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11.8.1 M  S  T
The history of an MST is as interesting as its concept. In 1926, Otaker Boruvka formulated 
the MST problem. A Polish mathematician, Vojtech Jarnik, described the problem in 1929 
in a letter to Otaker Boruvka. The same problem was conceived independently by Kruskal 
in 1956. ence, Kruskal rediscovered the problem. ater it was de ned independently by 
Robert Prim in 1957 and by Edsger Dijkstra in 1958

C H A P T E R

1Introduc�on	to		

Algorithms C H A P T E R

18 Basics	of	Computa�onal	

Complexity

Features of the Book

Topical Coverage 
The book provides 

extensive coverage of 

design techniques, 
followed by discussions 

Treatment of Concepts

are provided using 

Algorit m Presenta on

in two ways, that is, step-
wise approach

pseudocode approach 

understanding of the 
logic behind solving a 

 Example 11.12 Consider the graph G shown in Fig. 11.11. Construct an MST for the 
given graph G using Kruskal’s algorithm.

The rst step in Kruskal’s algorithm is to sort all the edges and form an edge list, 
say E. The edges of graph G shown in Fig. 11.21 are sorted and shown in Table 11.13.

Example 11.12

Since the disjoint set data structure is used, initialization takes at most (|V|) time. The time 
complexity of the algorithm depends on the number of edges. As there are |E| edges, O(| E 
|log| E |) time is required to sort these edges. The disjoint set takes at most 2| E | nd opera-
tions and |V | 1 operations. Therefore, the total complexity of Kruskal’s algorithm is at most 
O(| E |log| E |) time.

Step 1: Create a node x by allocating memory for it.
Step 2: Assign the required value to the item part of node x.
  item(x) = value
Step 3: Set in the pointer to null.
  next(x) = null
Step 4: Return the node x.Algorithm create(L, x, value)

%% Input: List L and element x with 'value'
%% Output: Node x
Begin
    allot(x)         %% Allot memory for node x with two elds item and next
    item(x) = value

next(x) = null

C H A P T E R

5Data	Structures—I

“Bad programmers worry about the code. Good programmers worry about data structures  
C H A P T E R

11 Greedy	Algorithms

“Greed is all right, by the way... I think greed is healthy. You can be greedy  
d till f l d b t lf ”

C H A P T E R

13Dynamic	Programming
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Glossary and Summary

given at the end of each 
chapter to help readers 

Revie  ues ons  
E ercises  and 

Addi onal Pro lems

the end of every chapter 
to test the readers’ 

conceptual knowledge 
and also enhance their 

Crossword Puzzles
Crossword puzzles, 

exercise at the end of each 

readers to self-check their 
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Historical Notes 
Historical notes are 

provided throughout the 
The word algorithm is derived from the name of a Persian 
mathematician, Abu Ja’fer Mohammed Ibn Musa al 
Khowarizmi, who lived sometime around 780–850 AD. He 
was from the town of Khowarazm, now in Uzbekistan. He 
was a teacher of mathematics in Baghdad. He wrote a book 

Europe. He also introduced the simple step-b
for addition, subtraction, multiplication, and
his book. The word algebra has also been d
the title of this book. When his book was t
Latin, his name was quoted as Algorismus

Box 1.1 Origin of the word ‘algorithm’

eorge Bernard Dantzig was born in 1914 at Portland, 
Oregon, United States. His father became a professor of 
mathematics at University of Maryland after World War 
II. Dantzig’s biggest contribution is that he designed the 
simplex method for solving LPPs. Apart from the simplex 

duality theory. He worked with Fulkerson an
in formulating the travelling salesperson pro
linear programming and solved the TSP proble
49 cities at that time. In 197 , he was award
National Medal of Science, the highest honou

Box 17.2 George Bernard Dantzig

 GLOSSARY 

Agent A performer of an algorithm
Algorist A person who is skilled in algorithm development
Algorithm A step-by-step procedure for solving a given 

problem
Algorithm gap The difference between lower and upper 

The process of provid
cal proof that the algorithm works correctly f

Algorithm validation The process of chec
ness of an algorithm, this is done by givin
it and checking its results with expected SUMMARY 

 An algorithm is a step-by-step procedure for solving a 
given problem.

 A computational problem is characterized by two 
 factors speci cation of valid input and output param-

 Algorithm veri cation is a process of prov
ematical proof that the given algorithm wo
for all instances of data.

 A proof of an algorithm is said to exist if t

 REVIEW QUESTIONS 

1.1 De ne an algorithm.
1.2 What are the characteristics of an algorithm
1.3 Survey the Internet and list out at least ve algorithms 

that have huge impact on our daily lives.
1.4 What are the stages of problem solving

 1.8 What is the difference between algo
and algorithm validation

 1.9 How is an algorithm validated and 
with an example.

1.10 State algorithm classi cations. Wha EXERCISES 

1.1 Assume that there are two algorithms A and B for a 
given problem P. The time complexity functions of algo-
rithms A and B are, respectively, 5n and log2n. Which 
algorithm should be selected assuming that all other 
conditions remain the same for both the problems

1 2 L h f l h di h

complexities of A, B, and C are 3n
respectively. Assume that the input i
Assume that the machine executes
per second. How much time will algo
C take  Which algorithm will be the  ADDITIONAL PROBLEM 

1.1 John MacCormick had written a book titled Nine 
Algorithms That Changed the Future: The Ingenious 
Ideas that drive Today’s Computers, Princeton University 
Press, Princeton, that had listed the nine wonderful 
algorithms, namely, search engine indexing, page rank, 

recognition, data compression, datab
signatures, that changed the world.

 (a)  What are these algorithms  Se
and nd what these algorithms 

 (b)  Identify one more algorithm that 
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Computers have become an integral part of our daily life in recent times. They have enormously impacted 
our personal, professional, as well as social lives. Computers help us in tasks such as document editing, 
Internet browsing, sending emails, making presentations, performing complex scienti c computations, 
social networking, and playing games. Industries and government of ces use computers effectively in 
production, e-governance, and e-commerce. Considering the increasing demand of computers in society, 
schools, colleges, and universities have included computer education in their curriculum, to help students 
become skilled in programming and developing applications which can be used to solve various business, 
scienti c, and social problems. 

Programming is a process of converting a given problem into an executable code for the computer. It 
involves understanding, analysis, and solving problems to create an algorithm. Veri cation of the algorithm, 
coding of the algorithm in a speci c programming language, testing, debugging, and maintaining the 
source code are also part of the programming process. Therefore, in order to construct ef cient programs, 
a ne understanding of algorithms is essential. An algorithm is a set of logical instructions for solving a 
given problem. It is expected to give correct results for valid inputs and should be ef cient, consuming 
less computer resources. An algorithm is implemented as a program using a programming language. A 
well-designed algorithm runs faster and consumes lesser computer resources, namely time and space. 
Therefore, expertise in programming is more related to ef ciency in problem-solving and effective de-
signing of algorithms, rather than developing codes with the help of programming languages. Though 
programming languages are important, their role is just limited to the implementation of a well-designed 
algorithm. For this reason, algorithms are a central theme of computer study.

In fact, history of algorithms is much older than that of computers, dating back to 3000 BC.  The 
ancient people of the Sumerian civilization were aware of basic numeric computation like addition. A 
Sumerian tablet found in the Euphrates river showed how to partition a given quantity of wheat in a way 
that each person receives the speci ed quantity. Such tablets were also used by ancient Babylonians 
(2000 to 1650 BC). Mathematicians of this period such as Euclid, Al-Khwarizmi, Leonardo Pisano (also 
known as Fibonacci), and others produced procedures that provided the foundations of the concepts of 
algorithms. Later developments  in the eld of algorithms were due to the contributions of Gottfried 
Leibnitz, David Hilbert, and Alan Turing. The history of modern computers, however, only starts from 
the 1940s. Thus, algorithms have played a very important role in the development of modern computing. 

The study of algorithms, called algorithmics, includes three aspects—algorithm design, analysis, and 
computational complexity of problems. Algorithm design is a creative activity. It includes various techniques 
(such as divide-and-conquer, greedy approach, dynamic programming, backtracking) that help in producing 
outputs at a faster pace by consuming lesser computer resources. Algorithm analysis is the estimation of 
how much resource is required by the algorithm. Computational complexity deals with the analysis and 
solvability of problems itself. A compulsory course on algorithms design and analysis is generally offered 
to computer science and information technology students in most universities. The course aims to help 
students create ef cient algorithms in common engineering design situations and analyse the asymptotic 
performance of algorithms by using the important algorithmic design paradigms and methods of analysis.

ABOUT THE BOOK

Design and Analysis of Algorithms is designed to serve as a textbook for the rst level course in algorithms 
that discusses all the fundamental and necessary information related to the three important aspects of 
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Preface vii

algorithm study using minimal mathematics and lucid language. This book is suitable for undergradu-
ate students of computer science and engineering (CSE) and information technology (IT), as well as 
for postgraduate students of computer applications. It is also useful for diploma courses, competitive 
examinations (like GATE), and recruitment interviews for this subject. 

The book begins with an introduction to algorithms and problem-solving concepts followed by an 
introduction to algorithm writing and analysis of iterative and recursive algorithms. In-depth explana-
tions and designing techniques of various types of algorithms used for problem-solving such as the 
brute force technique, divide-and conquer-technique, decrease-and-conquer strategy, greedy approach, 
transform-and-conquer strategy, dynamic programming, branch-and-bound approach, and backtracking, 
are provided in the book. Subsequent chapters of the book delve into the discussion of string algorithms, 
iterative improvement, linear programming, computability theory, NP-hard problems, NP- completeness, 
probability analysis, randomized algorithms, approximation algorithms, and parallel algorithms, with 
the appendices throwing light on basic mathematics and proof techniques. 

The various design techniques have been elucidated with the help of numerous problems, solved 
examples, and illustrations (including schematics, tables, and cartoons). The algorithms are presented in 
plain English (informal algorithm presentation) and pseudocode approach (formal algorithm presenta-
tion) to make the book programming language-independent and easy-to-comprehend. The book includes 
a variety of chapter-end pedagogical features such as point-wise summary, glossary, review questions, 
exercises, and additional problems to help readers assimilate and implement the concepts learnt.

KEY FEATURES 

 Provides simple and coherent explanations without using excessive theorems, proofs, and lemmas
 Detailed coverage for topics such as greedy approach, dynamic programming, transform-and-conquer 

technique, decrease-and-conquer technique, linear programming, and randomized and approximation 
algorithms

 Dedicated chapters on backtracking and branch-and-bound techniques, string matching algorithms, 
and parallel algorithms

 Simple and judicious presentation of algorithms throughout the text in both informal and formal 
forms, followed by the discussion of their complexity analysis

 Numerous review questions, exercises, and additional problems given at the end of each chapter to 
help readers apply and practise the concepts learnt

 Includes glossary and point-wise summary at the end of each chapter to help readers quickly 
recapitulate the important concepts

 Provides historical notes on various topics and crossword puzzles at the end of each chapter to elicit 
learning interest in students

ORGANIZATION OF THE BOOK

The book consists of twenty chapters.  A chapter-wise scheme of the book is presented here.
Chapter 1 provides an overview of algorithms. It introduces all the basic concepts of algorithms and 

the fundamental stages of problem-solving.  The chapter ends with the classi cation of algorithms.
Chapter 2 starts with the basic tools used for problem-solving. All the guidelines required for present-

ing the pseudocode and ow charts are provided along with many examples. The focus of this chapter 
is to provide some practice on writing algorithms. The basics of recursion and algorithm correctness are 
also covered in this chapter.

Chapter 3 covers the basics of algorithm complexity and analysis of iterative algorithms. Step count 
and operation count methods used for analysing iterative algorithms are discussed in detail. Asymptotic 
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viii Preface

analysis is also discussed in detail. Finally, the chapter ends with the concept of analysing the ef ciency 
of algorithms.

Chapter 4 discusses the analysis of recursive algorithms. It explains the basics of recurrence equations 
along with the methods for solving them. Generating functions are also brie y discussed as part of this chapter.

Data structures are an important component of algorithms. Chapter 5 deals with the fundamentals 
concepts related to data structures such as stacks, queues, linear lists, and linked lists. Trees and graphs 
are also explained in this chapter. Chapter 6 covers advanced data structures used for organizing 
large amounts of dynamic data. Binary search trees and AVL trees used for organizing dictionaries 
are discussed in this chapter, in addition to priority queues and heaps. Finally, a discussion on disjoint 
sets and amortized analysis is provided.

Chapter 7 deals with the brute force techniques, which use no special logic but instead follow an 
intuitive way of solving problems using the problem statement. Various problems such as sequential 
search, bubble sort, and selection sort that can be solved using this approach are explained. Some basic 
computational geometry problems such as closest-pair and convex hull are also covered. The chapter 
ends with the discussions on exhaustive searching problems such as 15-puzzle problem, 8-queen prob-
lem, magic square problem, knapsack problem, container loading problem, and assignment problem.

Chapter 8 discusses the divide-and-conquer design paradigm. Important problems such as quicksort, 
merge sort, nding maximum and minimum, multiplication of long integers, Strassen matrix multiplica-
tion, tiling problem, closest-pair problem, and convex hull are solved using this technique. The chapter 
ends with a discussion of the Fourier transform problem.

Chapter 9 explains the decrease-and-conquer technique, which is also known as the incremental or 
inductive approach. Examples problems such as insertion sort, topological sort, generating permutations 
and subsets, binary search, fake coin detection, and Russian peasant multiplication problem are used to 
illustrate the decrease by constant and constant factor methods. Finally, discussions on interpolation search, 
selection, and nding the median problems using the decrease by variable factor method are provided.  

Chapter 10 deals with time space tradeoffs. The selection of one type of ef ciency over the other 
and problems related to linear sorting and Hashing are discussed. The chapter ends with a discussion on 
B-trees and their operations.

Chapter 11 explains the greedy approach concept. This chapter discusses important problems such as 
coin change problem, scheduling, knapsack problem, optimal storage of tapes, Huffman code, minimum 
spanning tree algorithms, and Dijkstra’s shortest path algorithm to illustrate the greedy approach. 

Chapter 12 discusses the transform-and-conquer approach and its three basic techniques—instance 
simpli cation, representation change, and problem reduction. Problems such as Gaussian elimination, 
decomposition methods, nding determinant and matrix inverses are discussed. Heap sort, Horner’s 
method, binary exponentiation algorithm, and reduction problems are also covered in this chapter.

Chapter 13 deals with dynamic programming. Important example problems such as Fibonacci prob-
lem, binomial coef cient multistage graph, Graph algorithms, Floyd-Warshall Algorithm, Bellman Ford 
algorithms, travelling salesman problem, chain matrix multiplication, knapsack problem, and optimal 
binary search tree problem are discussed to illustrate the dynamic programming concept. Finally, the 
chapter concludes with the ow-shop scheduling algorithms.

Chapter 14 discusses backtracking algorithms. This chapter covers important problems such as N-queen 
problem, Hamiltonian circuit problem, sum of subsets, vertex colouring problem,  graph colouring prob-
lems, Graham scan, and generating permutations.  

Chapter 15 explains branch-and-bound techniques. Search techniques using this concept are discussed. 
Important problems such as assignment problem and 15-puzzle are covered and the chapter ends with a 
discussion on traveling salesperson and knapsack problems.                   

Chapter 16 deals with the string algorithms. Some basic string algorithms such as nding the length 
of strings, nding substrings, concatenation of two strings, longest common sequence,  and pattern 
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Preface ix

recognition algorithms such as Rabin Karp, Harspool, Knuth Morris Pratt and Boyer Moore algorithms 
are discussed in this chapter. Finally, approximate string matching algorithm is discussed.

Chapter 17 discusses the iterative approach and basics of linear programming. The linear programming 
formulation of a problem and simplex method is discussed in this chapter. Minimization problem, prin-
ciple of duality, and max- ow problems are also explained. Finally, matching algorithms are considered 
for better understanding of computational complexity. 

Chapter 18 explains the basics of computational complexity and the upper and lower bound theory. 
Decision problems, complexity classes, and reduction concepts are also discussed. This chapter also 
covers theory of NP-complete problems and examples for proving NP-completeness.

Chapter 19 covers the basic concepts and types of both randomized and approximation algorithms. 
Randomized algorithms are illustrated through examples such as hiring problem, primality testing, com-
parison of strings, and randomized quicksort. Approximation algorithms are illustrated through examples 
based on heuristic, greedy, linear, and dynamic programming approaches.

Chapter 20 begins with an introduction to parallel processing and classi cation of parallel sys-
tems. It then discusses the fundamentals of parallel algorithms and parallel random access machine 
(PRAM) model. The concept of parallelism is illustrated through examples related to parallel search-
ing, parallel sorting, and graph and matrix multiplication problems.

 There are two appendices in this book. Appendix A explains the basics of mathematics such as sets, 
series and sequences, relations, functions, matrix algebra, and probability that are necessary for algorithm 
study. Appendix B deals with mathematical logic and proof techniques.

ONLINE RESOURCES

To aid teachers and students, the book is accompanied by online resources that are available at http://
oupinheonline.com/book/sridhar-Design-Analysis-Algorithms/9780198093695. The content for the online 
resources are as follows: 

For Instructors 
 PowerPoint slides
 Solutions manual

For Students 
 Answers to the crossword puzzles
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1.1 INTRODUCTION

Computers are powerful tools of computing. One cannot ignore the impact of 
computers on our modern life. We use computers for personal needs such as 
typing documents, browsing the Internet, sending emails, playing computer 
games, performing numeric calculations, and so on. Industries and govern-
ments use computers much more effectively to perform complicated tasks 
to improve productivity and ef ciency. Applications of computer systems in 
airline reservation, video surveillance, biometric recognition, e-governance, and 
e-commerce are all examples of their usefulness in improving ef ciency and 
productivity. The increasing importance of computers in our lives has prompted 
schools and universities to introduce computer science as an integral part of 
our modern education. Informally, everyone is expected to handle computers to 
accomplish certain basic tasks. This knowledge of using computers to perform 
our day-to-day activities is often called computational thinking. Computational 
thinking is a necessity to survive in this modern world. However, computer 
science professionals are expected to accomplish much more than acquiring 
this basic skill of computer usage. They are required to write speci c computer 
programs to provide computer-automated solutions for problems. Writing a 
program is slightly more complicated than merely learning to use computers, 
as it requires ‘algorithmic thinking’. Algorithmic thinking is an important 
analytical skill that is required for writing effective programs in order to solve 
given problems. Algorithmic thinking is not con ned to computer science only, 
but it spreads through all disciplines of study. Computer science is a domain 
where the skills of algorithmic thinking are taught to the aspiring computer 
professionals for solving computational problems.

1.2 NEED FOR ALGORITHMIC THINKING

Norman E. Gibbs and Allen B. Tucker1 proposed a de nition for computer 
science that captures the core truth of computer science study. According to 

Learning O ec ves

This chapter introduces 
the basics of algorithms. 
All important de nitions 
and concepts related to 
the study of algorithms are 
the focus of this chapter. 
The reader would be 
familiar with the following 
concepts by the end of 
this chapter:
 Basic terminologies of 
algorithm study

 Need for algorithms
 Characteristics of 
algorithms

 Stages of a problem-
solving process

 Need for ef cient 
algorithms

 Classi cation of 
algorithms

C H A P T E R

1Introduc�on	to		

Algorithms

1 Gibbs, Norman E., Allen B. Tucker, ‘A Model Curriculum for a Liberal Arts Degree 
in Computer Science’, Communications of ACM, Vol. 29, Issue 3, 1986.

“Ideas are the beginning point of all fortunes.”
—Napolean Hill
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2 Design and Analysis of Algorithms

them, ‘Computer science is the systematic study of algorithms and data structures, speci cally 
their formal properties, their mechanical and linguistic realizations, and their applications.’ 
Hence, there cannot be any dispute regarding the fact that study of algorithms is the central 
theme of computer science.

The word algorithm is derived from the name of a Persian 
mathematician, Abu Ja’fer Mohammed Ibn Musa al 
Khowarizmi, who lived sometime around 780–850 AD. He 
was from the town of Khowarazm, now in Uzbekistan. He 
was a teacher of mathematics in Baghdad. He wrote a book 
titled Kitab al Jabr w’al Muqabala (Rules of Restoration 
and Reduction) and Algoritmi Numero Indorum where 
he introduced the old Arabic–Indian number systems to 

Europe. He also introduced the simple step-by-step rules 
for addition, subtraction, multiplication, and division in 
his book. The word algebra has also been derived from 
the title of this book. When his book was translated to 
Latin, his name was quoted as Algorismus from which 
the word ‘algorithm’ emerged. Algorithm as a word thus 
became famous for referring to procedures that are used 
by computers for solving problems.

Box 1.1 Origin of the word ‘algorithm’

Let us elaborate this de nition further. The formal and mathematical properties of 
algorithms include the study of algorithm correctness, algorithm design, and algorithm 
analysis for understanding the behaviour of algorithms. Hardware realizations include 
the study of computer hardware, which is necessary to run the algorithms in the form of 
programs. Linguistic realizations include the study of programming languages and their 
design, translators such as interpreters and compilers, and system software tools such as 
linkers and loaders, so that the algorithms can be executed by hardware in the form of 
programs. Applications of algorithms include the study of design and development of 
 ef cient software packages and software tools so that these algorithms can be used to 
solve speci c problems.

Thus, computer scientists consider the study of algorithms as the core theme of computer 
science. The art of designing, implementing, and analysing algorithms is called algorithmics. 
Algorithmics is a general word that comprises all aspects of the study of algorithms. Let us 
now attempt to de ne algorithms formally. An algorithm is a set of unambiguous instructions 
or procedures used for solving a given problem to provide correct and expected outputs for 
all valid and legal input data (refer to Box 1.1).

An algorithm can also be referred by other terminologies such as recipe, prescription, 
process, or computational procedure. Box 1.2 provides a brief history of algorithms.

Algorithms thus serve as prescriptions of how a computer should carry out instructions 
to solve problems. Hence, algorithms can be visualized as strategies for solving a problem. 
One cannot write a program for a given problem without the necessary analytical skills or a 
strategy for solving the problem. Thus, the knowledge of how to solve a problem is called 
algorithmic thinking.

One can compare a program construction with the construction of a house. The blueprint 
of the house incorporating all the planning necessary for the construction of the house can 
be visualized as an algorithm. A computer program is only an algorithm expressed using a 
programming language such as C or C++. In addition to possessing the essential skills of 
using a programming language, the ability to conceive a strategy or apply analytical skills 
are important for solving a problem or constructing a program.
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Introduction to Algorithms  3

1.3 OVERVIEW OF ALGORITHMS

Algorithms are generic and not limited to computers alone (refer to Box 1.2). We perform 
many algorithms in our daily life unknowingly. Consider a few of our daily activities, some 
of which are listed as follows:

1. Searching for a speci c book
2. Arranging books based on titles
3. Using a recipe to cook a new dish
4. Packing items in a suitcase
5. Scheduling daily activities
6. Finding the shortest path to a friend’s house
7. Searching for a document on the Internet
8. Preparing a CD of compressed personal data
9. Sending messages via email or SMS

We perform many tasks without being aware of their inherent algorithms. For example, 
consider the activity of searching a word in a dictionary. How do we search? It can be noted 
that indexing the words in a dictionary reduces the effort of searching signi cantly. We just 
open the book, compare the word with the index given, and accordingly decide on the por-
tions of the books to be searched for nding the meaning of that particular word. This kind 

The history of algorithms dates back to ancient civilizations 
that used numbers. Ancient civilizations such as Egyptian, 
Indian, Greek, and Chinese were known to have used 
algorithms or procedures to carry out tasks like simple 
calculations. This is in contrast to the history of modern 
computers that were designed in the 1940s only. Thus, 
the history of algorithms is much older and more exciting. 
Euclid, who lived in ancient Greece around 400–300 BC, 
is credited with writing the rst algorithm in history for com-
puting the greatest common divisor (GCD). Archimedes 
created an algorithm for the approximation of the number 
pi. Eratosthenes introduced to the world the algorithm for 
nding prime numbers. Averroes (112 –1198) also used 

algorithmic methods for calculations.
A number of in uences led to the formalization of the 

theory of algorithms. Some of the noteworthy developments 
include the introduction of Boolean algebra by George 
Boole (1847) and set theory by Gottlob Frege (1879). Set 
theory has become a foundation of modern mathemat-
ics. The concept of recursion formulated by Kurt Gödel, 
and contributions of Giuseppe Peano (1888), Alfred North 
Whitehead, and Bertrand Russell in mathematical logic 
led to the formalization of algorithm as an independent 
eld of study.

Alan Turing’s Turing machines developed in 193  play 
a very important role in computational complexity theory. 
This Turing machine and Alonzo Church’s lambda calcu-
lus formed the basis for formalization of the complexity 
theory. Thus, the history of algorithms is much richer than 
that of computers.

The history of computing is another interesting story. 
Abacus and other mechanical devices used for computing 
have been utilized at various stages of human history. A real 
attempt was made in the 17th century by Leibniz, a German 
mathematician and philosopher. He invented in nitesimal 
calculus, generating the idea of computers. In 1822, Charles 
Babbage introduced the difference engine, which required 
changing of gears manually to perform calculations. These 
ideas nally led to the invention of computers in the 1940s. 
In 1942, the US government designed a machine called 
ENIAC (electronic numerical integrator and computer). This 
was succeeded by EDVAC (electronic discrete variable 
automatic computer) in 1951. In 1952, IBM introduced 
its mainframe computer. Developments in the hardware 
domain and declining costs have shifted computer usage 
from big research and military environments to homes and 
educational institutions. In 1981, IBM personal computers 
were introduced for home and of ce use.

Box 1.2 Short history of compu ng and algorithms
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4 Design and Analysis of Algorithms

of a plan or an idea is called a strategy, which is more 
formally known as an algorithm.

The environment of a typical algorithm is shown in 
Fig. 1.1. Here, agent, which can be a human or a computer, 
is the performer.

To illustrate further, let us consider the example of tea 
preparation. The hardware used here includes cooking 

utensils a heater, and a person. To make tea, one needs to have the following ingredients—
water, tea powder, and sugar. These ingredients are analogous to the inputs of an algorithm. 
Here, preparing a cup of tea is called a process. The output of this process is, in this case, tea. 
This corresponds to the output of an algorithm. The procedure for preparing tea is as follows:

Fig. 1.1 Typical algorithm

Valid 
input Output

Agent

Algorithm

1. Put tea powder in a cup.
2. Boil the water and pour it into the cup.
3. Filter it.

4. Pour milk.
5. Add sugar if necessary.
6. Pour the tea into a cup.

This kind of a procedure can be called an algorithm. It can be noted that an algorithm 
consists of step-by-step instructions that are required to accomplish a certain task.

Humans often perform such procedures intuitively or even mechanically without spending 
much conscious thought, and hence, they label such actions as habitual activity. Many of our 
day-to-day activities are not very ef cient. However, algorithms that are meant for computers 
represent a different case altogether. Computer procedures should be ef cient as computer 
resources are scarce. Hence, much thought is given for writing computer procedures that 
can solve problems. Problems can be classi ed into two types: computational problems and 
non-computational problems.

Computational problems can be solved by a computer system. A computational problem 
is characterized by two factors: (a) the formalization of all legal inputs and expected outputs 
of a given problem and (b) the characterization of the relationship between problem output 
and input. Thus, an algorithm is expected to give the expected output for all legal inputs. 
If an algorithm yields the correct output for a legal input, then it is called an algorithmic 
solution.

Non-computational problems cannot be solved by a computer system. This classi cation 
shows the fundamental differences between computers and humans in solving problems. 
Computers are more effective than humans in performing calculations and can crunch num-
bers in a fraction of seconds with more precision and ef ciency. However, humans outscore 
computers in recognition. The ability of recognizing an object by humans is much better than 
that by machines. Recognition of an object by computer systems requires lots of programming 
involving images and concepts of image processing. In addition, some tasks are plainly not 
possible to be carried out by computer systems. Can a computer offer its opinion or show 
emotion like humans? To put it simply, problems involving more intellectual complexity are 
much more dif cult to solve by computers as computer systems lack intelligence.

Thus, developing algorithms to make computers more intelligent and make them perform 
tasks like humans becomes much more crucial and challenging. Developing algorithms for 
computers is both an art and a science. Algorithm design is an art that involves a lot of creative 
ideas, novelty, and even adventurous strategies and knowledge. Algorithm design is also a 
science because its construction usually involves the application of some set of principles. The 
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Introduction to Algorithms  5

review and knowledge of these principles can facilitate the development of better algorithms, 
based on sound mathematical and scienti c principles.

1.3.1 Computa onal Pro lems  Instance  and Size
One encounters many types of computational problems in the domain of computer science. 
Some of the problems are as follows:

Structuring problems In structuring problems, the input is restructured based on certain 
conditions or properties. For example, sorting a list in an ascending or a descending order is 
a structuring problem.

Search problems A search problem involves searching for a target in a list of all possibili-
ties. All potential solutions may be generated and represented in the form of a list or graph. 
Based on a property or condition, the best solution for the given problem is searched. Puzzles 
are good examples of search problems where the target or goal is searched in a huge list of 
possible solutions.

Construction problems These problems involve the construction of solutions based on 
the constraints associated with the problem.

Decision problems Decision problems are yes/no type of problems where the algorithm 
output is restricted to answering yes or no. Let us assume that a road network map of a city 
is given. The problem, say, ‘Is there any road connectivity between two cities, say Hyderabad 
and Chennai?’, can be called as a decision problem as the output of this algorithm is restricted 
to either yes or no.

Optimization problems Optimization problems constitute a very important set of problems 
that are often encountered in computer science domain. The decision problem about road con-
nectivity between Chennai and Hyderabad can also be posed as an optimization problem as 
follows: What is the shortest distance between Chennai and Hyderabad? This is an optimiza-
tion problem, as the problem involves nding the shortest path. Thus, optimization problems 
involve a certain objective function that is typically of the following form: maximize (say pro t) 
or minimize (say effort) based on a set of constraints that are associated with the problem.

Once the problem is recognized, the input and output of an algorithm should be identi ed. 
Consider, for example, a problem of nding the factorial of a number. The factorial of a positive 
number N can be written as follows: N! = N × (N  1) × (N  2) × . . . × 1. A valid input can be 
called an instance of a problem. For example, factorial of a negative number is not possible. 
Therefore, all valid positive integers {0, 1, 2, . . .} can serve as inputs and every legal input is 
called an instance. All possible inputs of a problem are often called a domain of the input data. 
The input should be encoded in a suitable form so that computers can process it. The number 
of binary bits used to represent the given input, say N, is called the input size. Input size is 
important, as a larger input size consumes more computer time and space.

The core question still remains to be answered: how to solve a given problem? To illustrate 
problem solving, let us consider a simple problem of counting the number of students in a 
tuition centre who have passed or failed a test, assuming that the pass mark is 50. Details of 
the students such as their registration number, name, and more importantly, marks obtained, 
which are necessary for the given problem, are shown in Table 1.1.

red in coin co
Chennai andnnai and

the shortestthe shortes
as the problhe prob

ertain objectrtain objec
ze (say ee (say e

ro

Univ
er

sit
y

e th

re yes/no typeyes/no typ
no. Let us assuLet us a

ny road conneroad con
ecision problecision pro

Optimizationptimizati
mputempu

Pr
es

s
th

n problemroblem
goal is seaoal is sea

he consthe const



6 Design and Analysis of Algorithms

The class strength of the tuition centre is 6. The pass mark of the course is given as 50. How do 
we manually solve this problem? First, we will read the student marks. Thus, the inputs for this 
problem are a set of student marks. The goal of this problem is to print the pass and fail counts 
of the students, which is also the output of this algorithm. The process of reading a student’s 
mark is done manually. Compare the student mark with the pass mark, that is, 50. If the student 
mark is greater than or equal to 50, then pass count should be added by one. Otherwise, the fail 
count should be added by one. This process is repeated for all the students.

The procedure that is done manually can be given as an algorithm. Therefore, informally, 
the algorithm for this problem can be given as follows:

Step 1: Let counter = 1, number of students = 6
Step 2: While (counter ≤ number of students)
  2.1: Read the marks of the students
  2.2: Compare the marks of the student with 50
  2.3: If student mark is greater than or equal to 50
   Then increment the pass count
   Else increment the fail count
  2.4: Increment the counter
Step 3: Print pass count and fail count
Step 4: Exit

Thus, algorithmic solving can be observed to be much similar to how we solve problems 
manually.

Some of the important characteristics are listed as follows:

Input An algorithm can have zero or more inputs.

Output An algorithm should produce at least one or more outputs.

e niteness An algorithm is characterized by de niteness. Its instructions should be clear and 
unambiguous without any confusion. All operations should be well de ned. For example, opera-
tions involving the division of zero or taking a square root of a negative number are unacceptable.

ni ueness An algorithm should be a well-de ned and ordered procedure that consists of 
a set of instructions in a speci c order. The order of the instructions is important as a change 
in the order of execution leads to a wrong result or uncertainty.

Registration number Student name Course marks

1 Abraham 80

2 Beena 30

3 Chander 83

4 David 23

5 Elizabeth 90

Fauzia 78

Table 1.1 Students’ course marks

Registration number Student name Course marks
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Introduction to Algorithms  7

orrectness The algorithm should be correct.

ecti eness An algorithm should be effective, which implies that it should be traceable 
manually.

Finiteness An algorithm should have a nite number of steps and should terminate after 
executing the nite set of instructions. Therefore, niteness is an important characteristic of 
an algorithm.

Some of the additional characteristics that an algorithm is supposed to possess are the 
following:

i p icit  Ease of implementation is another important characteristic of an algorithm.

enera it  An algorithm should be generic, independent of any programming language 
or operating systems, and able to handle all ranges of inputs; it should not be written for a 
speci c instance.

An algorithm that is de nite and effective is also called a computational procedure. In 
addition, an algorithm should be correct and ef cient, that is, should work correctly for all 
valid inputs and yield correct outputs. An algorithm that executes fast but gives a wrong result 
is useless. Thus, ef ciency of an algorithm is secondary compared to program correctness. 
However, if many correct solutions are available for a given problem, then one has to select 
the best solution (or the optimal solution) based on factors such as speed, memory usage, 
and ease of implementation.

Algorithms can be contrasted with programs. Algorithms, like blueprints that are used 
for constructing a house, help solve a given problem logically. A program is an expres-
sion of that idea, consisting of a set of instructions written in any programming language. 
The development of algorithms can also be contrasted with software development. At the 
industrial level, software development is usually undertaken by a team of programmers 
who develop software, often for third-party customers, on a commercial basis. Software 
engineering is a domain that deals with large-scale software development. Project manage-
ment issues such as team management, extensive planning, cost estimation, and project 
scheduling are the main focus of software engineering. On the other hand, algorithm 
design and analysis as a eld of study take a micro view of program development. Its 
focus is to develop ef cient algorithms for basic tasks that can serve as a building block 
for various applications. Often project management issues of software development are 
not relevant to algorithms.

1.4 NEED FOR ALGORITHM EFFICIENCY

Computer resources are limited. Hence, many problems that require a large amount of  resources 
cannot be solved. One good example is the travelling salesperson problem (TSP). Its brief 
history is given in Box 1.3.

A TSP is illustrated in Fig. 1.2. It can be modelled as a graph. A graph consists of a set of 
nodes and edges that interconnect the nodes. In this case, cities are the nodes and the paths 
that connect the cities are the edges. Edges are undirected in this case. Alternatively, it is 
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8 Design and Analysis of Algorithms

A travelling salesperson problem (TSP) is one of the most 
important optimization problems studied in history. It is 
very popular among computer scientists. It was studied 
and developed in the 19th century by Sir William Rowan 
Hamilton and Thomas Pennington Kirkman. In 1857, 
Hamilton created an Icosian game, a pegboard with 20 

holes called vertices. The objective is to nd a tour starting 
from a city, visiting all other cities only once, and nally 
returning to the city where the tour has started. This is 
called a Hamiltonian cycle. The TSP is to nd a Hamiltonian 
cycle in a graph. The problem was then studied extensively 
by Karl Menger in Vienna and by Harvard later in 1920.

Box 1.3 History of travelling salesperson pro lem

possible to move from a particular city 
to any other city. The complete details 
of graphs are provided in Chapter 5. A 
TSP involves a travelling person who 
starts from a city, visits all other cities 
only once, and returns to the city from 
where he started.

A brute force technique can be used 
for solving this problem. Let us enu-
merate all the possible routes. For a 
TSP involving only one city, there is 
no path. For two cities, there is only 

one path (A–B). For three cities, there are two paths. In Fig. 1.2, these two paths are A–B–C 
and A–C–B, assuming that A is the origin from where the travelling salesperson started. 
For four cities, the paths are {A–D–B–C–A, A–D–C–B–A, A–B–C–D–A, A–B–D–C–A, 
A–C–D–B–A, and A–C–D–B–A}.

Thus, every addition of a city can be noted to increase the path exponentially. Table 1.2 
shows the number of possible routes.

Therefore, it can be observed that, for N cities, the number of routes would be (N  1)!  
for N  2. The availability of an algorithm for a problem does not mean that the problem is 
solvable by a computer. There are many problems that cannot be solved by a computer and 
for many problems algorithms require a huge amount of resources that cannot be provided 
practically. For example, a TSP cannot be solved in reality. Why? Let us assume that there 

are 100 cities. As N = 100, the possible routes are then 
(100  1)! = 99!.

The value of the number 50! is 3041409320171337804
3612608166064768844377641568960512000000000000. 
Therefore, 99! is a very large number, and even if a computer 
takes one second for exploring a route, the algorithm will 
run for years, which is plainly not acceptable. Just imagine 
how much time this algorithm will require, if the TSP is 
tried out for all cities of India or USA. This shows that the 
development of ef cient algorithms is very important as 
computer resources are often limited.

Number of cities Number of routes 

1   0 (as there is no route)

2   1 

3   2

4   

5  24

120

Table 1.2 Complexity of TSP

Number of cities Number of routes 

Fig. 1.2 Travelling salesperson problem (a) One city—no path  
(b) Two cities (c) Three cities (d) Four cities

A A B

(d)

(a) (b)

(c)

A B

C

A B

DC

Oxfo
rd

hs as a
A–C–D–B–C–D–B

ddition of a ion of a 
mber of posser of poss

e, it can beit can b
. The availThe avail
y a comy a co

Univ
er

sit
yf

s, there are twthere are
A is the origA is the o

re {A–D–re {A–
A}

ty
y—no path —no path

itiess

tytity
D

itytytity
Pr

es
shs are pare p

P involves anvolves 
starts from rts from 
only onconly onc
wherwh



Introduction to Algorithms  9

1.5 FUNDAMENTAL STAGES OF PROBLEM SOLVING

Problem solving is both an art and a science. The problem-solving process starts with the 
understanding of a given problem and ends with the programming code of the given problem. 
The stages of problem solving are shown in Fig. 1.3.

The following are the stages of problem solving:

1.5.1 Understanding the Pro lem
The study of an algorithm starts with the computability theory. 
Theoretically, the primary question of computability theory is the 
following: Is the given problem solvable? Therefore, a guideline for 
problem solving is necessary to understand the problem fully. Hence, 
a proper problem statement is required. Any confusion regarding or 
misunderstanding of a problem statement will ultimately lead to a 
wrong result. Often, solving the numerical instances of a given problem 
can give an insight to the problem. Similarly, algorithmic solutions of 
a related problem will provide more knowledge for solving a given 
algorithm.

Generally, computer systems cannot solve a problem if it is not properly 
de ned. Puzzles often fall under this category, which needs supreme level 
of intelligence. These problems illustrate the limitations of computing 
power. Humans are better than computers in solving these problems.

1.5.2 Planning an Algorithm
The second important stage of problem solving is planning. Some 
of the important decisions are detailed in the following subsections.

A computation model or computational model is an abstraction of a 
real-world computer. A model of computation is a theoretical math-
ematical model and does not exist in physical sense. It is thus a virtual 
machine, and all programs can be executed on this virtual machine 
theoretically. What is the need for a computing model? It is meaning-
less to talk about the speed of an algorithm as it varies from machine 
to machine. An algorithm may run faster in machine A compared to in 
machine B. This kind of an analysis is not correct as algorithm analysis 
should be independent of machines. A computing model thus facilitates 
such machine-independent analysis.

First, all the valid operations of the model of computation should be 
speci ed. These valid operations help specify the input, process, and 

1. Understanding the problem
2. Planning an algorithm
3. Designing an algorithm
4. Validating and verifying an algorithm

5. Analysing an algorithm
6. Implementing an algorithm
7. Performing empirical analysis (if necessary)

Fig. 1.3 Stages of  
problem solving

Planning

Algorithm design

Algorithm correctness

Algorithm analysis

Implementation and 

empirical analysis
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10 Design and Analysis of Algorithms

output. In addition, the computing models provide a notion of the necessary steps to compute 
time and space complexity of a given algorithm.

For algorithm study, a computation model such as a random access machine (RAM) or a 
Turing machine is used to perform complexity analysis of algorithms. RAM is discussed in 
Chapter 3 and Turing machines are discussed in Chapter 17. The contribution of Alan Turing 
is vital for the study of computability and computing models (refer to Box 1.4).

O
Data structure concerns the way data and its relationships are stored. Algorithms require data 
for solving a given problem. The nature of data and their organization can have impacts on the 
ef ciency of algorithms. Therefore, algorithms and data structures together often constitute 
an important aspect of problem solving.

Data organization is something we are familiar with in our daily life. Figure 1.4 shows 
an example of data organization called a queue. A gas station with one servicing point 
should have a queue, as shown in the gure, to avoid chaos. A queue (or rst come rst 
serve—FCFS) is an organization where the processing ( lling of gas) is done in one end 
and a vehicle is added at the other end. All vehicles have same priority in this case. Often 
a problem dictates the choice of structures. However, this structure may not be valid in 
cases of, for example, handling medical emergencies, where highest priority should be 
given to urgent cases.

Thus, data organization is a very important issue that in uences the effectiveness of algorithms. 
At some point of problem solving, careful consideration should be given to storing the data 
 effectively. A popular statement in computer science is ‘algorithm + data structure = program’. 
A wrong selection of a data structure often proves fatal in the problem-solving process.

Alan Turing (1912–1954) is well known for his contribution 
towards computing. He is considered by many as the ‘father 
of modern computing’. His contribution towards computability 
theory and arti cial intelligence is monumental. He designed 

a theoretical machine, called the Turing machine that is used 
widely in computability theory and complexity analysis. Alan 
Turing is also credited with the designing of the ‘Turing Test’ 
as a measure of testing the intelligence of a machine.

Box 1.4 Alan Turing

Fig. 1.4 Example of a queue

Queue of trucks

Fuel station
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Introduction to Algorithms  11

1.5.3 Designing an Algorithm
Algorithm design is the next stage of problem solving. The following are the two primary 
issues of this stage:

1. How to design an algorithm? 2. How to express an algorithm?

Algorithm design is a way of developing algorithmic solutions using an appropriate design 
strategy. Design strategies differ from problem to problem. Just imagine searching a name in a 
telephone directory. If anyone starts searching from page 1, it is termed as a brute force strategy. 
Since a telephone directory is indexed, it makes sense to open the book and use the index at the 
top to locate the name. This is a better strategy. One may come across many design paradigms 
in the algorithm study. Some of the important design paradigms are divide and conquer, and 
dynamic programming. Divide and conquer, for example, divides the problem into sub-problems 
and combines the results of the sub-problems to get the nal solution of the given problem. 
Dynamic programming visualizes the problem as a sequence of decisions. Then it combines 
the optimal solutions of the sub-problems to get an optimal global solution. Many design vari-
ants such as greedy approach, backtracking, and branch and bound techniques have been dealt 
with in this book. The role of algorithm design is important in developing ef cient algorithms. 
Thus, one important skill required for problem solving is the selection and application of suit-
able design paradigms. A skilled algorithm designer is called an ‘algorist’.

After the algorithm is designed, it should be communicated to a programmer so that the 
 algorithm can be coded as a program. This stage is called algorithm speci cation. Only three 
possibilities exist for communicating the idea of algorithms. One is to use natural languages 
such as English to communicate the algorithm. This is preferable. However, the natural lan-
guage has some disadvantages such as ambiguity and lack of precision. Hence, an algorithm 
is often written and communicated through pseudocode. Pseudocode is a mix of the natural 
language and mathematics. Another way is to use a programming language. The problem with 
programming language notation is that readers often get bogged down by the programming 
code details. Therefore, the pseudocode approach is preferable. Even though there are no 
speci c rules for algorithm writing, certain guidelines can be followed to make algorithms 
more understandable. Some of these guidelines are presented in Chapter 2.

1.5.4 Valida ng and Verifying an Algorithm
Algorithm validation and veri cation are the methods of checking algorithm correctness. 
An algorithm is expected to give correct outputs for all valid inputs. Sometimes, algorithms 
may not give correct outputs due to logical errors. Hence, validation of algorithms becomes 
a necessity. Algorithm validation is a process of checking whether the given algorithm gives 
correct outputs for valid inputs or not. This is done by comparing the output of the algorithm 
with the expected output.

Once validation is over, algorithm veri cation or algorithm proving begins. Algorithm veri-
cation is a process of providing a mathematical proof that the given algorithm works correctly 

for all instances of data. One way of doing it is by creating a set of assertions that are expressed 
using mathematical logic. Assertions are statements that indicate the conditions of algorithm 
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12 Design and Analysis of Algorithms

variables at various points of the algorithm. Preconditions indicate the conditions or variables 
before the execution of an algorithm, and postconditions indicate the status of the variables at 
the end of the execution of an algorithm. Remember, still the algorithm has not been translated 
or converted into a code of any programming language. Hence, all these executions are rst 
carried out theoretically on a paper and proof for the algorithm is determined. A proof of an 
algorithm is said to exist if the preconditions can be shown to imply the postconditions logically. 
A complete proof is to write each statement clearly for proving that the algorithm is right. In 
addition to assertions, mathematical proof techniques such as mathematical induction can be 
used for proving that algorithms do work correctly. Mathematical induction is one such useful 
proof technique that is often used to prove that the algorithm works for all possible instances. 
Mathematical proofs are rigorous and always better than algorithm validation. Program cor-
rectness itself is a major study and extensive research is done in this eld.

1.5.5 Analysing an Algorithm
In algorithm study, complexity analysis is important as we are mainly interested in nding optimal 
algorithms that use fewer computer resources. Complexity theory is a eld of algorithms that 
deals with the analysis of a solution in terms of computational resources and their optimization. 
Humans are more complex than, say, amoeba. So what does the word ‘complexity’ refer to here? 
Complexity is the degree of dif culty associated with a problem and the algorithm. The complex-
ity of an algorithm can be observed to be related to its input size. For example, an algorithm for 
sorting an array of 10 numbers is easy, but the same algorithm becomes dif cult for 1 million 
inputs. This shows the connection between complexity and the size of the input.

Thus, complexity analysis is useful for the following two purposes:

1. To decide the ef ciency of the given algorithms
2. To compare algorithms for deciding the effective solutions for a given problem

Consider the following scenario: for a problem , two algorithms A and B exist. Find the 
optimal algorithm. To solve this, there must be some measures based on which comparisons can 
be made. In general, two types of measures are available for comparing algorithms—subjective 
and objective. Subjective measures are factors such as ease of implementation, algorithm style, 
and readability of the algorithm. However, the problem with these subjective measures is that 
these factors cannot be quanti ed. In addition, a measure such as the ease of implementation, 
style of the algorithm, or understandability of algorithms is a subjective measure that varies 
from person to person. Therefore, in algorithm study, comparisons are limited to some objective 
measures. Objective measures, unlike subjective measures, can be quanti ed. The advantages 
of objective measures are that they are measurable and quanti able, and can be used for predic-
tions. Often time and space are used as objective measures for analysing algorithms.

Time complexity means the time taken by an algorithm to execute for different increasing 
inputs (i.e., differently-scaled inputs). In algorithm study, two time factors are considered—
execution time and run time. Execution time (or compile time) does not depend on problem 
instances. Additionally, a program may be compiled many times. Therefore, time in an algo-
rithm context always refers to the run time as only this is characterized by instances. Another 
complexity is space complexity, which is the measurement of memory space requirements 
of an algorithm. Technically, an algorithm is ef cient if lesser resources are used. Chapter 3 
focuses on the analysis of algorithms.
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Introduction to Algorithms  13

In algorithm study, time complexity is not measured in absolute terms. For example, one 
cannot say the algorithm takes 3.67 seconds. It is wrong as time complexity is always de-
noted as a complexity function t(n) or T(N), where t(n) is a function of input size ‘n’ and is 
not an absolute value. The variables n and N are used interchangeably and always reserved 
to represent the input size of the algorithm. Recollect that input size is the number of binary 
bits used to represent the input instance. The logic here is that for larger inputs the algorithm 
would take more time. For example, sorting a list of 10 elements is easy, but sorting a list 
of 1 billion elements is dif cult. Generally, algorithms whose time complexity function is 
a polynomial, for example, say N or log N, can be solved easily, and but problems whose 
algorithms have exponential functions, say 2N, are dif cult to solve.

 Example 1.1 Assume that there are two algorithms A and B for a given problem P. The 
time complexity functions of algorithms A and B are, respectively, 3n and 2n. Which algorithm 
should be selected assuming that all other conditions remain the same for both algorithms?

o ution Assuming that all conditions remain the same for both algorithms, the best 
algorithm takes less time when the input is changed to a larger value. Results obtained 
employing different values of n are shown in Table 1.3.

Example 1.1

Input size (n) Algorithm A T(n) = 3n Algorithm B T(n) = 2n

  1   3    2

  5  15   32

 10  30 1024

100 300    2100

Table 1.3 Time complexities of algorithms A and B

Input size (n) Algorithm 3n Algorithm B T(TT n) = 2n

It can be observed that algorithm A performs better as n is increased; time complexity 
increases linearly and gives lesser values for larger values of n. The second algorithm instead 
grows exponentially, and 2100 is a very large number.

Therefore, algorithm A is better than algorithm B.

 Example 1.2 Let us assume that, for a problem P, two algorithms are possible—algorithm 
A and algorithm B. Let us also assume that the time complexities of algorithms A and B are, 
respectively, 3n and 10n2 instructions. In other words, the instructions or steps of algorithms A 
and B are 3n and 10n2 respectively. Here, n is the input size of the problem. Let the input size 
n be 105 instructions. If the computer system executes 109 instructions per second, how much 
time do algorithms A and B take?

o ution Here, n = 105, and the computer can execute 109 instructions per second.

Therefore, algorithm A (time complexity 3n) would take 3 × 105

109  = 3
104 = 0.0003 seconds.

Algorithm B (time complexity 10n2) would take 10 × (105)2

109  = 10 × 1010

109   = 100 seconds.

Example 1.2
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14 Design and Analysis of Algorithms

It can be observed that algorithm A would take very less time compared to algorithm B. 
Hence, it is natural that algorithm A is the preferred one.

One may wonder whether this has got anything to do ef ciency. Imagine that we are now 
executing algorithm A on a slower machine—a machine that executes only 105instructions. 
What would be the scenario in this case?

Algorithm A would take 3 × 105

105  = 3 seconds.

We can see that algorithm A is still better compared to algorithm B that takes 10 × (105)2

105  =  
106 seconds. Therefore, the important point to be noted here is that speed of the machine 
does not affect selection of algorithm A as a better algorithm. Hence, while computer speed 
is crucial, the role of a better designed algorithm is still signi cant.

1.5.6 Implemen ng an Algorithm and Performing Empirical Analysis
After the algorithm is designed, it is expressed as a program and a suitable programming language 
is chosen to implement the algorithm as a code. After the program is written, it must be tested. 
Even if the algorithm is correct, sometimes the program may not give expected results. This 
may be due to syntax errors in coding the algorithm in a programming language or hardware 
fault. The error due to syntax problems of a language is called a logical error. The process of 
removing logical errors is called debugging. If the program leads to an error even in the absence 
of syntax errors, then one has to go back to the design stage to correct the algorithmic errors.

Now, complexity analysis can be performed for the developed program. The analysis 
that is carried out after the program is developed is called empirical analysis (or a priori 
analysis or theoretical analysis). This analysis is popular for larger programs; a new area, 
called experimental algorithmics, where analysis is performed for larger programs using a 
dataset, is emerging. A dataset is a huge collection of valid input data of an algorithm; the 
standard dataset that is often used for testing of algorithms is called a benchmark dataset. 
Interpretation of the results of a program on a benchmark dataset provides vital statistical 
information about the behaviour of the algorithm. This kind of analysis is called empirical 
analysis (also called a posteriori analysis). In addition, the term pro ling is often used to 
denote the process of running a program on a dataset and measuring the time/space require-
ment of the program empirically.

1.5.7 Post or Postmortem  Analysis
A problem-solving process ends with postmortem analysis. Any analysis should end with a valu-
able insight. The following are the questions that are often raised in this problem-solving process:

1. Is the problem solvable?
2. Are there any limits for this algorithm? Is there any theoretical limit for the ef ciency of 

this problem?
3. Is the algorithm ef cient, and are there any other algorithms that are faster than the current 

algorithm?

Answers to these questions give a lot of insight into the algorithms that are necessary for 
re ning the design of algorithms to make them more ef cient. The best possible or optimal 
solution that is theoretically possible for a given problem speci es a lower bound of a given 
problem. The worst-case estimate of resources required by the algorithm is called an upper 
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bound. Theoretically, the best solution of a problem should be closer to its lower bound. The 
difference between the lower and upper bounds should be minimal for a better solution. The 
difference between the upper and the lower bounds is called an algorithmic gap. Technically, 
this should be zero. However, in practice, there may be vast difference between an upper and 
a lower bound. A problem-solving process tries to reduce this difference by focusing on better 
planning, design, and implementation on a continuous basis.

1.6 CLASSIFICATION OF ALGORITHMS

As algorithms are important for us, let us classify them for further elaboration. No single 
criterion exists for classifying algorithms. Figure 1.5 shows some of the criteria used for 
classi cation of algorithms.

Fig. 1.5 Classi cation of algorithms

Algorithms

Classi cation 
based on 

implementation

Classi cation 
based on  

design

Classi cation 
based on area of 

specialization

Classi cation 
based on 
tractability

1.6.1 Based on Implementa on
Based on implementation, one can classify the algorithms as follows

Problem reduction is a scienti c principle for problem solving. Take a problem, reduce it, 
and repeat the reduction process till the problem is reduced to a level where it can be solved 
directly. Using recursion, the problem is reduced to another problem with a decrease in input 
instance. The transformed problem is the same as the original one but with a different input, 
which is less than that of the original problem. The problem reduction process is continued 
till the given problem is reduced to a smaller problem that can be solved directly. Then the 
results of the sub-problems are combined to get the result of the given problem. This strategy 
of problem solving is called recursion.

Recursive algorithms use recursive functions for creating repetitions required for solving 
a given problem.

A good example of recursion is computing the factorial of a number n. Factorial of a number 
can be computed using the recursive function as follows:

n! = 0 if  n = 0
n × (n  1)! for n  1

Thus, a recursive function has a base case and an inductive case. A base case is the simplest 
problem that can be solved directly. In this factorial example, the base case is nding 0!, as 0! 
can be solved directly. An inductive case is a recursive de nition of the problem that captures 
the essence of a problem reduction process. It can be observed from Fig. 1.6, which shows the 
computation of 4!, that recursion works by the principle of work postponement or delaying the 
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work. For a given factorial program, the facto-
rial function calls itself by reducing its input by 
1 till the program reaches 0! This is the base 
case and the algorithm stops here; results of the 
sub-problems are collected for computing the 

nal answer of the given problem.
The correctness of recursive algorithms is 

due to its close relationship with the concept 
of mathematical induction. In other words, re-
cursion is a mirror of mathematical induction.

Non-recursive (or iterative) algorithms, on 
the other hand, are deductive in nature. Non-
recursive algorithms do not use the recursion 

concept but, instead, rely on looping constructs, such as for or while statement, to create repetition 
of tasks. Non-recursive (or iterative) algorithms and their analyses are discussed in Chapter 2, 
and recursive algorithms and their analyses in Chapter 3.

An algorithm that is designed for a single processor is called a sequential algorithm.
A parallel algorithm is designed for systems that use a set of processors. The concept of 

parallel processing and distributed processing are interrelated. Parallel systems have mul-
tiple processors that are located closely. Distributed systems, on the contrary, have multiple 
processors that are located at different places separated by a vast distance geographically. 
Hence, distributed systems are called loosely coupled systems, while parallel systems are 
called tightly coupled systems. Distributed algorithms are implemented in a distributed system 
environment. Parallel algorithms are discussed in Chapter 20.

An exact algorithm nds the exact solutions for a given problem. Some problems are so 
complex that nding their exact solutions is dif cult. Approximation algorithms (discussed 
in Chapter 19 of this book) nd equivalent or approximate solutions for a given problem.

Deterministic algorithms always provide xed predictable results for a given input. In con-
trast, non-deterministic algorithms or randomized algorithms take a different approach. For 
deterministic algorithms, the output should always be true. On the other hand, randomized 
algorithms relax this condition. It is argued that outputs based on random decisions may not 
often result in correct answers or the algorithm may not terminate at all. Thus, the accuracy 
of an output is associated with a probability. In daily life, we often use random decisions, 
for example, in games such as dice. Industries conduct random quality checks on products. 
Randomized samples are used to predict poll results and so on. One can be very sceptical 
about randomized algorithms. However, randomized algorithms have been proved to be very 
effective. Randomized algorithms are discussed in Chapter 19.

1.6.2 Based on Design
Based on design techniques, algorithms can be classi ed into various categories. As discussed 
earlier, every design technique uses a strategy for solving a problem. Algorithms can be 

Fig. 1.6 Computation of 4! using recursion
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classi ed based on design as brute force, divide and conquer, dynamic programming, greedy 
approach, backtracking, and branch and bound algorithms. This textbook is organized based 
on this classi cation of algorithms only.

1.6.3 Based on Area of Specializa on
Algorithms can be classi ed based on the area of specialization. General algorithms such as 
searching and sorting, and order statistics such as nding mean, median, rank, and so on are 
useful for all elds of specialization. These algorithms can be considered as building blocks 
of any area of specialization. Other than these basic algorithms, some algorithms are special-
ized for a particular domain. String algorithms, graph algorithms, combinatorial algorithms, 
and geometric problems are some examples of specialized algorithms that are discussed in 
this book. Let us discuss some of these algorithms now.

Sorting algorithm is a general algorithm that is useful in all areas of specialization. Sorting 
problem is a structural problem. It involves structuring or rearranging the sequence in a spe-
ci c order. The importance of this problem arises from the fact that all modern applications 
require sorting. For example, an organization may require sorting of employee records based 
on employee identi cation number (called primary key). A library system may want books to 
be ordered based on titles or ISBN numbers. Sorting problems for small instances are relatively 
easy. When sorting is required for a larger number, say a billion elements, designing sorting 
algorithms becomes more challenging.

Let us discuss some of these domain-speci c algorithms now:
String algorithms String algorithms are used frequently in document editing, web searches, 
and pattern matching.

A sequence of characters is called a string. The sequence can be text, bits, numbers, or 
gene sequences (A, C, G, or T). One problem that is of considerable interest is string match-
ing, which takes a pattern, searches the text string, and reports whether a pattern is present 
or not. String algorithms, which are discussed in Chapter 16, constitute a very important 

eld of study.

Graph algorithms A graph is used for modelling complex systems by representing the rela-
tionships among the subsystems. A graph represents a set of nodes and edge. The nodes are also 
called vertices. The nodes are connected by edges, which are also known as arcs. Consider the 
graph shown in Fig. 1.7. Here, the nodes are given as {A, B, C, D, E} and the edges as {(A,B), 
(A,C), (A,D), (B,A), (B,E), (B,C), (C,A), (C,B), (C,D), (C,E), (D,A), (D,C), (D,E), (E,B), (E,C), 

and (E,D)}.

Many interesting problems can be formulated using this graph structure. The 
following are some of the interesting graph algorithms:

ra e ing sa esperson pro e  As stated earlier, a salesperson starts from a 
node, visits all other nodes only once, and gets back to the starting node. This 
problem is reduced to a Hamiltonian cycle if the graph is undirected. In the 
case of a weighted graph (where edges carry some weights), the TSP is about 

nding a tour of minimum cost.Fig. 1.7 Sample graph
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Chinese postman problem This problem is the same as a TSP, but instead of vertices, an 
edge should be visited only once. There is no restriction on vertices in this problem.
Graph colouring problem This problem is about how to colour all the vertices distinctly using 
only a small number of colours such that no two neighbouring vertices share the same colour.
Combinatorial algorithms The focus of combinatorial algorithms is to nd a combinatorial 
object inherent in the problem such as permutations, combinations, or a subset that satis es 
some constraints and objective functions. These problems are dif cult to solve, and many 
problems do not have algorithmic solutions. TSPs and graph colouring problems are examples 
of combinatorial problems.
Geometric algorithms Geometric algorithms deal with geometrical objects such as points, 
lines, and polygons. The following are some of the algorithms discussed in this textbook:
Closest pair problem This problem deals with nding the distance between points in a 2D 
space and nding a pair of points that are closest to each other.
Convex hull problem This problem deals with nding the smallest convex polygon that 
includes all points in a 2D space.

1.6.4 Based on Tractability
Tractability means solvability of a given problem within a reasonable amount of time and 
space. An intractable problem is dif cult to solve within the reasonable amount of computer 
resources. Based on tractability, the following  categories are possible:
Easily solvable problems These problems have polynomial time complexity or their upper 
bounds are characterized by a polynomial. These problems are solvable. For example, sorting 
is an example of solvable or polynomial problems.
Unsolvable problems Problems such as halting problems cannot be solved at all. These 
are called unsolvable or non-computable problems. Knowledge about the non-computability 
of these problems helps in project management.
Intractable problems These problems are of two categories. One category comprises a 
set of problems that have algorithmic solutions but require more computer resources. Hence, 
these solutions are practically non-implementable. In addition, these have been proved to be 
computationally hard. The other category consists of a set of problems that have been proved 
to be computationally hard. For example, a TSP is a proven computationally hard problem; 
it had already been discussed that time complexity of the algorithm increases exponentially 
with an increase in the number of cities.
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Thus, algorithm study can be concluded as the central theme of computer science. An as-
piring computer professional should be a better problem solver. The problem-solving process 
starts with the understanding of a given problem and ends with nding an ef cient program-
ming code for the given problem. Problem solving poses many challenges as it is a creative 
process. Chapter 2 introduces the basics of a problem-solving process and also introduces 
basic guidelines for writing algorithms.

 SUMMARY 

 An algorithm is a step-by-step procedure for solving a 
given problem.

 A computational problem is characterized by two 
 factors—speci cation of valid input and output param-
eters of the algorithm, and speci cation of the relation-
ship between inputs and outputs. 

 An algorithm that yields the correct output for a legal 
input is called an algorithmic solution.

 The art of designing, analysing, and implementing 
 algorithms is called algorithmics.

 Algorithms can be contrasted with programs. A program 
is an expression of algorithm in a programming language.

 A valid input is called an instance. The number of binary 
bits necessary to encode inputs of an algorithm is called 
the input size.

 An algorithm should have characteristics such as a 
well-de ned order, inputs, outputs, niteness, de nite-
ness, ef ciency, and generality.

 Problem solving starts with the understanding of a 
problem statement without any confusion.

 A computation or computational model is an abstraction 
of a real-world computer.

 Algorithm design is a way of developing algorithmic 
solutions using a suitable course of action called a 
design strategy. Algorithm speci cation is about com-
municating the design strategy to a programmer often 
in the form of a pseudocode.

 Algorithmic validation means checking whether the 
algorithm gives a correct result or not. 

 Algorithm veri cation is a process of providing a math-
ematical proof that the given algorithm works correctly 
for all instances of data.

 A proof of an algorithm is said to exist if the precondi-
tions can be shown to imply postconditions logically.

 An estimation of the time and space complexities of 
an algorithm for varying input sizes is called algorithm 
analysis. 

 Time complexity refers to the measurement of run time 
of an algorithm in terms of its input size, and space 
complexity is the measurement of space required for 
a given algorithm.

 A dataset is a huge collection of valid input data 
of an algorithm. The standard dataset that is often 
used for testing of algorithms is called a benchmark 
dataset.

 The theoretically best possible or optimal solution for 
a given problem speci es a lower bound of a given 
problem. The worst-case estimate of resources that can 
be required by an algorithm is called an upper bound. 
The difference between the upper and the lower bound 
is called an algorithmic gap.

 Problem reduction is a scienti c principle for problem 
solving. Take a problem, reduce it, and repeat the re-
duction process till the problem is reduced to a level 
where it can be solved directly.

 Algorithms can be categorized based on their imple-
mentation methods, design techniques, eld of study, 
and tractability.

 GLOSSARY 

Agent A performer of an algorithm
Algorist A person who is skilled in algorithm development
Algorithm A step-by-step procedure for solving a given 

problem
Algorithm gap The difference between lower and upper 

bounds
Formalization of an algorithm in 

a suitable form that can be conveyed to a programmer

The process of providing a mathemati-
cal proof that the algorithm works correctly for all valid inputs

Algorithm validation The process of checking the correct-
ness of an algorithm, this is done by giving valid inputs to 
it and checking its results with expected values

Approximation algorithms Algorithms that provide ap-
proximate solutions for problems whose exact solutions 
are dif cult to obtain
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Computability theory         
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Computational problem        
 

Deterministic algorithm      
     

Exact algorithm         
     

Experimental algorithmics        
        

Intractable problems       
     

Lower bound        
Non-deterministic algorithm     -

        
         

    

Non-recursive algorithm (iterative algorithm)    
        

       
Parallel algorithm       
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Recursive algorithm       
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Space complexity      
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Answers to the Crossword are available as online resources

 CROSSWORD 

1

2

3

4 5

7

8

9 10

11

12

13

Across
 1. Algorithms that are solved within reasonable amount 

of computable resources
 4. Algorithms that use recursive functions
 . Who coined the word algorithm analysis
 7. An abstraction of a real world problem
 8. Statistical process of measuring resources on a larger 

dataset
 10. Process of checking algorithms
 11. Theory of algorithms
 12. Analytical skills
 13. Attributed as Father of Modern Computing by many

Down
1. Measurement of time
2. Study of analysis of algorithms
3. A step-by-step procedure
5. A person skilled in algorithms
9. Process of removing syntax errors
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