
Assistant Professor
Institute of Engineering and Technology

DAVV University, Indore

Formerly Professor
Indian Institute of Technology, Delhi

© Oxford University Press. All rights reserved.

Oxfo
rd

 U
niversi

ty
 Pre

ss

Oxford University Press is a department of the University of Oxford.
It furthers the University’s objective of excellence in research, scholarship,

and education by publishing worldwide. Oxford is a registered trade mark of
Oxford University Press in the UK and in certain other countries.

Published in India by
Oxford University Press

YMCA Library Building, 1 Jai Singh Road, New Delhi 110001, India

© Oxford University Press 2017

The moral rights of the author/s have been asserted.

First published in 2017

All rights reserved. No part of this publication may be reproduced, stored in
a retrieval system, or transmitted, in any form or by any means, without the

prior permission in writing of Oxford University Press, or as expressly permitted
by law, by licence, or under terms agreed with the appropriate reprographics

rights organization. Enquiries concerning reproduction outside the scope of the
above should be sent to the Rights Department, Oxford University Press, at the

address above.

You must not circulate this work in any other form
and you must impose this same condition on any acquirer.

ISBN-13: 978-0-19-945964-3
ISBN-10: 0-19-945964-9

Typeset in Times New Roman
by Cameo Corporate Services Limited, Chennai

Printed in India by Magic International (P) Ltd, Greater Noida

Cover image: Damaratskaya Alena / Shutterstock

Third-party website addresses mentioned in this book are provided
by Oxford University Press in good faith and for information only.

Oxford University Press disclaims any responsibility for the material contained therein.

© Oxford University Press. All rights reserved.

Oxfo
rd

 U
niversi

ty
 Pre

ss

Preface
The development of computer systems and programming languages now span more than half a century.
During this period technology has developed tremendously both in hardware as well as software. Now even
school children can afford individual laptops or desktops and use it for studies and for browsing the Internet.
Computer languages have developed from unstructured languages to structured procedural languages such as
C and from procedural languages to object-oriented computer languages such as C++ and Java, and from sin-
gle threaded languages to the ones that support multi-threaded programming so that different parts of a large
program can run concurrently on multiple processors. The language Java supports multi-thread programming
and its compiled programs are independent of native operating system. Java is in tune with hardware devel-
opment in which multiple processor CPUs are the order of the day.

Java is an important programming language in software development space right now. It has undergone
many changes since its inception and that has led to its use in wide range of areas. From a simple web page
to big scientifi c applications, from cell phones to supercomputers, Java is everywhere!

In view of the developments described above, it is not surprising that undergraduate courses at many uni-
versities include Java along with C and C++, and some are switching from C++ to Java. The need has long
been felt for a book which makes the learning of Java easy and self-reliant.

About the Book
The present book is primarily written for beginners and intermediate level readers, at the same time the topics
are dealt with appropriate complexity often needed by professionals. The book is ideal for self-learning of
Java and also useful for postgraduate students.

The language of the book is simple so that core ideas are easily understood and almost every topic is
followed by illustrative programs so that a reader can easily grasp the programming technique. Besides, the
topics on GUIs for which Java is so popular are dealt in depth so that the reader after learning from the book
can easily take up professional assignments.

The book has following salient features:

• Covers Java SE8, which is the latest version of Java language.
• Provides line-by-line explanation of programs in every chapter to enable the students understand the

logic used for writing an effi cient program.
• Key notes and call outs are provided at appropriate places to highlight the important points. In addition

to these, common programming errors are also provided at the end of each chapter.
• Covers cartoon fi gures to help the readers understand the concepts in a better way.
• Numerous programming examples and application programs are provided to help readers understand

the implementation of concepts learnt.
• Covers several advanced topics such as Java Beans, Java Servlet, and JDBC, which are usually not found

in other books.
• Provides enhanced coverage of Swing components such as JMenu, JScrollbar, JSlider, JScrollpane,

Lambda expression for ActionListner, JCheckbox, JTooltip, etc.
• Includes a variety of end-chapter exercises for practice which have subjective as well as objective

questions.
• Appendices cover interview questions, history on Java versions, and making webpages.

© Oxford University Press. All rights reserved.

Oxfo
rd

 U
niversi

ty
 Pre

ss

Prefaceiv

Content and Organization of the Book
The book comprises 27 chapters and two appendices. Their details are presented below.

Chapter 1 introduces the concept of classes and objects and object oriented programming (OOP). It also
gives an overview of structure of Java language, and ends with description of the points of similarities and
differences between Java and C++.

Chapter 2 explains the essential structure of an application Java program with the help of simple programs.
It explains in detail how to write, compile, and run the program using ‘Free Java’ compiler. The arithmetic
operators are also introduced and illustrative computational programs are presented and explained.

Chapter 3 describes in detail the primitive data types in Java and the range of values for each type of variable.
It explains declaration of variables, the type casting and scope of variables. It also elaborates on the various
methods encapsulated in Math class and illustrates use of these methods through several simple programs. It
also describes in detail all the operators in Java language as well as their attributes.

Chapter 4 deals with the different control statements which provide the choice to branch off such as if
(expression), if–else expressions, and switch statement. It also takes up the looping expressions such as
while, do-while, and for loops. The other jump conditions such as break, break with label, continue, and
continue with label are also dealt in detail with examples.

Chapter 5 introduces the formal defi nitions of class and objects and the attributes of various classes are dis-
cussed in great detail.

Chapter 6 starts with the defi nition of methods in a class and their applications. The chapter also covers the
topics such as Lambda functions and their applications, assigning method references, predicates, and method
chains.

Chapter 7 deals with topics on single-dimensional and multi-dimensional arrays. It discusses in detail the
operations involving two-dimensional arrays and three-dimensional arrays. The solution of linear algebraic
equations is explained using illustrative programs.

Chapter 8 covers in detail the process of inheritance of classes and implementation of interfaces. The differ-
ent types of inheritances are discussed. The problem of access control, use of keyword super, method overrid-
ing, and dynamic method dispatch are also explained. For all these topics, illustrative programs are provided.

Chapter 9 presents the defi nition and characteristics of interfaces. Various types and methods of interfaces are
explained with the help of illustrative programs.

Chapter 10 discusses the packages in Java and important classes in java.lang package. It also includes
auto-boxing and auto-unboxing, important classes of java.util, details of scanner class, and newly created
java.time package for date and time.

Chapter 11 deals with how exceptions arise and how to handle them. It explains how a programmer can create
own exception class and also deals with nested try and catch blocks.

Chapter 12 describes the string class and its methods and objects. The class StringBuffer is discussed along
with its constructors and methods. The methods of StringBuilder class are also explained and illustrated by
programs.

Chapter 13 introduces the concept of threads and their benefi ts, and class and methods of creating threads.
The deadlock situations are analyzed and different states of threads are discussed with examples.

Chapter 14 deals with generics and types. Generic class with one type and multi-type parameters along with
generic method overloading and generic interface are discussed in the chapter.

© Oxford University Press. All rights reserved.

Oxfo
rd

 U
niversi

ty
 Pre

ss

Preface v

Chapter 15 discusses the basic concepts about an image in Java and the various mechanisms of manipula-
tions of images supported in Java. It explains the various image fi le formats and the process of loading and
displaying an image in Java.

Chapter 16 deals with the concept of collections and its types and properties along with numerous program-
ming examples.

Chapter 17 deals with input and output streams. The fi le class and various other classes and their subclasses
related to fi le handling are explained using programs.

Chapter 18 deals with applet programming including its classes and methods. The life cycle of an applet and
HTML tags and how to create a web page are explained. The process of animation is explained with support-
ing programming examples.

Chapter 19 explains the generation of events and how they are handled by using delegation event model. It
also discusses the hierarchy of event handling classes, event types, sources of events and event listener inter-
faces and classes. The important event classes are covered in detail.

Chapter 20 discusses the creation of AWT windows and adding graphical components to it. Different classes,
methods, and layouts are explained with suitable examples.

Chapter 21 deals with drawing different shapes in an AWT window. The methods of drawing of strings,
straight lines, rectangles, polygons, ellipses, and arcs are explained with the help of illustrative programs.

Chapter 22 discusses the swing packages and hierarchy of swing classes are presented. The different win-
dow panes in swing windows in applet as well as in JFrame objects are explained. The description of swing
components, methods of adding components, and different border classes are also discussed and illustrative
programs are given.

Chapter 23 explains why a single thread is used in swing GUI and various classes and components are
discussed and several application programs are given. Programming with multiple panels is illustrated for
generating complex window patterns.

Chapter 24 describes the internet address systems IPv4 and IPv6. The commonly used classes such as URL,
URLConnection, HttpURLConnection, Sockets, ServerSocket, and classes in UDP are aptly discussed. A
number of programs are given to demonstrate the implementation of the topics discussed in the chapter.

Chapter 25 covers the fundamentals of Java beans. The basic processes involved in bean building are also
explained through live projects. The process of building various types of beans has been explained using
program illustrations.

Chapter 26 explains the basic concepts related to server-side programming. The basics of servlet architecture,
servlet API, and the step-by-step procedure for writing servlet programs are also covered.

Chapter 27 introduces the concepts relating to Java database connectivity. It includes the basics of JDBC API
and procedure for making connections of Java application with database system. JDBC transaction manage-
ment and batch processing are also explained using illustrative programs.

Appendix A lists important additions in different versions of Java and also includes the latest enhancements
in Java SE8. Appendix B introduces the concept and some techniques in HTML for preparing webpages.
Interview questions are also provided at the end of the book.

© Oxford University Press. All rights reserved.

Oxfo
rd

 U
niversi

ty
 Pre

ss

Prefacevi

Online Resources
The companion website of the book offers the following online resources for instructors and students:

For Faculty

• PowerPoint Slides • Lab exercises • A chapter on remote method invocation
(RMI)

For Students

• Additional projects • Debugging exercises with answers
• Quizzes • Model question papers with answers
• List of packages in Java • Unicode system

Acknowledgements
We are grateful to the Director of IIT Delhi and the Director of Institute of Engineering and Technology (IET),
Indore for providing us facilities while writing this book. We would also like to thank the Head of Mechanical
Engineering Department, IIT Delhi and the Head of Department of Electronics and Communications, IET,
Indore for providing departmental facilities, advice, encouragement, and inspiration.

We are thankful to Prof. G. Singh of Maryland University for always being a source of inspiration and
encouragement, and Prof. P.V.M. Rao, Department of Mechanical Engineering, IIT Delhi, for his time,
advice, and encouragement. We are indebted to our colleagues at Institute of Engineering and Technology,
Indore for providing their support and motivation. We thank Dr Vaibhav Neema for providing valuable ideas
and suggestions. The books, publications, and video lectures of various professors on the subject also inspried
us to write this book. The ideas given by Nikita Seth cannot be overlooked.

We express our gratitude to the following reviewers for giving their invaluable feedback and suggestions.
Many of these suggestions have been incorporated that has greatly enhanced the content.

• Prof. Mahesh Raghunath Shirole, VJTI, Mumbai
• Prof. Sachin Gupta, Dronacharya Group, Greater Noida
• Prof. Sonjay Kumar Saha, Jadavpur University, Kolkata
• Prof. Meenu Khurana, Chitkara University, Punjab
• Prof. Charu Virmani, Manav Rachna International University, Faridabad
• Prof. C.M. Chidambaranathan, SRM University, Sonipat
• Prof. K. Gopala Reddy, Ramachandra Engineering College, Andhra Pradesh
• Dr Nekuri Naveen, Sasi Institute of Technology and Engineering, Andhra Pradesh
• Dr Nagender Kumar S., Geethanjali College of Engineering Technology, Hyderabad

We would like to thank the editorial team at Oxford University Press, India for their excellent support and
suggestions, and the entire team for all the wonderful coordination and assistance they provided us.

Anita Seth
B. L. Juneja

© Oxford University Press. All rights reserved.

Oxfo
rd

 U
niversi

ty
 Pre

ss

Features of Features of

Advanced Topics

Dedicated chapters on advanced topics such as JDBC,
Servlets, and Java Beans, delve into the networking and
distributed applications of Java.

Cartoons, Notes, and Callouts

Cartoons, notes, and callouts are given
along with relevant concepts and

programs throughout the text. Cartoons
help in grasping a complex concept

easily through simplifi ed fi gures. Notes
and callouts provide additional and
important information and help in

avoiding mistakes.

Java Database
Connectivity

CHAPTER

27

•
•
•

•

•

Java Beans

CHAPTER

25

Java Servlets

CHAPTER

26

The default order in priority queue is the ascending order, that is, the
smallest value is at the head of the queue and the largest value at the
tail end.Important

type Method_identifier(type parameters)throws Exceptions

Name of
method throwing

Exception

Parameters of
method throws clause

© Oxford University Press. All rights reserved.

Oxfo
rd

 U
niversi

ty
 Pre

ss

the Bookthe Book

Programming Examples

Numerous examples along with
separate section on application

programs (in relevant chapters) are
provided to understand the working

of the concepts discussed in the
book and to get an idea on the

practical applications of the subject.

Chapter-end Exercises

Includes wide range of questions,
such as MCQs, review exercise,

programming exercises (of varying
levels), debugging exercises, and mini
projects to help readers self-check and
apply the learnt concepts in their own

programs.

Common Programming Errors and Tips
1. Capitalization of key words—it is the most common error that programmers often comm

Writing keywords such as class and int with a letter beginning in upper case would ca
an error message that depends on which keyword was capitalized.

2. Specifying return type to constructor may give errors as it cannot specify a return type.
3. Sometimes, class methods may not be written in the required format. Class methods hav

ClassName.MethodName(Argument(s))

4. A common error is to forget the class name. In that case, an error message is generated.
5. When the class is defi ned, each argument should be prefi xed with the type. For instance

public void demo(int a, int b, double c)

Common Programming
Errors and Tips

They are provided at the end of the
relevant chapters and list important
tips and common errors that readers
tend to make while writing a program.

Programming Exercises
1. Write a program in which four buttons are incorpo-

rated. The buttons can be named B1, B2, B3, and B4.
GridLayout with 2 × 2 grid is used.

2. Write a program using GridBagLayout that contains
the components TextField for entering name and
address details; further, include submit and cancel
buttons.

7. Write a program in which a user can choose a
mode of transport for daily purpose inclu
scooter, bus, cycle using checkboxes in window
on selecting a particular mode, it should disp
have chosen……..for daily transportation purpo

8. Write a program in which list of items for
languages including Hindi, English, GermanDebugging Exercises

1. Find the errors in the following program; debug it and
run the program.
class Operator
{public static void main (String args)
{
double x = 5.5, y = 10.5, p = 4.0;
int n = 40, m = 50.2;
boolean A, B’;
A = x>y;

3. Find the errors in the following program;
run the program.
class Typecast2
{public static void main (String
{
Char B = 7, Q = ‘6’;
int A = 4, D, E;
D = 1 + 2 + ‘4’;

char F = ‘4’ + 3;
i i “ lhi”Mini Project

There is a retail organization ABC that maintains the cus-
tomer records regarding name, phone number, amount of
purchase made, and the total amount of purchase made.
Write a program in which the user is required to enter the
details regarding customer id, fi rst name, and last name.
On pressing the submit button, it should search through the

records. If the record is found, it should
about the total purchase and points ear
chase is of ̀ 500, then 20 points are earne
On every subsequent purchase of `500,
earned. If the customer earns a total o
discount of `100 is provided on purchas

Program 15.12: Illustration of image crop filter

 1
 2
 3
4
 5
 6

import java.awt.Toolkit;
import java.awt.Graphics;
import java.awt.Image;
import java.awt.image.CropImageFilter;
import java.awt.image.FilteredImageSource;
import java.applet.Applet;

Program 20.15 presents the code for online voting for choosing a suitable c
tion in XYZ organization.

Program 20.15: Illustration of online voting system
 1
 2
3

package onlinevoting;
import java.awt.*;
i t j t t *

© Oxford University Press. All rights reserved.

Oxfo
rd

 U
niversi

ty
 Pre

ss

Preface iii
Features of the Book viii
Detailed Contents xi

1. Object-oriented Programming and Evolution of Java 1

2. Program Structure in Java 25

3. Data Types, Variables, and Operators 58

4. Control Statements 112

5. Classes and Objects 143

6. Methods 178

7. Arrays 217

8. Inheritance 264

9. Interfaces 297

10. Packages and Java Library 336

11. Exception Handling 405

12. String Handling in Java 442

13. Multithreaded Programming 474

14. Generic Programming 519

15. Image Handling in Java 554

16. Collections 583

17. Input/Output Streams and File Operations 652

18. Applets 718

19. Event Handling 754

20. Creating GUIs in AWT Windows 801

21. Drawing in AWT Windows 839

22. Swing—Part 1 887

23. Swing—Part 2 931

24. Networking 977

25. Java Beans 1015

26. Java Servlets 1060

27. Java Database Connectivity 1102

Appendix A Enhancements in Different Versions of Java 1145
Appendix B Creating Webpages 1150
Java Interview Questions 1171
Index 1181
About the Authors 1191

 Brief Contents

© Oxford University Press. All rights reserved.

Oxfo
rd

 U
niversi

ty
 Pre

ss

Preface iii
Features of the Book viii
Brief Contents x

1. Object-oriented Programming and Evolution
of Java 1

1.1 Concept of Object orientation 1
1.2 Need for Object-oriented

Programming 2
1.3 Characteristics of Object-oriented

Programming 3
1.3.1 Data Abstraction 3
1.3.2 Encapsulation and Information

Hiding 3
1.3.3 Access Control to Data Variables

and Methods 5
1.3.4 Inheritance 5
1.3.5 Polymorphism 6

1.4 Reuse, Coupling, and Coheshion in
OOP 6

 1.5 Object-oriented Analysis and
Design 7

1.6 History of Development of
Programming Languages 8
1.6.1 Object-oriented Languages 9

1.7 Development of Java Programming
Language 10
1.7.1 Java Bytecode and valid .class

File 10
1.8 Structure of Java Language 12
1.9 Versions of Java 12

1.10 Exploring JDK 14
1.10.1 Update Path and Class Path

Variables 15
1.10.2 Testing Installations 15
1.10.3 Basic Tools in JDK 16

1.11 Salient Features and Benefi ts of Java
Language 17
1.11.1 Exceptions and Exception

Handling in Java 18
1.11.2 Security Features of Java

Language 18
1.12 Differences and Similarities between

Java and C++ 19

2. Program Structure in Java 25
 2.1 Introduction 25

2.1.1 Importing Packages and
Classes 26

2.2 Writing Simple Java Programs 26
2.3 Installing and Confi guring Java 28
2.4 Compiling and Running Java

Program 29
2.4.1 Compilers 29
2.4.2 Integrated Development

Environments 29
2.4.3 Procedure for Running Programs

on NetBeans 8.0.1 30
2.5 Elements or Tokens in Java

Programs 34
2.5.1 Identifi ers or Names 34
2.5.2 Keywords in Java 35
2.5.3 Literals 36
2.5.4 Separators 37
2.5.5 Operators 37

 2.6 Java Statements 39
 2.7 Command Line Arguments 40
 2.8 Data Types 41

2.9 Declaration of Variables 42
2.9.1 Types of Variables in Class

Declaration 44
2.10 User Input to Programs 44

 2.11 Escape Sequences 47
 2.12 Comments 48
 2.13 Programming Style 49
2.14 Number System Used in Java

Programs 50
2.14.1 Conversion of Binary Number

into Hexadecimal Number 51
2.14.2 Conversion of Binary Number

into Octal Number 51
 2.15 Application Programs 51

2.15.1 Area of Polygons 51
2.15.2 Printing Simple Patterns 52

Detailed Contents

© Oxford University Press. All rights reserved.

Oxfo
rd

 U
niversi

ty
 Pre

ss

xii Detailed Contents

2.15.3 Use of Class Math in
Mathematical Calculations 53

2.15.4 Making Multiplication Tables 53
2.15.5 Conversion of Decimal Number

into Binary Number 54

3. Data Types, Variables, and Operators 58
 3.1 Introduction 58

3.2 Data Types in Java 59
3.3 Declaration of Variables 60

3.3.1 Non-primitive Types 60
 3.4 Data Types 61

3.4.1 Integers 61
3.4.2 Characters 63
3.4.3 Floating Point Numbers 64
3.4.4 boolean Type Data 66

3.5 Type Casting 67
3.6 Scope of Variable Identifi er 70

 3.7 Literal Constants 72
 3.8 Symbolic Constants 73

3.9 Formatted Output with printf()
Method 74
3.9.1 Formatting Output of Integer

Numbers 76
3.9.2 Formatting Output of Floating

Point Numbers 77
3.9.3 Formatting Output of Strings 78

3.10 Static Variables and Methods 79
3.10.1 Mathematical Functions 80
3.10.2 Static Import 82

 3.11 Attribute Final 83
3.12 Introduction to Operators 83
3.13 Precedence and Associativity of

Operators 84
3.14 Assignment Operator (=) 85

3.14.1 Chain of Assignments 86
 3.15 Basic Arithmetic Operators 86

3.15.1 Combinational Arithmetic
Operators 87

 3.16 Increment (++) and Decrement (−−)
Operators 88

 3.17 Ternary Operator 91
 3.18 Relational Operators 91
3.19 Boolean Logical Operators 92

3.19.1 Short-circuit Logical
Operators 93

3.19.2 Combinational Boolean
Operators 93

3.19.3 Truth Tables 94
3.20 Bitwise Logical Operators 94

 3.21 Application Programs 98
3.21.1 Factorial of Numbers 98
3.21.2 Conversion of Decimal Number

into Binary Number 99
3.21.3 General Computation

Problem 100
3.21.4 Random Number

Generation 101
3.21.5 Calculation of Area of

Triangle 102
3.21.6 Game of Dice Play 103

 4. Control Statements 112
 4.1 Introduction 112
 4.2 if Expression 113
 4.3 Nested if Expressions 114
 4.4 if–else Expressions 114

4.4.1 Working of if–else
Statements 115

4.4.2 if–else Chains 115
 4.5 Ternary Operator ?: 117
 4.6 Switch Statement 118

4.6.1 Nested Switch Statement 120
 4.7 Iteration Statements 121
 4.8 while Expression 122

4.8.1 Endless while Loop 124
 4.9 do–while Loop 124
 4.10 for Loop 126

4.10.1 Generating Samples of
Random numbers and Average
Values 127

 4.11 Nested for Loop 127
 4.12 For–Each for Loop 128

4.12.1 Nested for–each for Loop 128
4.12.2 Advantages and Limitations of

for–each Loop 129
 4.13 Break Statement 130

4.13.1 Break Statement with Labels 131
 4.14 Continue Statement 132

4.14.1 Continue Statement with
Labels 132

 4.15 Application Programs 133
4.15.1 Roots of a Quadratic

Equation 133
4.15.2 Summation of a Series with for

Loop 134
4.15.3 Drawing in JFrame Window 135
4.15.4 Conversion of Binary Number

into Decimal Number 136
4.15.5 Playing a Game based on Random

Numbers 137

© Oxford University Press. All rights reserved.

Oxfo
rd

 U
niversi

ty
 Pre

ss

Detailed Contents xiii

5. Classes and Objects 143
 5.1 Introduction 143

5.1.1 Types of Classes 144
5.2 Class Declaration and Modifi ers 144

5.2.1 Class Modifi ers 145
 5.3 Class Members 147

5.3.1 Access Specifi ers and Information
Hiding 148

5.4 Declaration of Class Objects 148
5.5 Assigning One Object to

Another 150
5.6 Access Control for Class

Members 152
5.7 Accessing Private Members of

Class 153
5.7.1 Accessing Private Methods of

Class 154
5.8 Constructor Methods for Class 155

 5.9 Overloaded Constructor
Methods 156

 5.10 Nested Classes 157
5.10.1 Member Inner Class 157
5.10.2 Anonymous Class 161
5.10.3 Local Class 163
5.10.4 Static Nested Class 164

5.11 Final Class and Methods 165
5.11.1 Abstract Class 166

5.12 Passing Arguments by Value and by
Reference 167
5.12.1 Passing Arguments through

Reference 167
 5.13 Keyword this 168

5.13.1 Instance Variable Hiding 169
 5.14 Application Programs 170

5.14.1 Drawing Sale Bar Chart 170
 5.15 Cleaning Process 171

5.15.1 Garbage Collection 172
5.15.2 Finalization 173

 6. Methods 178
 6.1 Introduction 178

6.1.1 Placement of Method Defi nition
and Execution of Methods 179

 6.2 Defi ning Methods 179
6.2.1 Modifi ers for Method 180
6.2.2 Method Type 181
6.2.3 Identifi er 181
6.2.4 Parameter List 181
6.2.5 Return Statement 182

6.3 Overloaded Methods 182

 6.4 Overloaded Constructor
Methods 184

6.5 Class Objects as Parameters in
Methods 185

 6.6 Access Control 186
6.6.1 Accessing Private Data

Members 186
6.6.2 Accessing Private Methods 187
6.6.3 Accessor Methods 188

 6.7 Recursive Methods 189
6.7.1 Fibonacci Numbers 190

6.8 Nesting of Methods 191
 6.9 Overriding Methods 191
6.10 Attributes Final and Static 192

6.10.1 Final 192
6.10.2 Static Methods 193
6.10.3 Methods with Variable

Arguments 194
 6.11 Lambda Expression 194

6.11.1 Lambda Function Structure 195
6.11.2 Lambda Expression and

Variables 196
6.11.3 Working of Lambda

Reference 196
6.11.4 Lambda Function with Local

Variables 197
6.11.5 Standard Functionals, their

Methods, and Use in Lambda
Expression 197

 6.12 Method References 198
 6.13 Predicates 199

6.13.1 Composed Predicates 200
 6.14 Method Chains 203
 6.15 Keywords transient, volatile, and

assert 204
6.15.1 Transient 205
6.15.2 Volatile Variable 206
6.15.3 Assert 207

 6.16 Native Methods 210
6.16.1 Disadvantages of Using Native

Methods 211
6.16.2 General Procedure of Using

Native Methods 211

7. Arrays 217
 7.1 Introduction 217

7.2 Declaration and Initialization of
Arrays 218
7.2.1 Declaration 218
7.2.2 Initialization 219

© Oxford University Press. All rights reserved.

Oxfo
rd

 U
niversi

ty
 Pre

ss

Detailed Contentsxiv

7.2.3 Alternative Array Declaration
Syntax 220

7.3 Storage of Array in Computer
Memory 220

7.4 Accessing Elements of Arrays 221
7.4.1 Determination of Array Size 222
7.4.2 Use of for–each Loop 222
7.4.3 Array of Strings 224

7.5 Operations on Array Elements 225
7.5.1 Arrays as Parameters of

Methods 226
7.6 Assigning Array to Another

Array 227
7.7 Dynamic Change of Array Size 228

 7.8 Sorting of Arrays 229
7.8.1 Bubble Sort 229
7.8.2 Selection Sort 231
7.8.3 Sorting by Insertion Method 232

7.9 Search for Values in Arrays 233
7.9.1 Linear Search 234
7.9.2 Binary Search 234

 7.10 Class Arrays 236
7.10.1 Methods of Class Arrays 236

 7.11 Two-dimensional Arrays 241
7.11.1 Operations on Elements of

Two-dimensional Arrays 243
7.12 Arrays of Varying Lengths 244

 7.13 Three-dimensional Arrays 245
 7.14 Arrays as Vectors 248
 7.15 Application Programs 251

7.15.1 Computation of Mean and
Standard Deviation 251

7.15.2 Creating Bar Chart with Array
Elements 252

7.15.3 Operations on Matrices through
Two-dimensional Arrays 254

7.15.4 Programming for Solution of
Linear Algebraic Equations 257

 8. Inheritance 264
 8.1 Introduction 264

8.1.1 Benefi ts of Inheritance 265
8.2 Process of Inheritance 266

8.2.1 Substitutability and
Subtyping 267

8.3 Types of Inheritances 268
8.3.1 Disadvantages of Inheritance 272

8.4 Universal Super Class—Object
Class 272

8.5 Inhibiting Inheritance of Class Using
Final 273

8.6 Access Control and Inheritance 274
8.6.1 Private Members and

Inheritance 276
 8.7 Multilevel Inheritance 277

8.8 Application of Keyword Super 278
8.9 Constructor Method and

Inheritance 280
 8.10 Method Overriding 281

8.10.1 Binding 284
8.11 Dynamic Method Dispatch 285

 8.12 Abstract Classes 286
8.13 Interfaces and Inheritance 286

8.13.1 Interfaces with Default and Static
Methods 287

 8.14 Application Programs 289

 9. Interfaces 297
 9.1 Introduction 297

9.1.1 Similarities between Interface and
Class 298

9.1.2 Dissimilarities between Class and
Interface 299

9.1.3 Rules for Classes that Implement
Interface 299

9.1.4 Types of Interfaces 299
9.2 Declaration of Interface 299

9.2.1 Interface Modifi ers 300
9.2.2 Members of Interface 300

9.3 Implementation of Interface 300
9.3.1 Constants in Interfaces 302

 9.4 Multiple Interfaces 303
9.4.1 Interface References 303
9.4.2 Stub Methods 305

 9.5 Nested Interfaces 306
9.6 Inheritance of Interfaces 308
9.7 Default Methods in Interfaces 309
9.8 Static Methods in Interface 313

 9.9 Functional Interfaces 314
9.9.1 Functional Consumer<T> 318
9.9.2 Functional Supplier 319

 9.10 Annotations 319
9.10.1 Benefi ts of Using

Annotations 321
9.10.2 Annotation Basics 321
9.10.3 Retention Policy 322
9.10.4 Predefi ned Annotations 322
9.10.5 Class Method 323
9.10.6 User Defi ned Annotation 324
9.10.7 Restrictions on Annotations 328

 9.11 Application Programs 328

© Oxford University Press. All rights reserved.

Oxfo
rd

 U
niversi

ty
 Pre

ss

Detailed Contents xv

10. Packages and Java Library 336
 10.1 Introduction 336

10.1.1 Packages as Name Space 337
 10.2 Defi ning Package 337

10.2.1 Other Fully Qualifi ed
Names 338

10.3 Importing Packages and Classes into
Programs 338
10.3.1 Importing Class in

Programs 339
10.3.2 User-defi ned Packages and

Classes 339
10.4 Path and Class Path 341
10.5 Access Control 347
10.6 Packages in Java SE 8 348
10.7 Java.lang Package and its

Classes 348
 10.8 Class Object 350
 10.9 Enumeration 352

10.9.1 Members of Enum 352
10.9.2 Methods of Enumeration 353
10.9.3 General Enum Declaration 354

10.10 class Math 357
10.11 Wrapper Classes 360

10.11.1 Constructors of Wrapper
Classes 361

10.11.2 Methods of Wrapper
Classes 361

10.12 Auto-boxing and Auto-unboxing 366
10.12.1 Methods isInfi nite() and

isNaN() 367
10.13 Java util Classes and Interfaces 368

10.13.1 Interfaces Defi ned in
java.util 370

10.13.2 Scanner Class 371
10.13.3 Radix 376

10.14 Formatter Class 376
10.14.1 Specifi cation of Field

Width 378
10.15 Random Class 380

10.15.1 Constructors of Class 381
10.15.2 Methods of Class

Random 381
10.16 Time Package 383

10.16.1 New Time Package of Java SE 8
(Java.time) 384

10.17 Class Instant (java.time.Instant) 389
10.17.1 Constants Defi ned in Class 389
10.17.2 Methods of Class Instant 389

10.18 Formating for Date/Time in
Java 8 391

10.18.1 Predefi ned Constants with
Different Styles 391

10.19 Temporal Adjusters Class 394
10.19.1 Temporal Adjuster

Interface 394
10.19.2 TemporalAdjusters class 395

10.20 Legacy Date Time Classes 396
10.21 Application Program 397

11. Exception Handling 405
 11.1 Introduction 405
11.2 Hierarchy of Standard Exception

Classes 406
11.3 Keywords throws and throw 408
11.4 try, catch, and fi nally Blocks 409

11.4.1 try {} Block 409
11.4.2 catch {} Block 410
11.4.3 fi nally {} Block 410
11.4.4 Uncaught Exception 412
11.4.5 fi nalize in Exception

Handling 413
11.4.6 Constructors throwing

Exception 413
11.5 Multiple Catch Clauses 413

 11.6 Class Throwable 415
11.6.1 Constructors of class

Throwable 415
11.6.2 Methods of class Throwable 416

 11.7 Unchecked Exceptions 417
 11.8 Checked Exceptions 420
 11.9 try-with-resources 422
11.10 Catching Subclass Exception 426
11.11 Custom Exceptions 428
11.12 Nested try and catch Blocks 429
11.13 Rethrowing Exception 430
11.14 throws Clause 431
11.15 Application Program 432

11.15.1 Design of Cellular Mobile
System 432

11.15.2 Design of Spindle Speeds of
Machine Tools 434

11.16 Best Practices of Dealing with
Exceptions 436

12. String Handling in Java 442
 12.1 Introduction 442

12.1.1 Overview of Three String
Classes 442

12.1.2 Storage of Strings 443
12.1.3 Immutability 445

12.2 Interface CharSequence 445

© Oxford University Press. All rights reserved.

Oxfo
rd

 U
niversi

ty
 Pre

ss

Detailed Contentsxvi

 12.3 Class String 446
12.3.1 Constructors of Class

String 446
12.4 Methods for Extracting Characters

from Strings 449
12.5 Methods for Comparison of

Strings 451
12.5.1 Difference between == and

Method Equals() 451
12.6 Methods for Modifying Strings 454
12.7 Methods for Searching Strings 455
12.8 Data Conversion and Miscellaneous

Methods 456
12.8.1 Exceptions thrown by String

Class Methods 458
12.9 Class StringBuffer 459

12.9.1 Constructors of Class
Stringbuffer 459

12.9.2 Methods of Class
Stringbuffer 459

12.10 Class StringBuilder 462
12.10.1 Constructors of Class

StringBuilder 463
12.10.2 Methods of Class

StringBuilder 463
12.11 Application Program 467

13. Multithreaded Programming 474
 13.1 Introduction 474
13.2 Need for Multiple Threads 474

13.2.1 Multithreaded Programming for
Multi-core Processor 475

 13.3 Thread Class 477
13.3.1 Constructors of class

Thread 477
13.3.2 Thread Group 478
13.3.3 Methods of Thread Class 479

 13.4 Main Thread 481
13.5 Creation of New Threads 483

13.5.1 Creation of New Thread by
Extending Thread Class 483

13.5.2 Creation of New Threads by
Implementing Runnable 485

13.5.3 Creation of Threads by Lambda
Expression, Method Reference,
and Anonymous Class 488

13.5.4 Creation of Multiple Threads by
Runnable 489

13.5.5 Creation of Multiple Threads by
Extending Thread Class 490

13.6 Thread States 491

 13.7 Thread Priority 493
 13.8 Synchronization 496

13.8.1 Synchronizing Statement for
Blocks of Statements 497

 13.9 Deadlock and Race Situations 498
13.10 Inter-thread Communication 499
13.11 Suspending, Resuming, and Stopping

of Threads 501
13.12 Application Programs with

Threads 503
13.12.1 Producer–Consumer

Problem 503
13.12.2 Application Program Using

Lambda Expression 506
13.12.3 General Computation by Threads

Using Method Reference 507
13.12.4 Threads Computing Streams of

Random Numbers—Anonymous
Class Application 509

13.12.5 New Thread Loading Images on
to AWT Window 510

13.12.6 Solution of Linear Algebraic
Equations and Sorting of
Arrays 511

14. Generic Programming 519
 14.1 Introduction 519

14.1.1 General Benefi ts of Using
Generics 520

14.1.2 General Convention for
Representation of Type
Parameter 520

14.1.3 Erasure, Generics, and JVM 521
14.2 Generics and Primitive Types 521
14.3 Declaration of Generic Class and

Constructor 521
14.4 Use of Object Class vs Generic

Class 523
14.5 Generic Class with Multiple Type

Parameters 525
14.6 Generic Method 526
14.7 Generic Method Overloading 529
14.8 Generic Interface 529
14.9 Overridding Methods in Generics

Class 531
14.10 Upper Bound on Types 532
14.11 Multiple Bounds on Types 534
14.12 Wildcard 535

14.12.1 Restrictions on Wildcard
Type 535

14.13 Bounded Wildcard 536
© Oxford University Press. All rights reserved.

Oxfo
rd

 U
niversi

ty
 Pre

ss

Detailed Contents xvii

14.14 Generic Constructor in Non-generic
Class 538

14.15 Generic Super Class and Generic
Subclass 539

14.16 Non-generic Super Class with Generic
Subclass 540

14.17 Generic Type Parameters and
Inheritance 541

14.18 Generics and Refl ection 542
14.19 Restrictions in Java Generics 545
14.20 Application Programs 546

14.20.1 Generic Methods for Sorting and
Display of Objects 547

15. Image Handling in Java 554
 15.1 Introduction 554
15.2 Image File Formats 555
15.3 Image Handling and Processing 556

15.3.1 Image Processing 556
15.3.2 Java Classes and Interfaces Used

in Image Processing 556
 15.4 Image Class 556

15.4.1 Class Field Variables 557
15.4.2 Methods of Class Image 557

15.5 Loading and Displaying Images 558
15.5.1 Display of Images 559
15.5.2 ImageObserver 559
15.5.3 Using Class ImageIO Method

for Loading BufferedImage 562
15.6 Pixel Color and Transparency

Specifi cations 563
15.6.1 Representation of Pixel

Colour 564
 15.7 Class BufferedImage 565

15.7.1 Fields of Class
BufferedImage 565

15.7.2 Constructors of BufferedImage
Class 565

15.7.3 Methods of Buffered Image
Class 565

15.7.4 Drawing Buffered Images Using
Graphics2D 568

 15.8 Class MemoryImageSource 569
15.8.1 Constructors of Class

MemoryImageSource 569
 15.9 Toolkit Class 570

15.9.1 Methods of Class Toolkit 570
15.10 Creating Images from Memory

Imagesource 570
15.11 Manipulation of Images 574

15.11.1 Greyscale Images 575
15.12 Application Programs 576
15.13 Crop ImageFilter 577

16. Collections 583
 16.1 Introduction 583

16.1.1 Purpose of Collection
Framework 584

16.1.2 Application of Collection
Framework 584

16.2 Hierarchy of Collection Interfaces/
Classes 584

 16.3 Methods Defi ned in Collection
Interface 586
16.3.1 Exceptions Thrown by

Methods 587
 16.4 Interface Iterator 588

16.4.1 Methods Defi ned in Iterator 588
16.4.2 Iterator Versus ListIterator 589

 16.5 Collection Classes 589
 16.6 Set 591

16.6.1 HashSet Class 591
16.6.2 Constructors of Class

HashSet 591
16.6.3 Methods of Class Hashset 591
16.6.4 Class Treeset 593
16.6.5 Constructors of Class

Treeset 594
16.6.6 Methods of Treeset class 594
16.6.7 Comparator Interface 598
16.6.8 Application of Iterators for

TreeSet Instances 599
 16.7 ArrayList Class 601

16.7.1 Constructors of class
ArrayList 601

16.7.2 Methods of Class ArrayList 601
16.7.3 Other Classes that Implement

List 605
 16.8 Class LinkedList 605

16.8.1 Constructors of the Class
LinkedList 605

16.8.2 Methods of Class
LinkedList 606

16.8.3 Comparison of LinkedList and
ArrayList classes 610

 16.9 Queues 611
16.10 Class PriorityQueue 612

16.10.1 Class Declaration 612
16.10.2 Constructors of Class

PriorityQueue 613

© Oxford University Press. All rights reserved.

Oxfo
rd

 U
niversi

ty
 Pre

ss

Detailed Contentsxviii

16.10.3 Methods of Class
PriorityQueue 613

16.11 Deque 614
16.12 Vector Class 616

16.12.1 Constructors of Class
Vector 616

16.13 Stack Class 619
16.14 Maps 621

16.14.1 Map Interfaces 622
16.15 HashMap class 623

16.15.1 Constructors of Hashmap
class 623

16.15.2 Methods of class
HashMap 623

16.16 TreeMap class 627
16.16.1 Constructor Methods 627
16.16.2 Methods of class TreeMap 627

16.17 Class Hashtable<K,V> 631
16.17.1 Constructors of class

Hashtable 632
16.18 class Properties 634

16.18.1 Constructors of Class
Properties 634

16.19 Class Collections and
Algorithms 636
16.19.1 Algorithms—Collections

UnModifi able 637
16.19.2 Algorithms for Synchronizing

Collections 638
16.19.3 Algorithms—Collections

Dynamically Typesafe 638
16.19.4 Search and Sort

Algorithms 639
16.20 Application Programs 644

17. Input/Output Streams and File
Operations 652
 17.1 Introduction 652

17.1.1 Base I/O Classes 654
17.1.2 Standard Input/Output

Streams 655
17.1.3 Classes Files and

RandomAccessFile 656
 17.2 Class File 656

17.2.1 Constructors of Class File 657
17.2.2 Methods of Class File 658

17.3 Reading and Writing Bytes 662
17.3.1 Class InputStream 662
17.3.2 Subclasses of Inputstream 663

 17.4 FileInputStream 664

17.4 .1 Constructors of
FileInputStream 664

17.4.2 Methods of
FileInputStream 665

 17.5 ByteArrayInputStream 666
 17.6 OutputStream and its Subclasses 667

17.6.1 Sub-classes of OutputSream 668
17.6.2 Methods of OutputStream 668

 17.7 FileOutputStream 669
17.7.1 Constructors of Class

FileOutputStream 669
17.7.2 Methods of Class

FileOutputStream 669
 17.8 DataInputStream and

DataOutputStream 671
17.8.1 Class DataInputSream 671
17.8.2 Class DataOutputStream 672

 17.9 Class Writer 674
17.9.1 Subclasses of Class

Writer 675
17.9.2 Methods of Writer Class 675

17.10 Class Printwriter 675
17.10.1 Constructors of Class

PrintWriter 676
17.11 Class Reader 677

17.11.1 Constructors 678
17.11.2 Methods of Class Reader 678
17.11.3 Subclasses of Reader

Class 679
17.11.4 Subclasses of Reader

Class 679
17.12 Class Console 682

17.12.1 Methods of Class Console 682
17.13 Piped Input/Output 684

17.13.1 Class
PipedOutputStream 685

17.13.2 Class PipedInputStream 685
17.14 Serialization 687

17. 14.1 Class
ObjectOutputStream 688

17.14.2 Class
ObjectInputStream 689

17.15 Class RandomAccessfi le 692
17.15.1 Constructors 692
17.15.2 Methods of Class Random

AccessFile 693
17.16 java.nio and java.nio.2

Packages 694
17.16.1 Differences in java.io and

java.nio 695
17.17 Path 695

© Oxford University Press. All rights reserved.

Oxfo
rd

 U
niversi

ty
 Pre

ss

Detailed Contents xix

17.17.1 Absolute Path 696
17.17.2 Relative Path 696
17.17.3 interface Path 696
17.17.4 Operations Associated with

Paths 697
17.18 Class Paths 697

17.18.1 Methods of Class 697
17.19 Class Files 699

17.19.1 Methods Defi ned in Class
Files 699

17.20 Buffers 702
17.20.1 Buffers Types 702
17.20.2 Creation of Buffer 703
17.20.3 Methods of Class

ByteBuffer 704
17.21 Channels 706

17.21.1 Class FileChannel 706
17.21.2 Creation of File Channels 707
17.21.3 Methods of Class

FileChannel 707
17.22 Application Programs 710

18. Applets 718
 18.1 Introduction 718
 18.2 Applet Architecture 719
 18.3 Applet Class and Methods 720
 18.4 Creating Applets 721

18.4.1 Life Cycle of Applets 722
 18.5 HTML Tags 723

18.5.1 HTML <APPLET>Tag 723
 18.6 Simple Applet Display Methods 725

18.6.1 Using Status Window 726
 18.7 Passing Parameters to Applets 727
 18.8 Passive Applet Programs 729

18.8.1 Labels in Applets 730
 18.9 Adding Images to Applet

Windows 730
18.9.1 Loading Images in Applet

Windows 731
18.9.2 Display of Images 731

18.10 Display of Numerical Values on
Applet Windows 732

18.11 Managing Colours in Applet
Window 733
18.11.1 Setting and Getting

Colours 734
18.11.2 Changing Colours of

Strings 734
18. 12 Interactive Applets with AWT

Graphical Components 736

18.13 AWT Textfi elds in Applets 738
18.14 Animation in Applet Windows 741
18.15 Interactive Applets with Swing

Components 742
18.16 Running Applets on NetBeans

IDE 744
18.17 Application Program 746

18.17.1 Application 2: Calculating
Number of Users Supported in
TDMA System 747

18.18 Applet and Security 749

19. Event Handling 754
 19.1 Introduction 754
 19.2 Delegation Event Model 754
 19.3 Hierarchy of Event Classes 757
 19.4 Types and Sources of Events 758
 19.5 Event Listener Interfaces 759
 19.6 class ActionEvent 759

19.6.1 Field Variable 760
19.6.2 Constructors of class

ActionEvent 760
19.6.3 Methods of class

ActionEvent 760
 19.7 class AdjustmentEvent 763

19.7.1 Adjustment Types 764
19.7.2 Class Constructors 764
19.7.3 Class Methods 764

 19.8 changeEvent and ChangeListener 767
 19.9 class ComponentEvent 769
19.10 class ContainerEvent 771

19.10.1 Fields Defi ned in Class 771
19.10.2 Methods of Class 772

19.11 class FocusEvent 772
19.12 class ItemEvent 773

19.12.1 Class Fields 773
19.12.2 Class Constructor 773
19.12.3 Class Methods 773
19.12.4 Anonymous Inner Class 774

19.13 class KeyEvent 775
19.13.1 Methods of class

KeyEvent 776
19.14 class MouseEvent 778

19.14.1 Field Variables of the
Class 779

19.14.2 Methods of Class
MouseEvent 779

19.14.3 MouseMoved Event and
MouseDragged Event 783

19.14.4 class MouseWheelEvent 785

© Oxford University Press. All rights reserved.

Oxfo
rd

 U
niversi

ty
 Pre

ss

Detailed Contentsxx

19.15 class TextEvent 785
19.16 class WindowEvent 787
19.17 Details of Event Listener

Interfaces 788
19.17.1 interface

ActionListener 788
19.17.2 interface

AdjustmentListener 788
19.17.3 interface

ComponentListener 788
19.17.4 interface

ContainerListener 788
19.17.5 interface

FocusListener 788
19.17.6 interface ItemListener 789
19.17.7 interface KeyListener 789
19.17.8 interface

MouseListener 789
19.17.9 interface

MouseMotionListener 789
19.17.10 interface

MouseWheelListener 789
19.17.11 interfaceTextListener 789
19.17.12 interface

WindowFocusListener 789
19.17.13 interface

WindowListener 789
19.18 Adapter Classes 790
19.19 Application Program 792

20. Creating GUIs in AWT Windows 801
 20.1 Introduction 801
20.2 Hierarchy of Java Awt Classes 802
20.3 Window Display System 802
20.4 Adding Components to Window 805

 20.5 Labels 805
20.5.1 Constructor Methods of class

Label 805
20.5.2 Methods of class Label 806

 20.6 Button 807
 20.7 Checkbox 810

20.7.1 Constructors of Checkbox
Class 810

20.7.2 Methods of class
Checkbox 810

 20.8 Textfi eld 812
20.8.1 Constructors of class

TextField 813
20.8.2 Methods of class TextField 813

20.9 Menus and Menubar 815
20.9.1 Sub-menu 817

20.10 Layout Manager 818
20.10.1 class FlowLayout 818
20.10.2 Border Layout 820
20.10.3 GridLayout 822
20.10.4 GridBagLayout 824

20.11 Scroll Bar 828
20.11.1 Constructors of class

Scrollbar 828
20.11.2 Methods of class

Scrollbar 829
20.12 Application Programs 829

21. Drawing in AWT Windows 839
 21.1 Introduction 839

21.1.1 Class Graphics2D 840
21.1.2 Methods of Class Graphics 840
21.1.3 Attributes of Methods 840

21.2 Display Coordinate System in a
Window 841

21.3 Drawing Strings in AWT
Window 842

 21.4 Drawing Lines 843
21.4.1 Drawing Lines in java.awt.

Frame Class Window 843
21.4.2 Drawing Lines in Applet

Window 844
21.4.3 Drawing Polygons by Drawing

Lines 844
21.5 Drawing Rectangles By Method

drawRect() 845
21.5.1 Drawing of Rounded

Rectangles 846
21.6 Working with Colours 847

 21.7 Drawing Polygons 849
21.7.1 Drawing Filled Polygons 850
21.7.2 Drawing Polygons By

addPoint() Method 850
21.8 Drawing Ellipses and Circles 851

21.8.1 Drawing of Fun Figures with
Ovals 852

 21.9 Drawing Arcs 852
21.10 Fonts 854

21.10.1 Methods Defi ned in Font
Class 854

21.10.2 Font Metrics 855
21.11 Class Graphics2D 857

21.11.1 Methods of Class
Graphics2D 858

21.12 Class BasicStroke 863
21.12.1 Constructors of Class

BasicStrokes 864

© Oxford University Press. All rights reserved.

Oxfo
rd

 U
niversi

ty
 Pre

ss

Detailed Contents xxi

21.13 Drawing Full and Dashed (Dotted)
Lines 864

21.14 Clipping 869
21.15 Colour Gradient 870
21.16 Drawing an Image with

Graphics2D 873
21.17 Class PATH2D 874

21.17.1 Fields 874
21.17.2 Methods of Path2D 875

21.18 Application Programs 878
21.18.1 Drawing a Bar Chart 878

22. Swing—Part 1 887
 22.1 Introduction 887

22.1.1 Benefi ts of Using Swing over
AWT 888

22.2 Hierarchy of Swing Classes 888
22.2.1 Top Swing GUI Containers 889

22.3 Javax Swing Packages 889
 22.4 Swing Window Panes 890
22.5 Swing Components and Classes 892
22.6 Adding Components to a

Container 893
22.6.1 JPanel 894

 22.7 JLabel 895
22.7.1 Constructors of JLabel

class 895
22.7.2 Methods of JLabel class 895
22.7.3 Layout of JLabels with

setBounds() 897
22.7.4 JLabel with Icon 898

 22.8 JButton 898
 22.9 JRadioButton 900
22.10 Lambda Expression for

Actionlistener 902
22.11 JTextField 906

22.11.1 Constructors of Class
JTextField 906

22.12 JMenu 908
22.13 Border Classes 911

22.13.1 class BevelBorder 911
22.13.2 class EmptyBorder 914
22.13.3 class MatteBorder 914
22.13.4 Class EtchedBorder 915
22.13.5 class LineBorder 916
22.13.6 MatteBorder 918
22.13.7 More Illustrations of Borders

and Codes 920
22.14 Application Program 921

23. Swing—Part 2 931
 23.1 Introduction 931
23.2 Swing Components and Threads 932
23.3 Component Layout Manager

Classes 932
23.3.1 BorderLayout 932
23.3.2 FlowLayout 935
23.3.3 GridLayout 938
23.3.4 CardLayout 939
23.3.5 BoxLayout 941
23.3.6 NullLayout 943
23.3.7 OverlayLayout 944

 23.4 JTable 945
23.4.1 Constructors 945
23.4.2 Methods of class JTable 946

 23.5 JScrollBar 949
 23.6 JScrollPane 951
 23.7 JList 952
 23.8 JCheckBox 954
 23.9 JToolTip 956
23.10 JSlider 957
23.11 JTree Class 959
23.12 Adding Components to Multiple

Panels 961
23.13 Look and Feel of Graphical

Components 965
23.14 Application Programs 967

 24. Networking 977
 24.1 Introduction 977
24.2 Networking Basics 978

 24.3 Protocols 979
24.3.1 Internet Address (IPv4 and AND

IPv6) 980
24.3.2 Ports 980
24.3.3 Sockets 981
24.3.4 Threads in Socket

Programming 981
24.4 Classes and Interfaces in

java.net 982
 24.5 class InetAddress 983

24.5.1 Constructors of class in Server-
side Program InetAddress 983

24.5.2 Methods of class
InetAddress 983

 24.6 class URL 985
24.6.1 Constructors of URL class 985
24.6.2 Methods of URL class 986

 24.7 class URLConnection 988

© Oxford University Press. All rights reserved.

Oxfo
rd

 U
niversi

ty
 Pre

ss

Detailed Contentsxxii

24.8 TCP/IP Server Socket
Programming 990
24.8.1 Constructors of class

Socket 990
24.8.2 Methods of class Socket 991

 24.9 Class ServerSocket 992
24.9.1 Constructors of class

ServerSocket 992
24.9.2 Methods of class

ServerSocket 992
24.10 Communication through Sockets 993

24.10.1 Client-side Socket
Programming 994

24.11 Users/Unreliable Datagram
Protocol 999

24.12 class DatagramPacket 999
24.12.1 Constructors 1000
24.12.2 Methods of class

DatagramPackets 1000
24.13 DatagramSocket Class 1001

24.13.1 Constructors of class Datagram
Socket 1001

24.13.2 Methods of class
DatagramSocket 1001

24.14 Programs for Sending and Receiving
Datagram 1002
24.14.1 Creating a DatagramPacket for

Sending and Receiving 1003
24.14.2 Writing Code for Receiving

Datagram 1004

25. Java Beans 1015
25.1 Introduction to Java Beans 1015

25.1.1 Attributes of Beans 1016
25.1.2 Benefi ts of Using Beans 1016
25.1.3 Properties of a Bean 1017

 25.2 Java Bean API 1018
25.2.1 Interfaces 1018
25.2.2 Classes of java.bean package

(Java SE 8) 1019
25.2.3 Exceptions 1019

25.3 class Beans 1019
25.3.1 Class Methods 1020
25.3.2 class Property

ChangeSupport 1020
 25.4 JAR Files 1024

25.4.1 Creating a JAR fi le 1024
25.4.2 Viewing the contents of a JAR

File 1025
25.4.3 Extracting the Files from JAR

File 1025

25.5 Building Java Beans with NETBEAN
IDE 1026
25.5.1 Building a Composite Component

Bean 1026
25.5.2 Changing Properties of

Components 1030
25.5.3 Adding Events and Event

Listeners 1033
25.6 Source Code Generated by IDE 1035
25.7 Java Beans Project 1—Construct a

Bean Containing a Label and a Scroll
bar 1038

25.8 Java Beans Project 2— Construct
a Bean to Illustrate Mouse
Events 1040

25.9 Java Beans Project 3— Construct a
Bean to Illustrate Working of Radio
Buttons 1042

25.10 Java Beans Project 4—Construct a
Bean Containg ComboBox 1045

25.11 Java Beans Project 5 1048
25.12 Application Program 1052

25.12.1 Application Project 1 1052
25.12.2 Application Project 2 1053

26. Java Servlets 1060
 26.1 Introduction 1060
 26.2 HTTP Basics 1061
26.3 Life Cycle of a Servlet 1062

 26.4 Servlet Architecture 1064
26.4.1 Setting up Web Server for Servlet

Deployment 1065
 26.5 Classes Defi ned in Javax.servlet.http

Package 1065
26.5.1 Interfaces Defi ned in javax.serv-

let.http Package 1068
26.5.2 Handling HTTP Request and

Response 1069
 26.6 Writing Servlet 1070

26.6.1 Reading Servlet
Parameters 1073

26.6.2 Classes in javax.servlet
Package 1079

26.6.3 Interfaces Defi ned in javax.servlet
Package 1081

26.7 Session Tracking and Session
Management 1086
26.7.1 Session Tracking

Techniques 1087

© Oxford University Press. All rights reserved.

Oxfo
rd

 U
niversi

ty
 Pre

ss

Detailed Contents xxiii

26.8 Http Redirects in Servlets 1093
 26.9 Securing Servlets 1094
26.10 Application Program 1095

27. Java Database Connectivity 1102
 27.1 Introduction 1102
 27.2 JDBC Architecture 1103

27.2.1 Two-tier Architecture for Data
Access 1103

27.2.2 Three-tier Architecture for Data
Access 1103

27.3 Installing MySQL and MySQL
Connector/J 1104
27.3.1 SQL Statements 1105

27.4 JDBC Environment Setup 1106
27.4.1 JDBC Connectivity Model and

API 1107
27.5 Establishing JDBC Database

Connections 1108
27.5.1 Load and Register the JDBC

Driver 1109

27.5.2 Defi ning the Connection
URL 1110

 27.6 ResultSet Interface 1113
27.6.1 Navigating the ResultSet 1115
27.6.2 ResultSetMetaData

interface 1116
 27.7 Creating JDBC Application 1116
27.8 JDBC Batch Processing 1127

 27.9 JDBC Transaction
Management 1129

27.10 Application Programs 1133

Appendix A Enhancements in Different Versions of
Java 1145
Appendix B Creating Webpages 1150
Java Interview Questions 1171
Index 1181
About the Authors 1191

© Oxford University Press. All rights reserved.

Oxfo
rd

 U
niversi

ty
 Pre

ss

After reading this chapter, you will be able to

• • understand what an interface is
•• declare an interface
•• know the types of interfaces
• • familiarize yourself with the members of an interface
• • learn the implementation of an interface
•• comprehend nested interfaces
•• be aware of inheritance of interfaces
• • study the Java SE8 additions to interface, which can now have the following methods:

–– default methods––
–– static method––

•• Java SE8 has also been added
–– functional interfaces – Java.util.function––
–– predicates––

•• write programs involving
–– interfaces and implementation of methods declared in interfaces––
–– multiple interfaces and implementation of methods declared in these interfaces––
–– concept of nested interfaces––
–– default and static methods in interfaces––
–– concept of multiple inheritance using interfaces––
–– functional interfaces

Interfaces

Learning Objectives

9.1 Introduction
Similar to classes, an interface also introduces a new reference type. An interface represents an encapsu-
lation of constants, classes, interfaces, and one or more abstract methods that are implemented by a class.
An interface does not contain instance variables. An interface cannot implement itself; it has to be imple-
mented by a class. The methods in an interface have no body (except those declared default or static); only
headers are declared with the parameter list that is followed by a semicolon. The class that implements the
interface has to have full defi nitions of all the abstract methods included in the interface. An interface can be
implemented by any number of unrelated classes with their own defi nitions of the methods of the interface.

CHAPTER

12
CHAPTER

9

© Oxford University Press. All rights reserved.

Oxfo
rd

 U
niversi

ty
 Pre

ss

Java—One Step Ahead298

Different classes can have different defi nitions of the same
methods but the parameter list must be identical to that
in the interface. Thus, interfaces provide another way
of dynamic polymorphic implementation of methods.
Figure 9.1 illustrates how a variable declared in an inter-
face may be used differently in implementing classes.

In this fi gure, a lady is asking her child what she wants
to be stitched out of a piece of cloth—if she wants a frock,
skirt, or suit. In this case, the piece of cloth is an analogy to
abstract method contained in interface. As subclass provides
the whole defi nition of this abstract method, the child would
provide the dimensions and style of the outfi t to be stitched.

According to modifi cations in Java SE8, an interface
can now have default methods and static methods with full
defi nitions and these methods are inherited by the classes
that implement the interface. At the same time, the class
may override the methods if necessary (see Sections 9.7
and 9.8 for the full discussion).

Any number of interfaces can be implemented by a
class. This, to some extent, fulfi ls the need for multiple inheritance. The multiple inheritances of classes are
not allowed in Java, and therefore, interfaces provide a stopgap arrangement. A class can extend (inherit)
another class as well as implement a number of interfaces. For details on inheritance, see Section 8.13 in
Chapter 8. With the enhancement of Java SE8, the benefi ts of multiple inheritances can be realized easily.

The interfaces can be extended as well as nested like classes. However, there are differences too. The sim-
ilarities and dissimilarities of an interface with a class are as follows.

Figure 9.2 shows how the interfaces inherit other interfaces and the classes that implement them. A class
may implement a number of interfaces besides having a super class.

What about
all the three?

See I have this beautiful
piece of cloth! What will you

, ,like—a frock, skirt, or suit?, ,

Fig. 9.1 Interface provides means to
induct polymorphism. The figure shows

how various uses of constants or methods
provided in an interface can be realized.

interface K

interface M extends K

interface H extends M, F

(a) (b)

class C extends B implements F, G

class E extends D implements H

interface F

interface G class A

class B extends A

class D extends B

Fig. 9.2 Class can implement a number of interfaces but can extend only one class. An interface can
extend any number of interfaces (a) Inheritance of interfaces (b) Inheritance of classes

There are several similarities and differences between an interface and a class, which are discussed in Sections
9.1.1 and 9.1.2.

9.1.1 Similarities between Interface and Class
1. Declaring an interface is similar to that of class; the keyword class is replaced by keyword interface.
2. Its accessibility can be controlled just like a class. An interface declared public is accessible to any class in

any package, whereas the ones without an access specifi er is accessible to classes in the same package only.

© Oxford University Press. All rights reserved.

Oxfo
rd

 U
niversi

ty
 Pre

ss

Interfaces 299

 3. One can create variables as object references of interface that can use the interface.
 4. It can contain inner classes (nested classes) and inner interfaces.
 5. Since Java 8, an interface can have full defi nitions of methods with default or static modifi ers.

9.1.2 Dissimilarities between Class and Interface
 1. Interface cannot implement itself; it must be implemented by a class.
 2. An interface can contain only method headers followed by a semicolon. It cannot have the full defi nition

of a method. The full defi nition is given in the class that implements it. Java 8 modifi cation allows the
default and static method declarations in interfaces.

 3. The methods declared in the interface are implicitly public.
 4. An interface does not contain instance variables.
 5. The variables declared in an interface are implicitly public, static, and fi nal, that is, they are constants.
 6. Interfaces cannot have a constructor like a class.
 7. An interface cannot extend a class nor can it have a subclass. It can only extend other interfaces.
 8. A class can extend (inherit) only one class but an interface can extend any number of interfaces. It is

illustrated in Fig. 8.3 (see Chapter 8 for more details on inheritance).

9.1.3 Rules for Classes that Implement Interface
 1. A non-abstract class that implements an interface must have concrete implementation of all the abstract

methods of the interface; otherwise, the class will not compile.
 2. The @Override annotation should be used on the defi nitions of interface methods in the class.
 3. The methods declared static and default with full defi nitions in an interface are inherited by the imple-

menting class since Java 8.
 4. The class implementing a method of an interface must retain the exact signature of the method.
 5. An abstract class need not implement all the abstract methods of the interfaces that it implements.

9.1.4 Types of Interfaces
From the aforementioned discussion, it is clear that an interface comprises a collection of abstract methods.
It cannot contain full implementation of methods but only the signature (including name and parameters)
of the method. The classes implementing the interface provide the full defi nition of these abstract methods.
However, Java SE 8 has incorporated the concept of full implementation of default and static methods to Java
interfaces. There are basically three types of interfaces that include the following:

Top level interfaces It is an interface that is not nested in any class or interface. It comprises a collection of
abstract methods. It can contain any number of methods that are needed to be defi ned in the class.

Nested interface It is an interface that is defi ned in the body of a class or interface. In nested interfaces, one
or more interfaces are grouped, so that it becomes easy to maintain. It is referred to by the outer interface or
class and cannot be accessed directly.

Generic interface Like a class, an interface is generic if it declares one or more types of variables. It com-
prises methods that accept or return an object. Thus, we can pass any parameter to the method that is not of
the primitive type.

9.2 Declaration of Interface
Declaration of an interface starts with the access modifi er followed by keyword interface which is in turn fol-
lowed by its name or identifi er that is followed by a block of statements; these statements contain declarations

© Oxford University Press. All rights reserved.

Oxfo
rd

 U
niversi

ty
 Pre

ss

Java—One Step Ahead300

of variables and abstract methods. The variables defi ned in interfaces are implicitly public, static, and fi nal.
They are initialized at the time of declaration. The methods declared in an interface are public by default. An
illustration of declaration of an interface is given.

access_Specifier interface Identifier

Type of accessTT
specifier like

public
Name of the

interface

{ //body
type variable1_name= value1;

type Method1_name (parameter list);

// Since Java SE8 an interface may have default methods.
default void display1 ()
{System.out.println(“It is default method.”);

//Since Java SE8 an interface may have static methods.
static void display2(){System.out.println(“cosine 60 =” +
Math.cos(60*3.141/180));}
----------------------------- }

9.2.1 Interface Modifiers
Access modifi ers for an interface are generally public or no access modifi er is used. By declaring it as public,
interface can be used in any package and in any class.

9.2.2 Members of Interface
The members of an interface comprise the following:

1. The members declared in the body of the interface.
2. The members inherited from any super interface that it extends.
3. The methods declared in the interface are implicitly public abstract member methods.
4. The fi eld variables defi ned in interfaces are implicitly public, static, and fi nal. However, the specifi cation

of these modifi ers does not create a compile-type error.
5. The fi eld variables declared in an interface must be initialized; otherwise, compile-type error occurs.
6. Since Java SE8, static and default methods with full defi nition can also be members of interface.

9.3 Implementation of Interface
The interfaces are implemented by classes. An illustration of declaration of class that implements an interface
is as follows.

class Name implements interface_Name
{// Class body
}

Name of the class
implementing an

interface

Name of the
interface

© Oxford University Press. All rights reserved.

Oxfo
rd

 U
niversi

ty
 Pre

ss

Interfaces 301

Important

A class implementing an interface must provide implementation for all its methods unless it is an
abstract class.

class A implements C , D
{ // class body
}

Class implementing
multiple interfaces

Name of multiple
interfaces

If a class extends another class as well as implements interfaces, it is declared as
class Name extends class_name implements Interface_name

Name of
derived class

Name of
super class

Name of
interface

For example, a class A that extends class B as well as implements interfaces C and D is declared as

class A extends B implements C , D
{// class body
}

For example, an interface by name SurfaceArea may be declared as

interface SurfaceArea {
double Compute (double x);
 }

The implementation will determine the surface area for a fi gure for which defi nition is given in class. In
Program 8.1, the aforementioned interface is implemented by two classes, one of which calculates the area of
a circle, whereas another calculates the area of a square. The class Square is defi ned as

class Square implements SurfaceArea {// class body
 }

Further, class Circle is declared as

class Circle implements SurfaceArea {// class body
 }

The two classes include appropriate method defi nitions with header as given in the interface.

Program 9.1: Illustration of interface to find areas of a square and a circle

1
2
3
4
5
6
7
8
9

interface SurfaceArea { // interface
double Compute (double x);
} // end of interface

class Square implements SurfaceArea // class Square
{public double Compute (double x)
{return (x*x);}
} // end of class Square

© Oxford University Press. All rights reserved.

Oxfo
rd

 U
niversi

ty
 Pre

ss

Java—One Step Ahead302

Explanation
The interface SurfaceArea declared in code lines 1–3 is implemented
by two classes, that is, class Square defi ned in code line 5–8 and class
Circle declared in code line 10–13. Each class has its own defi nition of

the method. One fi nds the area of a circle and the other fi nds the area of a square. Both need only one param-
eter that is declared in the method header in the interface. The class Face is the class with main method that
executes the two classes. The objects of these classes sqr and cirl are declared in code lines 17 and 18. The
object references Area to interface SurfaceArea is declared in code line 19. In line 21, the reference sqr is
assigned to Area and area of square with side 10 is obtained. In code line 24, reference cirl is assigned to
Area and area of circle is obtained in line 25.

9.3.1 Constants in Interfaces
In Program 9.2, an interface defi nes only constant values that are implemented by classes.

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27

class Circle implements SurfaceArea // class Circle
{public double Compute(double x)
{return (3.141*x*x);}
} // End of class Circle

class Face{
public static void main(String arg[]){
Square sqr = new Square(); // object of class square
 Circle cirl = new Circle (); //class Circle object
SurfaceArea Area; // object reference of interface
 // Assigning Square class reference to Area
Area = sqr;
System.out.println(“Area of square =” + Area.Compute(10));
// Assigning Circle class reference to Area
Area = cirl;
System.out.println(“Area of circle =” Area.Compute(10));
}
}

Output
Area of square = 100.0
Area of circle = 314.1

Program 9.2: Illustration of getting constant values from interface
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21

interface Dimensions{
int x = 30; // implicitly public and fi nal
int y = 20; //implicitly public and fi nal
}// End of interface Dimensions

class Room implements Dimensions
{
public int area(){
int m = x;
int n = y;
return (m*n);}
 } // end of class Room

class Inface
{public static void main(String arg[]){
Room rm = new Room();
 Dimensions d;
 d = rm; // assigning Room reference to D
System.out.println(“Area of room =” + rm.area());
 }
}

© Oxford University Press. All rights reserved.

Oxfo
rd

 U
niversi

ty
 Pre

ss

Interfaces 303

Output
Area of room = 600

Explanation
Interface dimensions declares two int values x and y that are initialized to
30 and 20 in code lines 2 and 3, respectively. These values are implicitly

constant values. The values are used in class Room to calculate its area in code line 11. The class Room is exe-
cuted in class Inface that has the main method and is declared in lines 14–21. The class defi nes an object rm
of class Room and reference d to the interface Dimensions. The method area is invoked by the object rm. The
output is given.

Important

For declaring methods in an interface, method name must be chosen such that it indicates the pur-
pose of the method in general. It may be possible that the method implemented by the class may not
be related to that method name.

9.4 Multiple Interfaces
Like single interface, multiple interfaces can also be implemented in Java. For this, the class implements all
the methods declared in all the interfaces. When the class is declared, names of all interfaces are listed after
the keyword implements and separated by comma. As for example, if class A implements interfaces C and
D, it is defi ned as.

class A implements C , D
{ // class body
}

Class implementing
multiple interfaces

Name of multiple
interfaces

9.4.1 Interface References
For interface references, variables can be declared as object references. In this case, the object reference
would use interface as the type instead of class. The appropriate method is called on the basis of actual
instance of the interface that is being referred to. In Program 9.3, two interfaces are declared. Method show()
is called through interface reference using t variable that is declared to be of interface typet InfaceA and it is
assigned as an instance of MultInterface. Similarly, method subtract() is invoked through another variable
m that is declared of the type InfaceB and assigned as an instance of MultInterface.

Important

An interface reference can only access the methods declared in that interface. It cannot access other
methods of the class implementing that interface.

In Program 9.3, the interface reference cannot access display() method of the class implementing the inter-
faces, as it is not declared in any of the interfaces.

Program 9.3: Illustration of implementing multiple interfaces
 1
 2
 3
4
 5

interface IntfaceA{ // interface declared
public void show(); // method declared
}
interface IntfaceB{ // another interface declared
public int method1 (int a, int b); // method declared

© Oxford University Press. All rights reserved.

Oxfo
rd

 U
niversi

ty
 Pre

ss

Java—One Step Ahead304

Explanation
The program illustrates the implementation of multi-
ple interfaces by a class. Three interfaces are declared.
Each has one method. The class is declared as imple-
menting two interfaces and the third becomes the
target of Lambda expression because its method is
defi ned inside the Lambda expression. This could have

been done in the normal way similar to the other two; however, the intention is to see the differences between
the two ways of doing the same thing.

Interface IntfaceA is declared in lines 1–3. The second interface IntfaceB is declared in lines 4–6. The
third interface IntfaceC is declared in lines 7–8. The implementing class with main method is declared in
code lines 10–11. Method show()of the fi rst interface is defi ned in class in code lines 13–15 and method1() of
the second interface is defi ned in code lines 16–18. method2() of the third interface is defi ned, that is, body
is placed inside the Lambda expression (line 28). It is not a regular defi nition of a method and compiler does
not treat it as such. A method display() is declared in lines 19–20. It is a regular method of the class and
regular member of class.

Output
Hello! It is java.
Value after processing a and b = 40
Value after processing x = 125.0
I cannot be called by interface references.
Only class object can call me.

 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20

21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38

}
interface IntfaceC{
public double method2 (double x);}
 // implements multiple interfaces
public class MultiInterfaceImpliment
implements IntfaceA, IntfaceB
{
public void show(){ // method show defi ned
System.out.println(“Hello! It is java.”);
}
public int method1 (int a, int b){ // method1 defi ned
return a += b;
}
public void display()
{System.out.println(“I cannot be called by interface references.\nOnly class object can
call me.”);}
public static void main(String args[])
{
/*creating interface references and assigning class object*/

IntfaceA iA = new MultiInterfaceImpliment();
IntfaceB iB = new MultiInterfaceImpliment();

IntfaceC iCC = (double x) -> {return x*x*x;};
// invoking the methods
iA.show();
System.out.println(“Value after processing a and b = ” +iB.method1(25, 15));
System.out.println(“Value after processing x = ” +iCC.method2(5.0));
//iA.display(); error
//iB.display(); error
MultiInterfaceImpliment m=new MultiInterfaceImpliment();
m.display();
}
}

© Oxford University Press. All rights reserved.

Oxfo
rd

 U
niversi

ty
 Pre

ss

Interfaces 305

The methods of the fi rst two interfaces are defi ned inside the class, and hence, we create references to the
interfaces in lines 25 and 26 and these are assigned the class object reference. Further, methods are invoked
with these references in lines 30 and 31 to get the results.

For method2() of the interface IntfaceC, the Lambda expression is defi ned in code line 28 that is imple-
mented in line 32.

The regular method display() of the class cannot be called by interface references. They can call methods
defi ned in their respective interfaces only. This method is called in line 36 by the class object defi ned in line
35. All the results of the three methods are given.

9.4.2 Stub Methods
As discussed earlier, if a class implements an interface, it has to defi ne all its abstract methods; if we fail to do
so, then it will make the implementing class an abstract class. In several cases, we do not need to defi ne all the
methods because we need only a few of these. In order to meet the requirement, we defi ne stub methods for
the methods we do not need. A stub method does not do anything; however, it fulfi ls the requirement. These
are illustrated in Program 9.4.

In Program 9.4, an interface defi nes three methods, out of which, only one is needed. For the other two,
stub methods are provided.

Program 9.4: Illustration of definitions of stub methods
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21

interface AreaVolume {
 double surfaceAreaSphere (double radius);
 double volumeShpere (double radius);
 void setValue (double side);
} // end of interface

public class StubMethod {
 //Defi nition of stub method for surfaceAreaSphere
double surfaceAreaSphere (double radius)
 { return 0; }
 //Defi nition of stub method for setValue
void setvalue (double side) {}
 // defi nition of method that is implemented
double volumeSphere (double radius)
 {return 4.0*Math.PI* Math.pow(radius, 3)/3 ;}
 // main method
public static void main(String[] args) {
 StubMethod stm = new StubMethod();
System.out.printf(“Volume of sphere of radius 10 = %.2f \n”, stm.volumeSphere(10.0));

 } }

Output
Volume of sphere of radius 10 = 4188.79

Explanation
The program illustrates how to provide stub methods for
the methods of interfaces that are not needed; however, as

per the requirement of the implementing class, all the methods must be defi ned. The interface of this program
defi nes three methods out which only one, that is, volumeShpere is needed. The other two, that is, surfaceArea-
Sphere and setValue are not needed. Therefore, we provide the following two stub methods for their defi nition.

(i) double surfaceAreaSphere (double radius) { return 0; }
(ii) void setvalue (double side) {}

© Oxford University Press. All rights reserved.

Oxfo
rd

 U
niversi

ty
 Pre

ss

Java—One Step Ahead306

Output
Maximum of two numbers is = 30

These methods do not do anything but they simply fulfi l the requirement. The output of the third method is
given.

9.5 Nested Interfaces
An interface may be declared as a member of a class or in another interface. In the capacity of a class member,
it can have the attributes that are applicable to other class members. For example, its access may be modifi ed
to public, protected, or private. In other cases, an interface can only be declared as public or with default
(no-access modifi er) access. Syntax of nested interface in another interface is given as

interface interface_ Identifi er
{
……..

Name of outer
interface

……….
 interface nested_interface_ Identifi er
{
……. Name of inner

interface}
}
Program 9.5 illustrates an interface declared inside a class.

Program 9.5: Illustration of nested interface in a class
1
 2
 3
4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17

class A {
public interface Nested {
int max(int x, int y);}
} // End of class A

class B implements A.Nested // implementing nested interface
{public int max (int x, int y)
 {return x > y ? x: y ;}
} // End of class B

class X // Class with main method
{public static void main(String arg[])
{ A.Nested NS = new B(); // creating object
System.out.println(“Maximum of two numbers is = ” + NS.max(30, 12));

}
}

Explanation
A class A is declared in code lines 1–4 that has an interface by
name Nested declared in the body of class A. The interface declares

a method max with parameters int x and int y. You may have any other name of interface. The class B is
declared to implement the interface declared in lines 6–9. The qualifi ed name of interface is A.Nested. The
class X has the main method that executes the two classes. In this class, reference of object of B is assigned to
reference NS of A.Nested interface. NS calls the method max of class B with two integers and fi nds the greater
of the two.

Program 9.6 illustrates an example of nested interface where an interface is declared within another
interface.

© Oxford University Press. All rights reserved.

Oxfo
rd

 U
niversi

ty
 Pre

ss

Interfaces 307

Program 9.6: Illustration of nested interface in an interface
1
2
 3
 4
 5
 6
 7
 8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27

interface Shape{
double getArea(double x);
interface Display{
public void show();
}
}
class NestedInterface1 implements Shape, Shape.Display
{
double getArea(double x)
{
double area = 3.14*x*x;
return area;
}
public void Display.show()
{
System.out.println(“Hello”);
}

public static void main(String args[])
{
Shape.Display d=new NestedInterface1(); // reference to NestedInterface1
Shape s = new NestedInterface1(); // reference to class
d.show();
System.out.println(“Area is = “ +s.getArea(4.0)”);
}

}

Output
Hello
Area is = 50.24

Explanation
In line 1, interface named Shape is declared. Method getArea() is declared
in line 2. Another interface, that is, the nested interface is declared in line
3. Within this interface, method Show() has been declared in line 4. In

line 7, class is declared that implements the interface Shape and nested interface Display. For referring to this
nested interface, Shape.Display is used. In line 9, the method getArea() is defi ned and the keyword return is
used in line 12 that returns the result of area calculated followed by closing curly brackets. Method Show() is
defi ned in lines 14–17. In line 21, the variable d is declared of the type Shape.Display that refers to the nested
interface and it is assigned an instance of NestedInterface1 class. Similarly, for the s variable defi ned in line
22. Show() method is accessed in line 23. In line 24, the area is displayed.

Program 9.7 is another example of nested interfaces.

Program 9.7: Another example of nested interface
 1
 2
 3
4
 5
 6
7
 8
 9
10
11
12

interface Demo{
interface NestedA{
public void show();
}
public interface NestedB{
int subtract(int a, int b);
}
}
public class NestedInterface2 implements Demo.NestedA, Demo.NestedB

{
public static void main(String args[])

© Oxford University Press. All rights reserved.

Oxfo
rd

 U
niversi

ty
 Pre

ss

Java—One Step Ahead308

Explanation
In line 1, interface is declared by the name Demo. Within
this interface, another interface is declared by the name
NestedA in line 2. In line 3, method is declared for this

nested interface. In line 5, another nested interface is declared. In line 9, class implementing both the nested
interfaces is declared. In line 14, variable a is declared of the type Demo. NestedA interface and assigned an
instance of NestedInterface2 class. In line 15, Show() method of NestedA interface is accessed. Similarly,
another variable of type Demo. NestedB is declared in line 16. In line 17, method subtract() is accessed and
the output is printed. Lines 19–22 defi ne Show() method declared in interface NestedA. In lines 24–27, method
subtract() is defi ned.

9.6 Inheritance of Interfaces
An interface can also extend an interface. The code for extension of interface is similar to the extension of
classes (see Chapter 8). Here interface C extends interface B and interface A. Interface C is defi ned as

interface A {}
interface B {}
interface C extends B, A
{ // Body
}

Program 9.8 illustrates the inheritance of interfaces and implementation by class.

Output
Hello
Value after subtraction is = 7

Program 9.8: Illustration of interface extending another interface
 1
 2
 3
4
 5
 6
 7
 8
9
10
11

interface One {double Pi = 3.141;}

interface Two extends One // extending interface
{double radius = 10.0;}
interface Three extends One, Two
 {double area ();}
class Circle implements Three // implementing interface
{ public double area (){ return Pi*radius*radius;}
 }

class Interface // class with main method

13
14
15
16
17
18
19
20
21
22
23
24
25
26
27

{
Demo.NestedA a = new NestedInterface2();
a.show();
Demo.NestedB b = new NestedInterface2();
System.out.println(“Value after subtraction is = “ +b.subtract(9,2)”);

public void show()
{
System.out.println(“Hello”);
}
public void subtract()
{
return (a-b);
}
}

© Oxford University Press. All rights reserved.

Oxfo
rd

 U
niversi

ty
 Pre

ss

Interfaces 309

Explanation
Interface one defi nes a constant Pi and is inherited by interface Two,
which defi nes a double value radius. The interfaces one and two are

inherited by interface Three, which has an abstract method area. The class Circle declared in code lines 7–9
implements interface Three. The class Interface declared in lines 11–17 executes the class Circle. The output
is given.

9.7 Default Methods in Interfaces
The Java SE8 enhancement of interfaces allows the interfaces to have full defi nitions of default and static
methods. The reason for this enhancement is given.

A class that implements an interface must defi ne all the abstract methods of the interface. Now, if at a later
stage, it is required to introduce another abstract method to the interface, then all the classes implementing the
interface must be modifi ed. To overcome this problem, the following two options are available in the existing
(before Java SE8) arrangement.

1. Declare another interface that inherits the present interface and defi ne the new method in it. Thus, only
the classes that require the new method will have to be modifi ed to implement the new interface.

2. The second option is to declare an abstract class with all the methods of the existing interface and the
full defi nitions of new methods. In such a case, there is minimum change as all the subclasses inherit the
abstract super class.

The enhancement in Java 8 spares the programmer of doing any change in the existing classes that implement
the interface by allowing the interface to have full defi nition of default methods and static methods that are
implicitly inherited by the class implementing the interface. The benefi t of using the interface over having
abstract superclass is that it allows the class to have another super class because in Java, there can be only one
super class. Thus, by this enhancement, the existing framework is totally undisturbed, and at the same time,
the new functionality can be added to the interface, which is inherited by classes implementing the interface.
The inherited methods are also members of the class, and therefore, these maybe called other methods of
class.

A default method is declared with keyword default ast

 public interface A {
default void display () {System.out.println(“It is
interface A.”);}

Keyword default
for specifying

default method

However, there are restrictions to this arrangement.

1. If a class implements two or more interfaces, the interfaces cannot have default methods with the same
signature because this would cause ambiguity as to which one to execute. This is illustrated in Program 9.8.

2. In the case of methods with the same name, the compiler would choose by matching parameters.

Output
Area of circle C = 314.1

12
13
14
15
16
17

 { public static void main(String args[])
{
Circle c = new Circle (); // creating an object
System.out.println(“Area of circle c =” + c.area());
}
}

© Oxford University Press. All rights reserved.

Oxfo
rd

 U
niversi

ty
 Pre

ss

Java—One Step Ahead310

3. If the class that is extending the interfaces also defi nes the method with the same name, then class defi -
nition has priority over other defi nitions.

4. If an interface A is extended by interface B and both have a default method with the same name, the
defi nition in interface B would be chosen. However, the programmer can specify which one to choose by
using super keyword as

A.super.method_name();

 This is shown in Program 9.9
5. A default method cannot be declared fi nal. This is illustrated in Program 9.10.
6. A default method cannot be synchronized; however, blocks of statements in the default method may be

synchronized.
7. The object class is inherited by all classes. Therefore, a default method should not override any non-

fi nal method of object class.

Explanation
The interface InFace is declared in code lines 1 and 2. In the interface,
an int number is defi ned and a default method with full defi nition is
also defi ned. This is now permissible in Java SE8—an interface may

have full defi nitions of static methods and default methods. The default method is declared with modifi er
default. Line 9 defi nes a new object of the present class. Since default methods are inherited by the class, it is
simply called by the object of the class in code line 13. The integer number is used in line 11.

In Program 9.10, two interfaces are implemented by a class, and the interface has default methods with
the same signature.

Output
area = 100
2 to the power 8 = 256.0

Program 9.9: Illustration of default method in interface
1
2
 3
 4
 5
 6
 7
 8
9
10
11
12
13
14
15

interface InFace
 {int number =10;
 //default method
default void display(){System.out.println (“2 to the power 8 =” + Math.pow(2,8));}
 }

public class DefaultMethod implements InFace{// implementing the interface
 public static void main(String[] args) {
DefaultMethod df = new DefaultMethod(); // creating object

int area = number* number;
System.out.println(“area =” +area);
df.display();
 }
}

Program 9.10: Class implementing interfaces with default method
 1
2
 3
 4
 5
 6
7
 8

 interface InfaceA{
public void showA();
default public void display()
{
System.out.println(“Good morning to everyone”);
}
}
interface InfaceB {

© Oxford University Press. All rights reserved.

Oxfo
rd

 U
niversi

ty
 Pre

ss

Interfaces 311

9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36

public void showB();
default public void display()
{
System.out.println(“Good bye to everyone”);
}

class DefaultMethodA implements InfaceA, InfaceB
{
public static void main(String args[])
{
public void showA()
{
System.out.println(“It is interface A”);
}
public void showB()
{
System.out.println(“It is interface B”);
}
InfaceA a = new DefaultMethodA();
a.display();
a.showA();

InfaceB b = new DefaultMethodA();

b.display();
b.showB();
}
}

Output
compilation error

Explanation
In line 1, interface InfaceA is declared. In line 2, method ShowA() is declared.
Lines 3–6 defi ne default method display(). In line 8, another interface InfaceB
is declared. Line 9 declares another method ShowB(). In line 10, display()

method for this interface is defi ned having the same signature as that of the default method defi ned in inter-
face InfaceA. Line 13 defi nes the class implementing both the interfaces. In line 19, method ShowA() for
interface InfaceA is defi ned. Similarly, in line 23, method ShowB() is defi ned. Variable a of the type InfaceA
is declared in line 27 and assigned an instance of class DefaultMethodA. In line 28, method display() is
accessed. Similarly, another variable of type DefaultMethodA is declared in line 31. Compilation error results
because the default method of the same signature is used in both the interfaces.

Program 9.11 shows the case where one of the interfaces is extended by another interface, and both having
default method with the same signature.

Program 9.11: Illustration of inheritance of interfaces by using default method
 1
 2
 3
 4
 5
 6
7
 8
9
10
11

 interface InfaceA{
public void showA();
default public void display()
{
System.out.println(“Good morning to everyone”);
}
}
interface InfaceB extends InfaceA{
public void showB();
default public void display()
{

© Oxford University Press. All rights reserved.

Oxfo
rd

 U
niversi

ty
 Pre

ss

Java—One Step Ahead312

12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

System.out.println(“Good bye to everyone”);
}
class DefaultMethodB implements InfaceB
{
public static void main(String args[])
{
public void showA()
{
System.out.println(“It is Interface A”);
}
public void showB()
{
System.out.println(“It is Interface B”);
}
DefaultMethodB d = new DefaultMethodB();
d.showA();
d.display();
d.showB();
}
}

Explanation
In line 1, interface InfaceA is declared. The method of this
interface is declared in line 2. Default method display()
is defi ned in lines 3–6. In line 8, interface InfaceB extends

interface InfaceA. Method ShowB() of this interface is declared in line 9. Default method display() is defi ned
in lines 10–13. Line 14 defi nes the class implementing both the interfaces. In lines 18–21, method ShowA() is
defi ned. Similarly, in lines 22–25, method showB() is defi ned. In line 26, variable d of the type DefaultMethodB
is declared. In line 27, method ShowA() is accessed. In line 28 display() method is accessed for the interface
InfaceA. The output is shown.

Program 9.12 shows that a default method cannot be declared as fi nal and gives compilation error.

Output
Good morning to everyone

Program 9.12: Default method declared as final
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21

 interface A{
public void show();
fi nal default public void display() // error due to fi nal
{
System.out.println(“Good morning to everyone”);
}
}
class DemoC implements A
{
public void show()
{ System.out.println(“It is Interface”);
}

 public static void main(String args[])
{
 DemoC d = new DemoC();
d.show();
d.display();
}
}

© Oxford University Press. All rights reserved.

Oxfo
rd

 U
niversi

ty
 Pre

ss

Interfaces 313

Output
compilation error

9.8 Static Methods in Interface
The Java version 8 allows full defi nition of static methods in interfaces. A static method is a class method.
For calling a static method, one does not need an object of class. It can simply be called with class name as

class_name.method_name()

For example, we have used the method sqrt() of Math class by writing the code as in the following example,
because all methods of Math class are declared static.

Math.sqrt(5);

Selection
operator

Name of
method

Name of
class

A class that implements an interface also inherits all its static methods. The inherited method is also a class
method, and therefore, the method can simply be called by using class name as illustrated.

Program 9.13: Illustration of static method in interface
1
 2
 3
 4
 5
 6
7
 8
9
10
11
12
13
14

15
16
17
18

interface InFace1{ // defi ning an interface
int number =1000;
static int compute (int num) // static method defi ned
{int cube = num * num * num ;
System.out.println(“Cube of” + num + “ = ” + cube);
return cube ;}
 }
// implementing an interface
public class StaticMethod implements InFace1

{
public static void main(String[] args) {
StaticMethod sm = new StaticMethod(); // creating object
System.out.println(“Cube root of 1000 = ” + Math.cbrt(number));
//Using number defi ned in interface

InFace1.compute(10); // calling the static method
}
}

Output
Cube root of 1000 = 10.0
Cube of 10 = 1000

Explanation
The interface InFace1 is defi ned in code line 1. The interface
defi nes an integer number 1000 that is used in code line 14 for
fi nding its cube root. The interface also contains a static method

compute (), which computes the cube of a number with full defi nition. This is allowed in Java SE 8. This
method is called in the class with reference of name of interface InFace1. The output is shown.

© Oxford University Press. All rights reserved.

Oxfo
rd

 U
niversi

ty
 Pre

ss

Java—One Step Ahead314

9.9 Functional Interfaces
In Java SE8, a new package java.util.function on functional interfaces has been introduced to serve as the
basis for writing Lambda functions. Functional interfaces are interfaces with one abstract method. They are
also called SAM or single abstract method type. However, a functional interface can have more than one
static and default methods besides the abstract method and it can override some methods of object class. The
programmer may include an annotation, which is given in the following example, in order to lessen the work
of complier that anyway will recognize a functional interface.

@FunctionalInterface

By adding the aforementioned annotation, it can be helpful in detecting compile time errors. If the func-
tional interface contains more than one abstract method, the compiler will throw an error. As we all know,
Java programming language is purely an object-oriented language and an object can call only the methods
encapsulated in the class for the object. There is no independent existence of methods in Java. Methods
are like bonded labourers. However, there are several occasions when a method is required to be passed
as argument to another method. In order to overcome this limitation of Java language, functional inter-
faces have been defi ned in package java.util.function with only one method to serve as target for Lambda
functions or expressions. A partial list of these is given in Table 9.1. The letters T, U, R, etc., represent type
parameters.

Explanation
Out of the list of functional interfaces given in
Table 9.1, the program uses two of them, that is,

(a) function (Double, Double)
(b) binaryOperator (Integer)

The fi rst has been assigned the reference of Math::log and the second is assigned the reference of method
Math::min. The fi rst is used in line 7 to fi nd the logarithm of 10 to the base e. Further, the second is used to
fi nd the minimum of two specifi ed numbers in line 11. The output is shown.

Single argument functional interfaces that return Boolean output are used for fi ltering with a specifi ed test
condition. These are discussed in detail in Section 6.13 in Chapter 6.

Program 9.14: Illustration of uses of functional interfaces
 1
 2
 3
 4
 5
 6
7
 8
9
10
11
12
13

import java.util.function.Function; //importing classes
import java.util.function.BinaryOperator;
public class BiOperator {
public static void main(String args[]){
Function <Double, Double>logrithm = Math::log;
// method reference assigned to Function
System.out.println(“log of 10 to the base e = ” + logrithm.apply(10.0));
// method reference assigned to BinaryOperator
BinaryOperator<Integer> minimum = Math::min;

System.out.println (“Minimum of 20 and 46 is ” + minimum.apply(20, 46));
}
}

Output
log of 10 to the base e = 2.302585092994046
Minimum of 20 and 46 is 20

© Oxford University Press. All rights reserved.

Oxfo
rd

 U
niversi

ty
 Pre

ss

Interfaces 315

Table 9.1 Some standard functional interfaces of package java.util.function

Interface Description

BiConsumer<T,U> Stands for methods that accept two arguments and return no value

BiFunction<T,U,R> Stands for methods that accept two arguments and return a result

BinaryOperator<T> Stands for methods/operation that accept two operands of the same type and produces
a result of the same type

BiPredicate<T, U> Stands for predicate method that accepts two arguments and produces a Boolean type
result

BooleanSupplier Stands for supplier of Boolean type values

Consumer <T> Stands for methods that accept single argument and produce no result

DoubleBinaryOperator Stands for operation on two double valued operands resulting in a double valued result

DoubleConsumer Stands for operation that accepts single double-type argument and produces no result

DoubleFuntion<R> Stands for methods that accept double-type argument and produce a result

DoublePredicate Stands for predicate methods that accept one double argument and give Boolean
output

DoubleSupplier Stands for methods that supply double values

DoubleToIntFunction Stands for functions that accept double type input and result in int type value output

DoubleToLongFunction Stands for functions that accept double type input and result in long type value
output

DoubleUnaryOperator Stands for operation on a single double type operand that yields a double type
result

Function <T, R> Stands for function that accepts one input object and yields appropriate object as
output

IntBinaryOperator Stands for operation on two int operands that gives int type result

IntConsumer Stands for operations that accepts a single int type argument and produce no result

IntFunction <R> Stands for function that accepts an int type argument and produces a result

IntPredicate Stands for predicates with one int type argument

IntSupplier Stands for method that supplies int type values

IntToDoubleFunction Presents a function that accepts int input and results in double type value output

IntToLongFunction Stands for function that accepts int type input and results in long type value output

IntUnaryOperator Stands for operation on a single int type operand, which yields an int type result

LongBinaryOperator Stands for operation on two long type operands, which give a long type result

LongConsumer Stands for operations that accepts a single long type argument but results in no output

LongFunction <R> Stands for function that accepts long type argument and produces a result

LongPredicate Stands for predicates with one long type argument

(Contd)

© Oxford University Press. All rights reserved.

Oxfo
rd

 U
niversi

ty
 Pre

ss

Java—One Step Ahead316

Table 9.1 (Contd)d

The described functional interfaces have one abstract method and provide the target type for Lambda func-
tions and method references that are discussed in Chapter 8. We take a few examples of use of some of these
functionals in Program 9.15.

Interface Description

LongSupplier Stands for supplier of long type values

LongToDoubleFunction Stands for functions that accept a long type argument and produces a double type
result

LongToIntFunction Stands for functions that accept longt type input and results in int type output

LongUnaryOperator Stands for operations on a single long type operand that yields a long type result

ObjDoubleConsumer <T> Stands for operations that accept an object value and a double type argument but
return no output

ObjLongConsumer <T> Stands for operations that accepts an object value and a long type argument and
returns no result

Predicate <T> Stands for predicate that accepts one input and determines if the input object satisfies
some criteria

Supplier <T> A supplier of objects of type T

ToDoubleBiFunction <T, U> Targets the functions that accept two arguments and produce a double output

ToDoubleFunction <T> Stands for function that results in double type result

ToIntBiFunction <T, R> Stands for the functions that accept two arguments and produce an int type output

ToIntFunction <T> Stands for functions that produce an int type result

ToLongBiFunction <T, U> Targets the functions that accept two arguments and produce a long type output

ToLongFunction <T> Stands for function that gives long type result

UnaryOperator <T> Stands for operations/methods on single operand and gives results of the same type

Program 9.15: Illustration of application of predicates in filtering arrays
1
 2
 3
4
 5
 6
 7
 8
9
10
11
12
13
14
15
16

import java.util.function.Predicate; // importing the class
public class Predicate2 {
public static void main(String[] args) { // main class

Predicate<String>str = Predicate.isEqual(“Delhi”);
// using Predicate to test for “Delhi”

System.out.println(str.test(“Katty”));
System.out.println(str.test(“Mahma”));

String [] names={“Indore”, “Aligarh”, “Patiala” ,“Delhi”};

for(inti =0; i<names.length; i++) // for loop
 if (str.test (names[i]))
System.out.println(names[i]);

© Oxford University Press. All rights reserved.

Oxfo
rd

 U
niversi

ty
 Pre

ss

Interfaces 317

Output
false
false
Delhi
Indore Aligarh Patiala

Explanation
The program illustrates the method isEqual applied with a predicate. It
is used to compare strings with string “Delhi” to test if they are equal.
The fi rst code line imports the standard library interface predicate,
which is of the following form.

Predicate<T>

It is defi ned with method isEqual(“Delhi”) in line 5 and applied in code lines 8 and 9 to see if “Katty” or
“Mahma” is equal to Delhi . Obviously, it is false and this result is displayed in the fi rst two lines of the output.

The method is also used to select “Delhi” from an array of strings through code lines 14–16. The same
predicate may be used to fi lter the array as done in code lines 18–21. The output comprises strings of the array
names without “Delhi”.

Program 9.16 illustrates the application of IntBinaryOperator, DoubleBinaryOperator, and BiFunction
<T, U, R>. The Lambda expression is used to defi ne the methods.

17
18
19
20
21
22

for(String s: names) // fi ltering the array
 if (!str.test(s))
System.out.print(s +“ ”);
System.out.println();
 }
}

Program 9.16: Illustration of application of some functional interfaces
1
2
 3
 4
 5
 6
 7
 8
9
10
11
12
13
14
15
16
17

import java.util.function.Function;
import java.util.function.IntBinaryOperator;
import java.util.function.DoubleBinaryOperator;
import java.util.function.BiFunction;

public class Functional1 {
public static void main(String args[]){

IntBinaryOperator ibo = (int m, int n) -> { return (m*m + n*n);};

System.out.println(“The resultant value = ” + ibo.applyAsInt(20, 4));
DoubleBinaryOperator dbo = (double a, double b) -> { return Math.pow(a, b);};
System.out.println(“Three to the power four = ” + dbo.applyAsDouble(3.0, 4.0));
BiFunction<Integer, Integer, Boolean> bif = (x, y) -> {return x.equals(y);};
System.out.println(“Is 45 equal to 30 ? ” + bif.apply(45, 30));
}
}

Output

The resultant value = 416
Three to the power four = 81.0
Is 45 equal to 30 ? false

Explanation
Lambda expressions are used to defi ne the methods for the three
functionals. For the fi rst functional, a reference is created in code
line 9 as ibo and is assigned the method reference. ibo is used
in code line 11 and gets the value returned by the method. The
body of the method for the fi rst one is defi ned as {return (m*m +

n*n);}. It returns the sum of squares of two integers. For the arguments 20 and 4, the output is obviously 416.

© Oxford University Press. All rights reserved.

Oxfo
rd

 U
niversi

ty
 Pre

ss

Java—One Step Ahead318

Program 9.17: Illustration of application of functional interface Consumer<T>
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27

import java.util.function.Consumer;
public class Functional2 {

public static void main(String[] args) {
Consumer <Double> consumer=(Double d) -> { display(d);};
consumer.accept(3.14159);

Consumer<String> consumer1=(String s) -> {display(s);};
String [] sray ={“Akriti”, “Kirin”, “Lata”, “Sunita”};

System.out.println(“\nDisplay of Consumer1.”);
 for (String str :sray)
 consumer1.accept(str);

System.out.println(“\nDisplay of Consumer2”);
Consumer<Integer> consumer2=(Integer n) -> {display(n);};
Integer [] xray = {5,6,8,9,2};

 for (Integer x :xray)
 consumer2.accept(x);
 System.out.println();
}
 // Generic defi nition of display method
public static<T> void display(T t) {
System.out.print(t + “ ”);
}
 }

For the second, it is defi ned in code line 12 as a raised to the power b. For the arguments 3.0 and 4.0, the result
is 3.04.0 that is 81. For the Bifunction(Integer, Integer, Boolean), the two integers 45 and 30 are compared
for equality. The output is a Boolean that is obviously false. The results are given.

9.9.1 Functional Consumer<T>
The interface declaration is

@FunctionalInterface
public interface Consumer {void accept(T t);}

It declares one abstract method void accept(T t). The method only consumes its argument. It does not give
any return value. Hence, it is of void type. The methods that may be defi ned are printing methods or setting
methods that set the values but do not return any value. Program 9.17 illustrates its application.

Output
3.14159
Display of Consumer1.
Akriti Kirin Lata Sunita
Display of Consumer2
5 6 8 9 2

Explanation
The program defi nes a generic method display() in code lines
24–26, which is used to display any type of object. The Consumer
interface has only one method accept(), which takes only a single
argument. Code line 5 defi nes a reference of the interface with
name consumer in which method display() consumes the object,
which is a double value. This forms the fi rst output.

Code line 8 defi nes another reference consumer1 that displays String values. It can consume String objects. At
a time, it takes only one string, and therefore, for consuming an array, a for–each loop is used in lines 12 and 13.

© Oxford University Press. All rights reserved.

Oxfo
rd

 U
niversi

ty
 Pre

ss

Interfaces 319

Code line 16 defi nes a consumer reference consumer2 for consuming Integer values. It takes one integer value
at a time. For display of an array of integers, a for–each loop is used in lines 19 and 20. All outputs are shown.

9.9.2 Functional Supplier
The functional Supplier is the opposite of consumer. It simply supplies an object through its method get(),
which does not take an argument. The method can be used in such a situation where there is no input but there
is output. The declaration of functional is as follows.

@FunctionalInterface
public interface Supplier {
 T get();
}

Program 9.18 illustrates the application of the functional.

Output
23

Program 9.18: Illustration of application of functional Supplier
 1
2
 3
4
 5
 6
 7
 8
 9
10
11
12
13

import java.util.Random;
import java.util.function.Supplier;
class MyNumber {
public int getNumber(){
return (int)(Math.random()*100);
}}
public class Functional3 {
 public static void main(String[] args) {
Supplier<MyNumber> supplier = MyNumber::new;
MyNumber number = supplier.get();
System.out.println(number.getNumber());
}
}

Explanation
The program illustrates the application of functional Supplier<T>. A class MyNumber
is declared in code lines 3–6. A member of the class generates random numbers.
Another class with method main is declared in lines 7–13. The reference supplier

of interface Supplier is defi ned in code line 9 and is assigned reference of class object. The reference is used
to invoke the get method of Supplier as used in code line 10, which is displayed in line 11. The output is given.

9.10 Annotations
Annotation framework in Java language was fi rst introduced in Java 5 through a provisional interface Apt;
however, it was formally introduced in Javac compiler in Java SE 6. It is a type of metadata that can be inte-
grated with the source code without affecting the running of the program. Comments are also a way of adding
information in a source code without affecting the implementation; however, comments are simply neglected
at compile time and do not go further. The comments are introduced only for the user/programmer for under-
standing the program. However, annotations may be retained up to runtime and may be used to instruct the
compiler and runtime system to do or not to do certain things.

Since Java SE 8, the annotations may be applied to classes, fi elds, interfaces, methods, and type declara-
tions like throw clauses. The annotations are no longer simply for metadata inclusion in the program but have
become a method for user’s communication with compiler or runtime system.

© Oxford University Press. All rights reserved.

Oxfo
rd

 U
niversi

ty
 Pre

ss

Java—One Step Ahead320

For example, consider the case of a super class method that is overridden in a subclass. In such a case,
both the method defi nitions should have the same signature. If, by mistake, a type or a parameter in subclass
defi nition is changed, the method is no longer overridden, instead it becomes an overloaded method. The
program will still compile without any error but the result will not be as expected. Besides, it is diffi cult to
catch such an error. The remedy is to add the following annotation before the method defi nition in subclass.

@Override

This will cause the compiler to check and report if the method is really overridden or it is simply overloaded.
Thus, it helps the programmer to catch and correct the error at compile time.

 An annotation like @Override consists of two distinct words @ and Override. It does not matter if there is a
white space between the two. It may as well be written as @ Override; however, the general convention is not
to have a gap. The name Override is the name of the interface that defi nes the annotation. There are a number
of annotations that are predefi ned and are part of the package java.lang.annotation. However, a programmer
may also defi ne an annotation appropriate for his/her program. Annotations are defi ned by interfaces that are
preceded by the tag character @. Thus, annotations can be easily recognized by symbol @ in the code. Java
language library has several predefi ned annotations in its library like the one illustrated. These annotations
are suitable for a majority of programming requirements. However, Java language has provisions for user-
defi ned annotations as well as plug-in third party developments.

Program 9.19 illustrates the application of @override annotation.

Program 9.19: Illustration of application of annotation @override
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

class XX {
public void display(){System.out.println(“This is class XX.”);
 }} // end of class XX

class YY extends XX
{@Override public void display(){System.out.println(“This is class YY.”);
 }} // end of class YY

class ZZ extends XX

{ @Override
public void display(){System.out.println(“This is class ZZ.”);
 }} // end of class ZZ
 // below is class with main method
public class OverrideSuper {
public static void main (String Str[])
 {
 XX objX = new XX();
 YY objY = new YY();
 ZZ objZ = new ZZ();

objX.display();
 objY.display();
 objZ.display();
 }
}

Output
This is class XX.
This is class YY.
This is class ZZ.

Explanation
The super class XX defi nes a method Display and the two sub classes YY and ZZ
override this method. It is the information for the compiler to check whether
type signature of the three methods is the same as given in XX. In the program,

© Oxford University Press. All rights reserved.

Oxfo
rd

 U
niversi

ty
 Pre

ss

Interfaces 321

the three defi nitions have the same signature, and therefore, there is no compile error by the compiler and the
program runs successfully. The output is given.

9.10.1 Benefits of Using Annotations
 1. It provides useful information to the compiler for detecting errors.
 2. The information may also be used for suppressing warnings.
 3. Annotations may be used for generating code in xml.
 4. Annotation may be retained by another annotation for processing at runtime.
 5. It can carry metadata up to runtime and the information may be obtained at runtime.

9.10.2 Annotation Basics
An annotation is an interface that declares only methods and is preceded by symbol @. An annotation may be
defi ned with no methods or with one or more methods.

 1. An annotation with no methods is declared as

@interface MyAnnotation{}

 2. An annotation with one method may be declared as

@interface MyAnn{
int value();
}

 The method is treated as a fi eld and may be assigned a default value as

@interface MyAnn{
int value() default 0; }

 3. An annotation with more than one member method and with default values may be declared as

@ interface MyAnno {
int value1() default 10;
double value2() default 0.0;
String value3() default “ ”;
}

The methods included in an annotation do not have a body. They are more like fi elds and values are assigned
either in an interface or class. An annotation with two methods is.

@ interface TwoAnno {
int value1() default 0;
double value2() default 0.0 ;}

The values may be assigned as

class AnnoValue {
@TwoAnno { value1 = 100, value2 = 20.45}
public static void Method1() { /* statements*/}

Note that the values are assigned to the names of methods, and no parentheses are used. In the aforementioned
case, annotation TwoAnno is connected with method1.

© Oxford University Press. All rights reserved.

Oxfo
rd

 U
niversi

ty
 Pre

ss

Java—One Step Ahead322

9.10.3 Retention Policy
It specifi es how long the annotation can be retained in the program. The property is imparted by another
annotation called @Retention. Three retention options (constants) are defi ned in the language.

Source With this retention policy, the annotation is retained in the source fi le and is discarded at compile
time. It is just like a comment.

Class With this policy specifi cation, the annotation goes up to the .class fi le. It is a part of the compiled
program but it does not go further. It is not available at runtime.

Runtime With this retention policy, the annotation is accessible throughout the running of the program.
One can get the method values of the annotation if it has any.

The retention policy is declared through an argument of predefi ned annotation @Retention. The following
example illustrates the specifi cation.

@Retention(RetentionPolicy.RUNTIME)
@interface MyAnn{
int value() default 0;
}

The policy applies to the following annotation.

9.10.4 Predefined Annotations
A number of annotations were introduced in Java 1.6. New annotations have been added in Java 8 as well.
There are two types of annotations.

1. The annotations that directly apply to the code.
2. The annotations that specify some property of other annotations, that is, they apply to the annotations.

Some of the predefi ned annotations that are generally used are described as follows:

1. @Deprecated: It tells the compiler that the targeted code may be class, fi eld, methods, or if any other fea-
ture has been superseded by a newer code.

2. @Documented: If an element is marked by this annotation, the Javadoc utility outputs it to the documenta-
tion fi le that it creates.

3. @Encrypted: It is annotation of security annotation framework (SAF) for encryption of write and decryp-
tion of read operation.

4. @FunctionalInterfaces: The annotation tells the compiler that it is a functional interface–an interface
with one abstract method. This annotation has been added since Java 8.

5. @Not_Null: Added since Java 8. It informs the compiler that annotated element must not be null.
6. @Override: It tells the compiler that the targeted method overrides a super class method.
7. @Repeatable: It specifi es that the annotation may be applied more than once.
8. @SuppressWarnings: This annotation instructs the compiler not to issue a warning, if otherwise it would.
9. @SafeVarargs: The annotation conveys to the compiler that the code is safe, and therefore, some of the

tests may be skipped for increasing the speed.
10. @Retention: It is the annotation that specifi es the length of retention of the targeted annotation. There are

three options that are described in Section 9.10.3.
11. @Target: When a user constructs own annotation, it is better to tell the compiler about its target ele-

ments. The targets are described in Table 9.2. Its application is illustrated which specifi es the targets as
METHOD and FIELD.

© Oxford University Press. All rights reserved.

Oxfo
rd

 U
niversi

ty
 Pre

ss

Interfaces 323

@Target(ElementType.METHOD, ElementType.FIELD)

Table 9.2 Target elements

Target Description

ElementType.ANNOTATION_TYPE It is applicable to an annotation.

ElementType.CONSTRUCTOR It is applicable to a constructor.

ElementType.FIELD It is applicable to field or property

ElementType.LOCAL_VARIABLE It is applicable to a local variable.

ElementType.METHOD It is applicable to a method.

ElementType.PACKAGE It applies to a declaration of package.

ElementType.PARAMETER It applies to a parameter of a method.

ElementType.TYPE It applies to a type declaration.

@Inherited It specifies that the target annotation is inherited.

9.10.5 Class Method
The Java language has provided a facility so that its code can enquire about itself. This is provided by classes
and interfaces in the package java.lang.refl ect that contains interface Member and several classes. The class
Method is one of the classes of this package.

The methods of class Method are useful in dealing with annotations. It has several methods that can access
annotations at runtime and get information that they carry. The declaration of class Method is as follows.

public fi nal class Method extends AccessibleObject
implements GenericDeclaration, Member

9.10.5.1 Methods of class Method
Some methods useful for the present section are given in Table 9.3.

Table 9.3 Methods of class Method

Method Description

boolean equals(Object obj) Compares the Method object with specified object

<T extends Annotation> T getAnnota-
tion(Class <T> annotationClass)

Returns this element’s annotation if present; otherwise, null

Annotation[] getDeclaredAnnotations() Returns all the annotations in an array

Class<?> getDeclaringClass() Returns the class or interface reference that declares this Method object

object getDefaultValue() Returns the default value of annotation member

int hashCode() Returns hash code

int getModifi ers() Returns modifiers used with this Method object

(Contd)

© Oxford University Press. All rights reserved.

Oxfo
rd

 U
niversi

ty
 Pre

ss

Java—One Step Ahead324

The methods inherited by class Method are as follows:

1. The class inherits all the methods of Object class.
2. The class inherits the methods of java.lang.refl ect.AccessibleObject, which it extends. These methods

are as follows:

getAnnotations(), isAccessible(), isAnnotationPresent(),
setAccessible(), setAccessible()

9.10.6 User Defined Annotation
We have already discussed the basics of annotations and some predefi ned annotations. A programmer may
construct own annotation and use it. In the following discussion, we shall take a few examples of constructing
annotations and using them.

9.10.6.1 Marker Annotation
A marker annotation does not contain any member method. It simply marks a declaration. Its presence may
be obtained by the method isAnnotationPresent().

Program 9.20 illustrates the declaration of Marker annotation and also the application of some of the
methods of class Method.

Program 9.20: Illustration of working of Marker annotation and methods of class Method
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21

import java.lang.refl ect.Method;
 import java.lang.annotation.*;

 @Retention(RetentionPolicy.RUNTIME)
 @Target(ElementType.METHOD)
 @interface MarkerAnnotation1 {} // Marker annotation

 class MAnno {
@MarkerAnnotation1 // Application of annotation
public void display(){System.out.println(“The Marker Annotation has no methods.”);}
 }
 public class MarkerAnno {
 public static void main(String args[])throws Exception{
 MAnno manno = new MAnno();
 MarkerAnno markeranno = new MarkerAnno();
 Method m = manno.getClass().getMethod(“display”);
System.out.println(“The Name of method is ” + m.getName());
 System.out.println(m.toString());
if(m.isAnnotationPresent(MarkerAnnotation1.class))
 System.out.println(“The MarkerAnnotation is present.”);
else

Method Description

String getName() Returns name of method represented by this Method object

Class<?> getReturnType() Returns a class object that represents the formal return type of the method

String toString() Returns a string that describes the Method object

Table 9.3 (Contd)

© Oxford University Press. All rights reserved.

Oxfo
rd

 U
niversi

ty
 Pre

ss

Interfaces 325

Explanation
The program illustrates Marker Annotation as well as
the use of some methods of class Method in enquiry
of the annotation. The Marker annotation is defi ned
in code line 6. Its retention is up to runtime. It is used
in line 9 in class Manno. The class with main method

is declared in line 12. Code lines 14–16 defi ne the objects of the classes. The method getName() is used in line
17 and its output is the name of method display (see the fi rst line of output). The second line of output is the
result of code line 18, that is, output of method toString(). Code lines 19 and 20 test the presence of anno-
tation and give the output displayed in the third line of output. The last line of output is the result of invoking
method display() by the object manno of class Manno.

9.10.6.2 Single Method Annotation
The annotations declare only methods; however, these do not have bodies and the methods behave like fi elds.
Program 9.21 illustrates the case when an annotation has a single method.

Output
The Name of method is display
public void javaapplication1.MAnno.display()
The MarkerAnnotation is present.
The MarkerAnnotation has no methods.

Program 9.21: Illustration of single method (value) user’s annotation
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23

import java.lang.refl ect.Method;
 import java.lang.annotation.*;

 @Retention(RetentionPolicy.RUNTIME) //defi nes retention
 @Target(ElementType.METHOD) // defi nes target
 @interface Single { // declares annotation
 double value () ;
 }
 class SingleData{
 @Single(3.14159) // defi nes annotation value
public void display(){System.out.println(“It is a user
annotation with single method.”);}
 }
public class SingleValue { // class with main method
public static void main(String args[])throws Exception{

SingleData data =new SingleData(); // declares object
Method m = data.getClass().getMethod(“display”);
Single single = m.getAnnotation(Single.class);
System.out.println(“The value = ”+ single.value());
data.display(); //the object data invokes method display
 }
}

22
23
24
25

System.out.println(“The MarkerAnnotation is not present.”);

manno.display();
 }}

Output
The value = 3.14159
It is a user annotation with single method.

Explanation
The program declares an annotation with single
method, that is, double value ();. The name of the
annotation is Single. The value assigned to method

is 3.34159 in code line 10. Note that there is no semicolon at the end of the annotation (see line 10). The class
SingleData also declares a method display linked to the annotation and this is used for declaring object m of

© Oxford University Press. All rights reserved.

Oxfo
rd

 U
niversi

ty
 Pre

ss

Java—One Step Ahead326

Program 9.22: Illustration of metadata in annotation
1
2
 3
4
 5
 6
7
 8
9
10
11
12

13
14
15
16
17
18
19
20
21
22
23
24
25
26
27

 import java.lang.refl ect.Method;
 import java.lang.annotation.*;

 @Retention(RetentionPolicy.RUNTIME)
 @Target(ElementType.METHOD)
 @interface MetaData { // declaration of annotation
 String title() ;
 String author1() default “”;
 String author2() default “”;
 }
 class AnnoData{
 @MetaData(title = “Programming with Java”, author1 = “B. L. Juneja”, author2 =
“Anita Seth”)
 public void display(){System.out.println(“It is a user annotation.”); }
 }
 public class AUserAnnotation {
 public static void main(String args[])throws Exception{

 AnnoData data =new AnnoData();
 Method m = data.getClass().getMethod(“display”);
 MetaData md = m.getAnnotation(MetaData.class);

 System.out.println(“The Title is:” + md.title());
 System.out.println(“The author1 is:” + md.author1());
 System.out.println(“The author2 is:” + md.author2());
 data.display();
 }
}

class Method. For enquiring into the annotation, we have to have objects of classes SingleData and Method
and reference of annotation Single. Code line 20 returns the value of the method of the annotation, which is
displayed.

9.10.6.3 Metadata in Annotation
Program 9.22 illustrates the annotation that simply carries metadata that is retrieved at runtime. Three meth-
ods are declared in the annotation. All the three are of type String. The values carried by the annotation is the
title of a book and names of its two authors.

Output
The Title is: Programming with Java
The author1 is: B. L. Juneja
The author2 is: Anita Seth
It is a user annotation.

Explanation
This program is similar to Program 9.21. Both have multi-
method annotations. In the present program, the data sup-
plied is of type String and concerns a book and its authors.
It is like metadata. Code line 6 declares the annotation that
has three methods, that is, title, author1, and author2. The
default values of the last two methods are given as empty

strings (“ ”). The class Annodata defi nes the annotation with book and its authors. The class Annodata defi nes
the annotation with actual data. The class also has a method. Another class with name AUserAnnotation is
declared with main method. This class defi nes three objects and references, one each of classes AnnoData,
Method, and annotation MetaData in lines 18, 19, and 20, respectively. The reference md of MetaData is used to
inquire into the annotation in code lines 22–24. The output of this enquiry is shown.

Program 9.23 provides an example where multi-method annotation is being used.

© Oxford University Press. All rights reserved.

Oxfo
rd

 U
niversi

ty
 Pre

ss

Interfaces 327

Program 9.23: Illustration of a multi-method annotation
 1
2
 3
4
 5
 6
 7
 8
 9
10
11
12
13
14
15

16
17
18
19
20
21
22
23
24
25
26
27
28
29

30
31
32
33
34
35
36
37

import java.lang.refl ect.Method;
import java.lang.annotation.*;

 @Retention(RetentionPolicy.RUNTIME)
 @Target(ElementType.METHOD)
 // annotation is declared below.
 @interface MultiAnnotation {
 int value1() default 0;
 double value2() default 0.0;
 char value3() default ‘A’;
 String value4() default “ ”;
 }

 class Data{
@MultiAnnotation(value1 = 5, value2 = 10.45 , value3 = ‘D’, value4= “Delhi”)
// note there is no semi-column.
public void display(){System.out.println(“It is a user annotation.”); }
 }

public class MultiMethods {
public static void main(String args[])throws Exception{
 Data data = new Data();
 Method m = data.getClass().getMethod(“display”);
 System.out.println(m.getDeclaringClass());
 // below we use for-each loop
for(Annotation an : m.getDeclaredAnnotations())
 System.out.println(an);
 System.out.println(m.getDeclaredAnnotations());
 System.out.println(m.getDeclaredAnnotations().length);
MultiAnnotation mA = m.getAnnotation (MultiAnnotation.class);
// reference of MultiAnnotation

 System.out.println(“The value1 = ”+ mA.value1());
 System.out.println(“The value2 = ” + mA.value2());
 System.out.println(“The value3 = ” + mA.value3());
 System.out.println(“The value4 = ” + mA.value4());
 data.display();
 }
 }

Output
class Data
@MultiAnnotation(value2=10.45, value1=5,
value4=Delhi, value3=D)
[Ljava.lang.annotation.Annotation;@1540e19d
1
The value1 = 5
The value2 = 10.45
The value3 = D
The value4 = Delhi
It is a user annotation.

Explanation
The program illustrates four-member annotation
and the code for accessing the data of the annota-
tion. Besides, it also determines other information
about the annotation. Code lines 7–12 declare a
four-method annotation. The return types of meth-
ods are int, double, char, and String. Each default
value is also declared with each method. The values
of methods are set in code line 15 in class Data. Line
16 declares a linking method. Note that values are
assigned with names of the methods.

© Oxford University Press. All rights reserved.

Oxfo
rd

 U
niversi

ty
 Pre

ss

Java—One Step Ahead328

interface Dress { public void cutNStitch(double clothLength); }

class Tailor implements Dress

{ /* Frocks, suits, shirts, Gents' suits ...*/}

lass Tailor implements Dres

ass Tailor implements Dr

What's needed?
Frock? Shirt?

Your suit?

A frock, a shirt,
and a suit.

Fig. 9.3 Abstract method of interface leading to several concrete methods (see
Program 9.24, which is written based on these figures)

Program 9.24: Illustration of use of data and method declared in an interface
1
2
3

interface Dress {
int frockTime =6; //Labour time (hours) for stitching frock
int suitTime =100; //time (hours) needed for suit

Code line 19 declares a class with main method. The objects of class Data and class Method are declared
in code lines 21 and 22. The reference to the annotation is defi ned in line 29.

Code line 23 gets information about the declaring class. The fi rst line of output is the result–class Data.
Code lines 25 and 26 make use of for–each loop to fi nd the annotations. The second line of output is the
result. It gives the name of annotation and its values.

9.10.7 Restrictions on Annotations
 1. The annotations can have only methods as their members.
 2. The methods have no parameters and no body. They have type, name, and a pair of parentheses followed

by semicolon. (e.g., String value ();)
 3. The methods can return values that are of primitive type, anum type, Class, String, another annotation,

or an array of these.
 4. The methods cannot have any throw classes.
 5. An annotation cannot extend another annotation.
 6. Default value to the methods may be declared.

9.11 Application Programs
As we know in an interface, normally abstract methods are declared. Several different concrete methods may
be derived from the same abstract method. This is also a kind of polymorphism. Figure 9.3 and Program 9.24
illustrate the same. A cutAndStitch() method is declared in an interface Dress. The method may be used for
stitching a shirt, a frock, or a suit. This is illustrated in Program 9.24. Lambda expressions are used for exe-
cuting concrete method declaration in the expression.

© Oxford University Press. All rights reserved.

Oxfo
rd

 U
niversi

ty
 Pre

ss

Interfaces 329

 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16

17

18

19
20
21
22
23
24
25
26
27
28
29
30
31

int shirtTime =8 ; //time(hours) needed for shirt

public double cutNStitch(double clothLength, double CC, double lC, int time);
//cc= cost of cloth, lC = labour cos/hour,
// Time = time of stitching
} // end of interface
 // class that implements interface
public class Tailor {
public static void main(String[] args) {
 // Declares costs of respective dresses
 double frockCost, shirtCost, SuitCost;
 // Method defi nitions in Lambda expression
Dress frock = (clothLength,CC, lC, time) -> {return(clothLength *CC +lC*
(1 + .5)*Dress.frockTime);};
Dress shirt = (clothLength,CC, lC, time) -> {return(clothLength *CC +lC*
(1 + .5)*Dress.shirtTime);};
Dress suit = (clothLength,CC, lC, time) -> {return(clothLength *CC +lC*
(1 + .5)*Dress.suitTime);};
 // Implementation of methods

double costFrock = frock.cutNStitch(1.5, 120.0, 25.0, 1);
double costShirt = shirt.cutNStitch(2.2, 150.0, 30.0, 8);
double costSuit = suit.cutNStitch(3.0, 750.0, 40.0, 100);

// output of costs for bill
System.out.println(“Cost of stitching frock = ” + costFrock);
System.out.println(“Cost of Stitching shirt = ” + costShirt);
System.out.println(“Cost of Stitching suit = ” + costSuit);
 // Making total bill
System.out.println(“Total Bill = ” + (costFrock + costShirt + costSuit));
 }
}

Output
Cost of stitching frock = 405.0
Cost of Stitching shirt = 690.0
Cost of Stitching suit = 8250.0
Total Bill = 9345.0

Program 9.25: Illustration of another application program
 1
 2

 interface Shape{
public double area(double r, double h);

Explanation
The program computes the cost of stitching a dress. The
different data given in the exercise is arbitrary. The inter-
face declares time durations in hours required for stitch-
ing a frock, a suit, and a shirt. It also declares an abstract
method for computing the cost of dresses. The variables of

method are double clothLength–length of cloth needed for the job, double CC–cost of cloth per metre for dress,
double lC–cost of labour per hour, and time in hours needed by labour to complete the job. Fifty percent of the
labour cost is taken as overhead cost for all cases and is included in labour cost.

Code line 14 declares variables for cost of three dresses. Lines 16–18 defi ne the cost method for each
dress. Although the method is same, separate defi nitions are given so that different formulations may be
possible in the future. Lines 21–23 supply the data and calculate costs for the three dresses. The costs are dis-
played by lines 26–28. Line 30 prepares and displays the total bill for the three dresses. The outputs are given.

Program 9.25 illustrates an application program in which the area and volume of a given cylindrical shape
is calculated.

© Oxford University Press. All rights reserved.

Oxfo
rd

 U
niversi

ty
 Pre

ss

Java—One Step Ahead330

 3
4
 5
 6
7
 8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49

public double volume(double r, double h);
interface Nested{
public void display();
}
}

public class ShapeCylinder implements Shape
{
double r, h;
public ShapeCylinder(){
double radius = r;
double height = h;
}
public double area()
{
 double radius = r;
double height = h;

return 2*3.14*radius*(radius + height);
}
public double volume()
{
double radius = r;
double height = h;
return (3.14*radius*radius * height);
}
public void display(){
System.out.println(“Volume and Area of cylinder is computed here”);

}
}
public class ShapeImplement {
public static void main(String args[])
{
Shape.Nested a;
 ShapeCylinder sc =new ShapeCylinder();
a = sc;
a.display();
Shape b;
ShapeCylinder st =new ShapeCylinder();
 b = st;

System.out.println(“Area of Cylinder is = ” +b.area(7,15));

System.out.println(“Volume of Cylinder is = ” +b.volume(7,15));

}
}

Output
Volume and Area of cylinder is computed here
Area of Cylinder is = 967.12
Volume of Cylinder is = 2307.9

Explanation
The program declares two interfaces, one with name
Shape and the other with name Nested. Two meth-
ods are declared in Shape and one in Nested. A class
with name ShapeCylinder implements the interface

Shape. This class does not have main method. Therefore, another class ShapeImplement with main method executes
the class ShapeCylinder. The important point is how to access nested interface. See line 37 in which reference to
Nested is declared. The a calls method display. A reference to Shape is created in line 41 which is assigned object
reference of class ShapeCylinder. This is used to call methods of Shape. The output is given.

© Oxford University Press. All rights reserved.

Oxfo
rd

 U
niversi

ty
 Pre

ss

Interfaces 331

Common Programming Errors and Tips
Some common programming errors are described here.
 1. The fi eld variables declared in the interface must be initialized; otherwise, it will not compile.
 2. A class implementing an interface must implement all its abstract methods.
 3. The type signature of the implementing method should be exactly same as the type signature specifi ed in the

interface defi nition; otherwise, it may result in error.
 4. Interfaces cannot implement themselves and they have no constructor methods, and hence, they cannot have

objects. Use of operator new for their reference is wrong.

interface Book{}
Book book = new Book(); // wrong

 The reference to Book may be created as in the following code, which is similar to declaration of primitive types
of declaration.

Book book;

 5. An interface with single abstract method can be the target of Lambda expression, which is explained in
Chapter 6.

 6. The fi eld variables defi ned in top-level interfaces are implicitly public, static, and fi nal. However, the specifi ca-
tion of these modifi ers with variables does not create a compile-type error.

 7. All the annotations declare only methods; however, they have no bodies and parameters. Their values are like
fi eld variables.

 8. Only the name of member is used while assigning a value to an annotation member. The parentheses are not used.
Thus, if String name(); is one member, the value is assigned as name = “Geeta” in the case of multi-method
annotation. For single method, an annotation uses value as name.

 9. Do not create instances of interface directly. For this, create an instance of some class that implements the inter-
face and reference that instance as an instance of interface.

 10. All the variables in interface are public, and therefore, public keyword in the variable declaration can be
avoided.

 11. All default, abstract, and static methods in interface are implicitly public, and therefore, public keyword in the
method declaration can be omitted.

 12. Nested interfaces cannot be accessed directly; it must be referred by the outer interface or class.
 13. Nested interface can have any access modifi er if it is declared within the class. However, it must be public if it is

declared inside the interface.

SUMMARY
• Declaration of an interface starts with the access modifi er

followed by the keyword interface. This is followed by its
name or identifi er, and then, by the block of statements
containing declarations of variables and abstract methods.

• The variables defi ned in interfaces can be implicitly
public, static, and fi nal. They are initialized at the
time of declaration.

• The modifi ers that can be used with declaration of
interfaces include public, private, and protected.
However, for top-level interfaces, it is only public.

• The interfaces are implemented by classes. An interface
can be declared as a member of a class or in another
interface. In the capacity of a class member, it can have

the attributes, which are applicable to other class mem-
bers. Its access may be modifi ed to public, protected, or
private. In other cases, an interface can only be declared
as public or with default (no-access modifi er) access.

• An interface can also extend an interface.

• The Java version 8 allows full defi nition of default and
static methods in interfaces. A static method is a class
method. For calling a static method, one does not need an
object of class. It can simply be called with class name.

• The functional interfaces are added in Java SE8.
These are interfaces with one abstract method only
and may be used as target for Lambda expressions
and method references.

© Oxford University Press. All rights reserved.

Oxfo
rd

 U
niversi

ty
 Pre

ss

Java—One Step Ahead332

• A functional interface can have more than one static
and default methods besides the abstract methods and
it can override some methods of object class.

• In the program, an annotation, which is given, can be
included in order to lessen the work of complier that
will recognize a functional interface.

@FunctionalInterface

 Adding the aforementioned annotation would be
helpful in detecting compile time errors.

• A new package java.util.function has been intro-
duced in Java 8 that contains the predefi ned functional
interfaces and that may be used as target for Lambda
expressions for most of the applications.

GLOSSARY
@Functional Interface A connotation for compiler to
indicate that it is functional interface.
Abstract method It is a method that is only declared in
a class but not defi ned. An abstract class is any class that
includes an abstract method.
Default methods in interfaces Java 8 has allowed full
defi nition of default methods in interfaces. The method
defi nition has to be qualifi ed by keyword default.
Functional interfaces An interface that has one abstract
method; also called SAM (single abstract method type).
Generic interface Like a class, an interface is generic if
it declares one or more type of variables.

Java.util.function A new package is created in Java 8
that contains predefi ned functional interfaces having one
abstract method to be used as target for Lambda expressions.
Nested interface It is an interface that is defi ned in the
body of a class or interface.
Static method A static method is a class method and we
do not need an object of class for calling a static method.
Static methods in interfaces Java 8 has allowed full
defi nition of static methods in interfaces. The method defi -
nition has to be qualifi ed by keyword static.
Top-level interfaces It is an interface that is not nested in
any class or interface.

EXERCISES
Multiple-choice Questions
 1. Which of the following statements are correct?
 (a) An interface can extend only one class.
 (b) An interface can extend any number of classes.
 (c) An interface can extend only one interface.
 (d) An interface can extend any number of interfaces.

 2. Which of the following access specifi ers can be used
for an interface?

 (a) Public (c) Protected
 (b) Private (d) All of these

 3. Which of the following statements are correct?
 (a) Class can extend an interface.
 (b) Interface can extend a class.
 (c) Class implements interfaces.
 (d) None of these.

 4. Which of the following statements are correct?
 (a) A concrete class implementing an interface must im-

plement all the abstract methods of the interface.
 (b) A class may partially implement an interface.
 (c) A class that implements an interface must imple-

ment at least one abstract method of interface.
 (d) A class implementing fully a number of interfac-

es must be declared an abstract class.

 5. Which of the following is the correct way of imple-
menting an interface Acceleration by class Vehicle?

(a) class Vehicle implements Acceleration {}
(b) class Vehicle extends Acceleration {}
(c) class Vehicle imports Acceleration {}
(d) None of these

6. Which of the following statements are correct for
classes implementing one interface?
(a) All the classes that implement an interface must

have the same defi nitions of methods declared in
an interface.

(b) Different classes can have different defi nitions of
the methods of the interface.

(c) Classes can assign different values to variables
defi ned in an interface.

(d) Variables defi ned in an interface are static and
fi nal.

7. Which of the following represents the correct defi ni-
tion of interface?
(a) interface Shape {void draw() {}}
(b) interface Shape {void draw()}
(c) interface shape {void draw};
(d) interface Shape {void draw();}

8. Which of the following statements are correct regard-
ing interfaces?

© Oxford University Press. All rights reserved.

Oxfo
rd

 U
niversi

ty
 Pre

ss

Interfaces 333

 (a) An interface cannot implement itself.
 (b) An interface can have object references.
 (c) A class can extend an interface.
 (d) An interface can implement another interface.

 9. How many abstract methods should a functional
interface have?

 (a) One (c) Three
 (b) Two (d) Any number

10. In Java, default methods can be declared in which of
the following cases?

 (a) In classes only
 (b) In interfaces only
 (c) In classes as well as in interfaces
 (d) Outside classes or interfaces

11. Which of the following is correct for calling a static
method?

 (a) Object_name.class_name.method_name
 (b) Class_name.object_name
 (c) class_name.method_name
 (d) None of these

12. Which of the following statements is correct?
 (a) A functional interface may have default and stat-

ic methods besides abstract method and/or other
variables.

 (b) A functional interface can have only one
default method besides one abstract method.

 (c) A functional interface can have only one static
method besides one abstract method.

 (d) A functional interface cannot have default or
static methods.

13. Which of the following lines would give compilation
error?
interface Score {

int p = 15;
// line 1

public static int x = 23;
// line 2

public int y = 34;
 // line 3
public static fi nal int z = 56;
// line 4

}
(a) 1 (c) 3
(b) 2 (d) 4
(e) None of these

14. Which of the following statements are correct regard-
ing default methods in interfaces?
(a) A default method may be declared fi nal.
(b) A default method can be synchronized.
(c) A default method cannot override the non-fi nal

methods of Object class.
(d) None of these.

15. What would be the output of the following codes?
interface Show{
public void method();
}
class X {
public void method(){
System.out.println (“ Class X method”);
}
}
class Y extends X implements Show{
public void method() {
System.out.println (“ Class Y method”);
}
}
public class Demo extends Y {

public static void main (String[] args)
{
Show s = new Y();
s.method();}
}
(a) Class Y method
(b) Class X method
(c) Compiles but does not print anything
(d) Gives compilation error

Review Exercises
 1. Differentiate between a class and an interface.

 2. What is the purpose of having an interface in a program?

 3. What are functional interfaces?

 4. What is the difference between an interface and an
abstract class?

 5. What are the attributes of a variable declared in an
interface?

 6. How do you declare an interface?

 7. How do you implement an interface?

8. How are methods declared in an interface?

9. Does an interface extend another interface?

10. Does an interface implement another interface?

11. Can you declare an interface inside a class?

12. Can you declare a class in an interface?

13. How do you access an interface declared in a class?

14. Can an interface extend more than one interface?

15. What is a predicate?

© Oxford University Press. All rights reserved.

Oxfo
rd

 U
niversi

ty
 Pre

ss

Java—One Step Ahead334

Programming Exercises
 1. Declare an interface with a method to calculate the

volume with one double parameter. Implement the
same for fi nding the volume of a sphere and cube by
two different classes.

 2. Write a program that illustrates accessing a nested
interface in another interface that is nested in a class.

 3. Write a program to illustrate the implementation of
nested interfaces.

 4. Write a program to illustrate use of interface with a
nested class.

 5. Write a program in which a class implements more
than two interfaces.

 6. Write a program to illustrate an interface extending
two interfaces and implemented by a class.

 7. Write a program that uses a predicate to test if an
array of integers contains a particular number.

 8. Design an interface named InfaceXd with a method
reverse() that reverses the digits of the number
(i.e., if 45,678 is the number, then it should return
87,654).

 9. Design an interface with the following details:

 Interface named InfaceA having method

 getVelocity(r) that calculates and returns velocity of
satellite as given

Velocity = sqrt. of (µ/r)

 where r is the altitude of satellite measured from the
centre of the earth, µ is the Kepler’s constant with
value 3.986004418 × 105.

 There is nested interface, InfaceB with method, and
getAcceleration(r) that calculates and returns the
acceleration of the satellite as

 Acceleration = (µ/r2)

 10. Write a program in which interface is given by
name MeanInterface. Method mean() is defi ned in
this interface that calculates the mean of the given
numbers arranged in an array. This interface is then
extended and method is defi ned in this interface that
calculates deviation from the mean value evaluated
for each of the numbers.

 11. Write a program that illustrates the functional Binary
Operator.

 12. Write a program that illustrates the functional Function.

Debugging Exercises
 1. Debug the following program and run it to fi nd the

area of a circle and a square.
interface Volume;
{double Compute (double x);
}

class Cube implements Volume
{public double Compute (double x)
{return (x*x*x);}
}
class Sphere implements Volume
{public double Compute(double x)
{return (4*3.141*x*x*x/3);}
}
classCubSpher;
{public static void main(String arg[])
{ Cube Cub = new Cube()
Sphere Sphr = new Sphere();
Volume Vol;
Vol = Cub;
System.out.println(“Volume of cube = ” +
Vol.Compute(10));
Vol =Sphr;
System.out.println(“Volume of sphere = ” +
Vol.Compute());
}}

 2. Debug the following program and run it to fi nd the
area of a circle and a square.
public interface A{
int area(int x, int y);
{
int i = x;
int j = y;
return (i*j);
}
}
class SingleRoom implements A
{
public int area(int x, int y);
}
class Room
{
public static void main(String args[])
{
Room r=new Room();
System.out.println(“Area of room is = ” +
r.area(4.0, 7.0)”);
}

3. Debug the following program and run it to fi nd the
area of a circle and a square.
class demo {
public interface Inface {

© Oxford University Press. All rights reserved.

Oxfo
rd

 U
niversi

ty
 Pre

ss

Interfaces 335

int sum(int x, int y);}
}

class B implements Inface
{
public int sum (int x, int y)
 {return x + y ; }
}

class ABC
{public static void main(String arg[])
{
inface s = new B();
System.out.println(“Addition of two numbers
is = ” + s.sum (30, 12));
}

4. Debug the following program and run it to fi nd the
area of a circle and a square.
interface InfaceD
{
double getVolume(double x);
interface Display{
public void show();
}
}
1. class Calculate implements InfaceD, Dis-
play
{
double getVolume(double x)
{
double volume = 4/3*PI*x*x*x;
return volume;
}
public void Display.show()
{
System.out.println(“Volume of given
shapes”);
}

public static void main(String args[])
{
2. Display d=new Calculate();
 InfaceD s = new Calculate();

d.show();
System.out.println(“Volume is = “ +d.get-
Volume(4.0)”);
}

5. Debug the following program and run it to fi nd the
area of a circle and a square.

import java.lang.refl ect.Method;
 import java.lang.annotation.*;

 @Retention(RetentionPolicy.RUNTIME)
 @Target(ElementType.METHOD)

// annotation is declared below.
 @interface MultiAnnotation {
 int value1() default 0;
 double value2() default 0.0;
 char value3() default ‘A’;
 String value4() default “ ”;
 }

 class Data{
 @MultiAnnotation(value1 = 5, value2 = 10.45
, value3 = ‘D’, value4= “Delhi”)
public void display(){System.out.println(“It
is a user annotation.”); }
 }

 public class MultiMethods { // class
with main method
 public static void main(String args[])
throws Exception{

 Data data = new Data();
 Method m = data.getClass().get-
Method(“display”);
 System.out.println(m.getDeclared
Class());
 System.out.println(m.getDeclaringAnnota-
tions());

System.out.println(m.getDeclaredAnnota-
tions().length);
MultiAnnotation mA=m.getAnnotation(MultiAn-
notation.class);

 System.out.println(“The value1 = ” +
mA.value1());
 System.out.println(“The value2 = ” +
mA.value2());

 System.out.println(“The value3 = ” +
mA.value3());
System.out.println(“The value4 = ” + mA.val-
ue4());
 data.display();
 }

 }

Answers to Multiple-choice Questions

1. (d) 2. (a) 3. (c) 4. (a) 5. (a)
6. (b) and (d) 7. (d) 8. (a) and (b) 9. (d) 10. (b)

 11. (c) 12. (a) 13. (e) 14. (c) 15. (a)

© Oxford University Press. All rights reserved.

Oxfo
rd

 U
niversi

ty
 Pre

ss

	Prelims
	Chapter-1
	Chapter-2
	Chapter-3
	Chapter-4
	Chapter-5
	Chapter-6
	Chapter-7
	Chapter-8
	Chapter-9
	Chapter-10
	Chapter-11
	Chapter-12
	Chapter-13
	Chapter-14
	Chapter-15
	Chapter-16
	Chapter-17
	Chapter-18
	Chapter-19
	Chapter-20
	Chapter-21
	Chapter-22
	Chapter-23
	Chapter-24
	Chapter-25
	Chapter-26
	Chapter-27
	Appendix-A
	Appendix-B
	Java Interview Questions
	Index
	About The Author
	Related Titles

