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iv  ContentsFeatures of the Book

Illustrations
Neatly Illustrations circuits for 
easy visualization of circuits 
using standard symbols for 
electrical and electronic com-
ponents. Graphs depicting a 
comparative study of electrical 
quantities and phasor diagrams 
for better understanding of the 
phase relationships.

Coverage
Simplified lucid explanation in chapters 
with newly introduced topics such as 
Terminating Half Sections, Composite filters, 
and Bode Plots. Additional solved examples 
for practice and better understanding of 
concepts in every chapter. MATLAB-based 
solved and unsolved problems.

Solved Examples 
Solved 
examples with 
screenshots to 
demonstrate 
the use of 
MATLAB 
for solving 
problems 
based on 
circuit analysis, 
design, and synthesis. 

Key Concepts
Key Concepts at the 
beginning of every 
chapter give a brief 
description of the 
topics covered in 
the chapter and the 
concepts taught. 

Chapter 2
Node Voltage and  

Mesh Current Analysis
'Unless you try to do something beyond what you have already mastered, you 
will never grow'.

– Ronald E. Osborn

Key Concepts

	 •	 Describing	the	method	of	nodal	analysis	for	computation	of	node	voltages	
in	a	circuit

	 •	 Describing	the	method	of	mesh	analysis	technique	for	computation	of	mesh	
currents	in	a	circuit

	 •	 Formulation	of	nodal	and	mesh	equations	in	matrix	form
	 •	 Use	of	supernode	and	supermesh	in	circuit	analysis
	 •	 Ability	to	decide	which	method	out	of	nodal	and	mesh	analyses	is	best	suited	

for	analysis	of	a	given	circuit

2.1 Preamble
Applications	 of	 Ohm's	 and	Kirchhoff's	 laws	 for	 solving	 series,	 parallel,	 and	
series–parallel-connected	circuits	have	been	described	in	Chapter	1.	In	practice,	
however,	 complex	 circuits	 containing	 multiple	 sources	 of	 power	 or	 complex	
configurations	are	encountered.	To	analyse	such	complex	circuits,	two	different	
techniques,	 namely	 node-voltage	 analysis	 based	 on	 KCL	 and	 mesh	 current	 
analysis	based	on	KVL	are	presented	 in	 this	 chapter.	The	 advantages	of	 these	
methods	 are	 (i)	 no	 simplification	 of	 a	 circuit	 is	 necessary	 and	 (ii)	 powerful	 
techniques	are	available	for	determination	of	currents	and	voltages	in	individual	
elements	of	the	circuits.

2.2 Node Voltage Analysis
The	method	of	node	voltage	analysis	works	on	 the	principle	of	defining	node	
voltage	 as	 an	 independent	 variable.	 Systematic	 application	 of	 the	 technique	
leads	 to	 the	 determination	 of	 node	 voltages	 and	 is	 demonstrated	 below	with	
the	help	of	a	four-node	circuit	shown	in	Fig.	2.1.	The	assumed	voltages	of	the	
independent	nodes	1,	2,	and	3	are	shown	in	the	figure,	whereas	node	4	is	selected	
as	the	reference	node.
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5.4.1.1 Resistor Response
Consider	a	sinusoidal	voltage	source	applied	across	a	resistor	of	R	Ω	as	shown	in	
Fig.	5.4(a).	Let	the	voltage	source	be	represented	in	the	time	domain	by

	 (5.14)	
Current	 i(t)	flowing	 through	 the	 resistor	 is	obtained	by	applying	Ohm's	 law	as	
follows:

	 (5.15)	

In	phasor	form,	Eqs	(5.14)	and	(5.15)	may	be	written	as

V = ∠2V ϕ 	 (5.16a)	

and	 I = ∠2V
R ϕ 	 (5.16b)	

Thus,	in	the	frequency	domain,	the	relationship	between	the	applied	voltage	and	
resistor	current	may	be	expressed	in	phasor	form	as

V = RI 	 (5.17)	
From	Eqs	(5.16),	it	is	seen	that	both	the	voltage	and	current	phasors	have	the	same	
phase	angle	φ,	indicating	the	applied	voltage	and	the	current	flowing	through	the	
resistor	are	in	phase.
A	sketch	in	the	complex	plane	showing	the	relationships	of	the	phasor	voltage	

and	phasor	current	throughout	a	given	circuit	is	named	its	phasor diagram.	Figure	
5.4(b)	shows	the	phasor	diagram	of	the	resistive	circuit	of	Fig.	5.4(a).	Plot	of	v(t)	
and	i(t)	against	time	is	shown	in	Fig.	5.4(c).

v t V t( ) cos= +( )2 ω ϕ V

i t
V t

R( ) =
+( )











2 cos ω ϕ

Reference

I

V

φ+ –

+ –R

T = 0.02s

v i

0 0.01 0.02 0.03 0.04 0.05 0.06

–0.5

0

0.5

1

Time t(s)

V
ol

ta
ge

 v
, c

ur
re

nt
 i

(b)(a)

(c)

2 Vcos (ωt + φ)

i(t)

Fig. 5.4 Response of a resistor to sinusoidal voltage: (a) Resistor connected across 
sinusoidal voltage source, (b) phasor diagram, (c) plot of applied voltage and current 

in resistor versus time

Chapter 3
Signals and Waveforms

'In the middle of difficulty lies opportunity'.

—Albert Einstein

Key Concepts

	 •	 Classification	of	voltage	and	current	signals	that	occur	in	electric	circuits	
into	periodic,	non-periodic,	and	random	signals

	 •	 Define	the	various	terms	related	to	voltage	and	current	signals	such	as	cycle,	
frequency,	 period,	 instantaneous	 value,	 average	 value,	 root	mean	 square	
(RMS),	or	effective	value

	 •	 Representation	of	periodic	and	non-periodic	signals	in	terms	of	mathematical	
functions

	 •	 Combination	of	different	functions	by	addition,	subtraction,	or	multiplication	
to	obtain	complex	waveforms.

3.1 Preamble
In	 addition	 to	 electric	 circuits	 being	 subjected	 to	 DC	 and	 sinusoidal	 forcing	
functions	of	voltage	and	current	waveforms,	they	also	experience	signals,	which	
are	more	complex.	Fortunately,	all	voltage	and	current	waveforms	that	occur	in	 
network	analysis	can	be	described	by	a	few	simple	mathematical	functions.	These	
functions	 are	 investigated	 in	 detail	 in	 this	 chapter.	 Techniques	 for	 combining	
(synthesizing)	of	the	basic	functions	to	obtain	more	complex	waveforms	are	also	
described.

3.2 Classification of Signals
A	signal	is	any	waveform	that	serves	as	a	means	of	communication.	It	represents	
a	fluctuating	electric	quantity,	such	as	voltage,	current,	sound,	image,	or	any	mes-
sage	transmitted	or	received	in	telegraphy,	telephony,	radio,	television,	or	radar.	A	
waveform	is	the	shape	of	the	curve	obtained	when	the	instantaneous	values	of	a	
variable	quantity	are	plotted	along	the	ordinate	with	the	time	as	the	abscissa.
A	function	is	a	mathematical	representation	of	a	time-varying	physical	quantity.	

The	time	domain	of	all	functions	discussed	in	this	chapter	is	–∞	<	t	<	∞.	Voltage	
and	current	signals	are	categorized	as	time	functions	as	follows:

(a)	Periodic	functions
(b)	Non-periodic	functions
(c)	Random	functions.
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Fig. 1.7 Variation of current through the inductor
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Example 1.15	 A	 voltage	 pulse	 v e tt= −( )−2 1 44 V 	 for	 t	 >	 0	 s	 is	 applied	 across	 a	
200	mH	pure	inductor.	Assume	v	=	0	V	for	t	<	0	s	and	derive	expressions	as	functions	of	
time	for	(a)	the	flow	of	current	in	the	inductor,	(b)	power,	and	(c)	energy.
Solution

(a)	 If	it	is	assumed	that	i	=	0	for	t	<	0,	then	i	(0)	=	0	in	Eq.	(1.11).	Hence,	the	expression	
for	the	flow	of	current	through	the	inductor	is	used	as	follows:

 (1.15.1)

	 Integration	of	Eq.	(1.15.1)	leads	to

(b)	 Using	Eq.	(1.12),	expression	for	power	is	obtained	as

(c)		Expression	for	energy	is	obtained	by	employing	Eq.	(1.13)	as

Example 1.16	 Use	the	expressions	in	Example	1.15	for	v,	i,	p,	and	W	and	plot	their	
variations	against	time	t.	Use	MATLAB	facility	to	plot	the	curves.	From	the	plots	deter-
mine	the	time	interval	in	which	the	inductor	is	(a)	absorbing,	(b)	returning	energy	to	the	
source,	and	(c)	maximum	energy	stored.

Solution	 Plot	of	inductor	voltage	versus	time
>> t = linspace(0, 1, 10000); % divides the time axis between 0 

to 1 sec. into 10000 parts

>> v = 2*(1−4*t)·*exp(−4*t); % input voltage across the inductor

>> plot(t, v) % plot v (t) versus t

>> grid on % grid is turned on

>> xlabel('Time t in sec') % label x-axis

>> ylabel('Inductor voltage v in volts') % label y-axis
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Contents  vSolved Examples
Numerous solved examples 
in every chapter provide  
step-wise solutions for 
practice and better 
understanding.

Exercises
A recap of the important
concepts is provided at the end of 
every chapter for easy reference 
of faculty as well as students. 
The recap is followed by some 
typical MCQs and Numerical 
Problems in the ‘Exercises’ section 
which further assist in revision. 
These features prove to be a rich 
resource for self-evaluation for 
the students as well as for class 
evaluation by the faculty.

Appendices
MATLAB and Pspice utilities 
in Appendices A and B 
demonstrate their versatility 
in coding and solving 
problems in electric circuits. 
In Appendix C answers 
to end chapter unsolved 
problems have been 
included. The self-appraisal 
test in Appendix D provides 
a tool to the students to 
quickly identify their strengths 
and weaknesses and take 
remedial action.

A list of reference material at 
the end of the book provides 
details of the resources that 
can be accessed by faculty 
as well as students for further 
reading. 
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(b)	 Employing	Eqs	 (7.6.1)	 to	 (7.6.4)	and	 the	MATLAB	graph-plotting	 function,	 the	 in-
stantaneous	voltage	 and	power	 are	plotted	 in	Fig.	 7.7.	From	 the	plot	 it	 is	 seen	 that	
maximum	power	is	2	W	and	it	occurs	at	t	=	0.01	sec.

(c)	 Substituting	for	Vm	and	R	in	Eq.	(7.6.5)	gives	Pavg W=
×

=2
6 2

1
3

2

Fig. 7.7

2.5

2

1.5

1

0.5

0
0.01 0.02 0.03 0.04 0.05 0.06
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p v

0
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Example 7.7	 Find	the	instantaneous	and	average	power	absorbed	by	the	network	in	
Fig.	7.1	if	v t t( ) = + °( )220 314 30cos 	and	i(t)	=	15 314 12cos t − °( )A.

Solution	 From	Eq.	(7.1)

 (7.7.1)

Rewrite	Eq.	(7.7.1)	by	making	use	of	the	trigonometric	identity	as	follows:

p t t( ) = × × + °( ) + °( ) 

= +

220 15 1
2 628 18 42

1226 19 16

cos cos

.       550 628 18cos t + °( )  W 
(7.7.2)

Phase	angle	difference	between	voltage	and	current	ϕ = ° − −( )° = °30 12 42

From	Eq.	(7.9)	Pavg W= × °( ) =220
2

15
2

42 1226cos ,	which	is	the	same	as	the	constant	term	
in	Eq.	(7.7.2)

Example 7.8	 An	 impedance	 Z = −( )25 60j Ω	 is	 connected	 across	 a	 voltage	 source	
VS V= ∠ °110 0 .	Use	MATLAB	to	compute	the	average	power	consumed	by	the	impedance.	
Show	that	the	power	consumed	by	the	capacitor	is	zero.

Solution	 Steps	for	using	MATLAB	are	as	follows:
VS = 110; Z = 25 – i*60; % input data

>> I = VS/Z % compute circuit current in complex 
form

I =

0.6509 + 1.5621i

>>Imag = abs(I) % determine magnitude of circuit 
current in amperes

Imag =

1.6923

p t t t( ) = + °( )× − °( )220 314 30 15 314 12cos cos
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Solution	 Since	the	supply	voltage	at	the	terminals	of	the	induction	motor	is	to	be	main-
tained,	the	loads	must	be	added	in	parallel.
For	 induction	 motor,	 power	 factor	 angle	 φ = ( ) = °−cos . .1 0 75 41 41 ,	 and	 power	 con-

sumed,	P = × =72 746 53 712. 	 kW.	Based	on	 the	power	 triangle,	 lagging	 reactive	power	
Q = × °( ) =53 712 41 41 47 37. tan . . 	kVAR.

(a)	 When	rated	real	power	is	added,	power	factor	angle

	 Thus,	power	factor	φ = °( ) =cos . .23 80 0 915

	 Line	current	I = ×
×( ) =2 53 712

230 0 915
0 51.

.
. 	kA

(b)	When	equivalent	negative	kVAR	is	added,

	 power	factor	angle	ϕ = −





 = °−tan . .

. .1 47 37 47 37
53 712 0

	 Thus,	power	factor	ϕ =1 0.

	 Line	current	I = =53 712
230 0 23. . 	kA

	 Addition	of	either	real	or	reactive	powers	leads	to	improvement	in	power	factor.	How-
ever,	in	the	former	case,	the	line	current	from	the	supply	is	more	than	doubled.

Recapitulation
	 •	 Instantaneous	power	in	an	AC	circuit:

	 •	 The	average	power	consumed	by	impedance,	in	a	circuit,	energized	by	a	sinusoidal	
voltage	source:	P P VIavg = = cosφ

	 •	 Only	the	resistive	component	of	the	impedance	consumes	power.	The	reactive	com-
ponent	(inductive	or	capacitive)	consumes	zero	power.	However,	energy	is	continu-
ally	exchanged	between	the	energy	source	and	the	reactive	component.

	 •	 The	reactive	power	being	exchanged	is:	 p t Q t( ) sin= ± 2ω 	VAR,	where	Q VI= sinϕ 
VAR.	For	the	assumed	direction	of	current	flow,	Q	is	positive	for	inductive	reactance	
and	negative	for	capacitive	reactive.	The	frequency	of	power	exchange	is	twice	that	
of	the	applied	voltage.

	 •	 Complex	power	in	a	circuit:	S	=	VI*	=	VI	cos	φ	+	j VI	sin	φ	=	P	+	jQ	VA

	 •	 Magnitude	of	complex	power:	S = ( ) + ( ) = + = ( )VI VI P Q VIcos sinφ φ2 2 2 2 	VA

	 •	 Power	factor	of	a	load:	 pf real power
apparent power= = =cosφ P

S

	 •	 Reactive	power	factor	of	the	load:	 rf reactive power
apparent power= = =sinφ Q

S

φ =
+[ ]









 = °−tan .

. .
.1 47 37

53 712 53 712
23 80

p t v t i t VI t ti i( ) cos cos sin sin= ( ) ( ) = + +( )  − +( ){ }ϕ ω θ ϕ ω θ1 2 2 VA
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	 •	 The	power	factor	angle	of	a	utility	supplying	a	number	of	complex	loads:

	 •	 Capacitance	of	a	capacitor	to	change	the	initial	pf	angle	φin 	to	the	final	power	factor	

angle	φfi	(pf	improvement):	C
P

V
=

−( )tan tanφ φ
ω

in fi F2

	 •	 Alternate	forms	of	computing	power	in	a	circuit:	 P I R I R= =2
2

2
m W,

Q I X I X= =2
2

2
m VAR ,	and	 S P jQ

Z
= +( ) =

V 2

*

Exercises
Review Questions
	 1.	 What	is	instantaneous	AC	power?
	 2.	 Define	and	explain	(a)	average,	(b)	active,	and	(c)	reactive	powers.
	 3.	 Derive	expressions	for	active	and	reactive	powers.
	 4.	 Discuss	the	variation	of	power	in	a	pure	(a)	resistor,	(b)	inductor,	and	(c)	capacitor.
	 5.	 What	is	a	power	triangle?	Explain	its	significance.
	 6.	 Explain	the	sign	convention	for	complex	power.
	 7.	 What	is	power	factor	and	power	factor	angle?
	 8.	 Write	a	short	note	on	the	significance	of	power	factor	and	the	need	for	its	improvement.

Multiple Choice Objective Questions
 1.	 For	which	of	the	following	the	power	response	of	a	circuit	is	important?

(i)	 safety	 	 	 (ii)	 proper	heat	dissipation
(iii)	 economics	 	 	 (iv)	 all	of	these

 2.	 Which	of	the	following	term	is	not	associated	with	power?
(i)	 complex	 	 	 (ii)	 average
(iii)	 instantaneous		 	 (iv)	 none	of	these

 3.	 When	a	sinusoidal	voltage	of	maximum	1	V	is	applied	to	a	pure	capacitance,	a	cur-
rent	of	maximum	1	A	flows	through	the	circuit.	The	average	power	in	the	circuit,	
in	watts,	is
(i)	 0	W	 (ii)	 0.707	W	 (iii)	 0.5	W	 (iv)	 1.0	W

 4.	 Which	of	the	following	represents	the	real	average	power	in	a	circuit	when	a	voltage	
v t= + °( )50 45cos ω 	sets	up	a	circuit	current	of	i t= − °( )5 15cos ω A?
(i)	 250	W	 (ii)	 125	W	 (iii)	 62.5	W	 (iv)	 0	W

 5.	 In	Q.	4,	the	maximum	value	of	the	oscillating	reactive	power	is	given	by
(i)	 0	 (ii)	 108.25	 (iii)	 125	 (iv)	 176.78

 6.	 If	the	frequency	of	the	applied	AC	voltage	to	a	purely	resistive	circuit	is	f,	which	of	
the	following	gives	the	angular	speed	of	the	power	wave?
(i)	 4π f 	 (ii)	 2π f 	 (iii)	 π f 	 (iv)	 f

ϕ = 





 =

+ + + +
+ + + +









− −tan tan1 1 1 2 3

1 2 3

Q
P

Q Q Q Q
P P P P

n

n





Appendix A

MATLAB Applications  
In Linear Circuits

A.1 Introduction
MATLAB is an acronym for MATrix LABoratory and is a powerful interactive 
software package for performing scientific and engineering computations. The 
fundamentals of MATLAB applications to linear circuits are included herein as 
an additional tool for the discerning reader keeping in perspective that it not only 
aids complex computations but is also finding applications in all fields of electrical 
engineering. Additionally, MATLAB is being included in various programmes of 
engineering studies. Understanding of the theoretical principles and their applica-
tions in linear circuits, design and synthesis, however, in no way is hampered if 
MATLAB is not utilized. Therefore, inclusion of MATLAB as an appendix may 
be viewed as an optional part of the contents of this book.

Since MATLAB is computer platform independent, use of the software is the 
same on all types of computer configurations. A reader can launch MATLAB by 
a click on the icon button once the software is loaded and programmes can be 
executed from programme files or by a direct entry of the commands from the 
key board.

The purpose of the appendix is to familiarize the reader to interactively (a) per-
form matrix inversion, (b) solve simultaneous equations, (c) determine roots of 
polynomials, (d) compute poles, zeroes and residues of functions, (e) solve algebra-
ic expressions, (f) obtain inverse Laplace transforms, and (g) perform 2-D graphics. 
The final objective of the appendix is to empower the reader to use MATLAB for 
linear circuit analysis and design. Basic familiarity with C language is desirable but 
is not essential.

A.2 Variables and Statements
For writing programmes MATLAB supports variable names of up to 19 alphanu-
meric characters with the first character being an alphabet. It also permits the use 
of underscore (‘_’) in the variables and sees each variable as a matrix. Variables 
are case sensitive. MATLAB also supports pre-defined variables some of which 
are shown in Table-A.1.

Appendix B
Linear Circuit 

Analysis with PSpice

B.1 Introduction
In the early days of digital simulation even the simplest of numerical solutions such 
as, matrix inversion for solving simultaneous equations or ordinary differential 
equations, required the development of computer usable source programmes. 
With the emergence of high speed digital computers and the development of 
industry standard commercial tools, such as MATLAB and SPICE, designers 
and system analysts have been spared the hard work of mind-numbing and 
complicated problem solving. While accepting the revolution in circuit analysis, 
design and optimization, such tools may not be viewed as substitutes for physical 
interpretation of the results which still is the obligation of the analyst.

Applications of the MATLAB utility to linear circuits has been outlined in 
Appendix-A. PSpice is a very versatile, powerful and simple tool capable of 
simulating a variety of circuit computations. This appendix however is focussed 
on presenting generalized procedures for dC, AC, and transient analysis of 
elementary circuit configurations.

B.2 What is PSpice?
The core programme is SPICE which stands for Simulation Program with 
Integrated Circuit Emphasis. It was initially developed at the University of 
California in the beginning of the 1970s and is now an industry standard. In 1984, 
MicroSim Corporation launched a PC version of SPICE under the registered trade 
name of PSpice.

Two versions of PSpice are available, namely, a professional version which 
is priced and a student version which is free. The student version is aimed at the 
academia including the students, who are interested in simulating electric circuits 
and devices for analysis and design. The free PSpice Student Version 9.1 can be 
downloaded by clicking on the link: 

<ftp://ftp.orcad.com/dwn_file/Pspice/Docs/9_1_SR/>.

B.3 PSpice Student Version 9.1
The contents and limits of the PSpice Student Version 9.1 are described in the 
Release Notes (February 2000) as follows:

Appendix C
Unsolved Problems

Chapter 1
 1.5 [18 C]
 1.6 [60 000 4000, sin Ct( ) ]
 1.7 [(i) 21.6 kC (ii) 36 W (iii) 36 Wh (iv) 6 W]
 1.17	 [(i)	90	Ω	(ii)	27	V	(iii)	8.1	W]
 1.18	 [(i)	30	Ω	(ii)	120	V	(iii)	25%]
 1.19 [2.22 mA]
 1.20	 [77.7	mA;	18.1	mW]
 1.22	 [88	μJ]
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Chapter 2
 2.6	 [(a)	91.88	W;	(b)	28.04	W]
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 2.11 [10.06 W]
 2.15 Assume the following data: VS1 = VS3 = 6 V, VS2 = 12 V, R1 = R8	=	1	Ω,	
  R5	=	1.5	Ω,	R2 = R3	=	2	Ω,	R4 = R6	=	4	Ω,	and	R7 = R9	=	3	Ω.
 2.19	 [(a)	4.71	V,	(b)	2.24	V]

Appendix D
Self Appraisal Test

D.1 Introduction 
The self appraisal test (SAT) consists of selected multiple choice objective questions. The 
test has been designed for the reader to quickly evaluate the level of understanding and 
grasp the principles of analysis, design and synthesis, along with their applications in 
linear circuits. The appraisal grid in D.4 enables the reader to identify areas which require 
strengthening.

D.2 Instructions
Read each of the questions cautiously and out of the four choices select the correct option. 
 1. A process is said to be linear when its response is linear to
 (a) independent inputs
 (b) dependent inputs
 (c) both independent and dependent inputs
 (d) all of these
 2.	 Which	of	the	following	fluxes	leads	to	mutual	coupling	between	coils	1	and	2?
	 (a)	 flux	linking	coil	1	only	 (b)	 flux	linking	coil	2	only
	 (c)	 flux	linking	both	coils	1	and	2	 (d)	 all	of	these
 3.	 Which	one	of	the	following	was	responsible	for	first	demonstrating	the	application	

of	the	principle	of	graph	theory?
 (a) Euler (b) Kirchhoff (c) Ohm (d) Faraday
 4.	 Which	of	the	following	did	not	favour	the	use	of	alternating	current	electricity?
 (a) Nikola Tesla (b) Thomas Edison
 (c) George Westinghouse (d) all of these
 5.	 Which	of	the	following	is	an	advantage	of	using	Laplace	transform	techniques?
 (a) permits use of simple algebra
 (b) converts functions in the t-domain into s-domain
 (c) initial conditions are automatically taken care of
 (d) all of these
 6. The natural frequency in an unforced reactive circuit is equal to

 (a) t 2 (b) t (c) 1
τ

 (d) – 1
τ

 7. Who of the following is not associated with the introduction of the concept of com-
plex	frequency	in	circuit	analysis?

 (a) Heaviside (b) Euler (c) Kennelly (d) Vannevar
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Preface to the Second Edition

A survey undertaken by Oxford University Press (India) to increase the effective-
ness of our Circuits and Networks: Analysis, Design, and Synthesis book, inputs 
received from its readers and our own numerous references forms the basis of this 
revision. Following are the important changes:

•	 The number of solved examples, to further enhance the understanding of the 
theoretical principles and their applications, has been doubled.

•	 Techniques to use MATLAB applications in problem solving have been clearly 
demonstrated.

•	 Language has been made crisper without compromising upon its flow and 
understanding.

•	 New topics have been included to complete the coverage of the circuits’ 
curricula.

	 Chapter 3: Saw Tooth Analyses and Doublet
	 Chapter 8: Four-wire Systems
	 Chapter 13: Bode Plots
	 Chapter 14: Terminating Half Section’
	 Chapter 16: Functioning of Composite Filters
•	 A note ‘FOR THE STUDENT.....’ has been added to guide him/her to master 

this very important course.

The authors feel that these changes will enhance the utility of the textbook.
The authors would like to thank The Math Works Inc. for permitting the use of 

MATLAB in development of applications for problem solving. They would also 
wish to express their gratitude to the editorial team at OUP and the myriad readers 
of their work for maintaining a constant flow of inputs which has formed the basis 
of this revision.

For the Student...
Electric circuits form the basis of all engineering disciplines involving voltage/
current. This book has been designed to make the learning of circuit analysis, 
design, and synthesis exciting and enjoyable. At the same time it lays a strong 
foundation for the subjects to be taught in the ensuing semesters such as ‘Network 
Theory’ and ‘Control Engineering’. While the book will serve to strengthen the 
physical concepts and applications taught by the faculty, the task of learning and 
understanding the techniques and methods will have to be taken up by you. To 
help you to enjoy the experience and do well in the circuit analysis, design, and 
synthesis course we put down ideas which you should bear in mind.

© Oxford University Press. All rights reserved.

Oxfo
rd 

Univ
ers

ity
 Pres

s



viii  Preface to the Second Edition

•	 Regularity in the study of this course is essential.
•	 Large number of solved examples having varying difficulty levels has been 

included. To understand the intricacies of the solutions, solve the examples 
yourself. Do not read the solution.  

•	 For strengthening the principles learnt, attempt the chapter-end problems and 
answer the objective type questions.

•	 Keeping in view the usefulness of MATLAB in problem solving in circuits and 
other courses, several examples have been included showing how to develop 
MATLAB applications for problem solving. Appendix A quickly introduces 
you to the MATLAB commands. The surest way of learning MATLAB is to 
start developing your applications after you have learnt a few commands.

•	 Recapitulation summarizes what has been learnt and also serves as a reference 
check point.

•	 Attempt to answer the Review Questions. This will add to your skills learnt in 
the classroom.

•	 Considerable effort has been put in to make the material and language of the 
text student friendly and also learning the application of the principles of 
circuit engineering a fruitful experience. The related physics and mathematics 
help in understanding the theory and lays the foundation for other voltage/
current engineering courses.

While we know that you will thoroughly enjoy doing the course do not hesitate to 
contact us if you feel we can help you.

 M.S. Sukhija

T.K. Nagsarkar

© Oxford University Press. All rights reserved.

Oxfo
rd 

Univ
ers

ity
 Pres

s



Preface to the First Edition

And, when you want something, all the universe conspires in helping you to 
achieve it

Paulo Coelho in ‘The Alchemist’ 

Electric circuits make up an inseparable part of the gadgets and equipment of 
modern-day living. A universe without circuits is unimaginable. An in-depth un-
derstanding of the theoretical concepts and practical applications of circuits and 
their analyses and design are imperative to grasp the fundamentals of other disci-
plines of engineering, such as power systems, computers, telecommunication, etc. 
The aim of the book is to present in an organized manner the fundamentals and 

principles of circuits, and to enthuse the readers to recreate, rediscover, and ex-
perience the excitement of analysis, design, and synthesis of circuits as practised. 
The book provides an exhaustive study of the response of linear networks in time 
and frequency domains to a wide variety of excitations, including the impulse 
excitation. Overall, the book helps to build an irrevocable bond between concep-
tualizing the theoretical principles and applications through problem solving while 
at the same time helping students prepare for the rigours of meeting the course 
requirements.
The contents of the book have been formulated, based on a study of syllabi of 

foremost national and international universities. Although, at the national level, 
in most institutes a basic course in electrical engineering is required to be studied 
at the undergraduate level, yet several basic concepts of electricity are reviewed 
from the perspective of circuit equations.  Knowledge of differential and integral 
calculus is the only prerequisite for this book.

Pedagogical Features
Comprehensive coverage of topics with equal emphasis on theory and practice 
Commencing with an inspirational quote, each chapter then familiarizes the stu-
dents with the objectives of the contents of the respective chapters. The language 
has been kept simple to ensure that students are easily able to grasp the fundamen-
tals of circuit analysis.   

	Numerous solved examples interspersed with the text that apply theoretical 
concepts learnt All new terms and techniques are lucidly defined and their 
applications described through solved examples which immediately follow the 
derivation of the circuit equations.

	Recap of key formulae and numerous problems for practice at the end of every 
chapter The chapter-end problems, which expose the reader to a increasing level 
of difficulty, follow the general pattern of the text in the chapter. To further hone 
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x  Preface to the First Edition

the skills of the readers, multiple-choice questions have been included at the end 
of each chapter.

Separate appendices on MATLAB and PSpice Keeping in view the advance-
ments in computer software tools and the need to keep the text abreast with the 
present-day requirements, Appendices A and B have been added to describe the 
utilization of MATLAB and PSpice, respectively, in circuit analysis. It may be 
emphasized that both MATLAB and PSpice should be seen as tools for doing 
away with the drudgery of computations. They cannot be substituted for the 
physical interpretation of the results which exclusively fall within the domain 
of the reader.

Self appraisal test at the end of the book for a holistic chapter-wise evalua-
tion Consisting of 170 multiple-choice objective questions, with ten questions 
randomly selected from each chapter, the self appraisal test help quickly assess 
the reader’s strengths and weaknesses. 

Contents and Coverage
The book is divided into 17 chapters. A brief description of each chapter is given 
below:
Chapter 1 delineates between different electric materials, defines the basic electric 
terms, circuit elements and their characteristics, various types of independent and 
dependent energy sources, along with their transformations are described. Ohm’s 
law and Kirchhoff’s laws, methodology to write circuit equations and manipula-
tion of series-parallel networks are also covered.
Chapter 2 describes the formulation of nodal and mesh equations of circuits and 
their solution techniques. Use of supernode and supermesh in circuit analysis is 
detailed. Choosing between the nodal and mesh analyses techniques, for a given 
circuit configuration is also described.  
Chapter 3 classifies the different types of voltage and current signals and defines 
the associated terms, such as frequency, period, instantaneous, average, and RMS 
values. Representation of periodic and non-periodic signals as mathematical func-
tions and their combinations into complex waveforms has been described.
Chapter 4 presents natural and forced responses (step-, pulse-, and impulse func-
tion) of RL, RC, and RLC circuits.
Chapter 5 introduces sinusoidal voltage and current functions and their phasor 
representation. Phasor diagrams, conceptualization of impedance, admittance, ap-
plication of nodal and mesh analyses techniques and source transformation, using 
phasors to determine the forced response of different configurations of circuits 
is included. Series and parallel R, L, and C resonant circuits, determination of 
Q-factor, and bandwidth is also described. 
Chapter 6 defines and explains the use of network theorems such as superposition, 
compensation, Tellegen’s, and Millman’s theorems. Determination of Thevenin 
and Norton equivalent circuits and employing the same for maximum load 
transfer is also included. Concept of reciprocity for linear, time-invariant networks  
is described.
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Preface to the First Edition  xi

Chapter 7 defines instantaneous and average power, conceptualizes complex, 
active, reactive, and apparent power; and introduces load power factor and its 
importance in power factor improvement.
Chapter 8 introduces AC poly-phase systems and advantages of three-phase 
systems over single-phase systems in power generation and transmission. Pha-
sor representation of three-phase generated voltages and techniques for analysing  
Y-connected and D-connected three-phase circuits are presented. Methods for 
measurement of active and reactive power in three-phase systems are also outlined.
Chapter 9 includes concepts of self inductance, mutual inductance, coefficient 
of coupling, and highlights procedures for writing response equations, including 
energy computations, in the time domain for circuits containing mutual induc-
tances, using the dot convention. It also explains the development of analog of 
coupled circuits and principle of working of linear, auto, and ideal transformers. 
The chapter also outlines the calculation of reflected impedance and its applica-
tion in impedance matching.
Chapter 10 covers graph vocabulary and application of graph theory to circuit 
analysis. Formulation of incidence matrices and their use in developing nodal and 
mesh network equations for response analysis is explained in detail. Duality in 
networks is also outlined.
Chapter 11 defines Laplace and inverse Laplace transforms and builds a basic un-
derstanding of their properties. Laplace transforms of commonly employed forc-
ing functions are derived. Application of Laplace and inverse Laplace transforms 
is explained to study the response of circuits whose simulation leads to differen-
tial equations. Initial and final value theorems are defined and their applications  
are described.
Chapter 12 includes conceptualization and development of equivalent circuits, by 
including the initial conditions, in the complex frequency domain. Development 
of impedance and admittance functions of differently configured circuits and their 
analyses is also outlined.
Chapter 13 describes mathematical conceptualization, development, and charac-
teristics (in terms of their poles, zeroes, and gain constants) of transfer functions 
in impedance/admittance forms. Restrictions on locations of poles and zeroes and 
the calculation of amplitude and phase responses, in time domain, from the trans-
fer function of a network are detailed. The Routh-Hurwitz stability criterion and 
its application are also included.
Chapter 14 categorises two-port networks in z, y, h, g, t, t'-parameters. Co-relation 
between the parameters and their applications in circuit analysis is outlined. For-
mulae for input admittance, voltage gain, current gain; and Thevenin equivalent 
at output ports are derived. Series, parallel, and cascade connections of two port 
networks have been discussed.
Chapter 15 explains the Fourier series transformation, in trigonometric and expo-
nential forms, and determination of effective values and power of non-sinusoidal 
signals/functions. It builds a rigorous understanding of even, odd, and half-wave 
symmetry along with the determination of the Fourier coefficients. Line spectra 
computation of harmonic component of periodic waves is outlined. Finally, skills  
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xii  Preface to the First Edition

to apply Fourier transforms to analyse circuits in the frequency domain are 
described.
Chapter 16 introduces basic concepts, characteristics, and classification of filters 
and attenuators. It explains the working of LP, HP, constant K, and m-derived 
filters and develops techniques to analyse T and p-filter networks. The methodol-
ogy to analyse various types of attenuators and compute insertion loss has also 
been discussed.
Chapter 17 describes the basic tools for synthesising passive networks from 
known input and response. Realizability of physical passive networks (positive 
real functions and Hurwitz polynomial), necessary and sufficient conditions for 
a function to be positive real, and methodology for synthesizing simple linear 
passive one port networks, consisting of L and C elements only, are discussed at 
length.
Appendix A presents a discourse on MATLAB software and its applications to 
solve circuit analysis related problems. Appendix B is a tutorial on linear circuit 
analysis with PSpice. Appendix C includes answers to the end-chapter unsolved 
problems. Appendix D contains a self appraisal test constituted of multiple choice 
objective type questions and an appraisal grid for evaluation. The results of the test 
will help a student to identify his/her topics of weakness.
The underlying methodology of one author preparing the text first and the other 

looking at the same from the perspective of teaching and learning requirements 
of the readers, as in the earlier two textbooks, Basic Electrical Engineering and 
Power Systems Analysis, remains unaltered. We sincerely hope that students and 
faculty members will find this book useful and enriching. 
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of cross section, m2, real constant
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aij	 element of the incidence matrix
A 	 constant, unit of current in 

amperes, bus incidence matrix 
Â 	 the element node incidence matrix
A, B, C, D 	 transmission parameters or 

ABCD or t-parameters
A', B', C ', D'	 inverse transmission parameters 

or t'-parameters
A1	 residue
An 	 Fourier coefficients in 

exponential form
AP	 attenuation in power signal
At	 the transpose of the bus incidence 

matrix A
AV, AI, 	 attenuations in voltage and 

current signals, respectively
b 	 number of branches, real constant
BE 	 band elimination filter
BP 	 band pass filter
c 	 the intercept of the line on the 

ordinate (vertical axis)
cij 	 the element of the cut-set 

incidence matrix
Ĉ	 the enhanced cut-set matrix 
C 	 capacitance of a capacitor 

in Farad (F), basic cut-set 
incidence matrix

Ceq 	 equivalent capacitance
d	 diameter, m
dB	 Decibel
di 	 change in the current, A 
di1 	 increase of current in coil 1 in 

dt seconds 
dF 	 change in flux due to change in 

current di, Weber 
dF12 	 increase of mutual flux in coil 

2 due to the increase of di1 A in 
the coil 1, Weber

D 	 determinant of the matrix

D(s) 	 denominator polynomial is s, 
Laplace transform of the input 
signal 

e 	 negative charge of an electron, 
induced voltage in volts, number 
of elements 

e(t)	 induced voltage (V)
e2(t) 	 emf induced in coil 2
eA, eB, eC 	 instantaneous values of the 

induced emfs in phases A, B, 
and C, respectively

E 	 electric field intensity 
E 	 RMS value of the voltage
E(s)	 excitation function
EA, EB, EC  	 RMS voltages of phases A, B, 

and C, respectively
f 	 frequency or the number of 

cycles per second or Hertz (Hz)
f (t)	 function of time, periodic 

function in time t
fC	 cut-off frequency 
frs, frp 	 resonant frequency of the series 

arm and the parallel resonance 
(or anti-resonance) frequency 
of the shunt arm 

F 	 magnitude of electrostatic force 
in Newton (N)

F 1	 used to indicate the inverse 
Fourier transform operation

F	 used to indicate Fourier transform 
operation

F(s) 	 function of s and independent 
of time t, transform network 
function, driving point immittance 
function

F(w)	 Fourier transform of the function 
f (t)

Favg 	 average value of a periodic 
function f(t) with a period T

Feff 	 effective or root mean square 
value of a periodic function f(t) 
with a period T, the RMS value 
of a periodic function f(t) 
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Fn 	 amplitude of the nth harmonic 
g11, g12, g21, g22

 	 inverse hybrid or g-parameters
gT(t)	 gate function of duration T
[G] 	 conductance matrix of the circuit
G 	 conductance of the conductor, 

mho or siemens (S)
G21(s), G12(s)
 	 voltage transfer functions, or 

voltage gain ratios
Gii 	 self-conductance of ith node
Gij 	 transfer conductance between 

the ith node and jth node
h11, h12, h21, h22

	 hybrid or h-parameters
HP 	 high pass filter
[i]	 the current vector containing 

currents through the elements
[iS]	 current vector containing 

source currents in parallel with 
the elements

i 	 instantaneous current 
i(0)	 initial current at t = 0
iC(t)	 instantaneous current
ik(t)	 current through the branch k of 

a circuit at time t
i(t) 	 the instantaneous value of 

current at any instant of time t, 
time varying current

i1(t) 	 current in coil 1
iavg 	 average current in ampere (A) 
if	 forced response of current 
iImpulse(t) 	 the circuit current response due 

to the impulse voltage
ijk	 the current through the element 

j-k
iL(t)	 current through the load resistor, 

the current through inductor L
im 	 current in the mth element, 

impedance transfer functions
in 	 natural response of current
iS (t) 	 time dependent current source
iS	 output of the current source
iS(t) 	 current delivered by the source 
iS, jk	 the source current in parallel 

with the element j-k
iStep(t)	 the circuit current response due 

to a step voltage
[I]	 column vector of algebraic 

sum of currents of all sources 
entering the node, the column 

vector of unknown mesh 
currents 

[Ibus] 	 the injected bus currents 
I*

k	 conjugate of current Ik

Im	 maximum value of current
I(s)	 Laplace transform of i(t)
I0 	 peak or maximum value of the 

current wave
I1 	 the current entering terminal-1 

equals the current leaving the 
terminal-1' 

I1, I2	 the complex effective values 
of the currents in the coils 1 
and 2, respectively, primary 
and secondary phasor currents 
respectively, A

I2 	 the current entering terminal-2 
equals the current leaving the 
terminal-2' 

IA, IB, IC  	 RMS currents in phases A, B, 
and C, respectively

Iavg 	 average value of a periodic 
voltage wave i(t) 

Ieff 	 effective or root mean square 
(RMS) value of a periodic 
current i(t)

Ik 	 injected current at node k
IL 	 line current phasor
In 	 magnitude of the nth harmonic 

of the resultant current
IN 	 Norton current, current in the 

neutral
IP 	 phasor current 
IS 	 magnitude of current of DC 

source
IS max	 maximum current supplied by 

the voltage source
IS(t) 	 the projection of the complex 

frequency phasor S(t) on the 
imaginary-axis

j 	 the operator causes a phasor to 
rotate through 90° in the anti-
clockwise direction without 
affecting its magnitude

jw 	 angular frequency
k 	 coefficient of coupling
kij	 element of the matrix K 
K 	 a real number independent of 

frequency for constant K filters, 
bus path incidence matrix, 
constant, scale factor

© Oxford University Press. All rights reserved.

Oxfo
rd 

Univ
ers

ity
 Pres

s



xxvi  List of Symbols

K, K1, K2  	 constants 
l	 length in metre (m) 
L 	 inductance in Henry (H)
L1, L2 	 self-inductances of coil 1 and coil 

2, respectively, self-inductance 
of the primary and secondary 
winding respectively, H

Leq	 equivalent inductance
LP 	 low pass filter
m 	 number of independent mesh 

equations in a circuit, the slope 
of a line

m, n 	 positive whole numbers
mij 	 element of the loop incidence 

matrix
M̂	 enhanced loops incidence 

matrix
M 	 loop-incidence matrix
M12 	 mutual inductance between coil 

1 and coil 2
M21 	 mutual inductance between coil 

2 and coil 1
Mrq, frq	 the magnitude and phase angle 

respectively of the phasor (pq pr)
n 	 number of nodes including the 

reference node, load neutral 
N 	 source neutral, number of turns 

of the coil, ratio of the natural 
logarithm of the output signal 
(voltage or current) to the input 
signal (correspondingly voltage 
or current), called Neper

N(s)	 Laplace transform of the output 
response, polynomials in s

N1 	 number of turns of coil 1/ 
primary winding 

N2 	 number of turns of coil 2/
secondary winding

NMC 	 number of equations from mesh 
current method 

Nnode 	 total number of nodes 
NNV 	 number of equations from 

node-voltage method 
NS 	 necessary and sufficient 

conditions
NV S, NC S  	 numbers of voltage and current 

sources, respectively
p 	 instantaneous power in watts 

(W), power in J/s or watts (W)
p(t) 	 the instantaneous power at any 

instant of time t 
p1, p2, ..., pn	 poles of the network function

pf 	 power factor = (cos j)
pk	 distinct pole
pL 	 power transferred to the load
pL max	 maximum power delivered to 

the load
ploss 	 power loss 
pR 	 the power dissipated in the 

resistor
pT 	 total instantaneous power 
P 	 average power over the period T,   

number of poles of the machine
PRF	 positive real functions 
P(s), Q(s) 	 even and odd components 

of Hurwitz polynomial D(s), 
respectively 

Pavg 	 average power
PFC	 passive power factor correctors 
Pr	 reflected power 
PS, PR, 	 intensities of the power signals 

at the transmission (source) 
and destination (load) ends, 
respectively, 

q 	 charge in coulomb (C) 
Q	 reactive power, also known 

as reactive volt ampere and is 
equal to VI sin j

Qfi	 final value of inductive load
Qin	 initial inductive load 
r 	 distance in metre (m)
r(t)	 unit-ramp function or the delta 

function
rS	 the source resistance of a 

practical voltage source
rf 	 reactive factor = sin j 
[R]	 resistance matrix of the circuit
R	 conductor resistance in ohm 

(W)
R	 reluctance of the magnetic path
R(s), E(s)	 denote function the response
R1(s), R2(s)	 remainders 
R1, R2 	 resistance of the primary 

and the secondary winding 
respectively, W

R12, R23, and R31 
	 resistors connected in delta 

between the nodes 1, 2, and 3
R1n, R2n, and R3n 
	 resistors connected in star 

between nodes 1, 2, and 3
Req	 equivalent resistance
Rii 	 self-resistance of ith node 
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Rij 	 transfer resistance between the 
ith node and jth node

Rin	 input resistance 
RL 	 load resistor, W
RN 	 Norton’s equivalent resistance
RO	 output resistance 
ROC, RSC	 open circuit and short circuit 

resistance looking into the port 
at 1-1'

RS(t) 	 the projection of the complex 
frequency phasor S(t) on the 
real-axis 

RTH 	 Thevenin equivalent resistance
s 	 the natural frequency, complex 

frequency
s = s + jw  	 complex frequency variable
S 	 complex power 
S(t) = A e jwt	the rotating phasor signal
Sk 	 complex power in branch k
t 	 time in seconds (s)
T 	 time period in seconds
T0 	 the duration of the pulse in 

seconds
u 	 velocity in m/s
u(t – TS)	 shifted unit-step function
u(t + TS)	 flipped step function 
u(t)	 unit-step function 
v 	 voltage in volts (V) 
v'c(t)	 natural response of voltage 

across capacitor
v''c(t)	 forced response of voltage 

across capacitor
v(0)	 initial voltage across an element 

at time t = 0
v(t)	 the instantaneous value of 

voltage at any instant of time t
vC (0)	 the initial voltage across 

capacitor C at t = 0
vC(t) 	 instantaneous voltage
vi	 the open circuit input terminal 

voltage
vjk	 voltage across the element j-k
vk 	 voltage across the k-th element
vk (t)  	 voltage through the branch k of 

a circuit at time t
vL(t), iL(t) 	 instantaneous voltage and 

current respectively of 
inductance L

vR(t), iR(t) 	 instantaneous voltage and 
current respectively of 

resistance R
[vS]	 the voltage vector containing 

source voltages in series with 
the elements

vS	 output voltage of voltage source
vS(t)	 time-dependent voltage source 
vS, jk	 source voltage in series with the 

element j-k
vTH 	 Thevenin voltage
[v]	 the voltage vector containing 

voltages across the elements
[V] 	 column vector of node voltages, 

the column vector of algebraic 
sum of all the source voltages 
around the mesh

[Vbr], [Ibr]  	 vector of branch voltages and 
branch currents, respectively 

[Vbus] 	 bus voltage with respect to a 
reference node 

[VL], [IL]  	 vector of loop voltages and 
loop currents, respectively

V 	 the phasor voltage which is a 
complex number	

V(s)	 transform of v(t)
V	 effective or RMS values of the 

voltage
V1 	 voltage across the terminals1-1'
V1, V2, ..., Vn 
	 voltages at free points 1, 2, 3, 

..., n with respect to the ground 
VAB, VBC, VCA 
	 line voltages
Vavg 	 average value of a periodic 

voltage wave v(t) 
VC	 voltage across capacitor C
VDC 	 DC component of the applied 

voltage 
Veff 	 effective or root mean square 

value of a periodic voltage v(t)
Vg 	 magnitude of voltage source, volts
VL 	 magnitude of line voltage, 

voltage across inductance L
VLA, VLB, VLC

	 voltage across the loads in 
phases A, B, and C, respectively

Vm 	 the maximum value of the 
sinusoidal voltage

Vn	 the magnitude of the nth 
harmonic of the applied voltage

VN, Vn	 voltages of the load neutral and 
the source neutral, respectively
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xxviii  List of Symbols

VP 	 magnitude of phase voltage
VS u(t) 	 step voltage of strength VS 
VS d (t)	 voltage impulse of strength VS 
VS	 magnitude of voltage of DC 

source
VS	 complex effective values of the 

voltage source
w 	 energy in Joules (J)
W 	 work done in N-m or joule (J); 

the electric energy in W-s
W (t)	 net energy input to the coupled 

circuit at any instant of time t
W(s)	 multiplicative factor
W1, W2, WR 	 reading of wattmeters
W1W 	 energy expended in a 1-W resistor
WC 	 energy stored in capacitor
WL 	 energy stored in inductor (J)
XC 	 the reactance of the capacitor C 

in ohm
XL 	 the reactance of the inductor L 

in ohm
y11, y12, y22, y21

	 admittance or y-parameters
yjk	 self admittance of the element 

j-k
[y] 	 primitive self impedances matrix
[Ybr]	 branch admittance matrix
[Ybus] 	 bus admittance matrix 
[YL]	 loop admittance matrix
Y(s)	 transform admittance 
Y1, Y2, ..., Yn 	linear admittances 
Y11(s), Y22(s)	the driving point admittances at 

the respective ports 1-1' and 2-2'
Y21(s), Y12(s)	admittance transfer functions
Yeq 	 the equivalent admittance in ohm
Yin 	 input admittance, mho 
Yout	 output admittance, mho
YR – L (s)	 admittance function
z1, z2, ..., zm	 zeroes of the network function 
z11, z12, z22, z21

	 the impedance, or z-parameters
zjk	 self impedance of the element j-k
[z]	 primitive self admittance matrix
[Zbr]	 branch impedance matrix
[Zbus]	 bus impedance matrix
[ZL]	 loop impedance matrix
Z 	 the impedance of the circuit, a 

complex quantity and has the 
unit of ohm

Z(s)	 the impedance of a passive 
network, transform impedance 

Z1 	 series arm impedance, driving 
point impedance

Z11(s)	 the driving point impedance at 
port 1-1'

Z12, Z23, Z31

	 the resistors connected in delta 
between the nodes 1, 2, and 3

Z1n, Z2n, Z3n	 the resistors connected in star 
between nodes 1, 2, and 3

Z2 	 shunt arm impedance, driving 
point impedance

Z22(s) 	 driving point impedance at port 
2-2'

Zeq 	 equivalent impedance in ohm
Zg 	 internal impedance, W
Zi1	 image impedance
Zin	 input impedance 
Zint 	 equivalent impedance of the 

circuit
ZL 	 load impedance, W
Zl, ZN, ZL  	 per phase impedance in ohms 

of the line conductor, the 
neutral conductor, and the load, 
respectively

ZLC(s) or YLC(s)
	 driving point L-C immittance 
ZLD, ZLY 	 impedance of each phase of the 

balance D-connected load, and 
the impedance of each arm of the 
equivalent Y-connected load

ZN	 Norton’s equivalent impedance
Zo	 characteristic impedance 
ZOC, ZSC  	 open and short circuit parameters 
ZoT	 characteristic impedance of 

T-network
Zop	 characteristic impedance of 

p-network
Zr 	 reflected impedance 
ZRC(s)	 R-C impedance function
ZS 	 internal source impedance
ZTH 	 conjugate of Thevenin 

impedance 
a 	 attenuation constant, damping 

constant 
α1, α2, ..., αn

	 dimensionless constants 
α12 (s) and α21 (s)
	 current transfer ratio or current 

gain
β 	 phase constant

© Oxford University Press. All rights reserved.

Oxfo
rd 

Univ
ers

ity
 Pres

s



List of Symbols  xxix

β1, β2, ..., βm

	 constants having the units of 
ohm

d(t – T0) 	 delayed unit impulse function 
d(t) 	 unit impulse function
Dq 	 quantity of charge in coulombs 

that flow in Dt seconds
DR 	 variation in the resistance of a 

branch 
Dt	 time interval, seconds (s)
DZ 	 variation in the impedance of a 

branch 
ε	 absolute permittivity of the 

medium; e = e0er

ε0 	 absolute permittivity of free 
space (e0 = 8.85 ´ 10

 12, F/m)
εr	 relative permittivity of the 

medium
φni	 phase angle of the nth harmonic 

of the resultant current
F1, F2	 fluxes in coil 1 and in coil 2, 

respectively
F21, y21 	 flux and flux linkages 

respectively of the coil 1 due to 
a current i2(t) in the coil 2

γ 	 propagation or image transfer 
constant

γ1, γ2, ..., γm	 dimensionless constants
ϕ 	 phase angle
ϕ 	 power factor angle which equals 

(qv – qi)

ϕfi 	 final pf angle
ϕin 	 initial pf angle 
λ1, λ2, ..., λn 	constants having the unit of 

siemen 
L 	 Laplace transform operation
L–1 	 inverse Laplace transform
θn 	 phase angle of the nth harmonic
θv, θ i	 phase angles of voltage and 

current waves, respectively
ρ 	 specific resistance or resistivity 

of the conductor, W-m, reflection 
coefficient

σ 	 real number, specific conductance 
or conductivity of the material, 
mho/m or S/m, real part of s 

τ 	 dummy variable for t, the 
transmission coefficient for the 
sinusoidal power supply 

τ = L/R	 time constant of RL circuit
τ = RC	 time constant of RC circuit
ω 	 angular speed of the rotor in 

electrical angle per second, 
angular velocity in rad/s

ω0 	 angular velocity corresponding 
to fundamental frequency 
f0, rad/s, resonant or natural 
frequency in rad/s

ωd	 damped resonant frequency
ψ = NF 	 flux linkage in Weber-turns
ψ12 	 flux linkages of the coil 2 due 

to a current i1 in the coil 1
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Chapter 1
Definitions and Basic  

Circuit Concepts
Do not wait; the time will never be "just right". Start where you stand, and work 
with whatever tools you may have at your command, and better tools will be 
found as you go along.

—George Herbert

Key Concepts

	 •	 Introduction of electrical materials—conductors, semiconductors, and 
insulators

	 •	 Defining the basic electrical terms—charge, current, voltage, power, and 
energy

	 •	 Defining circuit components, linear, bilateral and unilateral elements, lumped 
and distributed parameter elements, passive and active branches, node, loop, 
and mesh

	 •	 Understanding the characteristics of the basic circuit elements, such as 
resistors, inductors, and capacitors

	 •	 Defining independent and dependent voltage and current sources
	 •	 Ability to transform a voltage source into a current source and vice versa 

without modifying the response in the network
	 •	 Defining Ohm's law, Kirchhoff's current law (KCL), and Kirchhoff's voltage 

law (KVL) and their applications in the determination of voltages and currents 
in circuits.

	 •	 Developing the ability to calculate equivalent resistance of series–parallel 
combinations of resistances

	 •	 Reducing series–parallel combination of inductances
	 •	 Understanding of voltage and current division
	 •	 Application of star–delta conversion for simplifying resistive circuits

1.1  Preamble
Generally speaking, network analysis is any structured technique used to 
mathematically analyse a circuit. A physical 'electrical network' or 'electrical 
circuit' is a system of interconnected energy sources such as voltage sources or 
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2  Circuits and Networks

current sources; electrical elements such as resistors, inductors, and capacitors; 
electronic devices such as diodes, transistors, etc.; switches, loads, and connect-
ing wires for interconnection of the components. The component can be as small 
as an integrated circuit on a silicon chip or as large as an electricity distribution 
network.
Based on well-defined electrical laws, an electrical circuit can be analysed to 

compute voltages and current flows for all the elements of the network, and if 
desired other quantities such as charge, field distribution, energy, power can be 
computed. Conversely, by employing the same electrical laws, a circuit may be 
synthesized to produce a given output from a known input. Fundamental laws, 
concepts, and terms associated with electricity are introduced here under.

1.2  Electrical Materials
Electrical materials are classified into conductors, semiconductors, and insulators 
depending upon the energy gap between the valence and conduction bands.

Fig. 1.1  Energy band in electrical materials 

It may be noted from Fig. 1.1(a) that the conductors possess overlapping valence 
and conduction bands whereas in insulators (also called dielectrics), the gap be-
tween the two bands is large [Fig. 1.1(c)]. Table 1.1 provides a classification of the 
common types of electrical materials.

Table 1.1  Classification of electrical materials

Classification Materials
Conductors Aluminium, copper, iron, silver
Semiconductors Carbon, germanium, silicon
Dielectrics Air, glass, mica, plastic, rubber

1.3  Atomic Structure and Electric Charge
An atom is constituted of a nucleus with negatively charged electrons revolving 
around it in elliptical orbits. The nucleus is made up of protons and neutrons. 
Table 1.2 enlists the properties of the constituents of an atom.

Conduction band

(c)(b)(a)

Conduction band

Valence bandValence band

EG < 2 eV
EG ≈ 15 eV
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Definitions and Basic Circuit Concepts   3

Table 1.2  Properties of the constituents of an atom

Constituent 
Property 

Electron Proton Neutron

Charge −1.602 × 10−19 C 1.602 × 10−19 C Nil
Mass 9.109 × 10−31 kg 1.672 × 10−27 kg 1.675 × 10−27 kg

In a neutral atom, the number of electrons is equal to the number of protons.

1.4  Voltage and Current
Both movement and separation of charges exhibit electrical characteristics. This 
section explains the concepts of voltage and current which are essential to under-
standing circuit theory.

1.4.1  Voltage
According to Coulomb's law, forces of attraction (between unlike charges) and 
repulsion (between like charges) are set up when charges are separated. Energy 
is required to be spent to overcome the force of attraction to move the charges 
through a specific distance. The energy per unit charge required to overcome the 
force is called voltage and in differential form is written as

� (1.1)

where v is the voltage in volts, w is the energy in joules, and q is the charge in coulombs.

All opposite charges possess specified potential energy and the difference in po-
tential energy of the charges is defined as potential difference, which is measured 
in volt (V). A potential difference of 1 V = 1 J/C. The polarity reference for the 
voltage is indicated by plus (+) and minus (−) signs. 

1.4.2  Current
When the randomly moving electrons (or charge) are made to move in a given 
direction by the application of a voltage, the resultant movement of charge leads to 
the flow of current. Thus, electric current is defined as the flow of charge per unit 
time and mathematically is expressed as

� (1.2)

where i is the current in amperes, t is the time in seconds.

The unit of current is ampere (A) and a current of 1 A means that the rate of flow 
of charge is 1 C/s. Since current is due to the flow of electrons, it has direction. 
Conventionally a positive direction of flow of current is marked by a reference 
arrow and is assumed to be in the opposite direction of the flow of electrons. 

Example 1.1  The rate of flow of electrons in a conductor is 1020 electrons per second. 
What is the magnitude of current flow in amperes in the conductor?

v dw
dq=

i dq
dt= ( )C/sec or Ampere
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4  Circuits and Networks

Solution  Charge flow per second = × × =−1 602 10 10 16 0219 20. . C
Remembering that by definition 1 C/s = 1 A, magnitude of current flow = 16.02 A

Example 1.2  A current of 0.75 A transfers 100 C across a conductor. Determine the 
time of flow of current.

Solution  Recalling that current in amperes is charge transferred per second (Q/t), the time 
of flow of current is

Example 1.3  (a) Derive an expression for charge build up due to current flow. (b) In an 
electric wire, at t = 0 s a current of 7.5 A begins to flow. What is the total charge flow in t sec. 
If the current flow is stopped at t = 10 s, calculate the charge which has flown in the wire.

Solution
(a)	 Assume that i(t) represents current flow. The expression for charge build-up is com-

puted from Eq. (1.2) as follows:
� (1.3.1)

(b)	 Use of Eq. (1.3.1) gives
�

(1.3.2)

	 Substituting t = 10 s in Eq. (1.3.2) leads to

Example 1.4  The charge flowing through a conductor is given by =q t tsin (15.70 ) mC.  
Derive an expression for the flow of current and calculate its magnitude at 0.4 s.

Solution  From Eq. (1.2), the current flow is given by

� (1.4.1)
Substitution of t = 0.4 in Eq. (1.4.1) leads to the magnitude of the current as under

1.5  Power and Energy
In circuit analysis, computation of current and voltage, by themselves, may not be 
sufficient due to the following reasons:
(i)	 The output of a system could often be non-electrical such as chemical, mechanical.
(ii)	Electrical devices, such as generators, motors, are designed to handle specific 

power.

Therefore, it is necessary to correlate voltage and current to power and energy.
Power is defined as energy per unit time, that is,

� (1.3)

where p is the power in watts, w is the energy in joules, t is the time in seconds

It can be easily shown that power is associated with the flow of charge. Rewriting 
Eq. (1.3) gives

t Q
I= = =100

0 75 133 33. . s

q t i t dt( ) = ( )∫ C

q t dt dt t t
t t

t( ) = = = [ ] =∫ ∫
0 0

07 5 7 5 7 5 7 5. . . . C

q t( ) = × =7 5 10 75. C

i dq
dt

d
dt t t t t t= = ( )  = +[ ]sin . sin( . ) . cos( . )15 70 15 70 15 70 15 70 mmA

i = ×( ) + × × ×( )  =sin cos 6.28 mA15 70 0 4 15 70 0 4 15 70 0 4. . . . . .

p dw
dt=
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Definitions and Basic Circuit Concepts   5

p dw
dt

dw
dq

dq
dt v i= = 






 × 






 = ×

�
(1.4)

The unit of power is J/sec or watt (named after the Scottish engineer, James Watt). 
The unit of energy is joule or watt-second. Hence, 1 W is equivalent to 1 J/s. 
Alternately, 1 W of power is generated when 1 J of energy is consumed.

Passive sign convention: As in the case of voltage, power is a signed quantity. 
Electrical engineers adopt the 'passive' sign convention which states that if posi-
tive current flows into the positive terminal of an element the power dissipated 
is positive, that is, the element absorbs power; whereas if the current leaves the 
positive terminal of an element, the power dissipated is negative, that is, the ele-
ment delivers power.

Table 1.3  Summary of basic electrical quantities

Quantity Symbol Unit Notation
Charge Q C
Voltage v V dw dq/
Current i A dq dt/
Power p W dw dt v i/ = ×
Energy E J or Watt-sec w t×

Example 1.5  Apply passive sign convention to the two terminal circuits in Fig. 1.2 and 
identify, with justification, whether the circuit element is generating or absorbing power.

Solution
Fig. 1.2(a): Since current is entering the +ve terminal of the circuit element, power is 
absorbed (p = vi).
Fig. 1.2(b): Since current is leaving the +ve terminal of the circuit element, power is gener-
ated (p = −vi).
Fig. 1.2(c): Since current is entering the −ve terminal of the circuit element, power is 
generated (p = −vi).
Fig. 1.2(d): Since current is leaving the −ve terminal of the circuit element, power is ab-
sorbed (p = vi).

Fig. 1.2

B

Ai

v

–

+

B

Ai

v

–

+

B

Ai

v

–

+

B

A

(a) (b) (c) (d)

v

i

–

+

Example 1.6  The current flowing in the circuit element in Fig. 1.2(a) is 
i e t= −30 6000 A for t ≥ 0. Compute the total charge flowing into the circuit element.  
Assume i = 0 at t < 0.
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6  Circuits and Networks

Solution  Using of Eq. (1.2) leads to

Example 1.7  A current i t e t( ) = −10 4000  A flows across the circuit element in Fig. 1.2(a) 
when a voltage v t e t( ) = −15 4000 kV is applied for t ≥ 0s across its terminals. If v = 0 at 
t < 0 s, compute (i) power supplied to the element at 2 ms and (ii) total energy supplied to 
the circuit element.

Solution  From Eq. (1.4), it is seen that power supplied to the circuit element can be 
written as

(i)	 Power supplied to the element at 2 ms is given by
p e e ( . ) ..0 002 150000 150000 0 0178000 0 002 16= = =− × −  W

(ii)	Equation (1.3) is used to derive an expression for energy as under
�

(1.7.1)

	 To compute the total energy supplied, put t = ∞ in Eq. (1.7.1).
	 Thus, 

Example 1.8  (a) Prove v dw dq= / . (b) An electric circuit delivers 48 W when the cur-
rent flow is 12 A. Calculate the energy per coulomb of charge.

Solution  From Eq. (1.4), it is seen that v p i= / V.
Substituting Eqs (1.3) and (1.2) for p and i, respectively, in the above expression gives

� (1.8.1)

From the given data, v = 48/12 = 4 V
Since i = 12 A, by definition, dq i dt= × = × =12 1 12 C
Hence, from Eq. (1.8.1) dw = × =4 12 48 J
Energy per coulomb of charge = =48 12 4/ J

1.6  Basic Circuit Elements
Prior to proceeding with the discussion of the characteristics of basic circuit ele-
ments, it would be appropriate to define terms frequently employed in circuits.

Circuit element:  An individual component such as a resistor, inductor, capacitor, di-
ode, transistor, energy source, which constitutes a circuit, is known as a circuit element.

Network and circuit:  A network is a connection of two or more circuit elements. 
A circuit is a network that has at least one closed path. Every circuit is a network, 
but all networks may not be circuits.

Branch:  A branch is an element of the network having only two terminals.

Passive and active branch:  A branch is said to be active when it contains one or 
more energy sources. A passive branch does not contain an energy source.

q dq i dt e dt e
t t

t t= = = = −   =∫ ∫ ∫
∞

− − ∞

0 0 0

6000 6000
0

30 0 005 5000. µC

p vi e e et t t= = ( )× ( ) =− − −15000 10 1500004000 4000 8000 W

w t p t dt e dt e
t t

t t( ) = ( ) = =
−




∫ ∫ − −

0 0

8000 8000150 000 150 000
8000, ,


= −  

−

0

8000
0

18 75
t

t t
e.

w t e t( ) = −   =− ∞
18 75 18 758000

0
. . J

v p
i

dw dt
dq dt

dw
dt

dt
dq

dw
dq dw v dq= = = × = = ×/

/ or
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Definitions and Basic Circuit Concepts   7

Linear element:  When the current and voltage relationship in an element can be 
simulated by a linear equation either algebraic, differential, or integral type, the 
element is said to be a linear element.

Bilateral and unilateral element:  A bilateral element conducts equally well in 
either direction. Resistors and inductors are examples of bilateral elements. When 
the current–voltage relations are different for the two directions of current flow, 
the element is said to be unilateral. Diode is a unilateral element.

Lumped and distributed parameter elements:  Lumped parameter elements are 
those, which for the purpose of analysis may be treated as physically separate 
elements such as resistance, inductance, capacitance. The distributed parameter 
element cannot be modelled as a combination of physically identifiable separate 
resistor, inductor, or, capacitor.

Node:  A junction point of two or more branches is known as a node.

Loop and mesh:  Any closed path, formed by the branches in a network, is known 
as a loop. A mesh is a loop, which does not enclose any other loop within it.

A circuit is constituted of five basic elements of which (a) three are passive and 
(b) two are active.
(a)	Passive elements represent devices which do not generate electrical energy 

and are categorized as
	 (i)  Resistors    (ii)  Inductors    (iii)  Capacitors
(b)	Active elements model devices which generate electrical energy and are subdi-

vided into
	 (i)  Voltage sources    (ii)  Current sources
Energy source may be constant (DC) or they may be a function of time (AC).
It would be no exaggeration to state that it is feasible to model systems in most 

disciplines of electrical engineering (power, electronic, control, instrumentation, 
and so on) with these five elements and analyse them. In this section, representa-
tion of these five basic elements is described.

1.6.1  Resistor
A resistor is a physical device whose principal char-
acteristic is to offer resistance to the flow of current 
and it consumes electrical energy. Its symbolic repre-
sentation is shown in Fig. 1.3.
A linear resistor is one which obeys Ohm's law, that is, current through a resistor 

is proportional to the potential difference across it. The resistance R of a conductor 
is directly proportional to the length l in metre (m) of the conductor and inversely 
proportional to its area of cross section a in m2, that is,

R l
a= ×ρ †� (1.5)

where ρ is called the specific resistance or, resistivity of the conductor and has the 
unit of Ω−m.

Fig. 1.3  Symbolic 
representation of a resistor

R
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8  Circuits and Networks

All resistors dissipate heat.
Inverse of resistance (R) is called conductance (G) and has the unit of mho or 
siemen (S).

� (1.6)

where σ is called the specific conductivity or, conductivity of the material and has 
the unit of siemen per metre or, mho per metre.
The resistance of most conductors and all metals increases with increase in tem-
perature. The change in resistance varies linearly with a change in temperature and 
is mathematically expressed as shown below

� (1.7)
where R1 and R2 are resistances at temperatures t1°C and t2°C, respectively, α1 is 
the resistance temperature coefficient in per °C.

Typical values of resistivity and temperature coefficients of resistance of different 
materials at 20°C are given in Table 1.4.

Table 1.4  Resistivity and temperature coefficient at 20°C of common 
conducting materials

Material Resistivity (ρ) at 20°C  
in Ω−m

Temperature coefficient (α) 
in per °C

Annealed copper 1.69 × 10–8 to 1.74 ×10–8 0.00393
Hard-drawn aluminium 2.80 × 10–8 0.0039
Carbon 6500 × 10–8 −0.000476
Tungsten 5.6 × 10–8 0.0045
Manganin 48 × 10–8 0
Constantan (Eureka) 48 × 10–8 0

In a physical resistor, when v volts is applied across its two terminals and the 
current flowing through it is i amperes, then as per Ohm's law v = iR. Using  
Eq. (1.4), the expression for power takes the form

� (1.8)
Further, when i v R= /  is substituted in Eq. (1.4), the power is given by

� (1.8a)
Energy dissipated in a resistor in t sec is written as

� (1.9)

Example 1.9  A circular conductor has a resistance of R1 Ω when its diameter and 
length are d and l m, respectively. (a) Find the change in resistance when its diameter is 
halved and its length is increased four times. (b) By how much should the length of the 
conductor be changed in order to keep the resistance value at R1 when the diameter of the 
conductor is reduced to d/3?

G R
a
l

a
l

a
l= = = × = ×1 1

ρ ρ
σ S

R R t t2 1 1 2 11= + −( ) α Ω

p vi iR i i R= = ( ) = 2 W

p vi v v R v R= = ( ) =/ / W2

W pdt p t i R t v R t
t

= = × = ( )× = ( )×∫
0

2 2 / W-sec

© Oxford University Press. All rights reserved.

Oxfo
rd 

Univ
ers

ity
 Pres

s



Definitions and Basic Circuit Concepts   9

Solution  Area of the conductor a d= ( )×π / m24 2

From Eq. (1.5), � (1.9.1)

(a)	 When the diameter is halved, area of the conductor a d d1
2 2 24 2 16= ( )× ( ) =π π/ / / m

	 The length of the conductor is 4l, resistance of the conductor R2 is obtained from  
Eq. (1.5) as

� (1.9.2)

	 Dividing Eqs (1.9.2) by (1.9.1) gives R R2 116= . Thus, the resistance increases by 16 times.

(b)	 When diameter of the conductor is reduced to d/3, then the area a2 is obtained as

	 Assuming the length of the conductor to be x m, the resistance from Eq. (1.5),
� (1.9.3)

	 Equating Eqs (1.9.1) and (1.9.3) gives

Thus, the length of the conductor will be reduced by (1/9)l.

Example 1.10  Given that R R t t2 1 1 2 11= + −( ) α Ω, prove that the temperature coef-
ficient at the reference temperature of 0° can be expressed as α0

0

0
=

−
°

R R
R t

t / C, where t is 
the rise in temperature in °C and Rt Ω represents the change in resistance from R0 Ω at 0°C.

Solution  The given relation can be written as

Similarly, if α2 represents the temperature coefficient at t2°C, it can be easily seen that

The relation for α0 is obtained by substituting R2 = Rt, R1 = R0, t1 = 0, and t2 = t. Thus,

� (1.10.1)

Example 1.11  The resistance of a metal conductor at 0°C is 15 Ω. If the resistance 
increases to 16.5 Ω at 25°C, determine the temperature coefficient of resistance at 25°C. 
In addition, calculate α0.

Solution  Simplification of Eq. (1.10.1) yields

or

	 R R t
R R
t

t

t

0 0

0
0

1
1 1 15 16 5

25
0 0036

= −( )
=

−( )
=

−( )
= °

α

α
/ /

/ C

Again using (1.10.1), it is seen that

R l
a

l
d1 2
4= =ρ ρ

π
Ω

R l
d

l
d2 2 2

4
16

64=
 

=ρ
π

ρ
π/

Ω

a d d= ( )× ( ) =π π/ / / m4 3 362 2 2

R x
d1 2

36= ρ
π

Ω

ρ
π

ρ
π

4 36 92 2
l
d

x
d

x l= =, or, /

α1
2 1

1 2 1
=

−( )
−( ) °

R R
R t t

/ C

α2
2 1

2 2 1
=

−( )
−( ) °

R R
R t t

/ C

α0
0

0
=

−( )
°

R R
R t

t / C

α0
0

0

16 5 15
15 25 0 004=

−( )
=

−( )
×

= °
R R

R t
t .

. per C
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10  Circuits and Networks

Example 1.12  A DC voltage of 220 V is applied across a tungsten filament whose 
resistance varies as a function of time given by R t e t( ) = 4 2 5. Ω. Compute the heat energy 
dissipated after 10 s.

Solution  As per Eq. (1.9), the heat energy dissipated is given by

1.6.2  Inductor
An inductor is a physical device which stores elec-
trical energy when a current flows through it. A 
practical inductor is made of several turns of wire 
wound on a magnetic or an air core. Figure 1.4 
shows a schematic representation of an inductor.
If the resistance of the inductor wire is negligible, 

the voltage v volts developed across it is proportional to the rate of change of cur-
rent di

dt
 in amperes/sec.

Thus,	 � (1.10)

or	 v L di
dt=

The proportionality constant L is called the inductance and is a result of the coiled 
conductor linking a magnetic field. It has the unit of henry (H) named after the 
American physicist Joseph Henry. Integration of Eq. (1.10) results in

� (1.11)

where i (0) is the initial current at t = 0.
By making use of Eq. (1.4), the instantaneous power in an inductor, at any instant, 
is written as

� (1.12)

Similarly, the energy stored in an inductor is given by

� (1.13)

From the foregoing, following observations may be made in respect of the behav-
iour of an inductor:

•	  The current in an inductor cannot change instantaneously [see Eq. (1.11)].
•	 When constant or direct current flows through an inductor (di/dt = 0) and the 

induced voltage is zero [see Eq. (1.10)], that is, the inductor behaves like a 
short circuit (SC).

•	 When the current is increasing, di/dt is positive, and energy is received from 
the source and stored in the magnetic field of the inductor. Similarly, when 

W pdt v
R t

dt
e

dt e dt
t= = ( ) =

( )
=∫ ∫ ∫ ∫ −

0

10

0

10 2

0

10 2

2 5
0

10
2 5220

4
12100.

. tt

−   = −  = −− − ×12000
2 5 4840 1 48402 5

0

10 2 5 10
. sec. .e et W /J

v di
dt∝ ,

i L vdt i
t

= + ( )∫1 0
0

A

p vi L i di
dt= = W

W p dt vi dt L di
dt idt L i di L iL

t t t t

= = = 





 = =∫ ∫ ∫ ∫

0 0 0 0

21
2

J

Fig. 1.4  Schematic repre-
sentation of an inductor

+ –
i

v

L
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Definitions and Basic Circuit Concepts   11

current is decreasing di/dt is negative; the energy stored in the magnetic field 
of the inductor is returned to the source.

Example 1.13  A current having a varia-
tion shown in Fig. 1.5 is applied to a pure 
inductor having a value of 2 H. Calculate the 
voltage across the inductor at time t = 1 and 
t = 3 sec.

Solution  For the period 0 ≤ t ≤ 1 sec
Current, i = 10 t A
Rate of change of current di

dt =10 A/sec
Therefore, at t = 1 sec, voltage across the inductor is

For the period 1 ≤ t ≤ 3 sec
Rate of change of current di

dt = −5 A/sec
Therefore, at t = 3 sec, voltage across the inductor is

Example 1.14  A voltage wave having the time variation shown in Fig. 1.6 is ap-
plied to a pure inductor having a value of 0.5 H. Calculate the current through the 
inductor at times t = 1, 2, 3, 4, 5 sec. Sketch the variation of current through the inductor 
over 5 sec.

L di
dt = × =2 10 20V

L di
dt = × − = −2 5 10V

(A)
i

10

0 1 3 t (sec)2
Fig. 1.5  

Fig. 1.6  

(V)
v

10

0 1 2 3 4 5
t

(sec)
–10

Solution  For the period 0 ≤ t ≤ 1sec, v = 10 V; i(0) = 0. The current i may be expressed 
using Eq. (1.11) as

Then at t = 1 sec, 
For the period 1 ≤ t ≤ 3 sec, v = ‒ 10 V; i (1) = 20 A, then current

Then at t = 2 sec, 
And at t = 3 sec, 
For the period 3 ≤ t ≤ 5 sec, v = 10 V; i(3) = –20 A,

i L v dt i dt dt t
t t t

= + ( ) = = =∫ ∫ ∫1 0 1
0 5 10 20 20

0 0 0.
i = × =20 1 20 A

i L vdt i dt dt t
t t t

= + ( ) = − + = − + = − −( ) +∫ ∫ ∫1 1 1
0 5 10 20 20 20 20 1 20

1 1 1.
i = − × − + = − + =( ) 20 2 1 20 20 20 0A

i = − × −( ) + = − + = −20 3 1 20 40 20 20A

i L vdt i dt dt t
t t t

= + ( ) = − = − = −( ) −∫ ∫ ∫1 3 1
0 5 10 20 20 20 3 20

3 3 3.
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12  Circuits and Networks

Fig. 1.7  Variation of current through the inductor

(A)
20

0
1 3 4 5

t
(sec)

–20

i

2

Then at t = 4 sec, 
And at t = 5 sec, 
Example 1.15  A voltage pulse v e tt= −( )−2 1 44 V  for t > 0 s is applied across a 
200 mH pure inductor. Assume v = 0 V for t < 0 s and derive expressions as functions of 
time for (a) the flow of current in the inductor, (b) power, and (c) energy.
Solution

(a)	 If it is assumed that i = 0 for t < 0, then i (0) = 0 in Eq. (1.11). Hence, the expression 
for the flow of current through the inductor is used as follows:

� (1.15.1)

	 Integration of Eq. (1.15.1) leads to

(b)	 Using Eq. (1.12), expression for power is obtained as

(c)  Expression for energy is obtained by employing Eq. (1.13) as

Example 1.16  Use the expressions in Example 1.15 for v, i, p, and W and plot their 
variations against time t. Use MATLAB facility to plot the curves. From the plots deter-
mine the time interval in which the inductor is (a) absorbing, (b) returning energy to the 
source, and (c) maximum energy stored.

Solution  Plot of inductor voltage versus time
>> t = linspace(0, 1, 10000); % divides the time axis between 0 

to 1 sec. into 10000 parts

>> v = 2*(1−4*t)·*exp(−4*t); % input voltage across the inductor

>> plot(t, v) % plot v (t) versus t

>> grid on % grid is turned on

>> xlabel('Time t in sec') % label x-axis

>> ylabel('Inductor voltage v in volts') % label y-axis

i = × −( ) − = − =20 4 3 20 20 20 0A
i = × −( ) − = − =20 5 3 20 40 20 20A

i t e t dt e t dt
t

t
t

t( ) = −( ) = −( )∫ ∫− −1
0 2 2 1 4 10 1 4

0

4

0

4
.

i t e te e dt
t t t t tt

( ) = −








 − − − −



















− − −

∫10 4 4 4 4
4

0

4

0

4

0





= −








 − − −





















− − −

10 4 4 4 16
4

0

4

0

4

0

e te et t t t t t


= −10 4te t

p vi e t te te t et t t t= = −( )  × = −− − − −2 1 4 10 20 804 4 8 2 8 W

W te t et t= × × ( ) =− −1
2 0 2 10 104 2 2 8. J
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Definitions and Basic Circuit Concepts   13

Plot of inductor current versus time
>> t = linspace(0, 1, 10000); % divides the time axis between 

0 to 1 sec. into 10000 parts

>> i = 10*t*exp(−4*t); % current through the inductor

>> plot(t, i) % plot i (t) versus t

>> grid on % grid is turned on

>> xlabel('Time t in sec') % label x-axis

>> ylabel('Inductor current i in amperes') % label y-axis

In
du

ct
or

 v
ol

ta
ge

 v
 in

 v
ol

ts

Time t in sec.

2

1.5

1

0.5

0

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
–0.5

Fig. 1.8  

In
du

ct
or

 c
ur

re
nt

 i 
in

 a
m

pe
re

s

Time t in sec.

1
0.9
0.8
0.7

0.5
0.4
0.3
0.2

0.6

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0.1

Fig. 1.9  

Plot of power versus time
>> t = linspace(0, 1, 10000); % divides the time axis between 

0 to 1 sec. into 10000 parts

>> p = 20*t·*exp(−8*t)−80*(t·^2)·*exp(−8*t); % power in the inductor

>> plot(t, p) % plot p (t) versus t

>> grid on % grid is turned on

>> xlabel('Time t in sec') % label x-axis

>> ylabel('Power p in watts') % label y-axis
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14  Circuits and Networks

Plot of energy versus time
>> t = linspace(0, 1, 10000); % divides the time axis between 0 

to 1 sec. into 10000 parts

>> W = 10*(t·^2)·*exp(−8*t); % energy in the inductor

>> plot(t, W) % plot w (t) versus t

>> grid on % grid is turned on

>> xlabel('Time t in sec') % label x-axis

>> ylabel('Inductor energy W in joules') % label y-axis

Po
w

er
 p

 in
 w

at
ts

Time t in sec.

0.6

0.5

0.4

0.3

0.1

0

–0.1

–0.2

0.2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Fig. 1.10  

(a)	 From the energy versus time plot (Fig. 1.11), it may be seen that energy is increasing from 
the interval 0 to 0.25 s. Hence this is the period when the inductor is absorbing energy. In 
addition, it may be seen from the power versus time plot that during this period p > 0.

(b)	 From the time 0.25 s to ∞, energy is decreasing in the inductor. Thus, the inductor is 
returning energy to the source during this period.

In
du

ct
or

 e
ne

rg
y 

W
 in

 jo
ul

es

Time t in sec.

0.09

0.08

0.07

0.06

0.04

0.03

0.02

0.01

0.05

0
0

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Fig. 1.11  
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Definitions and Basic Circuit Concepts   15

(c)	 From the energy versus time plot, the maximum energy stored in the inductor occurs at 
0.25 s and its magnitude is 0.085 J.

1.6.3  Capacitor
A capacitor is a physical device that 
stores electric energy in the form of 
charge separation when it is polarized 
by applying a suitable voltage. A practi-
cal capacitor is made up of two parallel 
conducting plates separated by an insu-
lating material or air called a dielectric. 
A schematic representation of a capaci-
tor is shown in Fig. 1.12. 
In the presence of a time-varying voltage v across the capacitor, the charge 

within the dielectric is displaced leading to a flow of current i, called the displace-
ment current. At the terminals of the capacitor, the current appearing is similar to 
the conduction current and is mathematically written as

� (1.14)

In Eq. (1.14), i is the current in amperes through the capacitor; C is the proportion-
ality constant and is called the capacitance of the capacitor, v is the applied voltage 
in volts, and t is time in s. Capacitance reflects the ability of the capacitor to store 
charge and has the unit of farad (F). In practice, the unit employed is microfarad 
(μF) since farad is too large a unit.
Integration of Eq. (1.14) with respect to time determines the voltage across 

capacitor as under

� (1.15)

where v(0) is initial voltage at t = 0.
Power p in the capacitor is written as

� (1.16)

The energy WC, in the capacitor at any time t, is given by

� (1.17)

Substituting for p from Eq. (1.16) in Eq. (1.17), and assuming that at t = 0, v = 0, 
and at any time t s, the voltage across the capacitor is v volts gives

� (1.18)

From the foregoing, following observations are made in respect of the behaviour 
of a capacitor:

•	 The voltage in a capacitor cannot change instantaneously [see Eq. (1.15)].

i C dv
dt= A

v C i dt v
t

= +∫1 0
0

volts( )

p vi C v dv
dt= = W

W p dt
t

C J= ∫
0

W C v dv
dt dt C v dv C vC

v v

= = =∫ ∫
0 0

21
2

( ) J

Fig. 1.12  Schematic representation 
of a capacitor

–+ C

v

i

© Oxford University Press. All rights reserved.

Oxfo
rd 

Univ
ers

ity
 Pres

s



16  Circuits and Networks

•	 When constant or direct voltage is applied across a capacitor dv
dt = 0






  no  

conduction current can flow through the capacitor, that is, the capacitor be-
haves like an open circuit (OC).

•	 When the voltage is increasing dv
dt  is positive; energy is received from the 

source and stored in the electric field of the capacitor. Similarly, when volt-
age is decreasing, dv

dt  is negative; the energy stored in the electric field of the 
capacitor is returned to the source. 

Hence, similar to an inductor, a capacitor is also a storage device which manifests 
itself in a circuit when the voltage is varying.

Example 1.17  A voltage wave having a time variation of 20 V/sec is applied to a pure 
capacitor having a value of 25 mF. Find (a) the current during the period 0 ≤ t ≤ 1sec, (b) 
charge accumulated across the capacitor at t = 1sec, (c) power in the capacitor at t = 1sec, 
and (d) energy stored in the capacitor at t = 1sec.

Solution
(a)	 Current through the capacitor i may be obtained using Eq. (1.14) as

(b)	 From Eq. (1.14) the charge q across a capacitor of C F can be written as q = Cv where 
v volts is the voltage across it. At t = 1 sec, v = 20 V, thus,

(c)	 At t = 1sec, power p = v × i = 20 × 500 × 10−6 = 1 × 10−2 W
(d)	 At t = 1sec, energy stored in the capacitor, WC, can be obtained using Eq. (1.18) as

Example 1.18  A current having variation shown in Fig. 1.13 is applied to a pure capaci-
tor having a value of 5 mF. Calculate the charge, voltage, power, and energy at time t = 2 sec.

i C dv
dt= = × × =−25 10 20 5006 µA

q C v= = × × =−25 10 20 5006 µC

W CvC = = × × × ( ) = ×− −1
2

1
2 25 10 20 5 102 6 2 3 J

Fig. 1.13  

i (A)
100 mA

1 3 4 t
(sec)

2

Solution  For the period 0 ≤ t ≤ 1sec, i = 100 × 10−3 t = 0.1 t A
At t = 1sec,

q i dt t dt t t
t t

t

t

t
t= = = × = =∫ ∫ 



 =

=

=
=

0 0
0

1
2 2

0
10 1 0 1

2
0 05 0 05. . . [ ] . [[ ] . C

. . V

1 0 0 05

1 0 1 0 05
500 10

100 100
0

2

6
2

− =

= = =
×

= =∫ −v q
C C t dt t t

t
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Definitions and Basic Circuit Concepts   17

Where t
p v i

W vidt t t dt tC
t t

=
= × = × =

= = × =∫ ∫

1
100 0 1 10

100 0 01
0

2
0

sec,
. W

. 33
0

1 4

0

1

4
1
4 1 0 0 25dt t

t

t

∫ =








 = − =

=

=

[ ] . J

For the peroid 0 ≤ t ≤ 1 sec, i = 0.2 – 0.1t A
At t = 2 sec,

Charge q q idt t dt t t
t

t
= + = + −( ) = + − ×= ∫ ∫1 1 1

2 2
0 05 0 2 0 1 0 05 0 2 0 1 2. . . . . .









= + − − − = + =
=

=

t

t

1

2

2 20 05 0 2 2 1 0 05 2 1 0 05 0 05 0 1. [ . ( ) . ( )] . . . C

Volltage v q
C C t dt= = + −( )





=
×

+

∫
−

1 0 05 0 2 0 1

1
500 10

0 05 0 2

1

2

6

. . .

[ . . tt t t
t−

= + − − − = ×

=
=0 05

10
500 0 05 0 2 2 1 0 05 2 1 10

500

2
1
2

6
2 2

6

. ]

[ . . ( ) . ( )] 00 1 200
200 0 0

.
W

=
= × = × =

V
Power p v i

2
.t 1 1

2 2
61

6 2 2 3
1

26 2 3 4

1
6

Energy
10.25 [0.05 0.2 0.05 ] (0.2 1 )

500 10
100.25 [0.01 0.035 0.03 0.005 ]500
10Energy 0.25 0.01 0.035 0.03 0.005500 2 3 4
100.25 500

C C

t

C
t

W W vidt

t t t dt

t t t dt

t t tW t

=

−

=

=

= +

 = + + − × − × 

= + + − +

 
= + + × − × + × 

 

= + ×

∫
∫

∫

0.01125 0.25 22.50 22.75 J= + =

Example 1.19  A varying current 
represented by the curve shown in 
Fig. 1.14 is flowing through an ideal 
capacitor having a capacitance of 
500 µF. Derive expressions for the 
voltage and energy developed across 
the capacitor. Plot the variation of 
voltage versus time. Assume that the 
capacitor is initially uncharged.

Solution  For the period 0 ≥ t ≥ 1.0, the current flowing through the capacitor is written as 
i = 0.1 A. The voltage developed across the capacitor is given by

where v(0) is an integration constant. Since the capacitor is uncharged at t = 0, v(0) = 0. 
Hence,

� (1.19.1)

Energy stored W Cv t tC t− ≤ ≤
−= = × ×( ) × ( ) =0 1 0

2 6 2 21
2

1
2

500 10 200 10. J

v
C

idt dt v t v= =
×

+ = +∫ ∫−
1 1

500 10
0 10 0 200 06 ( . ) ( ) ( )V

v t= 200 V

21

i, mA
100

t, s
– 100

Fig. 1.14  
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18  Circuits and Networks

For the period 1.0 ≤ t ≤ 2.0, the current flowing through the capacitor is written as i = – 0.1 A. 
Thus voltage developed is written as

where v(1) is an integration constant. From Eq. (1.19.1), at t = 1.0 s, v = 200 V.
Hence,	
Thus the expression for the voltage, for the period 1.0 ≥ t ≥ 2.0, is as under

v t t= − + = −( )200 400 200 2 V
Energy stored Wc t− ≤ ≤1 0 2 0. .

= 1
2

2Cv

= × ×( ) × −[ ]
= −( )

−1
2 500 10 200 2

10 2

6 2

2

( )

J

t

t

The variation of voltage, across the capacitor, with time is shown in Fig. 1.15.

Example 1.20  A voltage signal v t= ( )sin 2 V is applied across a 500 μF capacitor. If 
v t= ≤0 0for s , compute expressions for capacitor (a) current, (b) power, and (c) energy for 
t ≥ 0s. Sketch the various curves versus time in seconds.

Solution
(a)	 The capacitor current is computed using Eq. (1.14) as follows:

i d
dt t t= × ( )  = ( )10

500 2 4000 2
6

sin cos A
(b)	 The power is computed from Eq. (1.16) as given below.

(c)	 Energy in the capacitor is determined by employing Eq. (1.18) as under

W t tC = × ×( ) ( ) = × ( )− −1
2 500 10 2 2 5 10 26 2 4 2sin . sin J

Figure 1.16 shows a plot of the various quantities.

v dt t v=
×

× −( ) = − +− ∫1
500 10

0 10 200 16 . ( )V

200 200 1 0 1 1 400= − × ( ) + ( ) ( ) =. or v Vv

p vi t t t= = ( ) ( ) = ( )4000 2 2 2000 4sin cos sin W

Fig. 1.15  
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2

1

0

–1

–2

–3

–4

Time t in sec

Energy Wc in J × 10-4

Current i in kA

v in volts

Power p in kW

Fig. 1.16
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Definitions and Basic Circuit Concepts   19

Example 1.21  An ideal capacitor of 500 μF is excited by a current signal which is 
mathematically expressed as under

If the capacitor is initially uncharged, derive an expression for the voltage versus time and 
sketch the current and voltage signals.

Solution  Since the capacitor carries no charge initially, v(0) = 0 V in Eq. (1.15). Thus, for 
0 ≤ t ≤ 2s, the voltage across the capacitor can be written as

� (1.21.1)

For the period 2 ≤ ≤ ∞t s, the voltage across the capacitor is expressed as

� (1.21.2)
where v(2) is an integration constant.
From Eq. (1.21.1), at t = 2 s, v(t) = 12,000 V, and substitution of t = 2 and v (t) = 12,000 in 
Eq. (1.21.2) gives v (2) = 18,000 and Eq. (1.21.2) modifies to

� (1.21.3)
The plot of the capacitor current and voltage signals is shown in Fig. 1.17.
It may be noted that the capacitor reaches a constant voltage value of 18 kV over a long 
period of time.
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Example 1.22  Derive expressions for power and energy for the capacitor in Example 
1.21 and sketch the corresponding curves. Calculate the energy stored during the period (a)  
0 ≤ t ≤ 2s and (b) 2 ≤ ≤ ∞t s. What is the total energy stored in the capacitor? 

Solution  For convenience, the capacitor current and voltage expressions are reproduced 
as follows.

i t v t t t
i t e v et t
( ) = ( ) = ≤ ≤

( ) = = −− −( ) − −

3 6000 0 2
3 6000 32 2
;

;
V for s

and A (( )



 ≤ ≤ ∞V for s2 t
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20  Circuits and Networks

Equation (1.16) is used to calculate the expressions for power as follows.
For s, power kW
For s, power

0 2 3 6000 18
2 3 602

≤ ≤ = × =
≤ ≤ ∞ = ×− −( )

t p t t
t p e t 000 3 18 32 2 2−



 = −





− −( ) − −( ) − −( )e e et t t kW

Similarly Eq. (1.18) is used to calculate the expressions for energy as shown below.

For s, energy kJ

For s, ene

0 2 1
2 500 10 6000 9

2

6 2 2≤ ≤ = × × × ( ) =

≤ ≤ ∞

−t W t t

t

C

rrgy kJW e eC
t t= × × × −



{ } = −





− − −( ) − −( )1
2 500 10 6000 3 9 36 2

2
2 2

The power and energy curves are shown in Fig. 1.18.
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Therefore, total energy stored in the capacitor = 36 + 45 = 81 kJ.

Example 1.23  Across an ideal 0.4 μF capacitor, the following voltage signal is applied:

Derive expressions for capacitor (a) current, (b) power, and (c) energy as a function of time.

Solution
(a) Equation (1.14) is employed to determine capacitor current.

For s, sincet i v≤ = =0 0 0

v
t

t t
t t

=
≤
≤ ≤

−( ) ≤ ≤







0 0
5 1
10 5 2

V for sec
V for 0 sec

V for 1 sec

Fig. 1.18
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Definitions and Basic Circuit Concepts   21

For s, A0 1 0 4 10 5 26≤ ≤ = × × ( ) =−t i d
dt t. µ

For s A1 2 0 4 10 10 5 26≤ ≤ = × × −( ) = −−t i d
dt t, . µ

(b)	 Equation (1.16) is used to determine capacitor power.

(c)	 Equation (1.18) is applied to determine capacitor energy.

Example 1.24  Use MATLAB to plot capacitor curves for (a) voltage, (b) current, 
(c) power, and (d) energy. Identify the periods during which energy is being stored and 
returned by the capacitor. Show that the energies stored and returned by the capacitor 
are equal.

Solution  The MATLAB program for plotting the various curves versus time is written 
as follows:
>> line([0, 1], [0, 5])� % Line command for
� plotting the voltage signal

>> hold on

>> grid on

>> line([1, 2], [5, 0])� % Line command for
� plotting the voltage signal

>> line([0, 1], [2, 2])� % Line command for
� plotting the current signal

>> line([1, 2], [−2, −2])� % Line command for
� plotting the current signal

>> t=linspace(0, 1, 5000);

>> p=10*t;� % Computation of capacitor power

>> plot(t, p)� % Plot of capacitor power

>> t = linspace(1, 2, 5000);
>> p = 10*(t − 2);� % Computation of capacitor power

>> plot(t, p)� % Plot of capacitor power

>> t = linspace(0, 1, 5000);
>> Wc = 5*t^2;� % Computation of capacitor energy

>> plot(t, Wc)� % Plot of capacitor energy

>> t = linspace(1, 2, 5000);

>> Wc=5*(t^2 − 4*t + 4);� % Computation of capacitor energy

>> plot(t, Wc)� % Plot of capacitor energy

>> xlabel('Time t in sec')� % x-axis labelling

For st p v i≤ = × =0 0,

For s W0 1 5 2 10≤ ≤ = × =t p t t, µ

For s, W1 2 10 5 2 10 2≤ ≤ = −( )× −( ) = −( )t p t t µ

For s Ct W v≤ = × × × =−0 1
2 0 4 10 06 2, .

For s, JC0 1 1
2 0 4 10 5 56 2 2≤ ≤ = × ×( )× ( ) =−t W t t. µ

For s, JC1 2 1
2 0 4 10 10 5 5 4 46 2 2≤ ≤ = × ×( )× −( ) = − +( )−t W t t t. µ

© Oxford University Press. All rights reserved.

Oxfo
rd 

Univ
ers

ity
 Pres

s



22  Circuits and Networks

The period during which the capacitor is storing energy is the period when power is in-
creasing, that is, from 0 to 1 s. Similarly, the period during which the capacitor is returning 
energy is the period when power is decreasing, that is, from 1 to 2 s.

Energy stored by the capacitor = = =   =∫ ∫
0

1

0

1
2

0

1
10 10 2 5pdt tdt t / µJ

Similarly, energy returned by the capacitor = = −( ) = −  =∫ ∫
1

2

1

2
2

1

2
10 2 10 2 2 5pdt t dt t t/ µJ.

Thus, energies stored and returned by the capacitor are equal.

1.6.4  Ideal Independent Voltage Sources
An ideal independent voltage source is an element which can supply from its ter-
minals any magnitude of current, in any direction, at a specified constant voltage. 
Figure 1.20 shows the symbolic representation and the v–i characteristics of an 
ideal independent voltage source.

Fig. 1.19  
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Fig. 1.20  Symbolic representation of an ideal independent voltage source: 
(a) DC voltage, (b) time-dependent voltage, and (c) v–i characteristics

From the v–i characteristics in Fig. 1.20(c), it is seen that the magnitude V of 
the voltage source is independent of the magnitude of the current supplied by it. 
Open circuit (OC) and short circuit (SC) conditions in an ideal voltage source are, 
respectively, represented by i vS Sand= =0 0.
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Definitions and Basic Circuit Concepts   23

1.6.5  Ideal Independent Current Sources
An ideal independent current source is an element which can maintain any mag-
nitude of voltage while supplying specified constant current from its terminals. 
Figure 1.21 shows the symbolic representation and the v–i characteristic of an 
ideal independent current source.

I

)c()b()a(

IS iS(t) 

iS(t) 

v(t)

+

–

+

–

From the v–i characteristics in Fig. 1.21(c), it is seen that the magnitude I of the 
current source is independent of the magnitude of the voltage maintained by it. 
Open circuit and SC conditions in an ideal current source are, respectively, repre-
sented by v iS Sand= =0 0.
In practice, it has been found that it is more convenient to use voltage sources 

for analysing electric circuits whereas the use of current sources has been found to 
be handy for electronic circuit analyses.

Example 1.25  An 8 Ω resistance is connected across a 24 V ideal voltage source. 
Determine (i) circuit current and (ii) voltage drop across the resistance. If a 4 Ω resistance 
is connected in series with the 8 Ω resistance, calculate (iii) circuit current, (iv) voltage 
drop across each resistor, and (v) power delivered by the source in each case.

Solution

(i)	 Circuit current = =24 8 3/ A
(ii)	 Since the full voltage of the voltage source is applied across the 8 Ω resistance, voltage 

across it is 24 V.
(iii)	 In this case, full voltage of the source is applied across the (8 + 4) Ω resistances in 

series. Thus, current I = +( ) =24 8 4 2/ A
(iv)	 Voltage across 8 Ω resistance 2 × 8 = 16 V
	 Voltage across 4 Ω resistance 2 × 4 = 8 V
(v)	 Power delivered to the 8 Ω resistor = V × I = 24 × 3 = 72 W
Power delivered to the 8 Ω resistor in series combination = V × I = 16 × 2 = 32 W
Power delivered to the 4 Ω resistor in series combination = V × I = 8 × 2 = 16 W
Total power delivered by the source = 32 + 16 = 48 W.

Example 1.26  Repeat Example 1.25 when the voltage source is replaced by an ideal 
current source of 24 A.

Solution  In this case, the ideal current source supplies a constant current of 24 A under 
both types of connections.

Fig. 1.21  Symbolic representation of an ideal independent current source: 
(a) DC current, (b) time-dependent current, and (c) v–i characteristics
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24  Circuits and Networks

(i)	 Voltage drop across the 8 Ω resistance = × =24 8 192V
(ii)	 When a 4 Ω resistance is connected in series, the constant current of 24 A from the 

current source flows through both the resistances.
(iii)	Voltage drop across 8 Ω resistance = × =24 8 192V
	 Voltage drop across 4 Ω resistance = × =24 4 96 V
(iv)	 Voltage drop across the series combination = × +( ) =24 4 8 288V
(v)	 Power delivered to the 8 Ω resistor = V × I = 192 × 24 = 4608 W

Power delivered to the 8 Ω resistor in series combination = V × I = 192 × 24 = 4608 W
Power delivered to the 4 Ω resistor in series combination = V × I = 96 × 24 = 2304 W
Total power delivered by the source = V × I = 288 × 24 = 6912 W

From the foregoing it can be concluded that there is no limit on the voltage and power 
delivered by a current source.

1.6.6  Dependent Energy Sources
An energy source, whose output voltage or current is either dependent on the 
voltage or current in another part of the circuit, is classified as a dependent (or 
controlled) source. All dependent sources are unidirectional and linear. Thus, both 
dependent voltage and current sources are obtainable. Figure 1.22 shows the sym-
bolic representation of the four types of dependent sources.
It may be observed that there are four variants of controlled energy sources 

and in order to fully specify a source, four parameters are needed, that is, source 
voltage or source current (v iS Sor ), controlling voltage or current (vi or is) in 
another part of the circuit, multiplying constants (such as α β µ ρ, , , or ) and 
reference polarity. It would also be useful to note that constants μ and β are 
dimensionless constants whereas α has the unit of A/V and ρ has the unit of V/A. 
The relationship for each type of dependent source along with the reference 
polarity is shown in Fig. 1.22.

Fig. 1.22  Symbolic representation of dependent energy sources
(a) Voltage-controlled voltage source (VCVS), (b) current-controlled  
voltage source (CCVS), (c) voltage-controlled current source (VCCS),  
(d) current-controlled current source (CCCS)

(a) (b) (c) (d)

vs = μ vi
–

+
vs = ρ ii

–

+
is = α vi is = β ii

Example 1.27  Compute the load voltage across the resistor RL for the given circuit in 
Fig. 1.23.
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Definitions and Basic Circuit Concepts   25

Solution  The circuit in Fig. 1.23, in addition to an independent voltage source VS = 18 V, 
is also made up of a dependent VCVS = 0.5VS and a dependent CCCS = 2iS.
Application of Ohm's law to the closed circuit containing the VCVS gives

or,	
From the circuit containing CCCS, it is seen that the voltage across the load is

1.6.7  Practical Voltage and Current Sources
An ideal voltage source does not exist in practice. Figure 1.24 shows the simula-
tion of a practical voltage source.

18 3 0 5 18 0
18 9 3 3

+ × − × =
= −( ) =

i
i

S

S A
.

/

R iL S V= × ( ) = × ×( ) =2 2 2 2 3 12

R1 = 3 Ω

iS

VS = 18 V 0.5 VS 2 iS RL = 3 Ω
+
–

+
–

+

Fig. 1.23

Fig. 1.24  Simulation of a practical voltage source 

+

–
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(c)

From Fig. 1.24(a), the load current iL through the variable load resistor RL Ω is 
given by

� (1.19)

In addition, current, through RL when a resistance rS is connected in series with the 
ideal voltage source [see Fig. 1.24(b)] is written as

� (1.20)

i t i t v t
RL S
S

L
A( ) = ( ) =

( )

i t i t
v t

r RL S
S

S L
V( ) = ( ) =

( )
+
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26  Circuits and Networks

And the load voltage is

� (1.21)

The following conclusions may be drawn from the above equations:

•	 From Eq. (1.19), it is seen that as RL → 0, current iS supplied by the ideal 
source tends to ∞, a condition impossible to achieve.

•	 Equation (1.20) represents the load current 
supplied by a practical source. It may be noted 
that under a SC condition RL =( )0 , the current 
supplied by the source is limited by its internal 
resistance rS, that is, i t v t rSmax S S( ) = ( ) / .

•	 Equation (1.21) is employed to plot the v–i 
characteristics of a practical voltage source and 
is shown in Fig. 1.25.

•	 The resistance rS, which has a typically low 
magnitude, is internal to the voltage source. 
Its presence affects the load voltage, and in the 
limiting condition as rS → 0, the magnitude of the load voltage vL approaches 
the magnitude of the source voltage vS.

In a similar manner, a practical current source can be simulated. Modelling of a prac-
tical current source is shown in Fig. 1.26 and Fig. 1.27 depicts its v–i characteristics.

v t i t R
v t

r R
R v t i t rL L L

S

S L
L S L S( ) = ( )× =

( )
+

= ( ) − ( )×( )

rS

O

Practical
source

Ideal
source

iL(t)

vL(t) vL(t)= vS(t)

vS(t)=

iS max(t)

Fig. 1.25  v–i Characteristics 
of a practical voltage source 

Fig. 1.26  Modelling of a practical current source

Fig. 1.27  v–i Characteristics of a practical current source

iS

iS

(iS – iL)
rS vS

iL

RL rS vS
iS

iS

++

– –

Ideal source
iL

iS

vL

vOC = vS max

Practical source

It is left as a tutorial exercise for the reader to verify the drooping nature of the 
characteristic and prove that the internal resistance possesses a high magnitude in 
order to simulate the behaviour of an ideal current source.
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Example 1.28  A practical 48 V independent source can supply a maximum cur-
rent of 120 A. Determine (a) the internal resistance of the source and (b) plot the load 
characteristics. Compute the load (c) current and (d) voltage when the source is a load 
of 50 Ω.

Solution
(a)	  The internal resistance of the source is determined by making use of i t v t rSmax S S( ) = ( ) /  

as under
 

(b)	When the source is supplying maximum 
current, it is a SC condition:

	 vL (t) = 0 V and iL = 120 A.
	 Under OC condition, vL (t) = 48 V and iL = 

0 A. The load characteristic is shown in 
Fig. 1.28.

(c)	 Load current is obtained by using 
Eq. (1.20) as under

	 i tL A( ) =
+

=48
0 4 50 0 952. .

(d)	 Equation (1.21) is used to compute load 
voltage as follows:

	

Example 1.29  In the circuit shown in Fig. 1.26, the practical current source has a 
capacity of 10 A and an internal resistance of 100 Ω. Plot the v–i characteristics of the 
current source when load resistance is equal to (a) 10 Ω, (b) 50 Ω, and (c) 100 Ω.

Solution  From Fig. 1.26, the following data is available: i t rS SA and( ) = =10 100 Ω.

On OC and VL L LR i t v t= ∞( ) ( ) = ( ) = × =0 10 100 1000,

(a)	 For , A,

and

L L

L

R i t

v t

= ( ) = ×
+( ) =

( ) = × =

10 10 100
100 10

9 091

9 091 10 90

Ω .

. ..91V

(b)	 For , A,

and

L L

L

R i t

v t

= ( ) = ×
+( ) =

( ) = × =

50 10 100
100 50

6 667

6 667 50 33

Ω .

. 33 333. V

(c)	 For , A,

and

L L

L

R i t

v t

= ( ) = ×
+( ) =

( ) = × =

100 10 100
100 100

5 0

5 0 100 500

Ω .

. VV

The v–i characteristics are plotted in Fig. 1.29.

1.6.8  Source Transformation
Practical voltage sources can be transformed into current sources and vice versa 
since their terminal characteristics are linear. Figure 1.30 shows the transforma-
tion of a practical voltage source into a current source.

rS = =48
120 0 4. Ω

v tL V( ) = × =0 952 50 47 62. .

v L (
t) 

= 
v S (

t) 
= 

48
 V

vL (t)

vL (t)

iS (t)rS

iL (t)120 A

Fig. 1.28  

v L (
t) 

= 
10

00
 V

vL (t)

RL = 50 Ω

RL = 10 ΩRL = 100 Ω

iL (t)
Fig. 1.29  
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28  Circuits and Networks

Fig. 1.30  Source transformation

+

–

+–
Network

N

rS

rSrS

 (b) Practical current source 

+

–

Network
N

iL(t)

iS(t) = 

iL(t)

vL(t) vL(t)vS(t)
vS(t) rS

vL(t)

(a) Practical voltage source

From Fig. 1.30(a), the voltage at the terminals of the network N is expressed as

� (1.22)

where iL(t) is the current flowing into the network.
Dividing Eq. (1.22) by rs yields

� (1.23)

Equation (1.23) can be interpreted as consisting of a current source of magni-
tude v t rL S A( ) /  and an internal resistance of magnitude rS Ω connected across 
its terminals. Figure 1.30(b) schematically translates Eq. (1.23) and represents 
the transformation of a practical voltage source into an equivalent current 
source. Similarly, a practical current source can be transformed into a voltage 
source.

Example 1.30  Calculate the voltages across the 10 Ω and 5 Ω resistors in the circuit 
shown in Fig. 1.31, using source conversion technique.

v t v t i t rL S L S( ) = − ( )×( )

v t
r

v t
r i tL

S

S

S
L

( )
=

( )
− ( )

Fig. 1.31  

5 Ω

4 Ω10 A 6 Ω

10 Ω

Fig. 1.32  

5 Ω

6 Ω

4 Ω 10 Ω

+
vS (t) = 10 × 4 = 40 V

i(t)

Solution
Step 1: Transform the current source into a voltage and redraw the circuit as shown in Fig. 1.32.
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Definitions and Basic Circuit Concepts   29

Step 2: Calculate current i(t) supplied by the voltage source.
 

Step 3:  Calculate the voltage across the 10 Ω resistor as under
 

Step 4:  Calculate the current through the 10 Ω resistor as follows:

 

The computations are easily verified by computing the current through the 6 Ω resistor 
which is i i i i t6 10 6

11 765
6 1 961Ω Ω Ω= = + ( ). . .A, and adding to get

Example 1.31  Show that the circuits in Fig. 1.33(a) and (b) and Fig.1.34 (a) and (b) 
are equivalent.

i t( ) =
+ + ×

+


 




= =40

4 5 10 6
10 6

40
12 75 3 137. . A

v t10 40 3 137 4 5 11 765Ω ( ) = − × +( ) =. . V

i t10
11 765

10 1 177Ω ( ) = =. . A

Fig. 1.33

++

vS (t)R1

RR

vS (t)

A

B
(a) (b)

A

B

iS (t)R2 R2iS (t)

A

B
(a) (b)

A

B

R

Fig. 1.34

Solution  To show the equivalence between respective circuits, it is required to prove that 
the conditions across terminals A–B are the same.
It is seen that in both the circuits in Figs 1.33(a) and 1.33(b), the voltage across and current 
through the terminals A–B are vS(t) and zero, respectively. Hence, the two circuits are 
equivalent.
Similarly, in the circuits in Figs 1.34(a) and 1.34(b), the voltage across and current 
through the terminals A–B are iS(t)R2 and zero, respectively. Hence, the two circuits are 
equivalent.
From the foregoing, it can be concluded that a resistance connected in parallel across a 
voltage source and a resistance connected in series with a current source can be removed 
without affecting the terminal conditions in the circuit. Application of the equivalence 
principle is demonstrated in the next example.
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30  Circuits and Networks

Example 1.32  For the circuit shown in Fig. 1.35, use source transformation to calcu-
late the voltage vL across the 120 Ω resistor.

Fig. 1.35  

30 Ω

150 Ω
10 A

vL300 V

100 Ω

120 Ω 20 Ω

10 Ω

+–

Solution  The given circuit is simplified by removing the 150 Ω resistor and shorting the 
100 Ω resistors connected across the voltage and current sources, respectively. The simpli-
fied circuit is redrawn in Fig. 1.36 by combining the 10 Ω and 20 Ω resistors in series.

30 Ω

10 A300 V 120 Ω 30 Ω+–

Fig. 1.36  

Next, the voltage source of 300 V is transformed into a current source as shown 
in Fig. 1.37.

30 Ω 10 A10 A 120 Ω 30 Ω

Fig. 1.37  

Fig. 1.38  

13.33 Ω20 A

In the next step, the two parallel current sources and the three 
parallel resistors are combined to arrive at the circuit shown in 
Fig. 1.38.
Thus, voltage vL V= × =20 13 33 266 67. . .

1.7  Kirchhoff's Laws
The foundation of circuit analysis is based on the two laws of (i) current distribu-
tion and (ii) voltage division in a network and is named after the German physicist, 
Gustav Robert Kirchhoff.
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Definitions and Basic Circuit Concepts   31

The property of an electric charge, that it can neither be created nor be destroyed 
but must be conserved, forms the basis of Kirchhoff's current law (KCL). It states 
that the sum of the currents at a junction (also called a node) in a circuit is zero, at 
any instant of time. Mathematically KCL is written as

� (1.24)

where im(t) is the current in the mth element at a node k and the total number of 
elements connected to the node is n. Figure 1.39 
shows the application of KCL.
Since a direction is associated with the flow 

of current, it is necessary to define directions. 
Assume that the currents flowing into the junc-
tion are positive and currents flowing out are 
negative. Based on this assumption, KCL may 
be applied to the junction in Fig. 1.39 as under

� (1.25a)
or,	  � (1.25b)

Example 1.33  In Fig. 1.40, calculate v1 at the node and i1.
The data is as follows: i2 = 6 A, v3 = 10e– 2t, v4 = e– 2t.

Solution  Application of Ohm’s law gives

The current i4 is computed by employing Eq. (1.14) as

Application of KCL to the node yields

or
	

The negative sign shows that the direction of flow of current is opposite to the assumed 
direction. In order to calculate v1, Eq. (1.10) is used as under

Likewise that energy can neither be created nor be destroyed but must be conserved, forms 
the basis of Kirchhoff's voltage law (KVL). Thus, KVL states that in a closed circuit, the 
sum of voltages at any instant of time is zero. Mathematically, KVL is expressed in the 
following manner.

� (1.26)

where vk(t) represents the voltage across the kth element in a closed loop containing n elements.
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Fig. 1.39  Application of KCL
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32  Circuits and Networks

In order to demonstrate the application of KVL, consider the circuit shown in Fig. 1.41.

Fig. 1.41  Application of KVL

As in the case of current flow, a direction is associated with potential difference. 
Therefore, assume that an increase in potential difference (i.e., a voltage rise from 
−ve polarity to +ve polarity) is positive and conversely a decrease in potential dif-
ference (i.e., a voltage drop from +ve polarity to −ve polarity) is negative. Starting 
at the bottom node F and applying KVL to the closed loop FABEF yields,

� (1.27a)

In order to firm up the concept of the application of KVL, consider the closed circuit 
FABCDEF and again start at node F.
Hence,	 � (1.27b)

It is left to the reader, as a tutorial exercise, to apply KVL to the closed circuit EBCDE. 
Hint: Start at the bottom node.
Example 1.34  Apply Kirchhoff's laws to determine the source current IS and the 
power consumed in the 6 Ω resistor for the circuit shown in Fig. 1.42.
Solution  Current through the 6 Ω resistor is I1 = 4 A
Voltage of node C, vc = 6 × 4 = 24V
Application of KCL to node C yields I2 + I3 = 6 – 4 = 2A

v t L didt i R C i dt1 1
1

2 1
1 0( ) − − − =∫

v t L didt L didt v t C i dt1 1
1

2
3

2 1
1 0( ) − − + ( ) − =∫

6 A
I5 I2I4

I1 = 4 A
6 Ω5 Ω

4 Ω 4 Ω

4 Ω

I3

CBA

VS

D

+–

Fig. 1.42  

BA

v1 (t) v2 (t)vR (t)

i1 (t)

i2 (t)

i1 (t)

i3 (t)

+

–
R

+ –L1 + –L2

F

C

D+–
C

–
++–

E

Since the two 4 Ω resistors are in parallel, I2 = I3 = 1.0 A
Voltage of node B is 24 – I2 × 4 = 24 – 1.0 × 4 = 20 V
Current through the 5 Ω resistor is I4

20
5 4= = A

Applying KCL to node B leads to the source current. IS = I4 + I2 + I3 = 4 – 1.0 – 1.0 =2 A
Energy consumed by the 6 Ω resistor = × = × =I4

2 25 2 5 20 W .
VS = VB + 4 × IS = 20 + 4 × 2 =28 V

Example 1.35  Given that L1 = 0.25 H, L2 = 0.5 H, C = 0.25 F, R = 2 Ω, vR(t) = 4 cos t V, 
and i3 = 4 sin t A, determine v1(t) and v2(t) for the circuit shown in Fig. 1.41.
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Definitions and Basic Circuit Concepts   33

Solution  The current through R is given by 
Application of KCL to node B leads to

i t i t i t t t1 2 3 2 4( ) = ( ) + ( ) = +( )cos sin A

Commencing with the node F, apply KVL to the closed circuit FABEF as follows:

− + × + + × + +∫v t d
dt

t t t t t dt1 0 25 2 4 2 2 1
0 25

2 4( ) . ( cos sin ) cos
.

( cos sin ) == 0

or,	 v t t t t t t
t t

1 0 5 4 8 16
7 5 11

( ) = − + + + −
= −( )

. sin cos cos sin cos
. sin cos V

v t t t t t t
t t

1 0 5 4 8 16
7 5 11

( ) = − + + + −
= −( )

. sin cos cos sin cos
. sin cos V

Put	 K Ksin cos .ϕ ϕ= − =11 7 5and .

Therefore, K = + = = −





 = − °−121 56 25 13 3135 11

7 5
55 711. . tan

.
.and ϕ

Thus, v1(t) = 13.3135 sin (t – 55.71°)

Now apply KVL to EBCDE and start with node E.

or,	 v2(t) = – 4 cos t + 2 cos t = – 2 cos t V

Example 1.36  Determine the voltage at (a) node A and (b) power supplied by the 
voltage source in the circuit shown in Fig. 1.43. All the relevant data is indicated in the 
circuit diagram.

i t v t
R

t tR
2

4
2 2( ) ( ) cos cos A= = =

− × + × ( ) − =2 2 0 5 4 02cos . sin ( )t d
dt

t v t

6 Ω

i3 (t)

i1 (t)

4 ΩA B

5 A12 V8 Ω

is (t)
i2 (t)

+ +

+–

2 Ω
vs (t) = 50 V

Fig. 1.43  

Solution  It would be useful to start from the independent current source side. Since the 
voltage of node B is 12 V, current through the 2 Ω resistor i t2 12 2 6( ) = =/ A .

Application of KCL at node B gives i t3 6 5 1( ) = − = A

Voltage at node A = + × =12 1 4 16 V

Current through the 8 Ω resistor i ti ( ) = =16 8 2/ A

Current supplied by the voltage source i t i t i tS A( ) = ( ) + ( ) = + =1 3 2 1 3

Power supplied by the voltage source v t i tS S W( ) ( ) = × =50 3 150

Example 1.37  For the circuit shown 
in Fig. 1.44, compute (a) current i, (b) 
voltage v across the dependent current 
source. Prove that the power generated is 
equal to the power absorbed.

2 kΩ

25 i(t)

i(t)v(t) 60 kΩ
A

B
C

D

10 V

 2 V

8 kΩ 6 V
+ +

+ + ––

Fig. 1.44  
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34  Circuits and Networks

If the current flowing through the circuit is iS (t) A and KVL is applied around the 
closed circuit, then

Solution  Current through the 8 kΩ resistor is = 25i(t) + i(t) = 26i(t)
Application of Ohm's law around the closed circuit DCBD yields

or	 i t( ) =
+( )×

=8
60 208 10

29 853 . µA

Voltage at point A is determined as under

Voltage at point B is given by
v tB ( ) = × × × × =−8 10 26 29 85 10 6 20903 6. . V

v t v t v t( ) = ( ) + ( ) = − + =A B 8 5075 6 2090 2 2985. . .

Power generated by the voltage sources Pg W= +( )× + × × =6 2 29 85 10 25 29 85 7701 3. . . µ

Power is absorbed by the three resistors and the current dependent source and is obtained 
as under
P i t i t i t v ta = × × ( ) + × × ( )  + × × ( )  − ( )×6 10 8 10 26 2 10 25 253 2 3 2 3 2 ii t( )

= × × ×( ) + × × × ×( ) + × × ×− −6 10 29 85 10 8 10 26 29 85 10 2 10 25 29 853 6 2 3 6 2 3. . . ××( )
− −( )× × ×( ) =

−

−

10

2 2985 25 29 85 10 7701 3

6 2

6. . . µW
Thus, the power generated is equal to the power absorbed.

1.8  Connection of Circuit Elements
Circuits can be connected in several ways to obtain desired outputs. This section 
discusses the different methods of connecting the circuit elements.

1.8.1  Series Connections
When circuit elements are connected end to end, the elements are said to be con-
nected in series. A distinct property of the series connection is that the same cur-
rent flows through all the elements connected in the circuit.
Resistors in series and the voltage divider circuit:
Figure 1.45 (a) shows resistors R1 Ω, R2 Ω, R3 Ω,......, Rn Ω connected in series across 
a voltage source vS(t) V.

− + × × ( ) − + × × ( ) =6 60 10 2 8 10 26 03 3i t i t

v tA V( ) = − + × × × × = −−10 2 10 25 29 85 10 8 50753 6. .

Fig. 1.45  (a) Resistors in series, (b) equivalent resistance

R2

(a) (b)

R1 R3 Rn

vS

+ – + – + – + –v1 v2 v3 v4

iS

+ –

Req

+ –vS

iS

vS
+ –
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Definitions and Basic Circuit Concepts   35

� (1.28a)

Figure 1.45(b) shows a circuit in which a resistor Req is connected across a voltage 
source vS(t) such that the same current iS(t), as in the circuit of Fig. 1.45(a), flows 
through it. Thus,

� (1.28b)

Comparison of Eqs (1.28a) and (1.28b) gives,

� (1.29)

Equation (1.29) shows that resistors connected in series can be directly added to 
obtain the equivalent resistor.
Referring to Fig. 1.45(a), it is seen that by Ohm's law,

Substitution off iS(t) from Eq. (1.28b) yields

� (1.30)

Similarly, 

Equation (1.30) shows that it is possible 
to obtain any desired voltage output 
by dividing it across a resistor. Such a 
circuit is called a voltage divider circuit 
and is shown in Fig. 1.46. It may be 
noted that Req, is called the input resis-
tance Rin, R1 is the output resistance, Ro, 
vs(t) is the input voltage, and v1(t) is the 
output voltage vo(t).

Example 1.38  Design a voltage divider to obtain a variable voltage for a DC source 
of 220 V and a current supply of 2.0 A. (a) Determine the output resistance for an output 
voltage of 60 V. (b) If the output resistance is 75 Ω, calculate the percentage voltage output.

Solution  Referring to Fig. 1.46, R v t
i tin
S

S
= = =

( )
( ) .

220
2 0 110 Ω

(a)	 Equation (1.30) is used to determine the output resistance as follows:

(b)	 Again from Eq. (1.30), percentage output voltage is given by

i t R i t R i t R i t R v tnS S S S S( ) + ( ) + ( ) +…+ ( ) − =1 2 3 0( )

i t
v t

R R R Rn
S

S( ) =
( )

+ + +…+( )1 2 3

i t
v t
RS
S

eq
( ) =

( )

R R R R Rneq = + + +…+1 2 3

v t i t R1 1( ) ( )= ×S

v t R
R v t1

1( ) = ( )
eq

S

v t R
R v t v t R

R v t v t R
R v tn

n
2

2
3

3( ) = ( ) ( ) = ( ) … ( ) = ( )
eq

S
eq

S
eq

S, ,

R v t R
v to

o in

S
=

×
= × =

( )
( )

60 110
220 30 Ω

v t
v t

R
R

o

S

o

in

( )
( ) . %= × = × =100 75

220 100 34 09

Fig. 1.46  Voltage divider circuit

Ro Ω
Rin Ω

+
–+–

IS(t)

vS(t)
vo(t)
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36  Circuits and Networks

Inductors in series:
Figure 1.47 shows inductors L L L Ln1 2 3H H H H, , ,........,  connected in series across a time-
varying voltage source vS(t) V.

Leq

iS

vS

+ –

+ –+ – + – + –v1 v2 vn

L2 LnL1

iS

vS

+ –

(a) (b)

Fig. 1.47  (a) Inductors in series, (b) equivalent inductor

Fig. 1.48  (a) Capacitors in series, (b) equivalent capacitor 

Ceq

iS

+ –
vS

+ –

+ – + – + –v1 v2 vn

C2 CnC1

iS

vS
(a) (b)

+ –

Assume that the circuit current is iS(t) A. Application of KVL to the circuit leads to

or	 v t L d
dt i t L d

dt i t L d
dt i t L d

dt i tnS S S S S( ) [ ] [ ] [ ] [= ( ) + ( ) + ( ) +…+ ( )1 2 3 ]]
�

(1.31a)

Application of Ohm's law to Fig. 1.47(b) gives

� (1.31b)

Comparison of Eqs (1.31a) and (1.31b) gives the equivalent inductance as

� (1.32)
Capacitors in series: Similarly an equivalent circuit for capacitors connected in series 
can be developed. Figure 1.48 shows capacitors connected in series across a time-varying 
voltage source vS(t).

L d
dt i t L d

dt i t L d
dt i t L d

dt i t v tn1 2 3[ ] [ ] [ ] [ ] (S S S S S( ) + ( ) + ( ) +…+ ( ) − )) = 0

v t L d
dt i tS eq S( ) [ ]= ( )

L L L L Lneq = + + +…+1 2 3

Equation (1.33) gives the expression for the equivalent capacitance.

� (1.33)

Derivation of the expression is left as an exercise for the reader.

1.8.2  Parallel Connections
When the two ends of all the circuit elements are joined together at two nodes, 
the elements are said to be connected in parallel. A characteristic of elements con-
nected in parallel is that same voltage appears across the terminals.

1 1 1 1 1
1 2 3C C C C Cneq

= + + +…+
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Definitions and Basic Circuit Concepts   37

R1

i1

R2

i2

R3

i3

vS

iS

in

Rn
+
–+– vS

iS

+
–+– Req

(a) (b)
Fig. 1.49  (a) Resistors in parallel, (b) equivalent resistors 

Resistors in parallel and the current divider rule: Resistors R R R Rn1 2 3Ω Ω Ω Ω, , , ,…  
are connected in parallel across a voltage source vS(t) V and are shown in 
Fig. 1.49(a).

If i t i t i t i tnS S S S1 2 3
( ), ( ), ( ),... ( ) represent currents flowing through the respective 

resistors R R R Rn1 2 3, , ,..., , application of KCL to the node gives

� (1.34)

where iS(t) is the total current supplied by the voltage source.
Current in the ith element in Fig. 1.49(a) is determined by Ohm's law as

� (1.35a)

Substitution of Eq. (1.35a) for various currents in Eq. (1.34) yields

� (1.35b)

From the equivalent circuit in Fig. 1.49(b), it is seen that

� (1.35c)

Comparison of Eqs (1.35b) and (1.35c) leads to

� (1.36a)

Thus, equivalent resistance of n parallel-connected resistances is the reciprocal of 
the sum of the reciprocals of individual resistances. In the remaining text in this 
book, parallel combination of resistors will be mathematically represented in the 
following manner.

In terms of the conductance of a resistance, Eq. (1.36a) may be expressed as

� (1.36b)
In Eq. (1.36b), G G G G Gneq , , , ,...,1 2 3  are conductances corresponding to resistances 
R R R R Rneq , , , ,..., ,1 2 3  respectively.

i t i t i t i t i tnS S S S S( ) ( ) ( ) ( ) ( )= + + +…+
1 2 3

i
v t

Ri
i

S
S=

( )

i t v t R R R Rn
S S( ) ( )= + + +…+





1 1 1 1
1 2 3

i t v t
RS
S

eq
( )

( )
=

1 1 1 1 1
1 2 3R R R R Rneq

= + + +…

R

R R R Rn

eq =
+ + +…+

Ω1
1 1 1 1
1 2 3

R R R Rn1 2 3 ...

G G G G Gneq S= + + + +( ... )1 2 3
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38  Circuits and Networks

Complementing the voltage divider circuit is the current divider circuit which is 
associated with resistors in parallel.
Writing the current components i t i t i t i tnS S S S1 2 3

( ), ( ), ( ), ... ( ) in Eq. (1.34), in terms 
of iS(t) and the corresponding resistor values gives

 �
(1.37)

Application of the current divider principle is shown in the following example.

Example 1.39   For the current divider circuit shown in Fig. 1.50, determine the value 
of RL if the current IS supplied by the voltage source is 50 mA. What is the voltage across 
RL? Compute the power consumed by RL. All values are shown in the figure.

i t
R
R i t R

R i t G
G i t1

1

1 11
1

( ) ( ) /
/

( ) ( )= = =eq
S

eq
S

eq
S A

i t
R
R i t R

R i t G
G i tS2

2

2 21
1

( ) ( ) /
/

( ) ( )= = =eq
S

eq eq
S A

i t
R
R i t R

R i t G
G i t3

3

3 31
1

( ) ( )
/
/

( ) ( )= = =eq
S

eq
S

eq
S A

i t
R
R i t R

R i t G
G i tn

n

n n( ) ( )
/
/

( ) ( )= = =eq
S

eq
S

eq
S A

1
1

Fig. 1.50

VS = 220 V

2.5 kΩ 0.5 kΩ

IS
I1

I2

10 kΩ RL
++
–+–

Solution
Equivalent resistance of the circuit R R

Req
L

L
= +

× +
+ +( )2 5 10 0 5

10 0 5
. ( . )

.
� (1.39.1)

By Ohm's law � (1.39.2)

Equating Eqs (1.39.1) and (1.39.2) gives

� (1.39.3)

Simplification of Eq. (1.39.3) yields 

Current through RL mA= ×
+ +( )

=50 10
10 0 5 1 85

40 50
. .

.

Voltage across RL V= × =40 50 1 85 74 80. . .
Power consumed by RL W= × ×( ) =−74 80 40 50 10 3 033. . .
Inductors in parallel: Inductors L L L Ln1 2 3H H H H, , ,...  are shown connected in parallel, 
across a time-varying voltage source vS(t), in Fig. 1.51 (a) along with its equivalent circuit 
in Fig. 1 .51(b).

R V
Ieq

S

S
k= = =220

50 4 4. Ω

2 5 10 0 5
10 0 5

4 4. ( . )
.

.+
× +
+ +( ) =

R
R

L

L

RL k=1 85. Ω
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Definitions and Basic Circuit Concepts  39

Fig 1.51  (a) Inductors in parallel, (b) equivalent inductor circuit

+

–
vS (t) vS (t)

i1

L1

i2

L2

i3

L3

i

+

–

i

Leq

(a) (b)

Assuming that the initial currents at t = 0 at are zero and equating the source currents in 
both the circuits gives

or,

	 1 1 1 1 1
1 2 3L v t dt L v t dt L v t dt L v t dt L v t

n
∫ ∫ ∫ ∫ ∫( ) + ( ) + ( ) +… ( ) = (S S S S

eq
S ))

= + + +…

dt

L L L L Ln
or

eq

1 1 1 1 1
1 2 3

�

(1.38)

Equation (1.38) expresses the equivalent inductance of L L L Ln1 2 3, , ,...  inductors connected 
in parallel.

Example 1.40  Compute (a) the equivalent 
inductance, (b)i1(t), (c) i2(t), and (d)i(t) for the 
inductive circuit shown in Fig. 1.52. Assume the 
voltage at the terminals is v t e t

S mV( ) = − −40 8  
and that the energy in both the inductors for 
t ≤ 0s is zero.

Solution
(a)	 Assuming L L1 280 320= =mH and mH, the parallel combination of inductors is com-

puted by using Eq. (1.38) as follows:

(b)	 Noting that for t ≤ 0 s, the stored energy is zero; Eq. (1.11) is suitably modified and the 
currents calculated as under 

	

(c) 	

(d)	 The circuit current i t i t i t e t( ) = ( ) + ( ) = −
1 2

80 0781. A

Capacitors in parallel: Figure 1.53 (a) shows capacitors C C C Cn1 2 3F, F, F F...  connected in 
parallel across a voltage source vS(t) V and Fig. 1.53(b) is the equivalent circuit in which Ceq 
is the equivalent capacitor such that the charge acquired, in both the cases, is the same.

1 1 1 80 320
400 64

1 2

1 2

1 2L L L L L L
L L= + =

+
= × =or mH

i t e e e
t

t
t

t
1

0

8
8

81
80 40 1

80 40
8

0 0625( ) = −( ) = − ×
−( )









 =∫ −

−
−. A

i t e e e
t

t
t

t
2

0

8
8

81
320 40 1

320 40
8

0 0156( ) = −( ) = − ×
−( )









 =∫ −

−
−. A

vS (t) i1 (t)

i (t)

i2 (t)80 mH 320 mH

Fig. 1.52 

Fig. 1.53  (a) Capacitors in parallel, (b) equivalent capacitor circuit

+

–

i1

C1

i2

C2

i3

C3

i

+

–

i

Ceq

(a) (b)

vS (t) vS (t)
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40  Circuits and Networks

In Fig. 1.55(a), the two parallel capacitors of 0.5 µF and 0.5 µF between points D and E can 
be added [using Eq. (1.39)] to an equivalent capacitor of 1 µF, which in series with 1 µF 
capacitor between points E and F combine to make equivalent capacitor of 0.5 µF between 
points D and F. Again, two parallel capacitors of 1 µF and 0.5 µF between points D and 
F add to form equivalent capacitor of 1.5 µF. The new equivalent circuit is shown in Fig. 
1.55(b). Equation (1.33) yields the equivalent capacitor of Fig. 1.55(b) as

Ceq / / . /
.= ( ) + ( ) + ( ) = =1

1 3 1 1 5 1 5
5
6 0 83 µF

1.8.3  Series-Parallel Connections
In order to obtain desired outputs, circuits in practice, more often than not, are a 
series–parallel combination of resistors, inductors, and capacitors. The techniques for 
analysing series–parallel connections are best explained by taking up a few examples.

Example 1.42  A DC voltage source 
of 12 V is connected across the terminals 
A–B of the circuit shown in Fig. 1.56. 
Determine the source current and power 
supplied by the source. What is the power 
consumed by the 2 Ω resistor? Values of 
all resistors are shown in the figure.

By equating the source currents in the two circuits, it is seen that

�
(1.39)or	

Equation (1.39) shows that when capacitors C C C Cn1 2 3F, F, F F...  are connected in parallel, 
the equivalent capacitance is obtained by a direct sum of all the capacitors.

Example 1.41  For the circuit shown in Fig. 1.54, 
calculate the capacitance of the equivalent capacitor 
between terminals A and B.

Solution  Two capacitors, 1 µF each, in series between 
points D and E can be combined, using Eq. (1.33), to 
make one capacitor of 0.5 µF. Similarly, two sets of 
series capacitances of 2 µF each between points D and 
F and E and F combine to make 1 µF each. Figure 1.54 
is redrawn replacing series-connected capacitors by their equivalents as shown in Fig. 1.55(a).

C C C C d
dt v t C d

dt v t
C C C C

n1 2 3

1 2 3

+ + +…( ) ( )  = ( ) 
= + + +…

S eq S

eqOr CCn( ) F

1 µF3 µF

1 µF

2 µF
E0.5 µF

A

B 5 µF 2 µFF

2 µF

2 µF

D

Fig. 1.56

12 V 100 Ω 5 Ω

2 Ω

A

B

+–

25 Ω
7.5 Ω

Fig. 1.55

D 0.5 µF

0.5 µF 1.5 µF

E

FB
(a) (b)

A 3 µF

1 µF1 µF
5 µF

3 µF

B

A

5 µF

Fig. 1.54  
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Definitions and Basic Circuit Concepts  41

Solution  In order to visualize the 
series–parallel connections in the cir-
cuit, it is redrawn in Fig. 1.57.

Equivalent resistance of branch 
consisting of 7.5, 5.0 and 2 Ω resistors

= ×
+

+ =7 5 5 0
7 5 5 0 2 0 5 0. .
. . . . Ω

The equivalent resistance Req at the terminals A–B is given by 1 1
5

1
25

1
100 0 25Req

= + + = .

or		  Req = 4 Ω

Source current I
V
RS

S

eq
A= = =12

4 3 0.

Power supplied by the source = × = × =V IS S W12 3 36

The equivalent resistance of the 25 Ω and 100 Ω parallel branches = ×
+( ) =25 100

25 100
20 Ω

The current through the 2 Ω resistor = ×
+( ) = × =IS A20

20 5
3 0 20

25 2 4. .

Therefore, power consumed by the 2 Ω resistor = ( ) × =2 4 2 11 522. . W

Example 1.43  In the circuit shown in Fig. 1.58 calculate (a) currents I, I1, and I2; 
(b) the power consumed by each resistor; (c) the voltage drop V2 across the 2 Ω resistor.

Solution
(a)	 I

I I

=
+ ( ) =

+ ×
+

= =

= ×
+

= × =

12
2 12 24

12

2 12 24
12 24

12
10 1 2

24
24 12 1 2 2

31

�
. A

. 00 8

12
24 12 1 2 1

3 0 42

.

. .

A

AI I= ×
+

= × =

(b)	 Power consumed in the 2 Ω resistor = I2 × 2 = 1.22 × 2 = 2.88 W
	 Power consumed in the 12 Ω resistor = I1

2 × 12 = 0.82 × 12 = 7.68 W
	 Power consumed in the 24 Ω resistor = I2

2 × 24 = 0.42 ×24 = 3.84 W
(c)	 Voltage drop V2 = I × 2 = 1.2 × 2 = 2.4 V

Example 1.44  The RLC circuit in Fig. 1.59 is operating in the steady-state condition. 
Compute the energy stored in the capacitor and inductor.

12 V

A

B

7.5 W 5.0 W

2 W C

25 W++
–
+
– 100 W

Fig. 1.57 

Fig. 1.58

12 V

V2
+

2 Ω

12 Ω 24 Ω

a

b

I1
I2

I
–

4 Ω

6 Ω 5 mH

200 µF

6 Ω

9 V +–

Fig. 1.59 
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42  Circuits and Networks

Solution  Under steady-state condition, 
the capacitor is on OC and the inductor is 
on SC. Figure 1.60 shows the circuit in the 
steady-state condition.

In order to determine the stored ener-
gies, it is necessary to calculate the ca-
pacitor OC voltage VC and the inductor SC  
current IL.

The source current IS A=
+ × +( ) =9

1 5 6 6 6 6
2

. /

The voltage at point A, VC V= − × =9 2 1 5 6.

The current through the inductor IL A=1

Energy stored in the capacitor = × × × ( ) =−1
2 200 10 6 0 00366 2 . J

Energy stored in the inductor = × × × ( ) =−1
2 5 10 1 0 00253 2 . J

Example 1.45  In Fig.1.61, the energy stored in the capacitor is equal to the energy 
stored in the inductor when the circuit is operating under steady-state condition. What is 
the magnitude of R? All data is shown in the figure.

Solution  Figure 1.62 shows the circuit when it is operating under steady-state  
condition.

3 Ω 6 mH

180 µF

R

10 A

Fig. 1.61 Fig. 1.62 

3 Ω

VC

I1

R

10 A

IL

Assume that the steady-state voltage across the capacitor is VC volts.

Current through the inductor I V
RL
C A=

Energy stored in the capacitor JC= × × ×−1
2 180 10 6 2V

�
(1.45.1)

Energy stored in the inductor JC= × × ×







−1
2 6 10 3

2V
R

�
(1.45.2)

Equating Eqs (1.47.1) and (1.47.2) results in

R = ×
×

=
−

−
6 10

180 10
5 774

3

6 . Ω

1.5 Ω A

6 Ω

6 Ω

9 V

IS IL

VC

+–

Fig. 1.60 
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Definitions and Basic Circuit Concepts  43

Example 1.46  Show that the output in 

the circuit in Fig. 1.63 is − ( )RC
dv t

dt
i  when 

the input voltage is vi(t).

Solution  The given circuit is easily identi-
fied as an amplifier circuit. Since, points 'a' 
and 'b' are at the same potential, applica-
tion of KCL at point 'a' yields

i t i tR C( ) = ( ) � (1.46.1)

In addition, i t
v t

RR ( ) = −
( )0  and i C d

dt v tC i= ( ) 

Substituting in Eq. (1.46.1) and rearranging results in

� (1.46.2)

Equation (1.46.2) shows that the output voltage is a differential of the input voltage.

Example 1.47  The applied input voltage to the circuit in Example 1.46, is

v t t ti ( ) = < <1500 0 3when ms

v t t ti ( ) = − < <9 1500 6when 3 ms

(a)	 Determine the form of output voltage.
(b)	 Use MATLAB facility to sketch the input and output voltages. Assume R = 6 kΩ, and 

C = 0.25 μF and that the capacitor carries no initial charge.

Solution

(a) Equation (1.46.2) is used to compute the output voltage as under

For 0 3< <t , output voltage v t d
dt t0

3 66 10 0 25 10 1500 2 25( ) = × × × [ ] =−. . V

For 0 3< <t , output voltage v t d
dt t0

3 66 10 0 25 10 9 1500 2 25( ) = × × × −[ ] = −−. . V

(b) 	The time t and input voltage vi(t) coordinates for the input voltage are first expressed as 
vectors as shown below.

t = [ ]0 3 6 9 12, , , ,

v ti ( ) = [ ]0 4 5 0 4 5 0, . , , . ,

Each t v ti− ( )  pair along with the line command is used to plot the input voltage.

>> line([0, 3], [0, 4.5]) % Plots co-ordinates (0, 0) and 
(3, 4.5)

>> hold on

>> line([3, 6], [4.5, 0]) % Plots co-ordinates (3, 4.5) and 
(6, 0)

v t RC d
dt v ti0 ( ) = − ( ) 

C

R

a

b

iR  (t)

vi  (t) vO  (t)

iC  (t) +

+

+

– –

–

Fig. 1.63 
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44  Circuits and Networks

>> line([6, 9], [0, 4.5]) % Plots co-ordinates (6, 0) and 
(9, 4.5)

>> line([9, 12], [4.5, 0]) % Plots co-ordinates (9, 4.5) and 
(12, 0)

>> grid on

>> �xlabel('Time t in milli sec')
>> �ylabel('Input voltage in volts')

Figure 1.64 shows the plot of the input voltage vi(t) versus t.
By following a similar procedure, line command is used to plot the output voltage 
vo(t) versus t.

>> line([0, 3], [2.25, 2.25]) % Plots co-ordinates (0, 2.25) and 
(3, 2.25)

>> hold on
>> line([3, 3], [2.25, −2.25]) % Plots co-ordinates (3, 2.25) and 

(3, −2.25)
>> line([3, 6], [−2.25, −2.25]) % Plots co-ordinates (3, −2.25) 

and (6, −2.25)
>> line([6, 6], [−2.25, 0]) % Plots co-ordinates (6, −2.25) 

and (6, 0)
>> grid on
>> xlabel('Time t in millisec')
>> �ylabel('Output voltage v in 

volts')
>> line([6, 6], [−2.25, 2.25]) % Plots co-ordinates (6, −2.25) 

and (6, 2.25)
>> line([6, 9], [2.25, 2.25]) % Plots co-ordinates (6, 2.25) and 

(9, 2.25)

4.5

4

3.5

3

2.5

2

1.5

1

0.5

0
0 2 4 6

Time t in milli sec.

In
pu

t v
ol

ta
ge

 in
 v

ol
ts

8 10 12

Fig. 1.64 
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Definitions and Basic Circuit Concepts  45

>> line ([9, 9], [2.25, −2.25]) % Plots co-ordinates (9, 2.25) and 
(9, −2.25)

>> line ([9, 12], [−2.25, −2.25]) % Plots co-ordinates (9, −2.25) 
and (12, −2.25)

>> line ([12, 12], [−2.25, 2.25]) % Plots co-ordinates (12, −2.25) 
and (12, 2.25)

>> line ([12, 13], [2.25, 2.25]) % Plots co-ordinates (12, 2.25) 
and (13, 2.25)

Figure 1.65 shows the plot of output voltage vo(t) versus t.

Fig. 1.65 

2

2.5

1.5

1

0.5

0

–0.5
–1

–1.5

–2

–2.5
0 2 4 6

Time t in milli sec.

O
ut

pu
t v

ol
ta

ge
 v

 in
 v

ol
ts

8 10 12 14

1.9 STAR (Y)–DELTA (Δ), (Δ)–(Y) TRANSFORMATIONS
Combinations of elements to form series, parallel, and series–parallel circuits 
become so complex that their simplification often becomes very complicated. 
Simplification of such circuits is facilitated by identifying star connections and 
transforming them into delta connections and vice versa.

Figure 1.66 (a) shows resistors R Rn n1 2, , and R n3  connected in star between 
nodes 1, 2, and 3, respectively, whereas Fig. 1.66(b) represents resistors R R1 2 2 3− −, , 
and R3 1−  connected in delta between the corresponding nodes.

Fig. 1.66  (a) Star connection, (b) delta connection 

R
1n

R
2n

R
3n

1

3 2 3 2

1

R
2 – 3

R
1 – 2

R
3 – 1

(a) (b)

n
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46  Circuits and Networks

In order to effect transformation of one type of connection into the other type, it 
is necessary that the resistance between any two pair of nodes of a network being 
transformed is equal to the resistance between the same pair of nodes of the other 
network. Equating the resistance between nodes 1 and 2 in Figs 1.66(a) and (b), 
it is seen that

R R Rn n1 2 1 2+ = −
|| R R

R R R R
R R R2 3 3 1

1 2 2 3 1 2 3 1

1 2 2 3 3 1
− −

− − − −

− − −
+( ) =

× + ×
+ + � (1.40a)

Similarly, resistance between nodes 2 and 3 gives

R R Rn n2 3 2 3+ = −
|| 

� (1.40b)

And between nodes 3 and 1 yields

R R Rn n3 1 3 1+ = −
||
 � (1.40c)

For a transformation of the delta network of Fig. 1.66(b) into an equivalent star 
network of Fig. 1.66(a), Eqs (140 a–c) are solved simultaneously.

Subtraction of Eq. (1.40b) from Eq. (1.40a) gives

� (1.40d)

Addition of Eqs (140c) and (140d) and dividing the sum by 2 results in

� (1.41a)

Similarly expressions for R n2  and R n3  can be derived and are given below:

� (1.41b)

� (1.41c)

From Eqs (1.41), it is seen that transformation equations can be developed by 
inspection by following the thumb rule given below:

'The equivalent star resistance connected to a node is equal to the product of 
the two delta resistances connected to the same node divided by the sum of the 
delta resistances.'

Simultaneous solution of Eqs (1.40) or (1.41) results in expressions for trans-
forming a star connected network into a delta network. The equations are

� (1.42a)

� (1.42b)

� (1.42c)

R R
R R R R

R R R3 1 1 2
2 3 3 1 2 3 1 2

1 2 2 3 3 1
− −

− − − −

− − −
+( ) =

× +
+ +

R R
R R R R

R R R1 2 2 3
3 1 1 2 3 1 2 3

1 2 2 3 3 1
− −

− − − −

− − −
+( ) =

× + ×
+ +

R R R R R R
R R Rn n1 3

1 2 3 1 2 3 3 1

1 2 2 3 3 1
− =

× − ×
+ +

− − − −

− − −

R R R
R R Rn1

3 1 1 2

1 2 2 3 3 1
=

×
+ +

− −

− − −
Ω

R R R
R R Rn2

1 2 2 3

1 2 2 3 3 1
=

×
+ +
− −

− − −
Ω

R R R
R R Rn3

2 3 3 1

1 2 2 3 3 1
=

×
+ +

− −

− − −
Ω

R R R R R
Rn n
n n

n
1 2 1 2

1 2

3
− = + + Ω

R R R R R
Rn n
n n

n
2 3 2 3

2 3

1
− = + + Ω

R R R R R
Rn n
n n

n
3 1 3 1

3 1

2
− = + + Ω
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Definitions and Basic Circuit Concepts  47

The derivation of Eqs (1.42) is left as a tutorial exercise for the reader.
The thumb rule for transforming a star network into equivalent delta network 

is stated below.
'The equivalent delta resistance between two nodes is the sum of two star resis-

tances connected to those nodes plus the product of the same two star resistances 
divided by the third star resistance.'

Example 1.48  The circuit shown in 
Fig. 1.67 consists of eight resistors, each of 3 
Ω, and is connected as shown below. Deter-
mine the source current when a DC voltage 
source of 6 V is connected between (a) A and 
B and (b) A and C.

Solution

(a)	 In order to calculate the source current, 
it is required to determine the equivalent 
resistance between nodes A–B. As a first step, transform delta connections between 
nodes NAD and NBC into equivalent star connections. The resistance of the equivalent 
star connection is 3 3

3 3 3 1×
+ +

=( ) Ω. The equivalent circuit is shown in Fig. 1.68(a)

Fig. 1.67 

3 Ω

3 Ω

3 Ω

3 Ω

3 Ω3 Ω

3 Ω

3 Ω

B

A

N

C

D

Fig. 1.68

6 V
+

–
3 Ω

1 Ω

1 Ω

1 Ω

1 Ω
N

1 Ω

1 Ω

3 Ω

N2

N1

A
(a) (b)

B

D

C

6 V
+

–
3 Ω

1 Ω

1 Ω

1.43 Ω

N2

N1

A

B

	 From the circuit in Fig. 1.68(a), it is seen that resistances between nodes N1 N2 || with 
series resistors between nodes N1C, CD, and DN2. Thus, equivalent resistance of the 
parallel combination between nodes N1 N2 is 2 5

2 1 3 1 1 43×
+ + +

=( ) . Ω

	 The equivalent resistance between nodes AB is obtained by the parallel combination of 
the 3 Ω resistances with the series combination of resistors between nodes AN2, N2N1, 
and N1B as shown in Fig. 1.68(b). Hence,

RAB = × + +
+

=3 1 1 43 1
3 3 43 1 60( . )

( . ) . Ω

	 Therefore, source current = =6
1 6 3 75. . A

(b)	 When the supply source is connected between nodes A and C, the two delta networks 
ANB and DNC are transformed into two equivalent star networks and the transformed 
circuit is shown in Fig. 1.69(a).

	 The circuit in Fig. 1.69(b) is obtained by combining the series resistances between 
nodes N1B and BC and N2D and DA. The delta AN1N2 is transformed into an equivalent 
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48  Circuits and Networks

Fig. 1.69

1 Ω

1 Ω

N2

1 Ω1 Ω N

3 Ω

3 Ω

1 Ω

1 Ω
N1

A

(a) (b)

B

+

–
6 V

D

+

–6 V
4 Ω

1 Ω

4 Ω

1 Ω
2 Ω

A

C

N1
N2

C

– +

6 V

A C

1.14 Ω

0.29 Ω 4 Ω

1 Ω

N2

N1

0.57 Ω

(c)

star and the circuit is shown in Fig. 1.69(c). The resistance between nodes A and C is 
computed as follows:

RAC = +
+( )× +( )

+( ) =0 57
0 29 4 0 1 14 1 0

4 29 2 14
2 0.

. . . .
. .

. Ω

The source current = =6
2 3 0. A.

Recapitulation
	 •	 Electrical materials are classified into conductors, semiconductors, and insulators.

	 •	 Voltage is work done per unit charge: v dw
dq=  J/C or V.

	 •	 Current, i dq
dt=  C/sec or A

	 •	 Electric power, p v i dw
dq

dq
dt

v
R Gv i

G= × = × = = =
2

2
2

 J/sec or W

	 •	 Energy, E p t v i t vit= × = × × =  J, or, watt-sec

	 •	 Resistance of a conductor, R l
a= ρ Ω

	 •	 Resistivity, ρ = ×R a
l Ω-m

	 •	 Conductance, G a
l= ×σ S

	 •	 Resistance of a conductor, R R t t2 1 1 2 11= + −( ) α Ω

	 •	 Power dissipated in a resistor, p i R v
R= =2
2

W
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Definitions and Basic Circuit Concepts  49

	 •	 Energy dissipated in a resistor, W pdt p t i R t v
R t

t

= = × = ( )× =








×∫

0

2
2

 W-sec

	 •	 Inductance of an inductor, L v
di
dt

=  V/A or H

	 •	 Current in an inductor, i L vdt i
t

= +∫1 0
0

( )A , where i(0) is the current in the circuit  
at t = 0.

	 •	 Instantaneous power in the inductor at time t, p vi Li di
dt= = W

	 •	 Energy stored in an inductor, W L di
dt idt L idi Li

i i

L J= = =∫ ∫
0 0

21
2( )

	 •	 Current through a capacitor, i dq
dt C dv

dt= = A

	 •	 Voltage across a capacitor at time t, v C idt v
t

= +∫1 0
0

( ), where v(0) is voltage across the 
capacitor at t = 0.

	 •	 Instantaneous power in the capacitor, p vi Cv dv
dt= = W

	 •	 Energy stored in the capacitor, W Cv dv
dt dt C v dv Cv

v v

C J= = =∫ ∫
0 0

21
2( )

	 •	 v‒i characteristics of a practical voltage source,

	 •	 v–i characteristics of a practical current source, v t i t R r i t i tL L L L( ) = ( )× = ( ) − ( )( )S S

	 •	 Kirchhoff's current law, 
k

k n

ki
=

=

∑ =
1

0

	 •	 Kirchhoff's voltage law, 
k

k n

kv
=

=

∑ =
1

0

	 •	 Resistors in series, R R R R Rneq = + + +…+1 2 3

	 •	 Voltage divider rule, v t R
R v t1

1( ) = ( )
eq

S

	 •	 Inductors in series, L L L L Lneq = + + + +1 2 3 ...

	 •	 Capacitors in series, 1 1 1 1 1
1 2 3C C C C Cneq

= + + +…+

	 •	 Resistors in parallel, 1 1 1 1 1
1 2 3R R R R Rneq

= + + +…  or R

R R R Rn

eq =
+ + +…+

1
1 1 1 1

1 2 3

Ω

	 •	 In terms of conductances, G G G G Gneq S= + + +…+( )1 2 3

	 •	 Current divider rule, i t
R
R i t R

R i t G
G i t1

1

1 11
1( ) ( ) ( ) ( )= = =eq

S
eq

S
eq

S
/
/ A

	 •	 Inductors in parallel, 1 1 1 1 1
1 2 3L L L L Lneq

= + + +…

	 •	 Capacitors in parallel, C C C C Cneq F= + + +…( )1 2 3

v t i t R
v t

r R R v t i t rL L L
S

S L
L S L S( ) = ( )× =

( )
+

= ( ) − ( )×( )
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50  Circuits and Networks

	 •	 Delta–star transformation, R
R R

R R Rn1
3 1 1 2

1 2 2 3 3 1
=

×
+ +

− −

− − −
Ω, R R R

R R Rn2
1 2 2 3

1 2 2 3 3 1
=

×
+ +
− −

− − −
Ω, 

R R R
R R Rn3

2 3 3 1

1 2 2 3 3 1
=

×
+ +

− −

− − −
Ω

	 •	 Star–delta transformation, R R R R R
Rn n
n n

n
1 2 1 2

1 2

3
− = + + Ω, R R R R R

Rn n
n n

n
2 3 2 3

2 3

1
− = + + Ω, 

R R R R R
Rn n
n n

n
3 1 3 1

3 1

2
− = + + Ω

Exercises
Review Questions
	 1.	 Name different types of electrical materials and discuss their classification.
	 2.	 Describe the structure of an atom.
	 3.	 State Coulomb's law and explain (a) voltage and (b) current.
	 4.	 (a)	 How are voltage and current correlated to power and energy?
	 (b)	 Explain passive sign convention and discuss its significance.
	 5.	 Specify the basic circuit elements and state how they are categorized?
	 6.	 Write clear and concise notes on the characteristics of (a) resistors, (b) inductors, and 

(c) capacitors.
	 7.	 Discuss the significance of temperature coefficient of resistance of a material.
	 8.	 Classify different types of energy sources. Draw their symbolic representation circuits 

and discuss the properties of each.
	 9.	 Explain with the help of load characteristics, the difference between ideal and practical 

voltage and current sources.
	10.	 Define and explain Kirchhoff's laws. State the basis of these laws.
	11.	 Explain series connection of resistors and the voltage divider circuit.
	12.	 Explain parallel connection of resistors and the current divider circuit.
	13.	 Derive expressions for (a) inductors and (b) capacitors connected in series.
	14.	 Derive expressions for (a) inductors and (b) capacitors connected in parallel.
	15.	 State the rules for (a) star–delta and (b) delta–star transformation by inspection.
	16.	 Derive expressions for delta–star conversion of networks.

Multiple Choice Questions
	 1.	 The width of the forbidden zone in a conductor is

(a)	 overlapping	
(b)	 more than that of an insulating material
(c) 	 equal to that of a semiconductor
(d)	 none of these

	 2. 	 Which of the following is a dielectric?
(a)	 Carbon	 (b)	 silicon	 (c)	 iron	 (d)	 Mica

	 3.	 What is the rate of electron drift if a current of 3.2 A is flowing through a conductor?
(a)	 3.2 electrons/s 		  (b)	 1.0× 1019 electrons/s 
(c)	 2.0 × 1019 electrons/s	 (d)	 3.2 × 1019 electrons/s

	 4.	 The magnitude of the static force between two charged bodies, separated by r metre, 
is F N. What is the magnitude of the charge when the distance is doubled?
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Definitions and Basic Circuit Concepts  51

(a)	 2F N	 (b)	 0.5F N	 (c)	 0.25F N	 (d)	 none of these
	 5.	 Power p J/sec is generated when an object is moved inside a magnetic field. What is 

the power generated when the magnetic field is halved and velocity of the object is 
increased three times?
(a)	 p J/s	 (b)	 0.67 p J/s	 (c)	 6.0 p J/s	 (d)	 1.5 p J/s

	 6.	 Which of the following is representative of power?

(a)	 [ ( )]v t
R

S
2

	 (b)	 v t i tS S( ) ( ) 	 (c)	 [ ( )]i t RS
2 	 (d)	 all of these

	 7.	 A 5 kΩ resistor is connected across a 50 V supply. The power consumed by the 
resistor is
(a)	 1000 mW	 (b)	 500 mW	 (c)	 250 mW	 (d)	 10 mW

	 8.	 Which of the following is a unit of energy?
(a)	 Joule	 (b)	 Joule/sec	 (c)	 Joule-sec	 (d)	 none of these

	 9.	 Which of the following is not generating power as per the passive sign convention?
(a)		  (b) 		 (c)		  (d)	 none of these

Ai

v

–

+

B

Ai

v

–

+

B

A

v

i

–

+

	 10.	 Which of the following is not a bilateral element?
(a)	 transistor	 (b)	 resistor	 (c)	 inductor	 (d)	 capacitor

	 11.	 A conductor of diameter d and length l has a resistance of R Ω. What is the value of 
the resistance if the conductor diameter and length are both halved?
(a)	 8R	 (b)	 4R	 (c)	 2R	 (d)	 R

	 12.	 The power consumed by a conductor of diameter d and length l is W when a current 
of I A flows through it. What will be the power consumed if the conductor diameter, 
length, and current are halved?
(a)	 8 W	 (b)	 4 W	 (c)	 2 W	 (d)	 0.5 W

	 13.	 A 16 W resistor has a maximum current rating of 400 mA. What is the maximum 
current rating if the power rating of the resistor is limited to 1 W?
(a)	 400 mA	 (b)	 300 mA	 (c)	 200 mA	 (d)	 100 mA

	 14.	 Resistivity has the unit of
(a)	 Ω-metre2	 (b)	 Ω-metre	 (c)	 Ω/metre	 (d)	 Ω/metre2

	 15.	 Two resistors connected in series draw a current of 5 A from a voltage source of 
100 V. When one of the resistors is connected across the same voltage source, the 
current in the resistor is 20 A. The resistance of the disconnected resistor is
(a)	 15 Ω	 (b)	 10 Ω	 (c)	 5 Ω	 (d)	 1.5 Ω

	 16.	 The current flowing in a 2 H inductor increases from 0 to 10 A in 1 s and then 
decreases to zero in the next 2.5 s. The voltage at the end of 3.5 s in the inductor is 
equal to
(a)	 20 V	 (b)	 15 V	 (c)	 8 V	 (d)	 −8 V
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52  Circuits and Networks

	 17.	 A current of 100 mA flows through a capacitor of 100 μF for 1 s. If the capacitor is 
initially uncharged, the charge on the capacitor is
(a)	 0.001 C	 (b)	 0.01 C	 (c)	 0.1 C	 (d)	 1.0 C

	 18.	 The power supplied by the source in Q. 17 is
(a)	 10 mW	 (b)	 100 mW	 (c)	 10 W	 (d)	 100 W

	 19.	 The two laws which form the basis of circuit analysis were stated by
(a)	 Bohr	 (b)	 Ohm	 (c)	 Kirchhoff	 (d)	 Faraday

	 20.	 When two capacitors are connected in series across a voltage source v t e t
S( ) = −2 2 , 

the current supplied by the source is i t e t
S( ) = − −12 2 . When one of the capacitors is 

removed from the circuit, the current supplied by the source is i t e t
S( ) = − −16 2 . The 

capacitance of the disconnected capacitor is
(a)	 2	 (b)	 4	 (c)	 6	 (d)	 12

	 21.	 A branch in a circuit is said to be active when it contains
(a)	 an energy source	 (b)	 resistor	 (c)	 inductor	 (d)	 capacitor

	 22.	 A circuit is said to be linear when the current–voltage relationship can be expressed 
by linear
(a)	 algebraic equations	 (b)	 differential equations
(c)	 integral equations	 (d)	 all of these

	 23.	 Which of the following is not a characteristic of an independent voltage source?
(a)	 voltage independent of magnitude of current drawn
(b)	 voltage dependent of magnitude of current drawn
(c)	 independent of the direction of current flow
(d)	 can supply or receive uninterrupted energy at constant voltage

	 24.	 Which of the following pair is dimensionless?
(a)	 α–β	 (b)	 β–μ	 (c)	 μ–ρ	 (d)	 ρ–α

	 25.	 A practical voltage source can be represented by
(a)	 an ideal voltage source with it internal resistance connected in series
(b)	� an ideal voltage source with it internal resistance connected across its 

terminals 
(c)	 by neglecting the internal resistance 
(d)	 none of these

	 26.	 A practical current source iS(t) A has an internal resistance rS Ω. It can be trans-
formed into a voltage source by putting

(a)	 v i t
rS

S

S
=

( )  and neglecting the internal resistance 

(b)	 v i t
rS

S

S
=

( )
 and connecting the internal resistance in series 

(c)	 v i t rS S S= ×( )  and connecting the internal resistance in series 
(d)	 v i t rS S S= ×( )  and connecting the internal resistance in parallel

	 27.	 An ideal voltage source of 10 V has internal resistance of 0.2 Ω and it supplies a load 
current of 10 A. The power supplied by the practical voltage source is
(a)	 100 W	 (b)	 80 W	 (c)	 10 W	 (d)	 20 W
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	 28.	 Two resistors, each of 10 kΩ and 15 kΩ, are connected in series across a DC voltage 
source to form a voltage divider. What should be the magnitude of the source voltage 
in order to obtain an output of 60 V across the 15 kΩ resistor?
(a)	 75 V	 (b)	 100 V	 (c)	 125 V	 (d)	 150 V

	 29.	 Two resistances of 5 Ω and 20 Ω are connected in parallel. The parallel combination 
is connected in series with a 1 Ω resistance and this series–parallel combination is 
connected across a DC source of 50 V. The current in the 20 Ω resistor is
(a)	 10 A	 (b)	 8 A	 (c)	 2 A	 (d)	 none of these

	 30.	 In Q. 29, the power dissipated in the 5 Ω resistor is
(a)	 500 W	 (b)	 320 W	 (c)	 100 W	 (d)	 80 W

	 31.	 The current flowing through two series inductors of 3 H and 6 H is i t tS A( ) sin=10 2 . 
The source voltage across the combined inductors is given by
(a)	 10 2sin t 	 (b)	 20 2cos t 	 (c)	 120 2cos t 	 (d)	 180 2cos t

	 32.	 In Q. 31, the voltage output, as a percentage of the source voltage, is
(a)	 100%	 (b)	 66.67%	 (c)	 33.33%	 (d)	 none of these

	 33.	 Star-to-delta and vice versa transformations are employed to simplify circuit 
elements connected in
(a)	 series–parallel	 (b)	 series	 (c)	 parallel	 (d)	 none of these

	 34.	 Inductors, each of 9 H, are connected to form a rectangle ABCD. Another inductor of 
9 H is connected between the diagonal nodes A and C. A voltage source is connected 
between nodes A and D which supplies a current of i e t

S A= −4 4 . The voltage of the 
supply source is equal to
(a)	 16 4e t− V 	 (b)	 − −16 4e t V 	 (c)	 − −90 4e t V 	 (d)	 90 4e t− V

Unsolved Problems
	 1.1 	 A voltage of 220 V is applied across a 1000 W heater. Determine the following: (i) re-

sistance of the heater, (ii) current supplied, and (iii) the charge transferred in 10 s.
	 1.2 	 A voltage source v t tS sin V( ) = 311 ω  is applied across a resistor of 500 Ω. Write 

expressions for (i) resistor current and (ii) power. If ω = 314 rad/s, draw the voltage, 
current, and power waveforms. Discuss the results.

	 1.3	 In problem 1.2, determine the charge transferred in (i) 0.01 s and (ii) 0.02 s.
	 1.4	 Repeat problem 1.2 with (a) an inductor of 500 mH and (b) a capacitor of 500 Ω 

connected across the voltage source.
	 1.5	 The current flowing through a conductor is given by

i t
i t t

= < <
= >

6 0 1
6 12

A for s
A for

	 	 Compute the total charge entering the conductor from t = 0 to t = 2 s.	
	 1.6	 The current entering an electrical conductor is

i t= 20 5000cos .A

	 	 Assume the charge is zero at the instant the current is passing through its maximum 
value. Find the expression for q(t).
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54  Circuits and Networks

	 1.7	 A fully discharged 6-V battery is slowly (trickle) charged by a battery charger for 6 
hours. If the rate of charging is set at i t e t( ) = −6 3600/ A for 0 ≤ t ≤ 6h and i t( ) = 0 for 
t > 6 h, compute for the charging period (i) total charge transferred to the battery, 
(ii) maximum power absorbed by the battery, (iii) total energy in kJ supplied by the 
charger, and (iv) average power in watts absorbed by the battery.

	 1.8	 A 220 V DC motor is supplying a load of 30 kW at an efficiency of 80%. Calculate 
(i) input power and (ii) motor current. If energy is priced at Rs 3.50/kWh, what is the 
cost of running the motor for 6 h.

	 1.9	 A voltage source, v t e t
S V( ) = −5 5  is applied across a capacitor of 2 F. What is 

the current flowing through the capacitor? Calculate the current in the capacitor  
at t = ∞.

	1.10	 A rectangle having sides of 50 cm and 25 cm is made up of copper wire of diameter 
4.0 cm. The rectangle is opened out and stretched in a straight wire. What is the 
resistance of the wire? Take ρ = 1.72 × 10−8 Ωm

	1.11	 A current of 7.5 A flows through the parallel combination of two wires, one of which 
is an aluminium wire 10.0 m long and the other wire is of an unknown metal and is 
7.0 m long. The current through the aluminium wire is 5.5 A. The diameters of the 
aluminium and unknown metal wires are 1.5 and 0.6 mm, respectively. Compute 
the resistivity of the unknown metal wire. Assume resistivity of aluminium equal to  
2.8 × 10−8 Ωm.

	1.12	 A heating coil is made by winding a bare copper wire of diameter 0.75 mm on to a 
porcelain cylinder 25 cm long and having a diameter of 5 cm. The distance between 
the consecutive turns is equal to the diameter of the wire. If the heating coil is con-
nected across a 200 V DC supply, calculate (i) the current supplied and (ii) the heat 
produced. Determine the heat dissipated per square cm. Neglect the end areas for 
heat dissipation and assume resistivity of copper at 1.74 ×10−8Ωm.

	1.13	 Calculate the equivalent capacitance be-
tween terminals (a) A–B and (b) A–G for the 
network shown in Fig. P 1.13. Assume each 
capacitance to be of C farad. Determine the 
source current when a voltage source of 
v t e t

S V( ) = −3 3  is connected, in turn between 
each pair of terminals.

	1.14	 For the circuit shown in Fig. P1.14, compute 
the value of R. Calculate (a) the voltage 
across terminals A–B, (b) power dissipated 
in R, and (c) total power consumed in the 
circuit.

	1.15	 An ideal voltage source of 230 V is con-
nected across a 200 W bulb. Calculate 
the supply current and resistance of 
the bulb. Three bulbs of 100 W each 
are now connected, along with the 200 
W bulb, in series across the voltage 
source. Determine (a) source current 
and (b) voltage drop across each bulb.

H

E

A B

C

G

D

F

55 A

A B

10 W

R W

40 W

60 W

5 A

Fig. P 1.13 

Fig. P 1.14 

© Oxford University Press. All rights reserved.

Oxfo
rd 

Univ
ers

ity
 Pres

s



Definitions and Basic Circuit Concepts  55

	1.16	 Repeat problem 1.15 with the ideal voltage source replaced by an ideal current 
source of 100 A. Determine (a) the supply current, (b) the voltage drop across each 
bulb, and (c) the power dissipated in each of the bulbs.

	1.17	 A short-circuit test on a practical voltage source gave a current of 1.2 A. If the 
open-circuit voltage of the source is 36 V, compute the internal resistance of the 
source. The source delivers a load current of 0.3 A, when it is connected across a 
load. Calculate (i) load resistance, (ii) voltage drop across the load, and (iii) power 
dissipated.

	1.18	 Calculate (i) internal resistance, (ii) open-circuit voltage, and (iii) voltage regulation 
of a voltage source from the following loading conditions: (a) VL = 105 V, IL = 
500 mA, and (b) VL = 90 V, IL = 1.0 A.

	1.19	 Use source transformation technique to determine I in the given circuit.	
	

	1.20	 Compute the current and power dissipated in the 3 Ω resistance in the given circuit 
by the source transformation method.

	1.21	 An inductor L1 = 0.05 H is connected in series with a parallel combination of two 
inductors L2 = 0.02 H and L3 = 0.04 H. (a) Find the equivalent inductance of the 
combination. (b) Determine the value of the emf across L2 when the current in L1 is 
changing at the rate of 1500 A/s.

	1.22	 Two capacitors, each of 4 μF and 10 μF, are connect-
ed in series as shown in P1.22. If the capacitors are 
charged to initial voltages of v1 3= − V and v2 6= − V, 
determine the total energy in the capacitors at 
t → ∞  when a current i t e t( ) = −250 12 5. µ A for t ≥ 0 
is applied across the terminals of the circuit. [Hint: 
Determine the energy in each capacitor separately.]

	1.23	 Figure P 1.23 below shows a voltage divider  
circuit. Calculate the output voltage Vo. What is 
the output voltage if the internal resistance of the 

5 kΩ
I

4 kΩ

8 mA6 V 4.5 kΩ
+

10 Ω

3 Ω 4 Ω3 Vx

Vx  

8 Ω
15 Ω

4 Ω 6 A2 A

+

I

Fig. P 1.20 

Fig. P 1.19 

Fig. P 1.22 

i(t)

10 μF

4 μF

v1

v2

–

–

+

+
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56  Circuits and Networks

voltage source is neglected? Calculate the per-
centage error introduced by neglecting internal 
resistance. Assume an internal resistance of 1.5 
Ω for the voltage source.

	1.24	 A load resistor RL is connected across the output 
voltage v t0 ( ) in Fig. 1.46. Develop an expression 
for the output voltage and derive the condition 
for the output voltage to remain constant. 

	1.25	 In the voltage divider circuit in Fig. 1.46, R Rin ok and k= =150 125Ω Ω. If the com-
mercial resistors have a tolerance of ±10%, calculate the maximum and minimum 
output voltage vo(t).

	1.26	 Figure P 1.26 shows a current divider 
circuit. Compute (a) the value of 
R which will cause a current of 3 
A to flow through the 50 Ω resis-
tor, (b) power dissipated in R, and  
(c) magnitude of power required to 
be generated by the current source 
to meet the requirement of power  
dissipation in R.

	1.27	 Show that the output of the circuit in Fig. P 1.27 is an integral of the input. Assume 
that the capacitor is not charged.

	1.28	 Using the method of series–parallel combination, determine i t i t v tS o( ), ( ), ( ),1  and v t1( )  
for the circuit shown in Fig. P 1.28, when a source voltage of v t tS V( ) sin= 4 3  is applied 
across terminals A–B. All values of the inductors are shown in the following figure.

50 Ω

25 A R Ω
100 Ω

50 Ω

a

b
vi(t)

vO(t)

+

+

+

+ –

–
R

iR(t)

CiC (t)

Fig. P 1.26 

Fig. P 1.27 

R1 = 60 Ω R2 = 120 Ω
V0

rS= 1.5 Ω E = 120 V

A
1 H

B

2 H 4 H

2 H+
–+– 2 H 2 H

iS (t)

i1 (t)

vS (t)

vS (t) v0 (t)= 4 sin 3t

Fig. P 1.28 

Fig. P 1.23 

	1.29	 The currents flowing through three capacitors, connected in parallel, are 25, 50, and 
75 A, when a voltage varying at the rate of 100 V/s is applied across the terminals. 
Determine the equivalent capacitance.
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Definitions and Basic Circuit Concepts  57

	1.30	 The three capacitors of Problem 1.29 are now connected in series across a voltage 
source of 230 V. Compute (a) the equivalent capacitance, (b) the charge on each 
capacitor, (c) the voltage drop across each capacitor, and (d) the total energy stored.

	1.31	 Determine the resistance between the points A and B of the networks shown in 
Figs P 1.32.

Answers to Multiple Choice Questions
1.	(a)	 2.	 (d)	 3.	 (c)	 4.	(c)	 5.	 (d)	 6.	(d)	 7.	(b)
8.	(a)	 9.	 (a)	 10.	 (a)	 11.	(c)	 12.	 (d)	 13.	(d)	 14.	(b)

15.	(a)	 16.	 (d)	 17.	 (c)	 18.	(d)	 19.	 (c)	 20.	(d)	 21.	(a)
22.	(d)	 23.	 (b)	 24.	 (b)	 25.	(a)	 26.	 (c)	 27.	(b)	 28.	(c)
29.	(c)	 30.	 (b)	 31.	 (d)	 32.	(b)	 33.	 (a)	 34.	 (c)

6 Ω

4 Ω2 Ω
B

A
1 Ω

3 Ω

3 Ω

3 Ω

5 Ω

5 Ω 5 Ω
4 Ω4 Ω

3 Ω

2 Ω

6 Ω 6 Ω
4 Ω 4 Ω

2 Ω

C

A
(a) (b)

2 Ω

B

Fig. P 1.32
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