.10 Knapsack Problem 496
13.11 Optimal Binary Search Trees 500

13.11.1 Brute Force Approach
for Constructing Optimal
BSTs 500

13.11.2 Dynamic Programming
Approach for Constructing
Optimal BSTs 502

13.12 Flow-shop Scheduling Problem 507
13.12.1 Single-machine

Sequencing Problem 508
13.12.2 Two-machine Sequencing

Problem 509

14 Backtracking 517
14.1 Introduction 517
14.2 Basics of Backtracking 518
14.3 N-queen Problem 522

14.3.1 State Space of 4-queen
Problem 523

14.4 Sum of Subsets 525
14.5 Vertex Colouring Problem 527
14.6 Hamiltonian Circuit Problem 531

14.6.1 Promising (or Bounding
Function) for Hamiltonian
Problem 531

14.7 Generating Permutation 534
14.8 Graham Scan 536

15 Branch-and- ound Technique 543
15.1 Introduction 543
15.2 Search Techniques for Branch-

and-bound Technique 545

Oxfo
rd

of Dynamynam
g

emm
Binomial Coomial Co

 Graph ProGraph Pro
ard Coard Co

Univ
er

sit
y

455455
g 455455

c
456

1

13.1213.1

Pr
es

s
Pr

l BinaryBinary
1 Brute FBrute F

for Cfor C
B

3.11.23.11

Detailed Contents xv

15.2.1 BFS using Branch-and-
bound algorithm—
FIFOBB 545

15.2.2 LIFO with Branch and
Bound 547

15.2.3 Least Cost with Branch
and Bound 547

15.3 15-puzzle Game 548
15.4 Assignment Problem 552
15.5 Traveling Salesperson Problem 559
15.6 Knapsack Problem 562

16 String Algorithms 569
16.1 Introduction to String

Processing 569
16.2 Basic String Algorithms 571

16.2.1 Length of Strings 571
16.2.2 Concatenation of

Two Strings 571
16.2.3 Finding Substrings 572

16.3 Longest Common Subsequences 573
16.4 naïve String Matching

Algorithm 576
16.5 Pattern Matching sing Finite

Automata 578
16.6 Rabin–Karp Algorithm 580
16.7 Knuth–Morris–Pratt Algorithm 584
16.8 Harspool Algorithm 588
16.9 Boyer–Moore String Matching

Algorithm 590
16.10 Approximate String Matching 594

17 Itera ve Improvement and
Linear Programming 601
17.1 Introduction to Iterative

Improvement 601
17.2 Linear Programming 601
17.3 Formulation of LPPs 603
17.4 Graphical Method for

Solving LPPs 606
17.5 Simplex Method 611
17.6 Minimization Problems 615
17.7 Principle of Duality 619

 17.8 Max- ow Problem 623
 17.9 Bipartite Matching Problem 628
17.10 Stable Marriage Problem 630

18 Basics of Computa onal
Complexity 638
18.1 Introduction to Computational

Complexity 638
18.2 Algorithm Complexity,

pper and Lower Bound Theory 639
18.2.1 Upper and Lower Bounds 640

18.3 Decision Problems and Turing
Machine 644

18.4 Complexity Classes 647
18.4.1 Class P 648
18.4.2 NP Class 648

18.5 Theory of NP-complete
Problems 650

18.6 Reductions 651
18.6.1 Turing Reduction 651
18.6.2 Karp Reduction 652

18.7 Satis ability Problem and
Cook’s Theorem 654

18.8 Example Problems for Proving
NP-completeness 655
18.8.1 SAT is NP-complete 655
18.8.2 Problem 3-CNF-SAT is

NP-complete 656
18.8.3 Clique Decision Problem

is NP-complete 657
18.8.4 Sum of Subsets

(from 3-CNF-SAT) 658

19 Randomized and Approxima on
Algorithms 663
19.1 Dealing with NP-hard

Problems 663
19.2 Introduction to Randomized

Algorithms 664
19.2.1 Generation of Random

Numbers 666
19.2.2 Types of Randomized

Algorithms 669

Oxfo
rdm

tt Algorithmtt Algorithm
thmm

e String Mae String M

e Strie Stri

Univ
er

sit
y

576576
e e

5785
5

1
.5 TheoTh

ProbleProb
18.618.6 Red

Pr
es

sobleble

plexity Claxity Cla
4.14.1 Class PClass P

.4.2.4.2 NP NP
ryry

xvi Detailed Contents

19.3 Examples of Randomized
Algorithms 669
19.3.1 Hiring Problem 669
19.3.2 Primality Testing Algorithm 672
19.3.3 Comparing Strings Using

Randomization Algorithm 674
19.3.4 Randomized Quicksort 675

19.4 Introduction to Approximation
Algorithms 678

19.5 Types of Approximation
Algorithms 679

19.6 Examples of Approximation
Algorithms 680
19.6.1 Heuristic-based

Approximation Algorithms 681
19.6.2 Greedy Approximation

Algorithms 688
19.6.3 Approximation Algorithm

Design Using Linear
Programming 693

19.6.4 Designing Approximation
Algorithms Using Dynamic
Programming 696

20 Parallel Algorithms 705
20.1 Introduction to Parallel Processing 705

20.2 Classi cation of Parallel Systems 705
20.2.1 Flynn Classi cation 706
20.2.2 Address-space (or Memory

Mechanism-based)
Classi cation 708

20.2.3 Classi cation Based on
Interconnection Networks 710

20.3 Introduction to PRAM Model 711
20.4 Parallel Algorithm Speci cations

and Analysis 712
20.4.1 Parallel Algorithm

Analysis 714
20.5 Simple Parallel Algorithms 716

20.5.1 Pre x Computation 716
20.5.2 List Ranking 718
20.5.3 Euler Tour 719

20.6 Parallel Searching and Parallel
Sorting 720
20.6.1 Parallel Searching 720
20.6.2 Odd–Even Swap Sort 722
20.6.3 Parallel Merge–Split

Algorithm 724
20.7 Additional Parallel Algorithms 726

20.7.1 Parallel Matrix
Multiplication 726

20.7.2 Parallel Graph Algorithms 729

Appendix A—Mathematical Basics 735
Appendix B—Proof Techniques 752
Bibliography 763
Index 766 Oxfo

rd
el ProcessProcess

ical BasicsBasics
Techniquesechniques

Univ
er

sit
y

696696

705
ng

6 PaP
SortiSor
20.620 6
2

Pr
es

s
si

arallel Aallel A
Pre xre x ComCom

5.2 List RaList Ra
0.5.30.5.3 EuleEu

rallelrall

1.1 INTRODUCTION

Computers are powerful tools of computing. One cannot ignore the impact of
computers on our modern life. We use computers for personal needs such as
typing documents, browsing the Internet, sending emails, playing computer
games, performing numeric calculations, and so on. Industries and govern-
ments use computers much more effectively to perform complicated tasks
to improve productivity and ef ciency. Applications of computer systems in
airline reservation, video surveillance, biometric recognition, e-governance, and
e-commerce are all examples of their usefulness in improving ef ciency and
productivity. The increasing importance of computers in our lives has prompted
schools and universities to introduce computer science as an integral part of
our modern education. Informally, everyone is expected to handle computers to
accomplish certain basic tasks. This knowledge of using computers to perform
our day-to-day activities is often called computational thinking. Computational
thinking is a necessity to survive in this modern world. However, computer
science professionals are expected to accomplish much more than acquiring
this basic skill of computer usage. They are required to write speci c computer
programs to provide computer-automated solutions for problems. Writing a
program is slightly more complicated than merely learning to use computers,
as it requires ‘algorithmic thinking’. Algorithmic thinking is an important
analytical skill that is required for writing effective programs in order to solve
given problems. Algorithmic thinking is not con ned to computer science only,
but it spreads through all disciplines of study. Computer science is a domain
where the skills of algorithmic thinking are taught to the aspiring computer
professionals for solving computational problems.

1.2 NEED FOR ALGORITHMIC THINKING

Norman E. Gibbs and Allen B. Tucker1 proposed a de nition for computer
science that captures the core truth of computer science study. According to

Learning O ec ves

This chapter introduces
the basics of algorithms.
All important de nitions
and concepts related to
the study of algorithms are
the focus of this chapter.
The reader would be
familiar with the following
concepts by the end of
this chapter:
 Basic terminologies of
algorithm study

 Need for algorithms
 Characteristics of
algorithms

 Stages of a problem-
solving process

 Need for ef cient
algorithms

 Classi cation of
algorithms

C H A P T E R

1Introduc�on	to		

Algorithms

1 Gibbs, Norman E., Allen B. Tucker, ‘A Model Curriculum for a Liberal Arts Degree
in Computer Science’, Communications of ACM, Vol. 29, Issue 3, 1986.

“Ideas are the beginning point of all fortunes.”
—Napolean Hill

Oxfo
rd

dernern
mplish ceplish ce

ur day-to-daday-to-da
thinking ithinking i
sciencescien
thisth

Univ
er

sit
y

nternern
alculations, alculation

h more effectimore effec
and ef ciencyd ef cie

deo surveillanco surveil
ll examples ofl examples

he increasing iincreasin
d universities td universitie
education.educat

ain

Pr
es

s
ing. One cag. One ca

e computere compute
et, senet, s

2 Design and Analysis of Algorithms

them, ‘Computer science is the systematic study of algorithms and data structures, speci cally
their formal properties, their mechanical and linguistic realizations, and their applications.’
Hence, there cannot be any dispute regarding the fact that study of algorithms is the central
theme of computer science.

The word algorithm is derived from the name of a Persian
mathematician, Abu Ja’fer Mohammed Ibn Musa al
Khowarizmi, who lived sometime around 780–850 AD. He
was from the town of Khowarazm, now in Uzbekistan. He
was a teacher of mathematics in Baghdad. He wrote a book
titled Kitab al Jabr w’al Muqabala (Rules of Restoration
and Reduction) and Algoritmi Numero Indorum where
he introduced the old Arabic–Indian number systems to

Europe. He also introduced the simple step-by-step rules
for addition, subtraction, multiplication, and division in
his book. The word algebra has also been derived from
the title of this book. When his book was translated to
Latin, his name was quoted as Algorismus from which
the word ‘algorithm’ emerged. Algorithm as a word thus
became famous for referring to procedures that are used
by computers for solving problems.

Box 1.1 Origin of the word ‘algorithm’

Let us elaborate this de nition further. The formal and mathematical properties of
algorithms include the study of algorithm correctness, algorithm design, and algorithm
analysis for understanding the behaviour of algorithms. Hardware realizations include
the study of computer hardware, which is necessary to run the algorithms in the form of
programs. Linguistic realizations include the study of programming languages and their
design, translators such as interpreters and compilers, and system software tools such as
linkers and loaders, so that the algorithms can be executed by hardware in the form of
programs. Applications of algorithms include the study of design and development of
 ef cient software packages and software tools so that these algorithms can be used to
solve speci c problems.

Thus, computer scientists consider the study of algorithms as the core theme of computer
science. The art of designing, implementing, and analysing algorithms is called algorithmics.
Algorithmics is a general word that comprises all aspects of the study of algorithms. Let us
now attempt to de ne algorithms formally. An algorithm is a set of unambiguous instructions
or procedures used for solving a given problem to provide correct and expected outputs for
all valid and legal input data (refer to Box 1.1).

An algorithm can also be referred by other terminologies such as recipe, prescription,
process, or computational procedure. Box 1.2 provides a brief history of algorithms.

Algorithms thus serve as prescriptions of how a computer should carry out instructions
to solve problems. Hence, algorithms can be visualized as strategies for solving a problem.
One cannot write a program for a given problem without the necessary analytical skills or a
strategy for solving the problem. Thus, the knowledge of how to solve a problem is called
algorithmic thinking.

One can compare a program construction with the construction of a house. The blueprint
of the house incorporating all the planning necessary for the construction of the house can
be visualized as an algorithm. A computer program is only an algorithm expressed using a
programming language such as C or C++. In addition to possessing the essential skills of
using a programming language, the ability to conceive a strategy or apply analytical skills
are important for solving a problem or constructing a program.

Oxfo
rd

gramram
the probleproble

kingg..
mpare a propare a pr

se incorporae incorpor
ized as an zed as an

ng lang la

Univ
er

sit
yl aspep

algorithmalgorithm i
blem to proviem to prov

ox 1.1).1.1).
d by other teby othe

dure.re. Box 1.2 Box 1
rescriptions orescription

algorithms caalgorithms
for a givfor a

m T

Pr
es

s
es

se algoralgor

rithms as thhms as th
ysing algoysing alg

cts ofcts

Introduction to Algorithms 3

1.3 OVERVIEW OF ALGORITHMS

Algorithms are generic and not limited to computers alone (refer to Box 1.2). We perform
many algorithms in our daily life unknowingly. Consider a few of our daily activities, some
of which are listed as follows:

1. Searching for a speci c book
2. Arranging books based on titles
3. Using a recipe to cook a new dish
4. Packing items in a suitcase
5. Scheduling daily activities
6. Finding the shortest path to a friend’s house
7. Searching for a document on the Internet
8. Preparing a CD of compressed personal data
9. Sending messages via email or SMS

We perform many tasks without being aware of their inherent algorithms. For example,
consider the activity of searching a word in a dictionary. How do we search? It can be noted
that indexing the words in a dictionary reduces the effort of searching signi cantly. We just
open the book, compare the word with the index given, and accordingly decide on the por-
tions of the books to be searched for nding the meaning of that particular word. This kind

The history of algorithms dates back to ancient civilizations
that used numbers. Ancient civilizations such as Egyptian,
Indian, Greek, and Chinese were known to have used
algorithms or procedures to carry out tasks like simple
calculations. This is in contrast to the history of modern
computers that were designed in the 1940s only. Thus,
the history of algorithms is much older and more exciting.
Euclid, who lived in ancient Greece around 400–300 BC,
is credited with writing the rst algorithm in history for com-
puting the greatest common divisor (GCD). Archimedes
created an algorithm for the approximation of the number
pi. Eratosthenes introduced to the world the algorithm for
nding prime numbers. Averroes (112 –1198) also used

algorithmic methods for calculations.
A number of in uences led to the formalization of the

theory of algorithms. Some of the noteworthy developments
include the introduction of Boolean algebra by George
Boole (1847) and set theory by Gottlob Frege (1879). Set
theory has become a foundation of modern mathemat-
ics. The concept of recursion formulated by Kurt Gödel,
and contributions of Giuseppe Peano (1888), Alfred North
Whitehead, and Bertrand Russell in mathematical logic
led to the formalization of algorithm as an independent
eld of study.

Alan Turing’s Turing machines developed in 193 play
a very important role in computational complexity theory.
This Turing machine and Alonzo Church’s lambda calcu-
lus formed the basis for formalization of the complexity
theory. Thus, the history of algorithms is much richer than
that of computers.

The history of computing is another interesting story.
Abacus and other mechanical devices used for computing
have been utilized at various stages of human history. A real
attempt was made in the 17th century by Leibniz, a German
mathematician and philosopher. He invented in nitesimal
calculus, generating the idea of computers. In 1822, Charles
Babbage introduced the difference engine, which required
changing of gears manually to perform calculations. These
ideas nally led to the invention of computers in the 1940s.
In 1942, the US government designed a machine called
ENIAC (electronic numerical integrator and computer). This
was succeeded by EDVAC (electronic discrete variable
automatic computer) in 1951. In 1952, IBM introduced
its mainframe computer. Developments in the hardware
domain and declining costs have shifted computer usage
from big research and military environments to homes and
educational institutions. In 1981, IBM personal computers
were introduced for home and of ce use.

Box 1.2 Short history of compu ng and algorithms

Oxfo
rd

MSS

neric and nneric and n
ms in our dain our d

listed as foted as

ing for a ng for a
bob

Un
dent

ctro
ceeded beded

matic computeatic compu
mainframe comainframe com

domain and demain and
from big resfrom big
educatioeduc
werew

of co
difference ference

nually to perfally to perf
the inventioninvention

S governmenS governmen
ic numeric numer

y Ey E

4 Design and Analysis of Algorithms

of a plan or an idea is called a strategy, which is more
formally known as an algorithm.

The environment of a typical algorithm is shown in
Fig. 1.1. Here, agent, which can be a human or a computer,
is the performer.

To illustrate further, let us consider the example of tea
preparation. The hardware used here includes cooking

utensils a heater, and a person. To make tea, one needs to have the following ingredients—
water, tea powder, and sugar. These ingredients are analogous to the inputs of an algorithm.
Here, preparing a cup of tea is called a process. The output of this process is, in this case, tea.
This corresponds to the output of an algorithm. The procedure for preparing tea is as follows:

Fig. 1.1 Typical algorithm

Valid
input Output

Agent

Algorithm

1. Put tea powder in a cup.
2. Boil the water and pour it into the cup.
3. Filter it.

4. Pour milk.
5. Add sugar if necessary.
6. Pour the tea into a cup.

This kind of a procedure can be called an algorithm. It can be noted that an algorithm
consists of step-by-step instructions that are required to accomplish a certain task.

Humans often perform such procedures intuitively or even mechanically without spending
much conscious thought, and hence, they label such actions as habitual activity. Many of our
day-to-day activities are not very ef cient. However, algorithms that are meant for computers
represent a different case altogether. Computer procedures should be ef cient as computer
resources are scarce. Hence, much thought is given for writing computer procedures that
can solve problems. Problems can be classi ed into two types: computational problems and
non-computational problems.

Computational problems can be solved by a computer system. A computational problem
is characterized by two factors: (a) the formalization of all legal inputs and expected outputs
of a given problem and (b) the characterization of the relationship between problem output
and input. Thus, an algorithm is expected to give the expected output for all legal inputs.
If an algorithm yields the correct output for a legal input, then it is called an algorithmic
solution.

Non-computational problems cannot be solved by a computer system. This classi cation
shows the fundamental differences between computers and humans in solving problems.
Computers are more effective than humans in performing calculations and can crunch num-
bers in a fraction of seconds with more precision and ef ciency. However, humans outscore
computers in recognition. The ability of recognizing an object by humans is much better than
that by machines. Recognition of an object by computer systems requires lots of programming
involving images and concepts of image processing. In addition, some tasks are plainly not
possible to be carried out by computer systems. Can a computer offer its opinion or show
emotion like humans? To put it simply, problems involving more intellectual complexity are
much more dif cult to solve by computers as computer systems lack intelligence.

Thus, developing algorithms to make computers more intelligent and make them perform
tasks like humans becomes much more crucial and challenging. Developing algorithms for
computers is both an art and a science. Algorithm design is an art that involves a lot of creative
ideas, novelty, and even adventurous strategies and knowledge. Algorithm design is also a
science because its construction usually involves the application of some set of principles. The

Oxfo
rd

o factoractor
m and (b) thed (b) the

s, an algorit an algori
hm yields tyields t

omputatimputati
un

Univ
er

sit
y

ed
ively or evely or

el such actionl such acti
. However, alHowever

Computer promputer p
h thought is gought

an be classi ebe clas

ss can be solv can be s
: (a) t: (a

Pr
es

secessary.essary
a into a cupnto a cup

hmhm. It can . It can
to accomto accom

Introduction to Algorithms 5

review and knowledge of these principles can facilitate the development of better algorithms,
based on sound mathematical and scienti c principles.

1.3.1 Computa onal Pro lems Instance and Size
One encounters many types of computational problems in the domain of computer science.
Some of the problems are as follows:

Structuring problems In structuring problems, the input is restructured based on certain
conditions or properties. For example, sorting a list in an ascending or a descending order is
a structuring problem.

Search problems A search problem involves searching for a target in a list of all possibili-
ties. All potential solutions may be generated and represented in the form of a list or graph.
Based on a property or condition, the best solution for the given problem is searched. Puzzles
are good examples of search problems where the target or goal is searched in a huge list of
possible solutions.

Construction problems These problems involve the construction of solutions based on
the constraints associated with the problem.

Decision problems Decision problems are yes/no type of problems where the algorithm
output is restricted to answering yes or no. Let us assume that a road network map of a city
is given. The problem, say, ‘Is there any road connectivity between two cities, say Hyderabad
and Chennai?’, can be called as a decision problem as the output of this algorithm is restricted
to either yes or no.

Optimization problems Optimization problems constitute a very important set of problems
that are often encountered in computer science domain. The decision problem about road con-
nectivity between Chennai and Hyderabad can also be posed as an optimization problem as
follows: What is the shortest distance between Chennai and Hyderabad? This is an optimiza-
tion problem, as the problem involves nding the shortest path. Thus, optimization problems
involve a certain objective function that is typically of the following form: maximize (say pro t)
or minimize (say effort) based on a set of constraints that are associated with the problem.

Once the problem is recognized, the input and output of an algorithm should be identi ed.
Consider, for example, a problem of nding the factorial of a number. The factorial of a positive
number N can be written as follows: N! = N × (N 1) × (N 2) × . . . × 1. A valid input can be
called an instance of a problem. For example, factorial of a negative number is not possible.
Therefore, all valid positive integers {0, 1, 2, . . .} can serve as inputs and every legal input is
called an instance. All possible inputs of a problem are often called a domain of the input data.
The input should be encoded in a suitable form so that computers can process it. The number
of binary bits used to represent the given input, say N, is called the input size. Input size is
important, as a larger input size consumes more computer time and space.

The core question still remains to be answered: how to solve a given problem? To illustrate
problem solving, let us consider a simple problem of counting the number of students in a
tuition centre who have passed or failed a test, assuming that the pass mark is 50. Details of
the students such as their registration number, name, and more importantly, marks obtained,
which are necessary for the given problem, are shown in Table 1.1.

red in coin co
Chennai andnnai and

the shortestthe shortes
as the problhe prob

ertain objectrtain objec
ze (say ee (say e

ro

Univ
er

sit
y

e th

re yes/no typeyes/no typ
no. Let us assuLet us a

ny road conneroad con
ecision problecision pro

Optimizationptimizati
mputempu

Pr
es

s
th

n problemroblem
goal is seaoal is sea

he consthe const

6 Design and Analysis of Algorithms

The class strength of the tuition centre is 6. The pass mark of the course is given as 50. How do
we manually solve this problem? First, we will read the student marks. Thus, the inputs for this
problem are a set of student marks. The goal of this problem is to print the pass and fail counts
of the students, which is also the output of this algorithm. The process of reading a student’s
mark is done manually. Compare the student mark with the pass mark, that is, 50. If the student
mark is greater than or equal to 50, then pass count should be added by one. Otherwise, the fail
count should be added by one. This process is repeated for all the students.

The procedure that is done manually can be given as an algorithm. Therefore, informally,
the algorithm for this problem can be given as follows:

Step 1: Let counter = 1, number of students = 6
Step 2: While (counter ≤ number of students)
 2.1: Read the marks of the students
 2.2: Compare the marks of the student with 50
 2.3: If student mark is greater than or equal to 50
 Then increment the pass count
 Else increment the fail count
 2.4: Increment the counter
Step 3: Print pass count and fail count
Step 4: Exit

Thus, algorithmic solving can be observed to be much similar to how we solve problems
manually.

Some of the important characteristics are listed as follows:

Input An algorithm can have zero or more inputs.

Output An algorithm should produce at least one or more outputs.

e niteness An algorithm is characterized by de niteness. Its instructions should be clear and
unambiguous without any confusion. All operations should be well de ned. For example, opera-
tions involving the division of zero or taking a square root of a negative number are unacceptable.

ni ueness An algorithm should be a well-de ned and ordered procedure that consists of
a set of instructions in a speci c order. The order of the instructions is important as a change
in the order of execution leads to a wrong result or uncertainty.

Registration number Student name Course marks

1 Abraham 80

2 Beena 30

3 Chander 83

4 David 23

5 Elizabeth 90

Fauzia 78

Table 1.1 Students’ course marks

Registration number Student name Course marks

mama
crementment

increment trement t
crement thecrement th

nt pass counss coun
xitxit

gorithgorith

Univ
er

sit
y

ho
peated foated

be given as ane given as
en as followsas follow

tudents = 6dents =
of students)of student

f the studentshe stude
marks of the sarks of th
rk is greaterrk is grea

the pth

Pr
es

s
marks

s to print to print
The procehe proc

the pass mathe pass m
uld be aduld be ad

r ar a

Introduction to Algorithms 7

orrectness The algorithm should be correct.

ecti eness An algorithm should be effective, which implies that it should be traceable
manually.

Finiteness An algorithm should have a nite number of steps and should terminate after
executing the nite set of instructions. Therefore, niteness is an important characteristic of
an algorithm.

Some of the additional characteristics that an algorithm is supposed to possess are the
following:

i p icit Ease of implementation is another important characteristic of an algorithm.

enera it An algorithm should be generic, independent of any programming language
or operating systems, and able to handle all ranges of inputs; it should not be written for a
speci c instance.

An algorithm that is de nite and effective is also called a computational procedure. In
addition, an algorithm should be correct and ef cient, that is, should work correctly for all
valid inputs and yield correct outputs. An algorithm that executes fast but gives a wrong result
is useless. Thus, ef ciency of an algorithm is secondary compared to program correctness.
However, if many correct solutions are available for a given problem, then one has to select
the best solution (or the optimal solution) based on factors such as speed, memory usage,
and ease of implementation.

Algorithms can be contrasted with programs. Algorithms, like blueprints that are used
for constructing a house, help solve a given problem logically. A program is an expres-
sion of that idea, consisting of a set of instructions written in any programming language.
The development of algorithms can also be contrasted with software development. At the
industrial level, software development is usually undertaken by a team of programmers
who develop software, often for third-party customers, on a commercial basis. Software
engineering is a domain that deals with large-scale software development. Project manage-
ment issues such as team management, extensive planning, cost estimation, and project
scheduling are the main focus of software engineering. On the other hand, algorithm
design and analysis as a eld of study take a micro view of program development. Its
focus is to develop ef cient algorithms for basic tasks that can serve as a building block
for various applications. Often project management issues of software development are
not relevant to algorithms.

1.4 NEED FOR ALGORITHM EFFICIENCY

Computer resources are limited. Hence, many problems that require a large amount of resources
cannot be solved. One good example is the travelling salesperson problem (TSP). Its brief
history is given in Box 1.3.

A TSP is illustrated in Fig. 1.2. It can be modelled as a graph. A graph consists of a set of
nodes and edges that interconnect the nodes. In this case, cities are the nodes and the paths
that connect the cities are the edges. Edges are undirected in this case. Alternatively, it is

Oxfo
rd

e, he, he
nsisting ofting of

of algorithof algorith
l, software softwar

p softwarep software
ng is a domg is a do

suchsuch

Univ
er

sit
y

ent
m that exthat

s secondary csecondary
ailable for a gable for

on) based onn) based

ted with proted with p
lp solve lp sol

se

Pr
es

s
any py

; it shouldt shoul

called a called a comco
 that is, that is,

xecxec

8 Design and Analysis of Algorithms

A travelling salesperson problem (TSP) is one of the most
important optimization problems studied in history. It is
very popular among computer scientists. It was studied
and developed in the 19th century by Sir William Rowan
Hamilton and Thomas Pennington Kirkman. In 1857,
Hamilton created an Icosian game, a pegboard with 20

holes called vertices. The objective is to nd a tour starting
from a city, visiting all other cities only once, and nally
returning to the city where the tour has started. This is
called a Hamiltonian cycle. The TSP is to nd a Hamiltonian
cycle in a graph. The problem was then studied extensively
by Karl Menger in Vienna and by Harvard later in 1920.

Box 1.3 History of travelling salesperson pro lem

possible to move from a particular city
to any other city. The complete details
of graphs are provided in Chapter 5. A
TSP involves a travelling person who
starts from a city, visits all other cities
only once, and returns to the city from
where he started.

A brute force technique can be used
for solving this problem. Let us enu-
merate all the possible routes. For a
TSP involving only one city, there is
no path. For two cities, there is only

one path (A–B). For three cities, there are two paths. In Fig. 1.2, these two paths are A–B–C
and A–C–B, assuming that A is the origin from where the travelling salesperson started.
For four cities, the paths are {A–D–B–C–A, A–D–C–B–A, A–B–C–D–A, A–B–D–C–A,
A–C–D–B–A, and A–C–D–B–A}.

Thus, every addition of a city can be noted to increase the path exponentially. Table 1.2
shows the number of possible routes.

Therefore, it can be observed that, for N cities, the number of routes would be (N 1)!
for N 2. The availability of an algorithm for a problem does not mean that the problem is
solvable by a computer. There are many problems that cannot be solved by a computer and
for many problems algorithms require a huge amount of resources that cannot be provided
practically. For example, a TSP cannot be solved in reality. Why? Let us assume that there

are 100 cities. As N = 100, the possible routes are then
(100 1)! = 99!.

The value of the number 50! is 3041409320171337804
3612608166064768844377641568960512000000000000.
Therefore, 99! is a very large number, and even if a computer
takes one second for exploring a route, the algorithm will
run for years, which is plainly not acceptable. Just imagine
how much time this algorithm will require, if the TSP is
tried out for all cities of India or USA. This shows that the
development of ef cient algorithms is very important as
computer resources are often limited.

Number of cities Number of routes

1 0 (as there is no route)

2 1

3 2

4

5 24

120

Table 1.2 Complexity of TSP

Number of cities Number of routes

Fig. 1.2 Travelling salesperson problem (a) One city—no path
(b) Two cities (c) Three cities (d) Four cities

A A B

(d)

(a) (b)

(c)

A B

C

A B

DC

Oxfo
rd

hs as a
A–C–D–B–C–D–B

ddition of a ion of a
mber of posser of poss

e, it can beit can b
. The availThe avail
y a comy a co

Univ
er

sit
yf

s, there are twthere are
A is the origA is the o

re {A–D–re {A–
A}

ty
y—no path —no path

itiess

tytity
D

itytytity
Pr

es
shs are pare p

P involves anvolves
starts from rts from
only onconly onc
wherwh

Introduction to Algorithms 9

1.5 FUNDAMENTAL STAGES OF PROBLEM SOLVING

Problem solving is both an art and a science. The problem-solving process starts with the
understanding of a given problem and ends with the programming code of the given problem.
The stages of problem solving are shown in Fig. 1.3.

The following are the stages of problem solving:

1.5.1 Understanding the Pro lem
The study of an algorithm starts with the computability theory.
Theoretically, the primary question of computability theory is the
following: Is the given problem solvable? Therefore, a guideline for
problem solving is necessary to understand the problem fully. Hence,
a proper problem statement is required. Any confusion regarding or
misunderstanding of a problem statement will ultimately lead to a
wrong result. Often, solving the numerical instances of a given problem
can give an insight to the problem. Similarly, algorithmic solutions of
a related problem will provide more knowledge for solving a given
algorithm.

Generally, computer systems cannot solve a problem if it is not properly
de ned. Puzzles often fall under this category, which needs supreme level
of intelligence. These problems illustrate the limitations of computing
power. Humans are better than computers in solving these problems.

1.5.2 Planning an Algorithm
The second important stage of problem solving is planning. Some
of the important decisions are detailed in the following subsections.

A computation model or computational model is an abstraction of a
real-world computer. A model of computation is a theoretical math-
ematical model and does not exist in physical sense. It is thus a virtual
machine, and all programs can be executed on this virtual machine
theoretically. What is the need for a computing model? It is meaning-
less to talk about the speed of an algorithm as it varies from machine
to machine. An algorithm may run faster in machine A compared to in
machine B. This kind of an analysis is not correct as algorithm analysis
should be independent of machines. A computing model thus facilitates
such machine-independent analysis.

First, all the valid operations of the model of computation should be
speci ed. These valid operations help specify the input, process, and

1. Understanding the problem
2. Planning an algorithm
3. Designing an algorithm
4. Validating and verifying an algorithm

5. Analysing an algorithm
6. Implementing an algorithm
7. Performing empirical analysis (if necessary)

Fig. 1.3 Stages of
problem solving

Planning

Algorithm design

Algorithm correctness

Algorithm analysis

Implementation and

empirical analysis

Post analysis

Is

OK

Exit

Yes

No

Problem

Oxfo
rd

f intint
power. Hower. H

1.5.21.5.
T

OxfOxfn and

alysis

Univ
er

sit
y

t is rr
problem staproblem

olving the numving the nu
t to the probleo the pro

em will provm will p

ally, computery, compu
ed. Puzzles ofted. Puzzles

lligence. Tlligenc
uma

Pr
es

sh the the
of compuf compu

olvable? Tvable? T
 understanunderstan
equireequi

10 Design and Analysis of Algorithms

output. In addition, the computing models provide a notion of the necessary steps to compute
time and space complexity of a given algorithm.

For algorithm study, a computation model such as a random access machine (RAM) or a
Turing machine is used to perform complexity analysis of algorithms. RAM is discussed in
Chapter 3 and Turing machines are discussed in Chapter 17. The contribution of Alan Turing
is vital for the study of computability and computing models (refer to Box 1.4).

O
Data structure concerns the way data and its relationships are stored. Algorithms require data
for solving a given problem. The nature of data and their organization can have impacts on the
ef ciency of algorithms. Therefore, algorithms and data structures together often constitute
an important aspect of problem solving.

Data organization is something we are familiar with in our daily life. Figure 1.4 shows
an example of data organization called a queue. A gas station with one servicing point
should have a queue, as shown in the gure, to avoid chaos. A queue (or rst come rst
serve—FCFS) is an organization where the processing (lling of gas) is done in one end
and a vehicle is added at the other end. All vehicles have same priority in this case. Often
a problem dictates the choice of structures. However, this structure may not be valid in
cases of, for example, handling medical emergencies, where highest priority should be
given to urgent cases.

Thus, data organization is a very important issue that in uences the effectiveness of algorithms.
At some point of problem solving, careful consideration should be given to storing the data
 effectively. A popular statement in computer science is ‘algorithm + data structure = program’.
A wrong selection of a data structure often proves fatal in the problem-solving process.

Alan Turing (1912–1954) is well known for his contribution
towards computing. He is considered by many as the ‘father
of modern computing’. His contribution towards computability
theory and arti cial intelligence is monumental. He designed

a theoretical machine, called the Turing machine that is used
widely in computability theory and complexity analysis. Alan
Turing is also credited with the designing of the ‘Turing Test’
as a measure of testing the intelligence of a machine.

Box 1.4 Alan Turing

Fig. 1.4 Example of a queue

Queue of trucks

Fuel station

Oxfo
rd

e choichoi
ple, handl, handl

cases.cases.
organizationanization

point of proboint of pro
y. A popu A popu

ectiti

Univ
er

sit
ynd their thei

ms and data sms and data

are familiar wre famili
called a ed a queuq

in the guren the g
ation where thtion wher

he other endhe other e
e of ste of

Pr
es

she contcon
ls (refer torefer to

hips are ships are
orgorg

Introduction to Algorithms 11

1.5.3 Designing an Algorithm
Algorithm design is the next stage of problem solving. The following are the two primary
issues of this stage:

1. How to design an algorithm? 2. How to express an algorithm?

Algorithm design is a way of developing algorithmic solutions using an appropriate design
strategy. Design strategies differ from problem to problem. Just imagine searching a name in a
telephone directory. If anyone starts searching from page 1, it is termed as a brute force strategy.
Since a telephone directory is indexed, it makes sense to open the book and use the index at the
top to locate the name. This is a better strategy. One may come across many design paradigms
in the algorithm study. Some of the important design paradigms are divide and conquer, and
dynamic programming. Divide and conquer, for example, divides the problem into sub-problems
and combines the results of the sub-problems to get the nal solution of the given problem.
Dynamic programming visualizes the problem as a sequence of decisions. Then it combines
the optimal solutions of the sub-problems to get an optimal global solution. Many design vari-
ants such as greedy approach, backtracking, and branch and bound techniques have been dealt
with in this book. The role of algorithm design is important in developing ef cient algorithms.
Thus, one important skill required for problem solving is the selection and application of suit-
able design paradigms. A skilled algorithm designer is called an ‘algorist’.

After the algorithm is designed, it should be communicated to a programmer so that the
 algorithm can be coded as a program. This stage is called algorithm speci cation. Only three
possibilities exist for communicating the idea of algorithms. One is to use natural languages
such as English to communicate the algorithm. This is preferable. However, the natural lan-
guage has some disadvantages such as ambiguity and lack of precision. Hence, an algorithm
is often written and communicated through pseudocode. Pseudocode is a mix of the natural
language and mathematics. Another way is to use a programming language. The problem with
programming language notation is that readers often get bogged down by the programming
code details. Therefore, the pseudocode approach is preferable. Even though there are no
speci c rules for algorithm writing, certain guidelines can be followed to make algorithms
more understandable. Some of these guidelines are presented in Chapter 2.

1.5.4 Valida ng and Verifying an Algorithm
Algorithm validation and veri cation are the methods of checking algorithm correctness.
An algorithm is expected to give correct outputs for all valid inputs. Sometimes, algorithms
may not give correct outputs due to logical errors. Hence, validation of algorithms becomes
a necessity. Algorithm validation is a process of checking whether the given algorithm gives
correct outputs for valid inputs or not. This is done by comparing the output of the algorithm
with the expected output.

Once validation is over, algorithm veri cation or algorithm proving begins. Algorithm veri-
cation is a process of providing a mathematical proof that the given algorithm works correctly

for all instances of data. One way of doing it is by creating a set of assertions that are expressed
using mathematical logic. Assertions are statements that indicate the conditions of algorithm

Oxfo
rd

municunic
dvantages antages

nd communnd commu
mathematicshematic

ng languagng languag
ils. Theres. There

s fof

Univ
er

sit
y

ch
mportanporta

solving is thsolving is
designer is casigner is ca

it should be should
ogram. This sogram. Th

unicating theunicating
te the ate th

Pr
es

s
e prp

solution olution
ce of decisof decis

mal global smal global s
and bouand bou

t int i

12 Design and Analysis of Algorithms

variables at various points of the algorithm. Preconditions indicate the conditions or variables
before the execution of an algorithm, and postconditions indicate the status of the variables at
the end of the execution of an algorithm. Remember, still the algorithm has not been translated
or converted into a code of any programming language. Hence, all these executions are rst
carried out theoretically on a paper and proof for the algorithm is determined. A proof of an
algorithm is said to exist if the preconditions can be shown to imply the postconditions logically.
A complete proof is to write each statement clearly for proving that the algorithm is right. In
addition to assertions, mathematical proof techniques such as mathematical induction can be
used for proving that algorithms do work correctly. Mathematical induction is one such useful
proof technique that is often used to prove that the algorithm works for all possible instances.
Mathematical proofs are rigorous and always better than algorithm validation. Program cor-
rectness itself is a major study and extensive research is done in this eld.

1.5.5 Analysing an Algorithm
In algorithm study, complexity analysis is important as we are mainly interested in nding optimal
algorithms that use fewer computer resources. Complexity theory is a eld of algorithms that
deals with the analysis of a solution in terms of computational resources and their optimization.
Humans are more complex than, say, amoeba. So what does the word ‘complexity’ refer to here?
Complexity is the degree of dif culty associated with a problem and the algorithm. The complex-
ity of an algorithm can be observed to be related to its input size. For example, an algorithm for
sorting an array of 10 numbers is easy, but the same algorithm becomes dif cult for 1 million
inputs. This shows the connection between complexity and the size of the input.

Thus, complexity analysis is useful for the following two purposes:

1. To decide the ef ciency of the given algorithms
2. To compare algorithms for deciding the effective solutions for a given problem

Consider the following scenario: for a problem , two algorithms A and B exist. Find the
optimal algorithm. To solve this, there must be some measures based on which comparisons can
be made. In general, two types of measures are available for comparing algorithms—subjective
and objective. Subjective measures are factors such as ease of implementation, algorithm style,
and readability of the algorithm. However, the problem with these subjective measures is that
these factors cannot be quanti ed. In addition, a measure such as the ease of implementation,
style of the algorithm, or understandability of algorithms is a subjective measure that varies
from person to person. Therefore, in algorithm study, comparisons are limited to some objective
measures. Objective measures, unlike subjective measures, can be quanti ed. The advantages
of objective measures are that they are measurable and quanti able, and can be used for predic-
tions. Often time and space are used as objective measures for analysing algorithms.

Time complexity means the time taken by an algorithm to execute for different increasing
inputs (i.e., differently-scaled inputs). In algorithm study, two time factors are considered—
execution time and run time. Execution time (or compile time) does not depend on problem
instances. Additionally, a program may be compiled many times. Therefore, time in an algo-
rithm context always refers to the run time as only this is characterized by instances. Another
complexity is space complexity, which is the measurement of memory space requirements
of an algorithm. Technically, an algorithm is ef cient if lesser resources are used. Chapter 3
focuses on the analysis of algorithms.

Oxfo
rd
y

hms fos fo

ollowing sceowing sce
hm. To solvem. To solve

general, twoneral, tw
ctive. ive. SubjeSubje

ility oility o

Univ
er

sit
ymputatuta

o what does o what do
ted with a probd with a pro

related to its iated to i
y, but the sambut the s

between competween co
s useful for ths useful fo

of the givenof the giv
decididec

Pr
es

s
h

are mainly ie mainly i
exity theorexity the

ionalion

Introduction to Algorithms 13

In algorithm study, time complexity is not measured in absolute terms. For example, one
cannot say the algorithm takes 3.67 seconds. It is wrong as time complexity is always de-
noted as a complexity function t(n) or T(N), where t(n) is a function of input size ‘n’ and is
not an absolute value. The variables n and N are used interchangeably and always reserved
to represent the input size of the algorithm. Recollect that input size is the number of binary
bits used to represent the input instance. The logic here is that for larger inputs the algorithm
would take more time. For example, sorting a list of 10 elements is easy, but sorting a list
of 1 billion elements is dif cult. Generally, algorithms whose time complexity function is
a polynomial, for example, say N or log N, can be solved easily, and but problems whose
algorithms have exponential functions, say 2N, are dif cult to solve.

 Example 1.1 Assume that there are two algorithms A and B for a given problem P. The
time complexity functions of algorithms A and B are, respectively, 3n and 2n. Which algorithm
should be selected assuming that all other conditions remain the same for both algorithms?

o ution Assuming that all conditions remain the same for both algorithms, the best
algorithm takes less time when the input is changed to a larger value. Results obtained
employing different values of n are shown in Table 1.3.

Example 1.1

Input size (n) Algorithm A T(n) = 3n Algorithm B T(n) = 2n

 1 3 2

 5 15 32

 10 30 1024

100 300 2100

Table 1.3 Time complexities of algorithms A and B

Input size (n) Algorithm 3n Algorithm B T(TT n) = 2n

It can be observed that algorithm A performs better as n is increased; time complexity
increases linearly and gives lesser values for larger values of n. The second algorithm instead
grows exponentially, and 2100 is a very large number.

Therefore, algorithm A is better than algorithm B.

 Example 1.2 Let us assume that, for a problem P, two algorithms are possible—algorithm
A and algorithm B. Let us also assume that the time complexities of algorithms A and B are,
respectively, 3n and 10n2 instructions. In other words, the instructions or steps of algorithms A
and B are 3n and 10n2 respectively. Here, n is the input size of the problem. Let the input size
n be 105 instructions. If the computer system executes 109 instructions per second, how much
time do algorithms A and B take?

o ution Here, n = 105, and the computer can execute 109 instructions per second.

Therefore, algorithm A (time complexity 3n) would take 3 × 105

109 = 3
104 = 0.0003 seconds.

Algorithm B (time complexity 10n2) would take 10 × (105)2

109 = 10 × 1010

109 = 100 seconds.

Example 1.2

Oxfo
d

fo
rdd

fo
r

fo
rd

e observed observed
linearly annearly a

entienti

rsi
ty

ged
ble 1.3. 1.3

Univ
e

Uni
er

s
ve

UUU
15

30

plexities of algexities of

hm A m A TT((TTTT nn) = 3) = n

Pr
es

s
for

ly, 3, 3nn an an
n the same he same

same for same for
d to a lad to a la

14 Design and Analysis of Algorithms

It can be observed that algorithm A would take very less time compared to algorithm B.
Hence, it is natural that algorithm A is the preferred one.

One may wonder whether this has got anything to do ef ciency. Imagine that we are now
executing algorithm A on a slower machine—a machine that executes only 105instructions.
What would be the scenario in this case?

Algorithm A would take 3 × 105

105 = 3 seconds.

We can see that algorithm A is still better compared to algorithm B that takes 10 × (105)2

105 =
106 seconds. Therefore, the important point to be noted here is that speed of the machine
does not affect selection of algorithm A as a better algorithm. Hence, while computer speed
is crucial, the role of a better designed algorithm is still signi cant.

1.5.6 Implemen ng an Algorithm and Performing Empirical Analysis
After the algorithm is designed, it is expressed as a program and a suitable programming language
is chosen to implement the algorithm as a code. After the program is written, it must be tested.
Even if the algorithm is correct, sometimes the program may not give expected results. This
may be due to syntax errors in coding the algorithm in a programming language or hardware
fault. The error due to syntax problems of a language is called a logical error. The process of
removing logical errors is called debugging. If the program leads to an error even in the absence
of syntax errors, then one has to go back to the design stage to correct the algorithmic errors.

Now, complexity analysis can be performed for the developed program. The analysis
that is carried out after the program is developed is called empirical analysis (or a priori
analysis or theoretical analysis). This analysis is popular for larger programs; a new area,
called experimental algorithmics, where analysis is performed for larger programs using a
dataset, is emerging. A dataset is a huge collection of valid input data of an algorithm; the
standard dataset that is often used for testing of algorithms is called a benchmark dataset.
Interpretation of the results of a program on a benchmark dataset provides vital statistical
information about the behaviour of the algorithm. This kind of analysis is called empirical
analysis (also called a posteriori analysis). In addition, the term pro ling is often used to
denote the process of running a program on a dataset and measuring the time/space require-
ment of the program empirically.

1.5.7 Post or Postmortem Analysis
A problem-solving process ends with postmortem analysis. Any analysis should end with a valu-
able insight. The following are the questions that are often raised in this problem-solving process:

1. Is the problem solvable?
2. Are there any limits for this algorithm? Is there any theoretical limit for the ef ciency of

this problem?
3. Is the algorithm ef cient, and are there any other algorithms that are faster than the current

algorithm?

Answers to these questions give a lot of insight into the algorithms that are necessary for
re ning the design of algorithms to make them more ef cient. The best possible or optimal
solution that is theoretically possible for a given problem speci es a lower bound of a given
problem. The worst-case estimate of resources required by the algorithm is called an upper

Oxfo
rd

A datasatas
hat is often s often

f the resultf the resul
about the but the b

(also calledalso called
e procesproce

pro

Univ
er

sit
y

ogra
ithm in a thm in

anguage is canguage is
g. If the prograf the pro

ck to the desigto the de
be performedbe perform

gram is deveam is d
sis). This anas). This a

hmicshmics, whe, w
t is a it

Pr
es

scal Analyl Anal
and a suitabd a suitab

he programhe program
m may m may

Introduction to Algorithms 15

bound. Theoretically, the best solution of a problem should be closer to its lower bound. The
difference between the lower and upper bounds should be minimal for a better solution. The
difference between the upper and the lower bounds is called an algorithmic gap. Technically,
this should be zero. However, in practice, there may be vast difference between an upper and
a lower bound. A problem-solving process tries to reduce this difference by focusing on better
planning, design, and implementation on a continuous basis.

1.6 CLASSIFICATION OF ALGORITHMS

As algorithms are important for us, let us classify them for further elaboration. No single
criterion exists for classifying algorithms. Figure 1.5 shows some of the criteria used for
classi cation of algorithms.

Fig. 1.5 Classi cation of algorithms

Algorithms

Classi cation
based on

implementation

Classi cation
based on

design

Classi cation
based on area of

specialization

Classi cation
based on
tractability

1.6.1 Based on Implementa on
Based on implementation, one can classify the algorithms as follows

Problem reduction is a scienti c principle for problem solving. Take a problem, reduce it,
and repeat the reduction process till the problem is reduced to a level where it can be solved
directly. Using recursion, the problem is reduced to another problem with a decrease in input
instance. The transformed problem is the same as the original one but with a different input,
which is less than that of the original problem. The problem reduction process is continued
till the given problem is reduced to a smaller problem that can be solved directly. Then the
results of the sub-problems are combined to get the result of the given problem. This strategy
of problem solving is called recursion.

Recursive algorithms use recursive functions for creating repetitions required for solving
a given problem.

A good example of recursion is computing the factorial of a number n. Factorial of a number
can be computed using the recursive function as follows:

n! = 0 if n = 0
n × (n 1)! for n 1

Thus, a recursive function has a base case and an inductive case. A base case is the simplest
problem that can be solved directly. In this factorial example, the base case is nding 0!, as 0!
can be solved directly. An inductive case is a recursive de nition of the problem that captures
the essence of a problem reduction process. It can be observed from Fig. 1.6, which shows the
computation of 4!, that recursion works by the principle of work postponement or delaying the

Oxfo
rdis a scientia scient

eduction production pr
ng recursionrecursion

The transfohe transfo
ss thanss than

Univ
er

sit
y

Classi cation ossi catiosi
ty
Cla

based
specsit
y

sit
y

on
ne can classine can cl

Pr
es

s
PrPPPPPP

16 Design and Analysis of Algorithms

work. For a given factorial program, the facto-
rial function calls itself by reducing its input by
1 till the program reaches 0! This is the base
case and the algorithm stops here; results of the
sub-problems are collected for computing the

nal answer of the given problem.
The correctness of recursive algorithms is

due to its close relationship with the concept
of mathematical induction. In other words, re-
cursion is a mirror of mathematical induction.

Non-recursive (or iterative) algorithms, on
the other hand, are deductive in nature. Non-
recursive algorithms do not use the recursion

concept but, instead, rely on looping constructs, such as for or while statement, to create repetition
of tasks. Non-recursive (or iterative) algorithms and their analyses are discussed in Chapter 2,
and recursive algorithms and their analyses in Chapter 3.

An algorithm that is designed for a single processor is called a sequential algorithm.
A parallel algorithm is designed for systems that use a set of processors. The concept of

parallel processing and distributed processing are interrelated. Parallel systems have mul-
tiple processors that are located closely. Distributed systems, on the contrary, have multiple
processors that are located at different places separated by a vast distance geographically.
Hence, distributed systems are called loosely coupled systems, while parallel systems are
called tightly coupled systems. Distributed algorithms are implemented in a distributed system
environment. Parallel algorithms are discussed in Chapter 20.

An exact algorithm nds the exact solutions for a given problem. Some problems are so
complex that nding their exact solutions is dif cult. Approximation algorithms (discussed
in Chapter 19 of this book) nd equivalent or approximate solutions for a given problem.

Deterministic algorithms always provide xed predictable results for a given input. In con-
trast, non-deterministic algorithms or randomized algorithms take a different approach. For
deterministic algorithms, the output should always be true. On the other hand, randomized
algorithms relax this condition. It is argued that outputs based on random decisions may not
often result in correct answers or the algorithm may not terminate at all. Thus, the accuracy
of an output is associated with a probability. In daily life, we often use random decisions,
for example, in games such as dice. Industries conduct random quality checks on products.
Randomized samples are used to predict poll results and so on. One can be very sceptical
about randomized algorithms. However, randomized algorithms have been proved to be very
effective. Randomized algorithms are discussed in Chapter 19.

1.6.2 Based on Design
Based on design techniques, algorithms can be classi ed into various categories. As discussed
earlier, every design technique uses a strategy for solving a problem. Algorithms can be

Fig. 1.6 Computation of 4! using recursion

4!

3!

Reduce

4 × 3 × 2 × 1

3 × 2 × 1

2 × 1

1

Reduce

Reduce

Reduce

2!

1!

0!

Oxfo
rd

algorithorith

orithmthm nds nd
hat nding tat nding

er 19 of th19 of th

Univ
er

sit
yrocessor is cacessor is c

ystems that utems tha
ocessing are essing a

osely. Distribuosely. Distr
ifferent placeferent pl

are called looe called l
ms. ms. DistribuDistri

ms ar

Pr
es

s
e

ithms doms do
while statemhile statem

r anaanalyses alyses a
3.3.

Introduction to Algorithms 17

classi ed based on design as brute force, divide and conquer, dynamic programming, greedy
approach, backtracking, and branch and bound algorithms. This textbook is organized based
on this classi cation of algorithms only.

1.6.3 Based on Area of Specializa on
Algorithms can be classi ed based on the area of specialization. General algorithms such as
searching and sorting, and order statistics such as nding mean, median, rank, and so on are
useful for all elds of specialization. These algorithms can be considered as building blocks
of any area of specialization. Other than these basic algorithms, some algorithms are special-
ized for a particular domain. String algorithms, graph algorithms, combinatorial algorithms,
and geometric problems are some examples of specialized algorithms that are discussed in
this book. Let us discuss some of these algorithms now.

Sorting algorithm is a general algorithm that is useful in all areas of specialization. Sorting
problem is a structural problem. It involves structuring or rearranging the sequence in a spe-
ci c order. The importance of this problem arises from the fact that all modern applications
require sorting. For example, an organization may require sorting of employee records based
on employee identi cation number (called primary key). A library system may want books to
be ordered based on titles or ISBN numbers. Sorting problems for small instances are relatively
easy. When sorting is required for a larger number, say a billion elements, designing sorting
algorithms becomes more challenging.

Let us discuss some of these domain-speci c algorithms now:
String algorithms String algorithms are used frequently in document editing, web searches,
and pattern matching.

A sequence of characters is called a string. The sequence can be text, bits, numbers, or
gene sequences (A, C, G, or T). One problem that is of considerable interest is string match-
ing, which takes a pattern, searches the text string, and reports whether a pattern is present
or not. String algorithms, which are discussed in Chapter 16, constitute a very important

eld of study.

Graph algorithms A graph is used for modelling complex systems by representing the rela-
tionships among the subsystems. A graph represents a set of nodes and edge. The nodes are also
called vertices. The nodes are connected by edges, which are also known as arcs. Consider the
graph shown in Fig. 1.7. Here, the nodes are given as {A, B, C, D, E} and the edges as {(A,B),
(A,C), (A,D), (B,A), (B,E), (B,C), (C,A), (C,B), (C,D), (C,E), (D,A), (D,C), (D,E), (E,B), (E,C),

and (E,D)}.

Many interesting problems can be formulated using this graph structure. The
following are some of the interesting graph algorithms:

ra e ing sa esperson pro e As stated earlier, a salesperson starts from a
node, visits all other nodes only once, and gets back to the starting node. This
problem is reduced to a Hamiltonian cycle if the graph is undirected. In the
case of a weighted graph (where edges carry some weights), the TSP is about

nding a tour of minimum cost.Fig. 1.7 Sample graph

A

E

B C D

ring alg al
g.

f characters f character
es (A, C, G, A, C, G,

takes a patttakes a pat
ring algorng algo

y

Univ
er

sit
y

om
y requireequi

mary key). Amary key).
 Sorting proborting pr

ger number, sr number
ng.

domain-specdomain-sp
orithmsorith

Pr
es

sall areas ofareas o
or rearrangor rearrang

m the facm the fac
sos

18 Design and Analysis of Algorithms

Chinese postman problem This problem is the same as a TSP, but instead of vertices, an
edge should be visited only once. There is no restriction on vertices in this problem.
Graph colouring problem This problem is about how to colour all the vertices distinctly using
only a small number of colours such that no two neighbouring vertices share the same colour.
Combinatorial algorithms The focus of combinatorial algorithms is to nd a combinatorial
object inherent in the problem such as permutations, combinations, or a subset that satis es
some constraints and objective functions. These problems are dif cult to solve, and many
problems do not have algorithmic solutions. TSPs and graph colouring problems are examples
of combinatorial problems.
Geometric algorithms Geometric algorithms deal with geometrical objects such as points,
lines, and polygons. The following are some of the algorithms discussed in this textbook:
Closest pair problem This problem deals with nding the distance between points in a 2D
space and nding a pair of points that are closest to each other.
Convex hull problem This problem deals with nding the smallest convex polygon that
includes all points in a 2D space.

1.6.4 Based on Tractability
Tractability means solvability of a given problem within a reasonable amount of time and
space. An intractable problem is dif cult to solve within the reasonable amount of computer
resources. Based on tractability, the following categories are possible:
Easily solvable problems These problems have polynomial time complexity or their upper
bounds are characterized by a polynomial. These problems are solvable. For example, sorting
is an example of solvable or polynomial problems.
Unsolvable problems Problems such as halting problems cannot be solved at all. These
are called unsolvable or non-computable problems. Knowledge about the non-computability
of these problems helps in project management.
Intractable problems These problems are of two categories. One category comprises a
set of problems that have algorithmic solutions but require more computer resources. Hence,
these solutions are practically non-implementable. In addition, these have been proved to be
computationally hard. The other category consists of a set of problems that have been proved
to be computationally hard. For example, a TSP is a proven computationally hard problem;
it had already been discussed that time complexity of the algorithm increases exponentially
with an increase in the number of cities.

Oxfo
rd

ble ore or
ems ProbProb

vable or nonvable or no
lems helps ms helps

ble problemle problem
blems thlems t

Univ
er

sit
y

n problem wiproblem
cult to solve wt to solv

he following e followin
hese problemhese prob

a polynomiaa polynom
polynompolyn

Pr
es

sdistance btance b
otherher..

ding the smding the sm

Introduction to Algorithms 19

Thus, algorithm study can be concluded as the central theme of computer science. An as-
piring computer professional should be a better problem solver. The problem-solving process
starts with the understanding of a given problem and ends with nding an ef cient program-
ming code for the given problem. Problem solving poses many challenges as it is a creative
process. Chapter 2 introduces the basics of a problem-solving process and also introduces
basic guidelines for writing algorithms.

 SUMMARY

 An algorithm is a step-by-step procedure for solving a
given problem.

 A computational problem is characterized by two
 factors—speci cation of valid input and output param-
eters of the algorithm, and speci cation of the relation-
ship between inputs and outputs.

 An algorithm that yields the correct output for a legal
input is called an algorithmic solution.

 The art of designing, analysing, and implementing
 algorithms is called algorithmics.

 Algorithms can be contrasted with programs. A program
is an expression of algorithm in a programming language.

 A valid input is called an instance. The number of binary
bits necessary to encode inputs of an algorithm is called
the input size.

 An algorithm should have characteristics such as a
well-de ned order, inputs, outputs, niteness, de nite-
ness, ef ciency, and generality.

 Problem solving starts with the understanding of a
problem statement without any confusion.

 A computation or computational model is an abstraction
of a real-world computer.

 Algorithm design is a way of developing algorithmic
solutions using a suitable course of action called a
design strategy. Algorithm speci cation is about com-
municating the design strategy to a programmer often
in the form of a pseudocode.

 Algorithmic validation means checking whether the
algorithm gives a correct result or not.

 Algorithm veri cation is a process of providing a math-
ematical proof that the given algorithm works correctly
for all instances of data.

 A proof of an algorithm is said to exist if the precondi-
tions can be shown to imply postconditions logically.

 An estimation of the time and space complexities of
an algorithm for varying input sizes is called algorithm
analysis.

 Time complexity refers to the measurement of run time
of an algorithm in terms of its input size, and space
complexity is the measurement of space required for
a given algorithm.

 A dataset is a huge collection of valid input data
of an algorithm. The standard dataset that is often
used for testing of algorithms is called a benchmark
dataset.

 The theoretically best possible or optimal solution for
a given problem speci es a lower bound of a given
problem. The worst-case estimate of resources that can
be required by an algorithm is called an upper bound.
The difference between the upper and the lower bound
is called an algorithmic gap.

 Problem reduction is a scienti c principle for problem
solving. Take a problem, reduce it, and repeat the re-
duction process till the problem is reduced to a level
where it can be solved directly.

 Algorithms can be categorized based on their imple-
mentation methods, design techniques, eld of study,
and tractability.

 GLOSSARY

Agent A performer of an algorithm
Algorist A person who is skilled in algorithm development
Algorithm A step-by-step procedure for solving a given

problem
Algorithm gap The difference between lower and upper

bounds
Formalization of an algorithm in

a suitable form that can be conveyed to a programmer

The process of providing a mathemati-
cal proof that the algorithm works correctly for all valid inputs

Algorithm validation The process of checking the correct-
ness of an algorithm, this is done by giving valid inputs to
it and checking its results with expected values

Approximation algorithms Algorithms that provide ap-
proximate solutions for problems whose exact solutions
are dif cult to obtain

nderstanerstan
confusion.fusion.

nal model is annal model is

way of devey of dev
uitable coursitable cour
rithm sprithm sp

tra

ed

uch as a uch as a
ess, de nitess, de nite-

ing oi

omplexle
an algorithm an algorithm

complexity is thmplexity is t
a given algoa given a
A dataseA data
of an of a
use

m is said said
 to imply pomply po

f the time ane time a
for varying infor varying in

ty refty re

20 Design and Analysis of Algorithms

 REVIEW QUESTIONS

-

 EXERCISES

-
n 2n

2

n n n
n 3.

 9
 .

Complexity theory

Computability theory

Computational model - -

Computational problem

Deterministic algorithm

Exact algorithm

Experimental algorithmics

Intractable problems

Lower bound
Non-deterministic algorithm -

Non-recursive algorithm (iterative algorithm)

Parallel algorithm

 -

Proof

Recursive algorithm

Sequential algorithm
-

Space complexity

Strategy
Time complexity

Tractable problems

Upper bound -

 ADDITIONAL PROBLEM

. Nine
Algorithms That Changed the Future: The Ingenious
Ideas that drive Today’s Computers,

 .

 .

 .

Oxfo
rd..

Univ
er

sit
y

W QUESTIONQUEST

.

pper bounder boun

Pr
es

s
oblemsoblems

Introduction to Algorithms 21

Answers to the Crossword are available as online resources

 CROSSWORD

1

2

3

4 5

7

8

9 10

11

12

13

Across
 1. Algorithms that are solved within reasonable amount

of computable resources
 4. Algorithms that use recursive functions
 . Who coined the word algorithm analysis
 7. An abstraction of a real world problem
 8. Statistical process of measuring resources on a larger

dataset
 10. Process of checking algorithms
 11. Theory of algorithms
 12. Analytical skills
 13. Attributed as Father of Modern Computing by many

Down
1. Measurement of time
2. Study of analysis of algorithms
3. A step-by-step procedure
5. A person skilled in algorithms
9. Process of removing syntax errors

Oxfo
rd

ons
analysisysis

problemproblem
suring resourcing resou

algorithmsalgorithms

Univ
er

sit
y

er
sit

ytytttytyityyyititrsi
tyityityyyrser

srseeererrr
ble amount e amount

DowD
1

es
s

Pr
es

sssssses
sssssee

Pr
esesre
sss

PrPPr
e

Pr
erePPP

