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Illustrations
Neatly Illustrations circuits for 
easy visualization of circuits 
using standard symbols for 
electrical and electronic com-
ponents. Graphs depicting a 
comparative study of electrical 
quantities and phasor diagrams 
for better understanding of the 
phase relationships.

Coverage
Simplified lucid explanation in chapters 
with newly introduced topics such as 
Terminating Half Sections, Composite filters, 
and Bode Plots. Additional solved examples 
for practice and better understanding of 
concepts in every chapter. MATLAB-based 
solved and unsolved problems.

Solved Examples 
Solved 
examples with 
screenshots to 
demonstrate 
the use of 
MATLAB 
for solving 
problems 
based on 
circuit analysis, 
design, and synthesis. 

Key Concepts
Key Concepts at the 
beginning of every 
chapter give a brief 
description of the 
topics covered in 
the chapter and the 
concepts taught. 

Chapter 2
Node Voltage and  

Mesh Current Analysis
'Unless you try to do something beyond what you have already mastered, you 
will never grow'.

– Ronald E. Osborn

Key Concepts

	 •	 Describing	the	method	of	nodal	analysis	for	computation	of	node	voltages	
in	a	circuit

	 •	 Describing	the	method	of	mesh	analysis	technique	for	computation	of	mesh	
currents	in	a	circuit

	 •	 Formulation	of	nodal	and	mesh	equations	in	matrix	form
	 •	 Use	of	supernode	and	supermesh	in	circuit	analysis
	 •	 Ability	to	decide	which	method	out	of	nodal	and	mesh	analyses	is	best	suited	

for	analysis	of	a	given	circuit

2.1 Preamble
Applications	 of	 Ohm's	 and	Kirchhoff's	 laws	 for	 solving	 series,	 parallel,	 and	
series–parallel-connected	circuits	have	been	described	in	Chapter	1.	In	practice,	
however,	 complex	 circuits	 containing	 multiple	 sources	 of	 power	 or	 complex	
configurations	are	encountered.	To	analyse	such	complex	circuits,	two	different	
techniques,	 namely	 node-voltage	 analysis	 based	 on	 KCL	 and	 mesh	 current	 
analysis	based	on	KVL	are	presented	 in	 this	 chapter.	The	 advantages	of	 these	
methods	 are	 (i)	 no	 simplification	 of	 a	 circuit	 is	 necessary	 and	 (ii)	 powerful	 
techniques	are	available	for	determination	of	currents	and	voltages	in	individual	
elements	of	the	circuits.

2.2 Node Voltage Analysis
The	method	of	node	voltage	analysis	works	on	 the	principle	of	defining	node	
voltage	 as	 an	 independent	 variable.	 Systematic	 application	 of	 the	 technique	
leads	 to	 the	 determination	 of	 node	 voltages	 and	 is	 demonstrated	 below	with	
the	help	of	a	four-node	circuit	shown	in	Fig.	2.1.	The	assumed	voltages	of	the	
independent	nodes	1,	2,	and	3	are	shown	in	the	figure,	whereas	node	4	is	selected	
as	the	reference	node.
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5.4.1.1 Resistor Response
Consider	a	sinusoidal	voltage	source	applied	across	a	resistor	of	R	Ω	as	shown	in	
Fig.	5.4(a).	Let	the	voltage	source	be	represented	in	the	time	domain	by

	 (5.14)	
Current	 i(t)	flowing	 through	 the	 resistor	 is	obtained	by	applying	Ohm's	 law	as	
follows:

	 (5.15)	

In	phasor	form,	Eqs	(5.14)	and	(5.15)	may	be	written	as

V = ∠2V ϕ 	 (5.16a)	

and	 I = ∠2V
R ϕ 	 (5.16b)	

Thus,	in	the	frequency	domain,	the	relationship	between	the	applied	voltage	and	
resistor	current	may	be	expressed	in	phasor	form	as

V = RI 	 (5.17)	
From	Eqs	(5.16),	it	is	seen	that	both	the	voltage	and	current	phasors	have	the	same	
phase	angle	φ,	indicating	the	applied	voltage	and	the	current	flowing	through	the	
resistor	are	in	phase.
A	sketch	in	the	complex	plane	showing	the	relationships	of	the	phasor	voltage	

and	phasor	current	throughout	a	given	circuit	is	named	its	phasor diagram.	Figure	
5.4(b)	shows	the	phasor	diagram	of	the	resistive	circuit	of	Fig.	5.4(a).	Plot	of	v(t)	
and	i(t)	against	time	is	shown	in	Fig.	5.4(c).
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Fig. 5.4 Response of a resistor to sinusoidal voltage: (a) Resistor connected across 
sinusoidal voltage source, (b) phasor diagram, (c) plot of applied voltage and current 

in resistor versus time

Chapter 3
Signals and Waveforms

'In the middle of difficulty lies opportunity'.

—Albert Einstein

Key Concepts

	 •	 Classification	of	voltage	and	current	signals	that	occur	in	electric	circuits	
into	periodic,	non-periodic,	and	random	signals

	 •	 Define	the	various	terms	related	to	voltage	and	current	signals	such	as	cycle,	
frequency,	 period,	 instantaneous	 value,	 average	 value,	 root	mean	 square	
(RMS),	or	effective	value

	 •	 Representation	of	periodic	and	non-periodic	signals	in	terms	of	mathematical	
functions

	 •	 Combination	of	different	functions	by	addition,	subtraction,	or	multiplication	
to	obtain	complex	waveforms.

3.1 Preamble
In	 addition	 to	 electric	 circuits	 being	 subjected	 to	 DC	 and	 sinusoidal	 forcing	
functions	of	voltage	and	current	waveforms,	they	also	experience	signals,	which	
are	more	complex.	Fortunately,	all	voltage	and	current	waveforms	that	occur	in	 
network	analysis	can	be	described	by	a	few	simple	mathematical	functions.	These	
functions	 are	 investigated	 in	 detail	 in	 this	 chapter.	 Techniques	 for	 combining	
(synthesizing)	of	the	basic	functions	to	obtain	more	complex	waveforms	are	also	
described.

3.2 Classification of Signals
A	signal	is	any	waveform	that	serves	as	a	means	of	communication.	It	represents	
a	fluctuating	electric	quantity,	such	as	voltage,	current,	sound,	image,	or	any	mes-
sage	transmitted	or	received	in	telegraphy,	telephony,	radio,	television,	or	radar.	A	
waveform	is	the	shape	of	the	curve	obtained	when	the	instantaneous	values	of	a	
variable	quantity	are	plotted	along	the	ordinate	with	the	time	as	the	abscissa.
A	function	is	a	mathematical	representation	of	a	time-varying	physical	quantity.	

The	time	domain	of	all	functions	discussed	in	this	chapter	is	–∞	<	t	<	∞.	Voltage	
and	current	signals	are	categorized	as	time	functions	as	follows:

(a)	Periodic	functions
(b)	Non-periodic	functions
(c)	Random	functions.
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Fig. 1.7 Variation of current through the inductor
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Example 1.15	 A	 voltage	 pulse	 v e tt= −( )−2 1 44 V 	 for	 t	 >	 0	 s	 is	 applied	 across	 a	
200	mH	pure	inductor.	Assume	v	=	0	V	for	t	<	0	s	and	derive	expressions	as	functions	of	
time	for	(a)	the	flow	of	current	in	the	inductor,	(b)	power,	and	(c)	energy.
Solution

(a)	 If	it	is	assumed	that	i	=	0	for	t	<	0,	then	i	(0)	=	0	in	Eq.	(1.11).	Hence,	the	expression	
for	the	flow	of	current	through	the	inductor	is	used	as	follows:

 (1.15.1)

	 Integration	of	Eq.	(1.15.1)	leads	to

(b)	 Using	Eq.	(1.12),	expression	for	power	is	obtained	as

(c)		Expression	for	energy	is	obtained	by	employing	Eq.	(1.13)	as

Example 1.16	 Use	the	expressions	in	Example	1.15	for	v,	i,	p,	and	W	and	plot	their	
variations	against	time	t.	Use	MATLAB	facility	to	plot	the	curves.	From	the	plots	deter-
mine	the	time	interval	in	which	the	inductor	is	(a)	absorbing,	(b)	returning	energy	to	the	
source,	and	(c)	maximum	energy	stored.

Solution	 Plot	of	inductor	voltage	versus	time
>> t = linspace(0, 1, 10000); % divides the time axis between 0 

to 1 sec. into 10000 parts

>> v = 2*(1−4*t)·*exp(−4*t); % input voltage across the inductor

>> plot(t, v) % plot v (t) versus t

>> grid on % grid is turned on

>> xlabel('Time t in sec') % label x-axis

>> ylabel('Inductor voltage v in volts') % label y-axis
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(b)	 Employing	Eqs	 (7.6.1)	 to	 (7.6.4)	and	 the	MATLAB	graph-plotting	 function,	 the	 in-
stantaneous	voltage	 and	power	 are	plotted	 in	Fig.	 7.7.	From	 the	plot	 it	 is	 seen	 that	
maximum	power	is	2	W	and	it	occurs	at	t	=	0.01	sec.

(c)	 Substituting	for	Vm	and	R	in	Eq.	(7.6.5)	gives	Pavg W=
×

=2
6 2

1
3

2

Fig. 7.7

2.5

2
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1

0.5

0
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p v

0
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Example 7.7	 Find	the	instantaneous	and	average	power	absorbed	by	the	network	in	
Fig.	7.1	if	v t t( ) = + °( )220 314 30cos 	and	i(t)	=	15 314 12cos t − °( )A.

Solution	 From	Eq.	(7.1)

 (7.7.1)

Rewrite	Eq.	(7.7.1)	by	making	use	of	the	trigonometric	identity	as	follows:

p t t( ) = × × + °( ) + °( ) 

= +

220 15 1
2 628 18 42

1226 19 16

cos cos

.       550 628 18cos t + °( )  W 
(7.7.2)

Phase	angle	difference	between	voltage	and	current	ϕ = ° − −( )° = °30 12 42

From	Eq.	(7.9)	Pavg W= × °( ) =220
2

15
2

42 1226cos ,	which	is	the	same	as	the	constant	term	
in	Eq.	(7.7.2)

Example 7.8	 An	 impedance	 Z = −( )25 60j Ω	 is	 connected	 across	 a	 voltage	 source	
VS V= ∠ °110 0 .	Use	MATLAB	to	compute	the	average	power	consumed	by	the	impedance.	
Show	that	the	power	consumed	by	the	capacitor	is	zero.

Solution	 Steps	for	using	MATLAB	are	as	follows:
VS = 110; Z = 25 – i*60; % input data

>> I = VS/Z % compute circuit current in complex 
form

I =

0.6509 + 1.5621i

>>Imag = abs(I) % determine magnitude of circuit 
current in amperes

Imag =

1.6923

p t t t( ) = + °( )× − °( )220 314 30 15 314 12cos cos
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Solution	 Since	the	supply	voltage	at	the	terminals	of	the	induction	motor	is	to	be	main-
tained,	the	loads	must	be	added	in	parallel.
For	 induction	 motor,	 power	 factor	 angle	 φ = ( ) = °−cos . .1 0 75 41 41 ,	 and	 power	 con-

sumed,	P = × =72 746 53 712. 	 kW.	Based	on	 the	power	 triangle,	 lagging	 reactive	power	
Q = × °( ) =53 712 41 41 47 37. tan . . 	kVAR.

(a)	 When	rated	real	power	is	added,	power	factor	angle

	 Thus,	power	factor	φ = °( ) =cos . .23 80 0 915

	 Line	current	I = ×
×( ) =2 53 712

230 0 915
0 51.

.
. 	kA

(b)	When	equivalent	negative	kVAR	is	added,

	 power	factor	angle	ϕ = −





 = °−tan . .

. .1 47 37 47 37
53 712 0

	 Thus,	power	factor	ϕ =1 0.

	 Line	current	I = =53 712
230 0 23. . 	kA

	 Addition	of	either	real	or	reactive	powers	leads	to	improvement	in	power	factor.	How-
ever,	in	the	former	case,	the	line	current	from	the	supply	is	more	than	doubled.

Recapitulation
	 •	 Instantaneous	power	in	an	AC	circuit:

	 •	 The	average	power	consumed	by	impedance,	in	a	circuit,	energized	by	a	sinusoidal	
voltage	source:	P P VIavg = = cosφ

	 •	 Only	the	resistive	component	of	the	impedance	consumes	power.	The	reactive	com-
ponent	(inductive	or	capacitive)	consumes	zero	power.	However,	energy	is	continu-
ally	exchanged	between	the	energy	source	and	the	reactive	component.

	 •	 The	reactive	power	being	exchanged	is:	 p t Q t( ) sin= ± 2ω 	VAR,	where	Q VI= sinϕ 
VAR.	For	the	assumed	direction	of	current	flow,	Q	is	positive	for	inductive	reactance	
and	negative	for	capacitive	reactive.	The	frequency	of	power	exchange	is	twice	that	
of	the	applied	voltage.

	 •	 Complex	power	in	a	circuit:	S	=	VI*	=	VI	cos	φ	+	j VI	sin	φ	=	P	+	jQ	VA

	 •	 Magnitude	of	complex	power:	S = ( ) + ( ) = + = ( )VI VI P Q VIcos sinφ φ2 2 2 2 	VA

	 •	 Power	factor	of	a	load:	 pf real power
apparent power= = =cosφ P

S

	 •	 Reactive	power	factor	of	the	load:	 rf reactive power
apparent power= = =sinφ Q

S

φ =
+[ ]









 = °−tan .

. .
.1 47 37

53 712 53 712
23 80

p t v t i t VI t ti i( ) cos cos sin sin= ( ) ( ) = + +( )  − +( ){ }ϕ ω θ ϕ ω θ1 2 2 VA
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	 •	 The	power	factor	angle	of	a	utility	supplying	a	number	of	complex	loads:

	 •	 Capacitance	of	a	capacitor	to	change	the	initial	pf	angle	φin 	to	the	final	power	factor	

angle	φfi	(pf	improvement):	C
P

V
=

−( )tan tanφ φ
ω

in fi F2

	 •	 Alternate	forms	of	computing	power	in	a	circuit:	 P I R I R= =2
2

2
m W,

Q I X I X= =2
2

2
m VAR ,	and	 S P jQ

Z
= +( ) =

V 2

*

Exercises
Review Questions
	 1.	 What	is	instantaneous	AC	power?
	 2.	 Define	and	explain	(a)	average,	(b)	active,	and	(c)	reactive	powers.
	 3.	 Derive	expressions	for	active	and	reactive	powers.
	 4.	 Discuss	the	variation	of	power	in	a	pure	(a)	resistor,	(b)	inductor,	and	(c)	capacitor.
	 5.	 What	is	a	power	triangle?	Explain	its	significance.
	 6.	 Explain	the	sign	convention	for	complex	power.
	 7.	 What	is	power	factor	and	power	factor	angle?
	 8.	 Write	a	short	note	on	the	significance	of	power	factor	and	the	need	for	its	improvement.

Multiple Choice Objective Questions
 1.	 For	which	of	the	following	the	power	response	of	a	circuit	is	important?

(i)	 safety	 	 	 (ii)	 proper	heat	dissipation
(iii)	 economics	 	 	 (iv)	 all	of	these

 2.	 Which	of	the	following	term	is	not	associated	with	power?
(i)	 complex	 	 	 (ii)	 average
(iii)	 instantaneous		 	 (iv)	 none	of	these

 3.	 When	a	sinusoidal	voltage	of	maximum	1	V	is	applied	to	a	pure	capacitance,	a	cur-
rent	of	maximum	1	A	flows	through	the	circuit.	The	average	power	in	the	circuit,	
in	watts,	is
(i)	 0	W	 (ii)	 0.707	W	 (iii)	 0.5	W	 (iv)	 1.0	W

 4.	 Which	of	the	following	represents	the	real	average	power	in	a	circuit	when	a	voltage	
v t= + °( )50 45cos ω 	sets	up	a	circuit	current	of	i t= − °( )5 15cos ω A?
(i)	 250	W	 (ii)	 125	W	 (iii)	 62.5	W	 (iv)	 0	W

 5.	 In	Q.	4,	the	maximum	value	of	the	oscillating	reactive	power	is	given	by
(i)	 0	 (ii)	 108.25	 (iii)	 125	 (iv)	 176.78

 6.	 If	the	frequency	of	the	applied	AC	voltage	to	a	purely	resistive	circuit	is	f,	which	of	
the	following	gives	the	angular	speed	of	the	power	wave?
(i)	 4π f 	 (ii)	 2π f 	 (iii)	 π f 	 (iv)	 f

ϕ = 





 =

+ + + +
+ + + +









− −tan tan1 1 1 2 3

1 2 3

Q
P

Q Q Q Q
P P P P

n

n





Appendix A

MATLAB Applications  
In Linear Circuits

A.1 Introduction
MATLAB is an acronym for MATrix LABoratory and is a powerful interactive 
software package for performing scientific and engineering computations. The 
fundamentals of MATLAB applications to linear circuits are included herein as 
an additional tool for the discerning reader keeping in perspective that it not only 
aids complex computations but is also finding applications in all fields of electrical 
engineering. Additionally, MATLAB is being included in various programmes of 
engineering studies. Understanding of the theoretical principles and their applica-
tions in linear circuits, design and synthesis, however, in no way is hampered if 
MATLAB is not utilized. Therefore, inclusion of MATLAB as an appendix may 
be viewed as an optional part of the contents of this book.

Since MATLAB is computer platform independent, use of the software is the 
same on all types of computer configurations. A reader can launch MATLAB by 
a click on the icon button once the software is loaded and programmes can be 
executed from programme files or by a direct entry of the commands from the 
key board.

The purpose of the appendix is to familiarize the reader to interactively (a) per-
form matrix inversion, (b) solve simultaneous equations, (c) determine roots of 
polynomials, (d) compute poles, zeroes and residues of functions, (e) solve algebra-
ic expressions, (f) obtain inverse Laplace transforms, and (g) perform 2-D graphics. 
The final objective of the appendix is to empower the reader to use MATLAB for 
linear circuit analysis and design. Basic familiarity with C language is desirable but 
is not essential.

A.2 Variables and Statements
For writing programmes MATLAB supports variable names of up to 19 alphanu-
meric characters with the first character being an alphabet. It also permits the use 
of underscore (‘_’) in the variables and sees each variable as a matrix. Variables 
are case sensitive. MATLAB also supports pre-defined variables some of which 
are shown in Table-A.1.

Appendix B
Linear Circuit 

Analysis with PSpice

B.1 Introduction
In the early days of digital simulation even the simplest of numerical solutions such 
as, matrix inversion for solving simultaneous equations or ordinary differential 
equations, required the development of computer usable source programmes. 
With the emergence of high speed digital computers and the development of 
industry standard commercial tools, such as MATLAB and SPICE, designers 
and system analysts have been spared the hard work of mind-numbing and 
complicated problem solving. While accepting the revolution in circuit analysis, 
design and optimization, such tools may not be viewed as substitutes for physical 
interpretation of the results which still is the obligation of the analyst.

Applications of the MATLAB utility to linear circuits has been outlined in 
Appendix-A. PSpice is a very versatile, powerful and simple tool capable of 
simulating a variety of circuit computations. This appendix however is focussed 
on presenting generalized procedures for dC, AC, and transient analysis of 
elementary circuit configurations.

B.2 What is PSpice?
The core programme is SPICE which stands for Simulation Program with 
Integrated Circuit Emphasis. It was initially developed at the University of 
California in the beginning of the 1970s and is now an industry standard. In 1984, 
MicroSim Corporation launched a PC version of SPICE under the registered trade 
name of PSpice.

Two versions of PSpice are available, namely, a professional version which 
is priced and a student version which is free. The student version is aimed at the 
academia including the students, who are interested in simulating electric circuits 
and devices for analysis and design. The free PSpice Student Version 9.1 can be 
downloaded by clicking on the link: 

<ftp://ftp.orcad.com/dwn_file/Pspice/Docs/9_1_SR/>.

B.3 PSpice Student Version 9.1
The contents and limits of the PSpice Student Version 9.1 are described in the 
Release Notes (February 2000) as follows:

Appendix C
Unsolved Problems

Chapter 1
 1.5 [18 C]
 1.6 [60 000 4000, sin Ct( ) ]
 1.7 [(i) 21.6 kC (ii) 36 W (iii) 36 Wh (iv) 6 W]
 1.17	 [(i)	90	Ω	(ii)	27	V	(iii)	8.1	W]
 1.18	 [(i)	30	Ω	(ii)	120	V	(iii)	25%]
 1.19 [2.22 mA]
 1.20	 [77.7	mA;	18.1	mW]
 1.22	 [88	μJ]
 1.23	 [39.67	V;	40	V;	0.83%]

 1.24 [
R

R R R R
v t

L

0

1 2 21+[ ] +
( )/ S  R RL >> 2 ]

 1.25	 [85.94	V;	80.36	V]
 1.26	 [(a)	18	Ω	(b)	8.71	kW	(c)	41.30	kW]

 1.27 [ − ( )∫1

0
RC v t dt

t

i V ]

Chapter 2
 2.6	 [(a)	91.88	W;	(b)	28.04	W]
 2.8	 [2	−1	−0.5	−0.25;	−1	1.7	0.5	0;	−0.5	−0.5	1.35	−0.1;	−0.25	0	−0.1	1.35]
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 2.11 [10.06 W]
 2.15 Assume the following data: VS1 = VS3 = 6 V, VS2 = 12 V, R1 = R8	=	1	Ω,	
  R5	=	1.5	Ω,	R2 = R3	=	2	Ω,	R4 = R6	=	4	Ω,	and	R7 = R9	=	3	Ω.
 2.19	 [(a)	4.71	V,	(b)	2.24	V]

Appendix D
Self Appraisal Test

D.1 Introduction 
The self appraisal test (SAT) consists of selected multiple choice objective questions. The 
test has been designed for the reader to quickly evaluate the level of understanding and 
grasp the principles of analysis, design and synthesis, along with their applications in 
linear circuits. The appraisal grid in D.4 enables the reader to identify areas which require 
strengthening.

D.2 Instructions
Read each of the questions cautiously and out of the four choices select the correct option. 
 1. A process is said to be linear when its response is linear to
 (a) independent inputs
 (b) dependent inputs
 (c) both independent and dependent inputs
 (d) all of these
 2.	 Which	of	the	following	fluxes	leads	to	mutual	coupling	between	coils	1	and	2?
	 (a)	 flux	linking	coil	1	only	 (b)	 flux	linking	coil	2	only
	 (c)	 flux	linking	both	coils	1	and	2	 (d)	 all	of	these
 3.	 Which	one	of	the	following	was	responsible	for	first	demonstrating	the	application	

of	the	principle	of	graph	theory?
 (a) Euler (b) Kirchhoff (c) Ohm (d) Faraday
 4.	 Which	of	the	following	did	not	favour	the	use	of	alternating	current	electricity?
 (a) Nikola Tesla (b) Thomas Edison
 (c) George Westinghouse (d) all of these
 5.	 Which	of	the	following	is	an	advantage	of	using	Laplace	transform	techniques?
 (a) permits use of simple algebra
 (b) converts functions in the t-domain into s-domain
 (c) initial conditions are automatically taken care of
 (d) all of these
 6. The natural frequency in an unforced reactive circuit is equal to

 (a) t 2 (b) t (c) 1
τ

 (d) – 1
τ

 7. Who of the following is not associated with the introduction of the concept of com-
plex	frequency	in	circuit	analysis?

 (a) Heaviside (b) Euler (c) Kennelly (d) Vannevar
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Preface to the Second Edition

A survey undertaken by Oxford University Press (India) to increase the effective-
ness of our Circuits and Networks: Analysis, Design, and Synthesis book, inputs 
received from its readers and our own numerous references forms the basis of this 
revision. Following are the important changes:

•	 The	number	of	solved	examples,	to	further	enhance	the	understanding	of	the	
theoretical principles and their applications, has been doubled.

•	 Techniques	to	use	MATLAB	applications	in	problem	solving	have	been	clearly	
demonstrated.

•	 Language	 has	 been	made	 crisper	without	 compromising	 upon	 its	 flow	 and	
understanding.

•	 New	 topics	 have	 been	 included	 to	 complete	 the	 coverage	 of	 the	 circuits’	
curricula.

	 Chapter	3:	Saw	Tooth	Analyses	and	Doublet
 Chapter 8: Four-wire Systems
	 Chapter	13:	Bode	Plots
	 Chapter	14:	Terminating	Half	Section’
 Chapter 16: Functioning of Composite Filters
•	 A	note	‘FOR	THE	STUDENT.....’	has	been	added	to	guide	him/her	to	master	

this very important course.

The	authors	feel	that	these	changes	will	enhance	the	utility	of	the	textbook.
The	authors	would	like	to	thank	The	Math	Works	Inc.	for	permitting	the	use	of	

MATLAB	in	development	of	applications	for	problem	solving.	They	would	also	
wish to express their gratitude to the editorial team at OUP and the myriad readers 
of their work for maintaining a constant flow of inputs which has formed the basis 
of this revision.

For the Student...
Electric	circuits	 form	the	basis	of	all	engineering	disciplines	 involving	voltage/
current.	This	 book	 has	 been	 designed	 to	make	 the	 learning	 of	 circuit	 analysis,	
design, and synthesis exciting and enjoyable. At the same time it lays a strong 
foundation	for	the	subjects	to	be	taught	in	the	ensuing	semesters	such	as	‘Network	
Theory’	and	‘Control	Engineering’.	While	the	book	will	serve	to	strengthen	the	
physical concepts and applications taught by the faculty, the task of learning and 
understanding	the	 techniques	and	methods	will	have	to	be	 taken	up	by	you.	To	
help you to enjoy the experience and do well in the circuit analysis, design, and 
synthesis course we put down ideas which you should bear in mind.
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viii Preface to the Second Edition

•	 Regularity	in	the	study	of	this	course	is	essential.
•	 Large	number	of	solved	examples	having	varying	difficulty	 levels	has	been	

included.	To	understand	 the	 intricacies	of	 the	 solutions,	 solve	 the	 examples	
yourself.	Do	not	read	the	solution.		

•	 For	strengthening	the	principles	learnt,	attempt	the	chapter-end	problems	and	
answer	the	objective	type	questions.

•	 Keeping	in	view	the	usefulness	of	MATLAB	in	problem	solving	in	circuits	and	
other courses, several examples have been included showing how to develop 
MATLAB	applications	 for	problem	solving.	Appendix	A	quickly	 introduces	
you	to	the	MATLAB	commands.	The	surest	way	of	learning	MATLAB	is	to	
start developing your applications after you have learnt a few commands.

•	 Recapitulation	summarizes	what	has	been	learnt	and	also	serves	as	a	reference	
check point.

•	 Attempt	to	answer	the	Review	Questions.	This	will	add	to	your	skills	learnt	in	
the classroom.

•	 Considerable	effort	has	been	put	in	to	make	the	material	and	language	of	the	
text student friendly and also learning the application of the principles of 
circuit	engineering	a	fruitful	experience.	The	related	physics	and	mathematics	
help	 in	 understanding	 the	 theory	 and	 lays	 the	 foundation	 for	 other	 voltage/
current engineering courses.

While	we	know	that	you	will	thoroughly	enjoy	doing	the	course	do	not	hesitate	to	
contact us if you feel we can help you.

 M.S. Sukhija

T.K. Nagsarkar
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Preface to the First Edition

And, when you want something, all the universe conspires in helping you to 
achieve it

Paulo	Coelho	in	‘The	Alchemist’	

Electric	 circuits	make	 up	 an	 inseparable	 part	 of	 the	 gadgets	 and	 equipment	 of	
modern-day living. A universe without circuits is unimaginable. An in-depth un-
derstanding of the theoretical concepts and practical applications of circuits and 
their analyses and design are imperative to grasp the fundamentals of other disci-
plines of engineering, such as power systems, computers, telecommunication, etc. 
The	aim	of	the	book	is	to	present	in	an	organized	manner	the	fundamentals	and	

principles of circuits, and to enthuse the readers to recreate, rediscover, and ex-
perience the excitement of analysis, design, and synthesis of circuits as practised. 
The	book	provides	an	exhaustive	study	of	the	response	of	linear	networks	in	time	
and	 frequency	 domains	 to	 a	wide	 variety	 of	 excitations,	 including	 the	 impulse	
excitation. Overall, the book helps to build an irrevocable bond between concep-
tualizing	the	theoretical	principles	and	applications	through	problem	solving	while	
at the same time helping students prepare for the rigours of meeting the course 
requirements.
The	contents	of	the	book	have	been	formulated,	based	on	a	study	of	syllabi	of	

foremost national and international universities. Although, at the national level, 
in	most	institutes	a	basic	course	in	electrical	engineering	is	required	to	be	studied	
at the undergraduate level, yet several basic concepts of electricity are reviewed 
from	the	perspective	of	circuit	equations.		Knowledge	of	differential	and	integral	
calculus	is	the	only	prerequisite	for	this	book.

Pedagogical Features
Comprehensive coverage of topics with equal emphasis on theory and practice 
Commencing	with	an	inspirational	quote,	each	chapter	then	familiarizes	the	stu-
dents	with	the	objectives	of	the	contents	of	the	respective	chapters.	The	language	
has been kept simple to ensure that students are easily able to grasp the fundamen-
tals of circuit analysis.   

 Numerous solved examples interspersed with the text that apply theoretical 
concepts learnt	 All	 new	 terms	 and	 techniques	 are	 lucidly	 defined	 and	 their	
applications described through solved examples which immediately follow the 
derivation	of	the	circuit	equations.

 Recap of key formulae and numerous problems for practice at the end of every 
chapter	The	chapter-end	problems,	which	expose	the	reader	to	a	increasing	level	
of	difficulty,	follow	the	general	pattern	of	the	text	in	the	chapter.	To	further	hone	
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x Preface to the First Edition

the	skills	of	the	readers,	multiple-choice	questions	have	been	included	at	the	end	
of each chapter.

Separate appendices on MATLAB and PSpice	Keeping	in	view	the	advance-
ments in computer software tools and the need to keep the text abreast with the 
present-day	requirements,	Appendices	A	and	B	have	been	added	to	describe	the	
utilization	of	MATLAB	and	PSpice,	respectively,	in	circuit	analysis.	It	may	be	
emphasized	that	both	MATLAB	and	PSpice	should	be	seen	as	tools	for	doing	
away	with	 the	 drudgery	 of	 computations.	They	 cannot	 be	 substituted	 for	 the	
physical interpretation of the results which exclusively fall within the domain 
of the reader.

Self appraisal test at the end of the book for a holistic chapter-wise evalua-
tion	 Consisting	 of	 170	multiple-choice	 objective	 questions,	 with	 ten	 questions	
randomly selected from each chapter, the self appraisal test help quickly assess 
the reader’s strengths and weaknesses. 

Contents and Coverage
The	book	is	divided	into	17	chapters.	A	brief	description	of	each	chapter	is	given	
below:
Chapter 1 delineates between different electric materials, defines the basic electric 
terms, circuit elements and their characteristics, various types of independent and 
dependent	energy	sources,	along	with	their	transformations	are	described.	Ohm’s	
law	and	Kirchhoff’s	laws,	methodology	to	write	circuit	equations	and	manipula-
tion of series-parallel networks are also covered.
Chapter 2	describes	the	formulation	of	nodal	and	mesh	equations	of	circuits	and	
their	solution	techniques.	Use	of	supernode	and	supermesh	in	circuit	analysis	is	
detailed.	Choosing	between	the	nodal	and	mesh	analyses	techniques,	for	a	given	
circuit configuration is also described.  
Chapter 3 classifies the different types of voltage and current signals and defines 
the	associated	terms,	such	as	frequency,	period,	instantaneous,	average,	and	RMS	
values.	Representation	of	periodic	and	non-periodic	signals	as	mathematical	func-
tions and their combinations into complex waveforms has been described.
Chapter 4 presents natural and forced responses (step-, pulse-, and impulse func-
tion) of RL, RC, and RLC circuits.
Chapter 5 introduces sinusoidal voltage and current functions and their phasor 
representation.	Phasor	diagrams,	conceptualization	of	impedance,	admittance,	ap-
plication	of	nodal	and	mesh	analyses	techniques	and	source	transformation,	using	
phasors to determine the forced response of different configurations of circuits 
is included. Series and parallel R, L, and C resonant circuits, determination of 
Q-factor, and bandwidth is also described. 
Chapter 6 defines and explains the use of network theorems such as superposition, 
compensation,	 Tellegen’s,	 and	Millman’s	 theorems.	 Determination	 of	 Thevenin	
and	 Norton	 equivalent	 circuits	 and	 employing	 the	 same	 for	 maximum	 load	
transfer is also included. Concept of reciprocity for linear, time-invariant networks  
is described.
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Preface to the First Edition xi

Chapter 7	 defines	 instantaneous	 and	 average	 power,	 conceptualizes	 complex,	
active, reactive, and apparent power; and introduces load power factor and its 
importance in power factor improvement.
Chapter 8 introduces AC poly-phase systems and advantages of three-phase 
systems over single-phase systems in power generation and transmission. Pha-
sor	representation	of	three-phase	generated	voltages	and	techniques	for	analysing	 
Y-connected and D-connected	 three-phase	 circuits	 are	 presented.	 Methods	 for	
measurement of active and reactive power in three-phase systems are also outlined.
Chapter 9 includes concepts of self inductance, mutual inductance, coefficient 
of	coupling,	and	highlights	procedures	for	writing	response	equations,	including	
energy computations, in the time domain for circuits containing mutual induc-
tances, using the dot convention. It also explains the development of analog of 
coupled circuits and principle of working of linear, auto, and ideal transformers. 
The	chapter	also	outlines	the	calculation	of	reflected	impedance	and	its	applica-
tion in impedance matching.
Chapter 10 covers graph vocabulary and application of graph theory to circuit 
analysis. Formulation of incidence matrices and their use in developing nodal and 
mesh	network	equations	 for	 response	analysis	 is	explained	 in	detail.	Duality	 in	
networks is also outlined.
Chapter 11	defines	Laplace	and	inverse	Laplace	transforms	and	builds	a	basic	un-
derstanding	of	their	properties.	Laplace	transforms	of	commonly	employed	forc-
ing	functions	are	derived.	Application	of	Laplace	and	inverse	Laplace	transforms	
is explained to study the response of circuits whose simulation leads to differen-
tial	equations.	Initial	and	final	value	theorems	are	defined	and	their	applications	 
are described.
Chapter 12	includes	conceptualization	and	development	of	equivalent	circuits,	by	
including	the	initial	conditions,	in	the	complex	frequency	domain.	Development	
of impedance and admittance functions of differently configured circuits and their 
analyses is also outlined.
Chapter 13 describes	mathematical	conceptualization,	development,	and	charac-
teristics	(in	terms	of	their	poles,	zeroes,	and	gain	constants)	of	transfer	functions	
in	impedance/admittance	forms.	Restrictions	on	locations	of	poles	and	zeroes	and	
the calculation of amplitude and phase responses, in time domain, from the trans-
fer	function	of	a	network	are	detailed.	The	Routh-Hurwitz	stability	criterion	and	
its application are also included.
Chapter 14 categorises two-port networks in z, y, h, g, t, t'-parameters. Co-relation 
between the parameters and their applications in circuit analysis is outlined. For-
mulae	for	input	admittance,	voltage	gain,	current	gain;	and	Thevenin	equivalent	
at output ports are derived. Series, parallel, and cascade connections of two port 
networks have been discussed.
Chapter 15 explains the Fourier series transformation, in trigonometric and expo-
nential forms, and determination of effective values and power of non-sinusoidal 
signals/functions.	It	builds	a	rigorous	understanding	of	even,	odd,	and	half-wave	
symmetry	along	with	the	determination	of	the	Fourier	coefficients.	Line	spectra	
computation of harmonic component of periodic waves is outlined. Finally, skills  
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xii Preface to the First Edition

to	 apply	 Fourier	 transforms	 to	 analyse	 circuits	 in	 the	 frequency	 domain	 are	
described.
Chapter 16 introduces basic concepts, characteristics, and classification of filters 
and	 attenuators.	 It	 explains	 the	working	 of	 LP,	HP,	 constant	K, and m-derived 
filters	and	develops	techniques	to	analyse	T and p-filter	networks.	The	methodol-
ogy to analyse various types of attenuators and compute insertion loss has also 
been discussed.
Chapter 17 describes the basic tools for synthesising passive networks from 
known	 input	and	 response.	Realizability	of	physical	passive	networks	 (positive	
real	functions	and	Hurwitz	polynomial),	necessary	and	sufficient	conditions	for	
a	 function	 to	 be	 positive	 real,	 and	methodology	 for	 synthesizing	 simple	 linear	
passive one port networks, consisting of L and C elements only, are discussed at 
length.
Appendix A	presents	a	discourse	on	MATLAB	software	and	its	applications	to	
solve circuit analysis related problems. Appendix B is a tutorial on linear circuit 
analysis with PSpice. Appendix C includes answers to the end-chapter unsolved 
problems. Appendix D contains a self appraisal test constituted of multiple choice 
objective	type	questions	and	an	appraisal	grid	for	evaluation.	The	results	of	the	test	
will	help	a	student	to	identify	his/her	topics	of	weakness.
The	underlying	methodology	of	one	author	preparing	the	text	first	and	the	other	

looking	at	the	same	from	the	perspective	of	teaching	and	learning	requirements	
of the readers, as in the earlier two textbooks, Basic Electrical Engineering and 
Power Systems Analysis,	remains	unaltered.	We	sincerely	hope	that	students	and	
faculty members will find this book useful and enriching. 
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a = (N1/N2) turns ratio of the transformer, area 
of cross section, m2, real constant

a0, an, bn  Fourier coefficients
aij element of the incidence matrix
A  constant, unit of current in 

amperes, bus incidence matrix 
Â  the element node incidence matrix
A, B, C, D  transmission parameters or 

ABCD or t-parameters
A', B', C ', D' inverse transmission parameters 

or t'-parameters
A1 residue
An  Fourier coefficients in 

exponential form
AP attenuation in power signal
At the transpose of the bus incidence 

matrix A
AV, AI,  attenuations in voltage and 

current signals, respectively
b  number of branches, real constant
BE		 band	elimination	filter
BP		 band	pass	filter
c  the intercept of the line on the 

ordinate (vertical axis)
cij  the element of the cut-set 

incidence matrix
Ĉ the enhanced cut-set matrix 
C  capacitance of a capacitor 

in Farad (F), basic cut-set 
incidence matrix

Ceq		 equivalent	capacitance
d diameter, m
dB Decibel
di  change in the current, A 
di1  increase of current in coil 1 in 

dt seconds 
dF  change in flux due to change in 

current di,	Weber	
dF12  increase of mutual flux in coil 

2 due to the increase of di1 A in 
the	coil	1,	Weber

D  determinant of the matrix

D(s)  denominator polynomial is s, 
Laplace	transform	of	the	input	
signal 

e  negative charge of an electron, 
induced voltage in volts, number 
of elements 

e(t)	 induced	voltage	(V)
e2(t)  emf induced in coil 2
eA, eB, eC  instantaneous values of the 

induced	emfs	in	phases	A,	B,	
and C, respectively

E  electric field intensity 
E		 RMS	value	of	the	voltage
E(s) excitation function
EA, EB, EC			 RMS	voltages	of	phases A,	B,	

and C, respectively
f		 frequency	or	the	number	of	

cycles	per	second	or	Hertz	(Hz)
f (t) function of time, periodic 

function in time t
fC	 cut-off	frequency	
frs, frp		 resonant	frequency	of	the	series	

arm and the parallel resonance 
(or	anti-resonance)	frequency	
of the shunt arm 

F  magnitude of electrostatic force 
in	Newton	(N)

F 1 used to indicate the inverse 
Fourier transform operation

F used to indicate Fourier transform 
operation

F(s)  function of s and independent 
of time t, transform network 
function, driving point immittance 
function

F(w) Fourier transform of the function 
f (t)

Favg  average value of a periodic 
function f(t) with a period T

Feff		 effective	or	root	mean	square	
value of a periodic function f(t) 
with a period T,	the	RMS	value	
of a periodic function f(t) 
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Fn  amplitude of the nth harmonic 
g11, g12, g21, g22

  inverse hybrid or g-parameters
gT(t) gate function of duration T
[G]  conductance matrix of the circuit
G  conductance of the conductor, 

mho or siemens (S)
G21(s), G12(s)
  voltage transfer functions, or 

voltage gain ratios
Gii  self-conductance of ith node
Gij  transfer conductance between 

the ith node and jth node
h11, h12, h21, h22

 hybrid or h-parameters
HP		 high	pass	filter
[i] the current vector containing 

currents through the elements
[iS] current vector containing 

source currents in parallel with 
the elements

i  instantaneous current 
i(0) initial current at t = 0
iC(t) instantaneous current
ik(t) current through the branch k of 

a circuit at time t
i(t)  the instantaneous value of 

current at any instant of time t, 
time varying current

i1(t)  current in coil 1
iavg  average current in ampere (A) 
if forced response of current 
iImpulse(t)  the circuit current response due 

to the impulse voltage
ijk the current through the element 

j-k
iL(t) current through the load resistor, 

the current through inductor L
im  current in the mth element, 

impedance transfer functions
in  natural response of current
iS (t)  time dependent current source
iS output of the current source
iS(t)  current delivered by the source 
iS, jk the source current in parallel 

with the element j-k
iStep(t) the circuit current response due 

to a step voltage
[I] column vector of algebraic 

sum of currents of all sources 
entering the node, the column 

vector of unknown mesh 
currents 

[Ibus]  the injected bus currents 
I*

k conjugate of current Ik

Im maximum value of current
I(s)	 Laplace	transform	of	i(t)
I0  peak or maximum value of the 

current wave
I1  the current entering terminal-1 

equals	the	current	leaving	the	
terminal-1' 

I1, I2 the complex effective values 
of the currents in the coils 1 
and 2, respectively, primary 
and secondary phasor currents 
respectively, A

I2  the current entering terminal-2 
equals	the	current	leaving	the	
terminal-2' 

IA, IB, IC			 RMS	currents	in	phases	A,	B,	
and C, respectively

Iavg  average value of a periodic 
voltage wave i(t) 

Ieff		 effective	or	root	mean	square	
(RMS)	value	of	a	periodic	
current i(t)

Ik  injected current at node k
IL  line current phasor
In  magnitude of the nth harmonic 

of the resultant current
IN		 Norton	current,	current	in	the	

neutral
IP  phasor current 
IS		 magnitude	of	current	of	DC	

source
IS max maximum current supplied by 

the voltage source
IS(t)  the projection of the complex 

frequency	phasor	S(t) on the 
imaginary-axis

j  the operator causes a phasor to 
rotate through 90° in the anti-
clockwise direction without 
affecting its magnitude

jw		 angular	frequency
k  coefficient of coupling
kij element of the matrix K 
K  a real number independent of 

frequency	for	constant	K filters, 
bus path incidence matrix, 
constant, scale factor
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xxvi List of Symbols

K, K1, K2   constants 
l length in metre (m) 
L  inductance in Henry	(H)
L1, L2  self-inductances of coil 1 and coil 

2, respectively, self-inductance 
of the primary and secondary 
winding	respectively,	H

Leq	 equivalent	inductance
LP		 low	pass	filter
m  number of independent mesh 

equations	in	a	circuit,	the	slope	
of a line

m, n  positive whole numbers
mij  element of the loop incidence 

matrix
M̂ enhanced loops incidence 

matrix
M  loop-incidence matrix
M12  mutual inductance between coil 

1 and coil 2
M21  mutual inductance between coil 

2 and coil 1
Mrq, frq the magnitude and phase angle 

respectively of the phasor (pq pr)
n  number of nodes including the 

reference node, load neutral 
N  source neutral, number of turns 

of the coil, ratio of the natural 
logarithm of the output signal 
(voltage or current) to the input 
signal (correspondingly voltage 
or	current),	called	Neper

N(s)	 Laplace	transform	of	the	output	
response, polynomials in s

N1		 number	of	turns	of	coil	1/	
primary winding 

N2  number of turns of coil 2/
secondary winding

NMC		 number	of	equations	from	mesh	
current method 

Nnode  total number of nodes 
NNV		 number	of	equations	from	

node-voltage method 
NS		 necessary	and	sufficient	

conditions
NV S, NC S   numbers of voltage and current 

sources, respectively
p  instantaneous power in watts 

(W),	power	in	J/s	or	watts	(W)
p(t)  the instantaneous power at any 

instant of time t 
p1, p2, ..., pn poles of the network function

pf  power factor = (cos j)
pk distinct pole
pL  power transferred to the load
pL	max maximum power delivered to 

the load
ploss  power loss 
pR  the power dissipated in the 

resistor
pT  total instantaneous power 
P  average power over the period T,   

number of poles of the machine
PRF	 positive	real functions 
P(s), Q(s)  even and odd components 

of	Hurwitz	polynomial	D(s), 
respectively 

Pavg  average power
PFC passive power factor correctors 
Pr reflected power 
PS, PR,  intensities of the power signals 

at the transmission (source) 
and destination (load) ends, 
respectively, 

q  charge in coulomb (C) 
Q reactive power, also known 

as reactive volt ampere and is 
equal	to	VI sin j

Qfi final value of inductive load
Qin initial inductive load 
r  distance in metre (m)
r(t) unit-ramp function or the delta 

function
rS the source resistance of a 

practical voltage source
rf  reactive factor = sin j 
[R] resistance matrix of the circuit
R conductor resistance in ohm 

(W)
R reluctance of the magnetic path
R(s), E(s) denote function the response
R1(s), R2(s) remainders 
R1, R2  resistance of the primary 

and the secondary winding 
respectively, W

R12, R23, and R31 
 resistors connected in delta 

between the nodes 1, 2, and 3
R1n, R2n, and R3n 
 resistors connected in star 

between nodes 1, 2, and 3
Req	 equivalent	resistance
Rii  self-resistance of ith node 
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List of Symbols xxvii

Rij  transfer resistance between the 
ith node and jth node

Rin input resistance 
RL  load resistor, W
RN		 Norton’s	equivalent	resistance
RO output resistance 
ROC, RSC open circuit and short circuit 

resistance looking into the port 
at 1-1'

RS(t)  the projection of the complex 
frequency	phasor	S(t) on the 
real-axis 

RTH		 Thevenin	equivalent	resistance
s		 the	natural	frequency,	complex	

frequency
s = s + jw			 complex	frequency	variable
S  complex power 
S(t) = A e jwt the rotating phasor signal
Sk  complex power in branch k
t  time in seconds (s)
T  time period in seconds
T0  the duration of the pulse in 

seconds
u		 velocity	in	m/s
u(t – TS) shifted unit-step function
u(t + TS) flipped step function 
u(t) unit-step function 
v		 voltage	in	volts	(V)	
v'c(t) natural response of voltage 

across capacitor
v''c(t) forced response of voltage 

across capacitor
v(0) initial voltage across an element 

at time t = 0
v(t) the instantaneous value of 

voltage at any instant of time t
vC (0) the initial voltage across 

capacitor C at t = 0
vC(t)  instantaneous voltage
vi the open circuit input terminal 

voltage
vjk voltage across the element j-k
vk  voltage across the k-th element
vk (t)   voltage through the branch k of 

a circuit at time t
vL(t), iL(t)  instantaneous voltage and 

current respectively of 
inductance L

vR(t), iR(t)  instantaneous voltage and 
current respectively of 

resistance R
[vS] the voltage vector containing 

source voltages in series with 
the elements

vS output voltage of voltage source
vS(t) time-dependent voltage source 
vS, jk source voltage in series with the 

element j-k
vTH		 Thevenin	voltage
[v] the voltage vector containing 

voltages across the elements
[V]  column vector of node voltages, 

the column vector of algebraic 
sum of all the source voltages 
around the mesh

[Vbr], [Ibr]   vector of branch voltages and 
branch currents, respectively 

[Vbus]  bus voltage with respect to a 
reference node 

[VL], [IL]   vector of loop voltages and 
loop currents, respectively

V  the phasor voltage which is a 
complex number 

V(s) transform of v(t)
V	 effective	or	RMS	values	of	the	

voltage
V1  voltage across the terminals1-1'
V1, V2, ..., Vn 
 voltages at free points 1, 2, 3, 

..., n with respect to the ground 
VAB, VBC, VCA 
 line voltages
Vavg  average value of a periodic 

voltage wave v(t) 
VC voltage across capacitor C
VDC		 DC	component	of	the	applied	

voltage 
Veff		 effective	or	root	mean	square	

value of a periodic voltage v(t)
Vg  magnitude of voltage source, volts
VL  magnitude of line voltage, 

voltage across inductance L
VLA, VLB, VLC

 voltage across the loads in 
phases A, B, and C, respectively

Vm  the maximum value of the 
sinusoidal voltage

Vn the magnitude of the nth 
harmonic of the applied voltage

VN, Vn voltages of the load neutral and 
the source neutral, respectively
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xxviii List of Symbols

VP  magnitude of phase voltage
VS u(t)  step voltage of strength VS 
VS d (t) voltage impulse of strength VS 
VS	 magnitude	of	voltage	of	DC	

source
VS complex effective values of the 

voltage source
w  energy in Joules	(J)
W		 work	done	in	N-m	or	joule	(J);	

the	electric	energy	in	W-s
W (t) net energy input to the coupled 

circuit at any instant of time t
W(s) multiplicative factor
W1, W2, WR  reading of wattmeters
W1W  energy expended in a 1-W resistor
WC  energy stored in capacitor
WL 	 energy	stored	in	inductor	(J)
XC  the reactance of the capacitor C 

in ohm
XL  the reactance of the inductor L 

in ohm
y11, y12, y22, y21

 admittance or y-parameters
yjk self admittance of the element 

j-k
[y]  primitive self impedances matrix
[Ybr] branch admittance matrix
[Ybus]  bus admittance matrix 
[YL] loop admittance matrix
Y(s) transform admittance 
Y1, Y2, ..., Yn  linear admittances 
Y11(s), Y22(s) the driving point admittances at 

the respective ports 1-1' and 2-2'
Y21(s), Y12(s) admittance transfer functions
Yeq		 the	equivalent	admittance	in	ohm
Yin  input admittance, mho 
Yout output admittance, mho
YR	–	L (s) admittance function
z1, z2, ..., zm	 zeroes	of	the	network	function	
z11, z12, z22, z21

 the impedance, or z-parameters
zjk self impedance of the element j-k
[z] primitive self admittance matrix
[Zbr] branch impedance matrix
[Zbus] bus impedance matrix
[ZL] loop impedance matrix
Z  the impedance of the circuit, a 

complex	quantity	and	has	the	
unit of ohm

Z(s) the impedance of a passive 
network, transform impedance 

Z1  series arm impedance, driving 
point impedance

Z11(s) the driving point impedance at 
port 1-1'

Z12, Z23, Z31

 the resistors connected in delta 
between the nodes 1, 2, and 3

Z1n,	Z2n,	Z3n the resistors connected in star 
between nodes 1, 2, and 3

Z2  shunt arm impedance, driving 
point impedance

Z22(s)  driving point impedance at port 
2-2'

Zeq		 equivalent	impedance	in	ohm
Zg  internal impedance, W
Zi1 image impedance
Zin input impedance 
Zint		 equivalent	impedance	of	the	

circuit
ZL  load impedance, W
Zl, ZN, ZL   per phase impedance in ohms 

of the line conductor, the 
neutral conductor, and the load, 
respectively

ZLC(s) or YLC(s)
 driving point L-C immittance 
ZLD, ZLY  impedance of each phase of the 

balance D-connected load, and 
the impedance of each arm of the 
equivalent	Y-connected	load

ZN	 Norton’s	equivalent	impedance
Zo characteristic impedance 
ZOC, ZSC   open and short circuit parameters 
ZoT characteristic impedance of 

T-network
Zop characteristic impedance of 

p-network
Zr  reflected impedance 
ZRC(s) R-C impedance function
ZS  internal source impedance
ZTH		 conjugate	of	Thevenin	

impedance 
a  attenuation constant, damping 

constant 
α1, α2, ..., αn

 dimensionless constants 
α12 (s) and α21 (s)
 current transfer ratio or current 

gain
β  phase constant
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List of Symbols xxix

β1, β2, ..., βm

 constants having the units of 
ohm

d(t – T0)  delayed unit impulse function 
d(t)  unit impulse function
Dq		 quantity	of	charge	in	coulombs	

that flow in Dt seconds
DR  variation in the resistance of a 

branch 
Dt time interval, seconds (s)
DZ  variation in the impedance of a 

branch 
ε absolute permittivity of the 

medium; e = e0er

ε0  absolute permittivity of free 
space (e0 =	8.85	´	10

 12,	F/m)
εr relative permittivity of the 

medium
φni phase angle of the nth harmonic 

of the resultant current
F1, F2 fluxes in coil 1 and in coil 2, 

respectively
F21, y21  flux and flux linkages 

respectively of the coil 1 due to 
a current i2(t) in the coil 2

γ  propagation or image transfer 
constant

γ1, γ2, ..., γm dimensionless constants
ϕ  phase angle
ϕ		 power	factor	angle	which	equals	

(qv – qi)

ϕfi  final pf angle
ϕin  initial pf angle 
λ1, λ2, ..., λn  constants having the unit of 

siemen 
L		 Laplace	transform	operation
L–1		 inverse	Laplace	transform
θn  phase angle of the nth harmonic
θv, θ i phase angles of voltage and 

current waves, respectively
ρ  specific resistance or resistivity 

of the conductor, W-m, reflection 
coefficient

σ  real number, specific conductance 
or conductivity of the material, 
mho/m	or	S/m,	real	part	of	s 

τ  dummy variable for t, the 
transmission coefficient for the 
sinusoidal power supply 

τ = L/R time constant of RL circuit
τ = RC time constant of RC circuit
ω  angular speed of the rotor in 

electrical angle per second, 
angular	velocity	in	rad/s

ω0  angular velocity corresponding 
to	fundamental	frequency	
f0,	rad/s,	resonant	or	natural	
frequency	in	rad/s

ωd	 damped	resonant	frequency
ψ = NF		 flux	linkage	in	Weber-turns
ψ12  flux linkages of the coil 2 due 

to a current i1 in the coil 1
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Chapter 1
Definitions and Basic  

Circuit Concepts
Do not wait; the time will never be "just right". Start where you stand, and work 
with whatever tools you may have at your command, and better tools will be 
found as you go along.

—George Herbert

Key Concepts

	 •	 Introduction	 of	 electrical	materials—conductors,	 semiconductors,	 and	
insulators

	 •	 Defining	 the	basic	 electrical	 terms—charge,	 current,	 voltage,	 power,	 and	
energy

	 •	 Defining	circuit	components,	linear,	bilateral	and	unilateral	elements,	lumped	
and	distributed	parameter	elements,	passive	and	active	branches,	node,	loop,	
and	mesh

	 •	 Understanding	 the	 characteristics	 of	 the	 basic	 circuit	 elements,	 such	 as	
resistors,	inductors,	and	capacitors

	 •	 Defining	independent	and	dependent	voltage	and	current	sources
	 •	 Ability	to	transform	a	voltage	source	into	a	current	source	and	vice	versa	

without	modifying	the	response	in	the	network
	 •	 Defining	Ohm's	law,	Kirchhoff's	current	law	(KCL),	and	Kirchhoff's	voltage	

law	(KVL)	and	their	applications	in	the	determination	of	voltages	and	currents	
in	circuits.

	 •	 Developing	the	ability	to	calculate	equivalent	resistance	of	series–parallel	
combinations	of	resistances

	 •	 Reducing	series–parallel	combination	of	inductances
	 •	 Understanding	of	voltage	and	current	division
	 •	 Application	of	star–delta	conversion	for	simplifying	resistive	circuits

1.1 Preamble
Generally	 speaking,	 network	 analysis	 is	 any	 structured	 technique	 used	 to	
mathematically	analyse	a	circuit.	A	physical	'electrical	network'	or	'electrical	
circuit'	is	a	system	of	interconnected	energy	sources	such	as	voltage	sources	or	
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2 Circuits and Networks

current	sources;	electrical	elements	such	as	resistors,	inductors,	and	capacitors;	
electronic	devices	such	as	diodes,	transistors,	etc.;	switches,	loads,	and	connect-
ing	wires	for	interconnection	of	the	components.	The	component	can	be	as	small	
as	an	integrated	circuit	on	a	silicon	chip	or	as	large	as	an	electricity	distribution	
network.
Based	on	well-defined	electrical	laws,	an	electrical	circuit	can	be	analysed	to	

compute	voltages	 and	current	flows	 for	 all	 the	 elements	of	 the	network,	 and	 if	
desired	other	quantities	such	as	charge,	field	distribution,	energy,	power	can	be	
computed.	Conversely,	by	employing	the	same	electrical	laws,	a	circuit	may	be	
synthesized	 to	produce	a	given	output	 from	a	known	 input.	Fundamental	 laws,	
concepts,	and	terms	associated	with	electricity	are	introduced	here	under.

1.2 Electrical Materials
Electrical	materials	are	classified	into	conductors,	semiconductors,	and	insulators	
depending	upon	the	energy	gap	between	the	valence	and	conduction	bands.

Fig. 1.1 Energy band in electrical materials 

It	may	be	noted	from	Fig.	1.1(a)	that	the	conductors	possess	overlapping	valence	
and	conduction	bands	whereas	in	insulators	(also	called	dielectrics),	the	gap	be-
tween	the	two	bands	is	large	[Fig.	1.1(c)].	Table	1.1	provides	a	classification	of	the	
common	types	of	electrical	materials.

Table 1.1 Classification of electrical materials

Classification Materials
Conductors Aluminium,	copper,	iron,	silver
Semiconductors Carbon,	germanium,	silicon
Dielectrics Air,	glass,	mica,	plastic,	rubber

1.3 Atomic Structure and Electric Charge
An	atom	is	constituted	of	a	nucleus	with	negatively	charged	electrons	revolving	
around	 it	 in	 elliptical	 orbits.	The	 nucleus	 is	made	 up	 of	 protons	 and	 neutrons.	
Table	1.2	enlists	the	properties	of	the	constituents	of	an	atom.

Conduction band

(c)(b)(a)

Conduction band

Valence bandValence band

EG < 2 eV
EG ≈ 15 eV
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Definitions and Basic Circuit Concepts  3

Table 1.2 Properties of the constituents of an atom

Constituent 
Property 

Electron Proton Neutron

Charge −1.602	×	10−19	C 1.602	×	10−19	C Nil
Mass 9.109	×	10−31	kg 1.672	×	10−27	kg 1.675	×	10−27	kg

In	a	neutral	atom,	the	number	of	electrons	is	equal	to	the	number	of	protons.

1.4 Voltage and Current
Both	movement	and	separation	of	charges	exhibit	electrical	characteristics.	This	
section	explains	the	concepts	of	voltage	and	current	which	are	essential	to	under-
standing	circuit	theory.

1.4.1 Voltage
According	to	Coulomb's	law,	forces	of	attraction	(between	unlike	charges)	and	
repulsion	(between	like	charges)	are	set	up	when	charges	are	separated.	Energy	
is	 required	 to	be	spent	 to	overcome	the	force	of	attraction	 to	move	 the	charges	
through	a	specific	distance.	The	energy	per	unit	charge	required	to	overcome	the	
force	is	called	voltage	and	in	differential	form	is	written	as

	 (1.1)

where	v	is	the	voltage	in	volts,	w	is	the	energy	in	joules,	and	q	is	the	charge	in	coulombs.

All	opposite	charges	possess	specified	potential	energy	and	the	difference	in	po-
tential	energy	of	the	charges	is	defined	as	potential difference,	which	is	measured	
in	volt	(V).	A	potential	difference	of	1	V	=	1	J/C.	The	polarity	reference	for	the	
voltage	is	indicated	by	plus	(+)	and	minus	(−)	signs.	

1.4.2 Current
When	the	randomly	moving	electrons	(or	charge)	are	made	to	move	in	a	given	
direction	by	the	application	of	a	voltage,	the	resultant	movement	of	charge	leads	to	
the	flow	of	current.	Thus,	electric	current	is	defined	as	the	flow	of	charge	per	unit	
time	and	mathematically	is	expressed	as

	 (1.2)

where	i	is	the	current	in	amperes,	t	is	the	time	in	seconds.

The	unit	of	current	is	ampere	(A)	and	a	current	of	1	A	means	that	the	rate	of	flow	
of	charge	is	1	C/s.	Since	current	is	due	to	the	flow	of	electrons,	it	has	direction.	
Conventionally	a	positive	direction	of	flow	of	current	 is	marked	by	a	reference	
arrow	and	is	assumed	to	be	in	the	opposite	direction	of	the	flow	of	electrons.	

Example 1.1	 The	rate	of	flow	of	electrons	in	a	conductor	is	1020	electrons	per	second.	
What	is	the	magnitude	of	current	flow	in	amperes	in	the	conductor?

v dw
dq=

i dq
dt= ( )C/sec or Ampere
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4 Circuits and Networks

Solution  Charge flow per second = × × =−1 602 10 10 16 0219 20. . C
Remembering that by definition 1 C/s = 1 A, magnitude of current flow = 16.02 A

Example 1.2  A current of 0.75 A transfers 100 C across a conductor. Determine the 
time of flow of current.

Solution  Recalling that current in amperes is charge transferred per second (Q/t), the time 
of flow of current is

Example 1.3  (a) Derive an expression for charge build up due to current flow. (b) In an 
electric wire, at t = 0 s a current of 7.5 A begins to flow. What is the total charge flow in t sec. 
If the current flow is stopped at t = 10 s, calculate the charge which has flown in the wire.

Solution
(a)  Assume that i(t) represents current flow. The expression for charge build-up is com-

puted from Eq. (1.2) as follows:
  (1.3.1)

(b)  Use of Eq. (1.3.1) gives
 

(1.3.2)

  Substituting t = 10 s in Eq. (1.3.2) leads to

Example 1.4  The charge flowing through a conductor is given by  =q t tsin (15.70 ) mC.  
Derive an expression for the flow of current and calculate its magnitude at 0.4 s.

Solution  From Eq. (1.2), the current flow is given by

  (1.4.1)
Substitution of t = 0.4 in Eq. (1.4.1) leads to the magnitude of the current as under

1.5 Power and Energy
In circuit analysis, computation of current and voltage, by themselves, may not be 
sufficient due to the following reasons:
(i)  The output of a system could often be non-electrical such as chemical, mechanical.
(ii) Electrical devices, such as generators, motors, are designed to handle specific 

power.

Therefore, it is necessary to correlate voltage and current to power and energy.
Power is defined as energy per unit time, that is,

  (1.3)

where p is the power in watts, w is the energy in joules, t is the time in seconds

It can be easily shown that power is associated with the flow of charge. Rewriting 
Eq. (1.3) gives

t Q
I= = =100

0 75 133 33. . s

q t i t dt( ) = ( )∫ C

q t dt dt t t
t t

t( ) = = = [ ] =∫ ∫
0 0

07 5 7 5 7 5 7 5. . . . C

q t( ) = × =7 5 10 75. C

i dq
dt

d
dt t t t t t= = ( )  = +[ ]sin . sin( . ) . cos( . )15 70 15 70 15 70 15 70 mmA

i = ×( ) + × × ×( )  =sin cos 6.28 mA15 70 0 4 15 70 0 4 15 70 0 4. . . . . .

p dw
dt=
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Definitions and Basic Circuit Concepts  5

p dw
dt

dw
dq

dq
dt v i= = 






 × 






 = ×

 
(1.4)

The	unit	of	power	is	J/sec	or	watt	(named	after	the	Scottish	engineer,	James	Watt).	
The	 unit	 of	 energy	 is	 joule	 or	watt-second.	Hence,	 1	W	 is	 equivalent	 to	 1	 J/s.	
Alternately,	1	W	of	power	is	generated	when	1	J	of	energy	is	consumed.

Passive sign convention:	As	 in	 the	case	of	voltage,	power	 is	a	 signed	quantity.	
Electrical	engineers	adopt	the	'passive'	sign	convention	which	states	that	if	posi-
tive	current	flows	into	 the	positive	 terminal	of	an	element	 the	power	dissipated	
is	positive,	that	is,	the	element	absorbs	power;	whereas	if	the	current	leaves	the	
positive	terminal	of	an	element,	the	power	dissipated	is	negative,	that	is,	the	ele-
ment	delivers	power.

Table 1.3 Summary of basic electrical quantities

Quantity Symbol Unit Notation
Charge Q C
Voltage v V dw dq/
Current i A dq dt/
Power p W dw dt v i/ = ×
Energy E J	or	Watt-sec w t×

Example 1.5	 Apply	passive	sign	convention	to	the	two	terminal	circuits	in	Fig.	1.2	and	
identify,	with	justification,	whether	the	circuit	element	is	generating	or	absorbing	power.

Solution
Fig.	 1.2(a):	 Since	 current	 is	 entering	 the	 +ve	 terminal	 of	 the	 circuit	 element,	 power	 is	
absorbed	(p	=	vi).
Fig.	1.2(b):	Since	current	is	leaving	the	+ve	terminal	of	the	circuit	element,	power	is	gener-
ated	(p	=	−vi).
Fig.	 1.2(c):	 Since	 current	 is	 entering	 the	 −ve	 terminal	 of	 the	 circuit	 element,	 power	 is	
generated	(p	=	−vi).
Fig.	1.2(d):	Since	current	is	leaving	the	−ve	terminal	of	the	circuit	element,	power	is	ab-
sorbed	(p	=	vi).

Fig. 1.2

B
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+

B

Ai

v

–

+

B
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v

–

+

B

A

(a) (b) (c) (d)

v

i

–

+

Example 1.6	 The	 current	 flowing	 in	 the	 circuit	 element	 in	 Fig.	 1.2(a)	 is	
i e t= −30 6000 A	 for	 t ≥ 0.	 Compute	 the	 total	 charge	 flowing	 into	 the	 circuit	 element.	 
Assume	i	=	0	at	t	<	0.
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6 Circuits and Networks

Solution  Using of Eq. (1.2) leads to

Example 1.7  A current i t e t( ) = −10 4000  A flows across the circuit element in Fig. 1.2(a) 
when  a  voltage  v t e t( ) = −15 4000 kV  is  applied  for  t ≥ 0s  across  its  terminals.  If  v  =  0  at 
t < 0 s, compute (i) power supplied to the element at 2 ms and (ii) total energy supplied to 
the circuit element.

Solution  From Eq.  (1.4),  it  is  seen  that  power  supplied  to  the  circuit  element  can  be 
written as

(i)  Power supplied to the element at 2 ms is given by
p e e ( . ) ..0 002 150000 150000 0 0178000 0 002 16= = =− × −  W

(ii) Equation (1.3) is used to derive an expression for energy as under
 

(1.7.1)

  To compute the total energy supplied, put t = ∞ in Eq. (1.7.1).
  Thus, 

Example 1.8  (a) Prove v dw dq= / . (b) An electric circuit delivers 48 W when the cur-
rent flow is 12 A. Calculate the energy per coulomb of charge.

Solution  From Eq. (1.4), it is seen that v p i= / V.
Substituting Eqs (1.3) and (1.2) for p and i, respectively, in the above expression gives

 (1.8.1)

From the given data, v = 48/12 = 4 V
Since i = 12 A, by definition, dq i dt= × = × =12 1 12 C
Hence, from Eq. (1.8.1) dw = × =4 12 48 J
Energy per coulomb of charge = =48 12 4/ J

1.6 Basic Circuit Elements
Prior to proceeding with the discussion of the characteristics of basic circuit ele-
ments, it would be appropriate to define terms frequently employed in circuits.

Circuit element:  An individual component such as a resistor, inductor, capacitor, di-
ode, transistor, energy source, which constitutes a circuit, is known as a circuit element.

Network and circuit:  A network is a connection of two or more circuit elements. 
A circuit is a network that has at least one closed path. Every circuit is a network, 
but all networks may not be circuits.

Branch:  A branch is an element of the network having only two terminals.

Passive and active branch:  A branch is said to be active when it contains one or 
more energy sources. A passive branch does not contain an energy source.

q dq i dt e dt e
t t

t t= = = = −   =∫ ∫ ∫
∞

− − ∞

0 0 0

6000 6000
0

30 0 005 5000. µC

p vi e e et t t= = ( )× ( ) =− − −15000 10 1500004000 4000 8000 W

w t p t dt e dt e
t t

t t( ) = ( ) = =
−




∫ ∫ − −

0 0

8000 8000150 000 150 000
8000, ,


= −  

−

0

8000
0

18 75
t

t t
e.

w t e t( ) = −   =− ∞
18 75 18 758000

0
. . J

v p
i

dw dt
dq dt

dw
dt

dt
dq

dw
dq dw v dq= = = × = = ×/
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Definitions and Basic Circuit Concepts  7

Linear element:	 When	the	current	and	voltage	relationship	in	an	element	can	be	
simulated	by	a	linear	equation	either	algebraic,	differential,	or	integral	type,	the	
element	is	said	to	be	a	linear	element.

Bilateral and unilateral element:	 A	 bilateral	 element	 conducts	 equally	well	 in	
either	direction.	Resistors	and	inductors	are	examples	of	bilateral	elements.	When	
the	current–voltage	relations	are	different	for	the	two	directions	of	current	flow,	
the	element	is	said	to	be	unilateral.	Diode	is	a	unilateral	element.

Lumped and distributed parameter elements:	 Lumped	 parameter	 elements	 are	
those,	which	 for	 the	 purpose	 of	 analysis	may	be	 treated	 as	 physically	 separate	
elements	such	as	 resistance,	 inductance,	capacitance.	The	distributed	parameter	
element	cannot	be	modelled	as	a	combination	of	physically	identifiable	separate	
resistor,	inductor,	or,	capacitor.

Node:	 A	junction	point	of	two	or	more	branches	is	known	as	a	node.

Loop and mesh:	 Any	closed	path,	formed	by	the	branches	in	a	network,	is	known	
as	a	loop.	A	mesh	is	a	loop,	which	does	not	enclose	any	other	loop	within	it.

A	circuit	is	constituted	of	five	basic	elements	of	which	(a)	three	are	passive	and	
(b)	two	are	active.
(a)	Passive	 elements	 represent	 devices	which	do	not	 generate	 electrical	 energy	

and	are	categorized	as
	 (i)		Resistors	 	 (ii)		Inductors	 	 (iii)		Capacitors
(b)	Active	elements	model	devices	which	generate	electrical	energy	and	are	subdi-

vided	into
	 (i)		Voltage	sources	 	 (ii)		Current	sources
Energy	source	may	be	constant	(DC)	or	they	may	be	a	function	of	time	(AC).
It	would	be	no	exaggeration	to	state	that	it	is	feasible	to	model	systems	in	most	

disciplines	of	electrical	engineering	(power,	electronic,	control,	instrumentation,	
and	so	on)	with	these	five	elements	and	analyse	them.	In	this	section,	representa-
tion	of	these	five	basic	elements	is	described.

1.6.1 Resistor
A	resistor	is	a	physical	device	whose	principal	char-
acteristic	is	to	offer	resistance	to	the	flow	of	current	
and	it	consumes	electrical	energy.	Its	symbolic	repre-
sentation	is	shown	in	Fig.	1.3.
A	linear	resistor	is	one	which	obeys	Ohm's	law,	that	is,	current	through	a	resistor	

is	proportional	to	the	potential	difference	across	it.	The	resistance	R	of	a	conductor	
is	directly	proportional	to	the	length	l	in	metre	(m)	of	the	conductor	and	inversely	
proportional	to	its	area	of	cross	section	a	in	m2,	that	is,

R l
a= ×ρ †	 (1.5)

where	ρ	is	called	the	specific	resistance	or,	resistivity	of	the	conductor	and	has	the	
unit	of	Ω−m.

Fig. 1.3 Symbolic 
representation of a resistor

R
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8 Circuits and Networks

All	resistors	dissipate	heat.
Inverse	of	 resistance	 (R)	 is	 called	conductance	 (G)	 and	has	 the	unit	of	mho	or	
siemen	(S).

	 (1.6)

where	σ	is	called	the	specific	conductivity	or,	conductivity	of	the	material	and	has	
the	unit	of	siemen	per	metre	or,	mho	per	metre.
The	resistance	of	most	conductors	and	all	metals	increases	with	increase	in	tem-
perature.	The	change	in	resistance	varies	linearly	with	a	change	in	temperature	and	
is	mathematically	expressed	as	shown	below

	 (1.7)
where	R1	and	R2	are	resistances	at	temperatures	t1°C	and	t2°C,	respectively,	α1	is	
the	resistance	temperature	coefficient	in	per	°C.

Typical	values	of	resistivity	and	temperature	coefficients	of	resistance	of	different	
materials	at	20°C	are	given	in	Table	1.4.

Table 1.4 Resistivity and temperature coefficient at 20°C of common 
conducting materials

Material Resistivity (ρ) at 20°C  
in Ω−m

Temperature coefficient (α) 
in per °C

Annealed	copper 1.69	×	10–8	to	1.74	×10–8 0.00393
Hard-drawn	aluminium 2.80	×	10–8 0.0039
Carbon 6500	×	10–8 −0.000476
Tungsten 5.6	×	10–8 0.0045
Manganin 48	×	10–8 0
Constantan	(Eureka) 48	×	10–8 0

In	 a	 physical	 resistor,	when	v	 volts	 is	 applied	 across	 its	 two	 terminals	 and	 the	
current	 flowing	 through	 it	 is	 i	 amperes,	 then	 as	 per	Ohm's	 law	 v	 =	 iR.	Using	 
Eq.	(1.4),	the	expression	for	power	takes	the	form

 (1.8)
Further,	when	i v R= / 	is	substituted	in	Eq.	(1.4),	the	power	is	given	by

 (1.8a)
Energy	dissipated	in	a	resistor	in	t	sec	is	written	as

 (1.9)

Example 1.9	 A	 circular	 conductor	 has	 a	 resistance	 of	R1	Ω	when	 its	 diameter	 and	
length	are	d	and	l	m,	respectively.	(a)	Find	the	change	in	resistance	when	its	diameter	is	
halved	and	its	length	is	increased	four	times.	(b)	By	how	much	should	the	length	of	the	
conductor	be	changed	in	order	to	keep	the	resistance	value	at	R1	when	the	diameter	of	the	
conductor	is	reduced	to	d/3?

G R
a
l

a
l

a
l= = = × = ×1 1

ρ ρ
σ S

R R t t2 1 1 2 11= + −( ) α Ω

p vi iR i i R= = ( ) = 2 W

p vi v v R v R= = ( ) =/ / W2

W pdt p t i R t v R t
t

= = × = ( )× = ( )×∫
0

2 2 / W-sec
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Definitions and Basic Circuit Concepts  9

Solution Area of the conductor a d= ( )×π / m24 2

From Eq. (1.5),  (1.9.1)

(a) When the diameter is halved, area of the conductor a d d1
2 2 24 2 16= ( )× ( ) =π π/ / / m

 The length of the conductor is 4l, resistance of the conductor R2 is obtained from  
Eq. (1.5) as

 (1.9.2)

 Dividing Eqs (1.9.2) by (1.9.1) gives R R2 116= . Thus, the resistance increases by 16 times.

(b) When diameter of the conductor is reduced to d/3, then the area a2 is obtained as

 Assuming the length of the conductor to be x m, the resistance from Eq. (1.5),
 (1.9.3)

 Equating Eqs (1.9.1) and (1.9.3) gives

Thus, the length of the conductor will be reduced by (1/9)l.

Example 1.10 Given that R R t t2 1 1 2 11= + −( ) α Ω, prove that the temperature coef-
ficient at the reference temperature of 0° can be expressed as α0

0

0
=

−
°

R R
R t

t / C, where t is 
the rise in temperature in °C and Rt Ω represents the change in resistance from R0 Ω at 0°C.

Solution The given relation can be written as

Similarly, if α2 represents the temperature coefficient at t2°C, it can be easily seen that

The relation for α0 is obtained by substituting R2 = Rt, R1 = R0, t1 = 0, and t2 = t. Thus,

 (1.10.1)

Example 1.11 The resistance of a metal conductor at 0°C is 15 Ω. If the resistance 
increases to 16.5 Ω at 25°C, determine the temperature coefficient of resistance at 25°C. 
In addition, calculate α0.

Solution Simplification of Eq. (1.10.1) yields

or

 R R t
R R
t

t

t

0 0

0
0

1
1 1 15 16 5

25
0 0036

= −( )
=

−( )
=

−( )
= °

α

α
/ /

/ C

Again using (1.10.1), it is seen that

R l
a

l
d1 2
4= =ρ ρ

π
Ω

R l
d

l
d2 2 2

4
16

64=
 

=ρ
π

ρ
π/

Ω

a d d= ( )× ( ) =π π/ / / m4 3 362 2 2

R x
d1 2

36= ρ
π

Ω

ρ
π

ρ
π

4 36 92 2
l
d

x
d

x l= =, or, /

α1
2 1

1 2 1
=

−( )
−( ) °

R R
R t t

/ C

α2
2 1

2 2 1
=

−( )
−( ) °

R R
R t t

/ C

α0
0

0
=

−( )
°

R R
R t

t / C

α0
0

0

16 5 15
15 25 0 004=

−( )
=

−( )
×

= °
R R

R t
t .

. per C
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10 Circuits and Networks

Example 1.12	 A	DC	voltage	of	220	V	 is	applied	across	a	 tungsten	filament	whose	
resistance	varies	as	a	function	of	time	given	by	R t e t( ) = 4 2 5. Ω.	Compute	the	heat	energy	
dissipated	after	10	s.

Solution	 As	per	Eq.	(1.9),	the	heat	energy	dissipated	is	given	by

1.6.2 Inductor
An	inductor	is	a	physical	device	which	stores	elec-
trical	 energy	 when	 a	 current	 flows	 through	 it.	 A	
practical	 inductor	 is	made	of	several	 turns	of	wire	
wound	 on	 a	 magnetic	 or	 an	 air	 core.	 Figure	 1.4	
shows	a	schematic	representation	of	an	inductor.
If	the	resistance	of	the	inductor	wire	is	negligible,	

the	voltage	v	volts	developed	across	it	is	proportional	to	the	rate	of	change	of	cur-
rent	di

dt
	in	amperes/sec.

Thus,	 	 (1.10)

or	 v L di
dt=

The	proportionality	constant	L	is	called	the	inductance	and	is	a	result	of	the	coiled	
conductor	linking	a	magnetic	field.	It	has	the	unit	of	henry	(H)	named	after	the	
American	physicist	Joseph	Henry.	Integration	of	Eq.	(1.10)	results	in

 (1.11)

where	i	(0)	is	the	initial	current	at	t	=	0.
By	making	use	of	Eq.	(1.4),	the	instantaneous	power	in	an	inductor,	at	any	instant,	
is	written	as

 (1.12)

Similarly,	the	energy	stored	in	an	inductor	is	given	by

 (1.13)

From	the	foregoing,	following	observations	may	be	made	in	respect	of	the	behav-
iour	of	an	inductor:

•	 	The	current	in	an	inductor	cannot	change	instantaneously	[see	Eq.	(1.11)].
•	 When	constant	or	direct	current	flows	through	an	inductor	(di/dt	=	0)	and	the	

induced	voltage	 is	zero	[see	Eq.	 (1.10)],	 that	 is,	 the	 inductor	behaves	 like	a	
short	circuit	(SC).

•	 When	the	current	is	increasing,	di/dt	is	positive,	and	energy	is	received	from	
the	 source	and	stored	 in	 the	magnetic	field	of	 the	 inductor.	Similarly,	when	

W pdt v
R t

dt
e

dt e dt
t= = ( ) =

( )
=∫ ∫ ∫ ∫ −

0

10

0

10 2

0

10 2

2 5
0

10
2 5220

4
12100.

. tt

−   = −  = −− − ×12000
2 5 4840 1 48402 5

0

10 2 5 10
. sec. .e et W /J

v di
dt∝ ,

i L vdt i
t

= + ( )∫1 0
0

A

p vi L i di
dt= = W

W p dt vi dt L di
dt idt L i di L iL

t t t t

= = = 





 = =∫ ∫ ∫ ∫

0 0 0 0

21
2

J

Fig. 1.4 Schematic repre-
sentation of an inductor
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Definitions and Basic Circuit Concepts  11

current	is	decreasing	di/dt	is	negative;	the	energy	stored	in	the	magnetic	field	
of	the	inductor	is	returned	to	the	source.

Example 1.13	 A	current	having	a	varia-
tion	 shown	 in	 Fig.	 1.5	 is	 applied	 to	 a	 pure	
inductor	having	a	value	of	2	H.	Calculate	the	
voltage	across	the	inductor	at	time	t	=	1	and	
t	=	3	sec.

Solution For the period 0 ≤ t ≤ 1 sec
Current,	i	=	10	t	A
Rate	of	change	of	current	di

dt =10 A/sec
Therefore,	at	t	=	1	sec,	voltage	across	the	inductor	is

For the period 1 ≤ t ≤ 3 sec
Rate	of	change	of	current	 di

dt = −5 A/sec
Therefore,	at	t	=	3	sec,	voltage	across	the	inductor	is

Example 1.14	 A	voltage	wave	having	the	time	variation	shown	in	Fig.	1.6	is	ap-
plied	 to	 a	 pure	 inductor	 having	 a	 value	 of	 0.5	H.	 Calculate	 the	 current	 through	 the	
inductor	at	times	t	=	1,	2,	3,	4,	5	sec.	Sketch	the	variation	of	current	through	the	inductor	
over	5	sec.

L di
dt = × =2 10 20V

L di
dt = × − = −2 5 10V

(A)
i

10

0 1 3 t (sec)2
Fig. 1.5  

Fig. 1.6  

(V)
v

10

0 1 2 3 4 5
t

(sec)
–10

Solution	 For	the	period	0	≤	t	≤	1sec,	v	=	10	V;	i(0)	=	0.	The	current	i	may	be	expressed	
using	Eq.	(1.11)	as

Then	at	t	=	1	sec,	
For	the	period	1	≤	t	≤	3	sec,	v	=	‒	10	V;	i	(1)	=	20	A,	then	current

Then	at	t	=	2	sec,	
And	at	t	=	3	sec,	
For	the	period	3	≤	t	≤	5	sec,	v	=	10	V;	i(3)	=	–20	A,

i L v dt i dt dt t
t t t

= + ( ) = = =∫ ∫ ∫1 0 1
0 5 10 20 20

0 0 0.
i = × =20 1 20 A

i L vdt i dt dt t
t t t

= + ( ) = − + = − + = − −( ) +∫ ∫ ∫1 1 1
0 5 10 20 20 20 20 1 20

1 1 1.
i = − × − + = − + =( ) 20 2 1 20 20 20 0A

i = − × −( ) + = − + = −20 3 1 20 40 20 20A

i L vdt i dt dt t
t t t

= + ( ) = − = − = −( ) −∫ ∫ ∫1 3 1
0 5 10 20 20 20 3 20

3 3 3.
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12 Circuits and Networks

Fig. 1.7 Variation of current through the inductor

(A)
20

0
1 3 4 5

t
(sec)

–20

i

2

Then	at	t	=	4	sec,	
And	at	t	=	5	sec,	
Example 1.15	 A	 voltage	 pulse	 v e tt= −( )−2 1 44 V 	 for	 t	 >	 0	 s	 is	 applied	 across	 a	
200	mH	pure	inductor.	Assume	v	=	0	V	for	t	<	0	s	and	derive	expressions	as	functions	of	
time	for	(a)	the	flow	of	current	in	the	inductor,	(b)	power,	and	(c)	energy.
Solution

(a)	 If	it	is	assumed	that	i	=	0	for	t	<	0,	then	i	(0)	=	0	in	Eq.	(1.11).	Hence,	the	expression	
for	the	flow	of	current	through	the	inductor	is	used	as	follows:

 (1.15.1)

	 Integration	of	Eq.	(1.15.1)	leads	to

(b)	 Using	Eq.	(1.12),	expression	for	power	is	obtained	as

(c)		Expression	for	energy	is	obtained	by	employing	Eq.	(1.13)	as

Example 1.16	 Use	the	expressions	in	Example	1.15	for	v,	i,	p,	and	W	and	plot	their	
variations	against	time	t.	Use	MATLAB	facility	to	plot	the	curves.	From	the	plots	deter-
mine	the	time	interval	in	which	the	inductor	is	(a)	absorbing,	(b)	returning	energy	to	the	
source,	and	(c)	maximum	energy	stored.

Solution	 Plot	of	inductor	voltage	versus	time
>> t = linspace(0, 1, 10000); % divides the time axis between 0 

to 1 sec. into 10000 parts

>> v = 2*(1−4*t)·*exp(−4*t); % input voltage across the inductor

>> plot(t, v) % plot v (t) versus t

>> grid on % grid is turned on

>> xlabel('Time t in sec') % label x-axis

>> ylabel('Inductor voltage v in volts') % label y-axis

i = × −( ) − = − =20 4 3 20 20 20 0A
i = × −( ) − = − =20 5 3 20 40 20 20A

i t e t dt e t dt
t

t
t

t( ) = −( ) = −( )∫ ∫− −1
0 2 2 1 4 10 1 4

0

4

0

4
.

i t e te e dt
t t t t tt

( ) = −








 − − − −



















− − −

∫10 4 4 4 4
4
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Definitions and Basic Circuit Concepts  13

Plot	of	inductor	current	versus	time
>> t = linspace(0, 1, 10000); % divides the time axis between 

0 to 1 sec. into 10000 parts

>> i = 10*t*exp(−4*t); % current through the inductor

>> plot(t, i) % plot i (t) versus t

>> grid on % grid is turned on

>> xlabel('Time t in sec') % label x-axis

>> ylabel('Inductor current i in amperes') % label y-axis
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Fig. 1.8  
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Fig. 1.9  

Plot	of	power	versus	time
>> t = linspace(0, 1, 10000); % divides the time axis between 

0 to 1 sec. into 10000 parts

>> p = 20*t·*exp(−8*t)−80*(t·^2)·*exp(−8*t); % power in the inductor

>> plot(t, p) % plot p (t) versus t

>> grid on % grid is turned on

>> xlabel('Time t in sec') % label x-axis

>> ylabel('Power p in watts') % label y-axis
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14 Circuits and Networks

Plot	of	energy	versus	time
>> t = linspace(0, 1, 10000); % divides the time axis between 0 

to 1 sec. into 10000 parts

>> W = 10*(t·^2)·*exp(−8*t); % energy in the inductor

>> plot(t, W) % plot w (t) versus t

>> grid on % grid is turned on

>> xlabel('Time t in sec') % label x-axis

>> ylabel('Inductor energy W in joules') % label y-axis
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Fig. 1.10  

(a)	 From	the	energy	versus	time	plot	(Fig.	1.11),	it	may	be	seen	that	energy	is	increasing	from	
the	interval	0	to	0.25	s.	Hence	this	is	the	period	when	the	inductor	is	absorbing	energy.	In	
addition,	it	may	be	seen	from	the	power	versus	time	plot	that	during	this	period	p	>	0.

(b)	 From	the	time	0.25	s	to	∞,	energy	is	decreasing	in	the	inductor.	Thus,	the	inductor	is	
returning	energy	to	the	source	during	this	period.
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Fig. 1.11  
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Definitions and Basic Circuit Concepts  15

(c)	 From	the	energy	versus	time	plot,	the	maximum	energy	stored	in	the	inductor	occurs	at	
0.25	s	and	its	magnitude	is	0.085	J.

1.6.3 Capacitor
A	 capacitor	 is	 a	 physical	 device	 that	
stores	 electric	 energy	 in	 the	 form	 of	
charge	 separation	 when	 it	 is	 polarized	
by	applying	a	suitable	voltage.	A	practi-
cal	capacitor	is	made	up	of	two	parallel	
conducting	plates	separated	by	an	insu-
lating	material	or	air	called	a	dielectric.	
A	schematic	representation	of	a	capaci-
tor	is	shown	in	Fig.	1.12.	
In	 the	 presence	 of	 a	 time-varying	 voltage	 v	 across	 the	 capacitor,	 the	 charge	

within	the	dielectric	is	displaced	leading	to	a	flow	of	current	i,	called	the	displace-
ment current.	At	the	terminals	of	the	capacitor,	the	current	appearing	is	similar	to	
the	conduction	current	and	is	mathematically	written	as

	 (1.14)

In	Eq.	(1.14),	i	is	the	current	in	amperes	through	the	capacitor;	C	is	the	proportion-
ality	constant	and	is	called	the	capacitance	of	the	capacitor,	v	is	the	applied	voltage	
in	volts,	and	t	is	time	in	s.	Capacitance	reflects	the	ability	of	the	capacitor	to	store	
charge	and	has	the	unit	of	farad	(F).	In	practice,	the	unit	employed	is	microfarad	
(μF)	since	farad	is	too	large	a	unit.
Integration	 of	 Eq.	 (1.14)	with	 respect	 to	 time	 determines	 the	 voltage	 across	

capacitor	as	under

 (1.15)

where	v(0)	is	initial	voltage	at	t	=	0.
Power	p	in	the	capacitor	is	written	as

	 (1.16)

The	energy	WC,	in	the	capacitor	at	any	time	t,	is	given	by

 (1.17)

Substituting	for	p	from	Eq.	(1.16)	in	Eq.	(1.17),	and	assuming	that	at	t	=	0,	v	=	0,	
and	at	any	time	t	s,	the	voltage	across	the	capacitor	is	v	volts	gives

	 (1.18)

From	the	foregoing,	following	observations	are	made	in	respect	of	the	behaviour	
of	a	capacitor:

•	 The	voltage	in	a	capacitor	cannot	change	instantaneously	[see	Eq.	(1.15)].

i C dv
dt= A

v C i dt v
t

= +∫1 0
0

volts( )

p vi C v dv
dt= = W

W p dt
t

C J= ∫
0

W C v dv
dt dt C v dv C vC

v v

= = =∫ ∫
0 0

21
2

( ) J

Fig. 1.12 Schematic representation 
of a capacitor

–+ C

v

i
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16 Circuits and Networks

•	 When	 constant	 or	 direct	 voltage	 is	 applied	 across	 a	 capacitor	 dv
dt = 0






 	 no	 

conduction	current	can	flow	 through	 the	capacitor,	 that	 is,	 the	capacitor	be-
haves	like	an	open	circuit	(OC).

•	 When	 the	 voltage	 is	 increasing	 dv
dt 	 is	 positive;	 energy	 is	 received	 from	 the	

source	and	stored	in	the	electric	field	of	the	capacitor.	Similarly,	when	volt-
age	is	decreasing,	 dv

dt 	is	negative;	the	energy	stored	in	the	electric	field	of	the	
capacitor	is	returned	to	the	source.	

Hence,	similar	to	an	inductor,	a	capacitor	is	also	a	storage	device	which	manifests	
itself	in	a	circuit	when	the	voltage	is	varying.

Example 1.17	 A	voltage	wave	having	a	time	variation	of	20	V/sec	is	applied	to	a	pure	
capacitor	having	a	value	of	25	mF.	Find	(a)	the	current	during	the	period	0	≤	t	≤	1sec,	(b)	
charge	accumulated	across	the	capacitor	at	t	=	1sec,	(c)	power	in	the	capacitor	at	t	=	1sec,	
and	(d)	energy	stored	in	the	capacitor	at	t	=	1sec.

Solution
(a)	 Current	through	the	capacitor	i	may	be	obtained	using	Eq.	(1.14)	as

(b)	 From	Eq.	(1.14)	the	charge	q	across	a	capacitor	of	C	F	can	be	written	as	q	=	Cv	where	
v	volts	is	the	voltage	across	it.	At	t	=	1	sec,	v	=	20	V,	thus,

(c)	 At	t	=	1sec,	power	p	=	v	×	i	=	20	×	500	×	10−6	=	1	×	10−2 W
(d)	 At	t	=	1sec,	energy	stored	in	the	capacitor,	WC,	can	be	obtained	using	Eq.	(1.18)	as

Example 1.18	 A	current	having	variation	shown	in	Fig.	1.13	is	applied	to	a	pure	capaci-
tor	having	a	value	of	5	mF.	Calculate	the	charge,	voltage,	power,	and	energy	at	time	t	=	2	sec.

i C dv
dt= = × × =−25 10 20 5006 µA

q C v= = × × =−25 10 20 5006 µC

W CvC = = × × × ( ) = ×− −1
2

1
2 25 10 20 5 102 6 2 3 J

Fig. 1.13  

i (A)
100 mA

1 3 4 t
(sec)

2

Solution	 	For	the	period	0	≤	t	≤	1sec,	i	=	100	×	10−3 t	=	0.1	t	A
At	t	=	1sec,

q i dt t dt t t
t t

t

t

t
t= = = × = =∫ ∫ 



 =

=

=
=

0 0
0

1
2 2

0
10 1 0 1

2
0 05 0 05. . . [ ] . [[ ] . C

. . V

1 0 0 05

1 0 1 0 05
500 10

100 100
0

2

6
2

− =

= = =
×

= =∫ −v q
C C t dt t t

t
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Definitions and Basic Circuit Concepts  17

Where t
p v i

W vidt t t dt tC
t t

=
= × = × =

= = × =∫ ∫

1
100 0 1 10

100 0 01
0

2
0

sec,
. W

. 33
0

1 4

0

1

4
1
4 1 0 0 25dt t

t

t

∫ =








 = − =

=

=

[ ] . J

For	the	peroid	0	≤	t	≤	1	sec,	i	=	0.2	–	0.1t	A
At	t	=	2	sec,

Charge q q idt t dt t t
t

t
= + = + −( ) = + − ×= ∫ ∫1 1 1

2 2
0 05 0 2 0 1 0 05 0 2 0 1 2. . . . . .









= + − − − = + =
=

=

t

t

1

2

2 20 05 0 2 2 1 0 05 2 1 0 05 0 05 0 1. [ . ( ) . ( )] . . . C

Volltage v q
C C t dt= = + −( )





=
×

+

∫
−

1 0 05 0 2 0 1

1
500 10

0 05 0 2

1

2

6

. . .

[ . . tt t t
t−

= + − − − = ×

=
=0 05

10
500 0 05 0 2 2 1 0 05 2 1 10

500

2
1
2

6
2 2

6

. ]

[ . . ( ) . ( )] 00 1 200
200 0 0

.
W

=
= × = × =

V
Power p v i

2
.t 1 1

2 2
61

6 2 2 3
1

26 2 3 4

1
6

Energy
10.25 [0.05 0.2 0.05 ] (0.2 1 )

500 10
100.25 [0.01 0.035 0.03 0.005 ]500
10Energy 0.25 0.01 0.035 0.03 0.005500 2 3 4
100.25 500

C C

t

C
t

W W vidt

t t t dt

t t t dt

t t tW t

=

−

=

=

= +

 = + + − × − × 

= + + − +

 
= + + × − × + × 

 

= + ×

∫
∫

∫

0.01125 0.25 22.50 22.75 J= + =

Example 1.19	 A	varying	current	
represented	 by	 the	 curve	 shown	 in	
Fig.	1.14	is	flowing	through	an	ideal	
capacitor	 having	 a	 capacitance	 of	
500	 µF.	 Derive	 expressions	 for	 the	
voltage	and	energy	developed	across	
the	 capacitor.	 Plot	 the	 variation	 of	
voltage	versus	time.	Assume	that	the	
capacitor	is	initially	uncharged.

Solution	 For	the	period	0	≥	t	≥	1.0,	the	current	flowing	through	the	capacitor	is	written	as	
i	=	0.1	A.	The	voltage	developed	across	the	capacitor	is	given	by

where	v(0)	is	an	integration	constant.	Since	the	capacitor	is	uncharged	at	t	=	0,	v(0)	=	0.	
Hence,

 (1.19.1)

Energy	stored	W Cv t tC t− ≤ ≤
−= = × ×( ) × ( ) =0 1 0

2 6 2 21
2

1
2

500 10 200 10. J

v
C

idt dt v t v= =
×

+ = +∫ ∫−
1 1

500 10
0 10 0 200 06 ( . ) ( ) ( )V

v t= 200 V

21

i, mA
100

t, s
– 100

Fig. 1.14  
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18 Circuits and Networks

For	the	period	1.0	≤	t	≤	2.0,	the	current	flowing	through	the	capacitor	is	written	as	i	=	–	0.1	A.	
Thus	voltage	developed	is	written	as

where	v(1)	is	an	integration	constant.	From	Eq.	(1.19.1),	at	t	=	1.0	s,	v	=	200	V.
Hence,	
Thus	the	expression	for	the	voltage,	for	the	period	1.0	≥	t	≥	2.0,	is	as	under

v t t= − + = −( )200 400 200 2 V
Energy	stored	Wc t− ≤ ≤1 0 2 0. .

= 1
2

2Cv

= × ×( ) × −[ ]
= −( )

−1
2 500 10 200 2

10 2

6 2

2

( )

J

t

t

The	variation	of	voltage,	across	the	capacitor,	with	time	is	shown	in	Fig.	1.15.

Example 1.20	 A	voltage	signal	v t= ( )sin 2 V	is	applied	across	a	500	μF	capacitor.	If	
v t= ≤0 0for s ,	compute	expressions	for	capacitor	(a)	current,	(b)	power,	and	(c)	energy	for	
t ≥ 0s.	Sketch	the	various	curves	versus	time	in	seconds.

Solution
(a)	 The	capacitor	current	is	computed	using	Eq.	(1.14)	as	follows:

i d
dt t t= × ( )  = ( )10

500 2 4000 2
6

sin cos A
(b)	 The	power	is	computed	from	Eq.	(1.16)	as	given	below.

(c)	 Energy	in	the	capacitor	is	determined	by	employing	Eq.	(1.18)	as	under

W t tC = × ×( ) ( ) = × ( )− −1
2 500 10 2 2 5 10 26 2 4 2sin . sin J

Figure	1.16	shows	a	plot	of	the	various	quantities.

v dt t v=
×

× −( ) = − +− ∫1
500 10

0 10 200 16 . ( )V

200 200 1 0 1 1 400= − × ( ) + ( ) ( ) =. or v Vv

p vi t t t= = ( ) ( ) = ( )4000 2 2 2000 4sin cos sin W

Fig. 1.15  
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Fig. 1.16
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Definitions and Basic Circuit Concepts  19

Example 1.21	 An	ideal	capacitor	of	500	μF	is	excited	by	a	current	signal	which	is	
mathematically	expressed	as	under

If	the	capacitor	is	initially	uncharged,	derive	an	expression	for	the	voltage	versus	time	and	
sketch	the	current	and	voltage	signals.

Solution	 Since	the	capacitor	carries	no	charge	initially,	v(0)	=	0	V	in	Eq.	(1.15).	Thus,	for	
0	≤	t	≤	2s,	the	voltage	across	the	capacitor	can	be	written	as

 (1.21.1)

For	the	period	2 ≤ ≤ ∞t s,	the	voltage	across	the	capacitor	is	expressed	as

 (1.21.2)
where	v(2)	is	an	integration	constant.
From	Eq.	(1.21.1),	at	t	=	2	s,	v(t)	=	12,000	V,	and	substitution	of	t	=	2	and	v	(t)	=	12,000	in	
Eq.	(1.21.2)	gives	v	(2)	=	18,000	and	Eq.	(1.21.2)	modifies	to

	 (1.21.3)
The	plot	of	the	capacitor	current	and	voltage	signals	is	shown	in	Fig.	1.17.
It	may	be	noted	that	the	capacitor	reaches	a	constant	voltage	value	of	18	kV	over	a	long	
period	of	time.

i t t
i t e tt
( ) = ≤ ≤

( ) = ≤ ≤ ∞− −( )
3 0 2
3 22
A for s

and A for s

v t dt t( ) = =∫10
500 3 6000

6
V

v e dt v e vt t= + = − +



∫ − −( ) − −( )10

500 3 2 6000 2
6

2 2( ) ( ) V

v e t= −





− −( )6000 3 2 V

Fig. 1.17
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Example 1.22	 Derive	expressions	for	power	and	energy	for	the	capacitor	in	Example	
1.21	and	sketch	the	corresponding	curves.	Calculate	the	energy	stored	during	the	period	(a)		
0	≤	t	≤	2s	and	(b)	2 ≤ ≤ ∞t s.	What	is	the	total	energy	stored	in	the	capacitor?	

Solution	 For	convenience,	the	capacitor	current	and	voltage	expressions	are	reproduced	
as	follows.

i t v t t t
i t e v et t
( ) = ( ) = ≤ ≤

( ) = = −− −( ) − −

3 6000 0 2
3 6000 32 2
;

;
V for s

and A (( )



 ≤ ≤ ∞V for s2 t
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20 Circuits and Networks

Equation	(1.16)	is	used	to	calculate	the	expressions	for	power	as	follows.
For s, power kW
For s, power

0 2 3 6000 18
2 3 602

≤ ≤ = × =
≤ ≤ ∞ = ×− −( )

t p t t
t p e t 000 3 18 32 2 2−



 = −





− −( ) − −( ) − −( )e e et t t kW

Similarly	Eq.	(1.18)	is	used	to	calculate	the	expressions	for	energy	as	shown	below.

For s, energy kJ

For s, ene

0 2 1
2 500 10 6000 9

2

6 2 2≤ ≤ = × × × ( ) =

≤ ≤ ∞

−t W t t

t

C

rrgy kJW e eC
t t= × × × −



{ } = −





− − −( ) − −( )1
2 500 10 6000 3 9 36 2

2
2 2

The	power	and	energy	curves	are	shown	in	Fig.	1.18.
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2
≤ ≤ = = =

− ∫t W t dt ts kJC,

(b)	 Energy	stored	during	 2 18 3

18 3

2
2

2

2

2 2≤ ≤ ∞ = −












= −

−∞

∞
− −( )

∞
− −( )∫ ∫t W e dt e dt

e

C
t ts,

−− −( )
− −( ) ∞

+











=t

te2
2 2

2
2 45 kJ

Therefore,	total	energy	stored	in	the	capacitor	=	36	+	45	=	81	kJ.

Example 1.23	 Across	an	ideal	0.4	μF	capacitor,	the	following	voltage	signal	is	applied:

Derive	expressions	for	capacitor	(a)	current,	(b)	power,	and	(c)	energy	as	a	function	of	time.

Solution
(a)	Equation	(1.14)	is	employed	to	determine	capacitor	current.

For s, sincet i v≤ = =0 0 0

v
t

t t
t t

=
≤
≤ ≤

−( ) ≤ ≤







0 0
5 1
10 5 2

V for sec
V for 0 sec

V for 1 sec

Fig. 1.18
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Definitions and Basic Circuit Concepts  21

For s, A0 1 0 4 10 5 26≤ ≤ = × × ( ) =−t i d
dt t. µ

For s A1 2 0 4 10 10 5 26≤ ≤ = × × −( ) = −−t i d
dt t, . µ

(b)	 Equation	(1.16)	is	used	to	determine	capacitor	power.

(c)	 Equation	(1.18)	is	applied	to	determine	capacitor	energy.

Example 1.24	 Use	MATLAB	to	plot	capacitor	curves	for	(a)	voltage,	(b)	current,	
(c)	power,	and	(d)	energy.	Identify	the	periods	during	which	energy	is	being	stored	and	
returned	by	the	capacitor.	Show	that	 the	energies	stored	and	returned	by	the	capacitor	
are	equal.

Solution	 The	MATLAB	program	for	plotting	the	various	curves	versus	time	is	written	
as	follows:
>> line([0, 1], [0, 5]) % Line command for
 plotting the voltage signal

>> hold on

>> grid on

>> line([1, 2], [5, 0]) % Line command for
 plotting the voltage signal

>> line([0, 1], [2, 2]) % Line command for
 plotting the current signal

>> line([1, 2], [−2, −2]) % Line command for
 plotting the current signal

>> t=linspace(0, 1, 5000);

>> p=10*t; % Computation of capacitor power

>> plot(t, p) % Plot of capacitor power

>> t = linspace(1, 2, 5000);
>> p = 10*(t − 2); % Computation of capacitor power

>> plot(t, p) % Plot of capacitor power

>> t = linspace(0, 1, 5000);
>> Wc = 5*t^2; % Computation of capacitor energy

>> plot(t, Wc) % Plot of capacitor energy

>> t = linspace(1, 2, 5000);

>> Wc=5*(t^2 − 4*t + 4); % Computation of capacitor energy

>> plot(t, Wc) % Plot of capacitor energy

>> xlabel('Time t in sec') % x-axis labelling

For st p v i≤ = × =0 0,

For s W0 1 5 2 10≤ ≤ = × =t p t t, µ

For s, W1 2 10 5 2 10 2≤ ≤ = −( )× −( ) = −( )t p t t µ

For s Ct W v≤ = × × × =−0 1
2 0 4 10 06 2, .

For s, JC0 1 1
2 0 4 10 5 56 2 2≤ ≤ = × ×( )× ( ) =−t W t t. µ

For s, JC1 2 1
2 0 4 10 10 5 5 4 46 2 2≤ ≤ = × ×( )× −( ) = − +( )−t W t t t. µ
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22 Circuits and Networks

The	period	during	which	the	capacitor	is	storing	energy	is	the	period	when	power	is	in-
creasing,	that	is,	from	0	to	1	s.	Similarly,	the	period	during	which	the	capacitor	is	returning	
energy	is	the	period	when	power	is	decreasing,	that	is,	from	1	to	2	s.

Energy	stored	by	the	capacitor	 = = =   =∫ ∫
0

1

0

1
2

0

1
10 10 2 5pdt tdt t / µJ

Similarly,	energy	returned	by	the	capacitor	 = = −( ) = −  =∫ ∫
1

2

1

2
2

1

2
10 2 10 2 2 5pdt t dt t t/ µJ.

Thus,	energies	stored	and	returned	by	the	capacitor	are	equal.

1.6.4 Ideal Independent Voltage Sources
An	ideal	independent	voltage	source	is	an	element	which	can	supply	from	its	ter-
minals	any	magnitude	of	current,	in	any	direction,	at	a	specified	constant	voltage.	
Figure	1.20	shows	the	symbolic	representation	and	the	v–i	characteristics	of	an	
ideal	independent	voltage	source.

Fig. 1.19  
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6
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1.2 1.4 1.6 1.8 2

Capacitor voltage, v in volts
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Energy, Wc in μJ

I

VS

vS (t)

vS (t)

i(t)

V

i

(c)(b)(a)

+

–

+

–

Fig. 1.20 Symbolic representation of an ideal independent voltage source: 
(a) DC voltage, (b) time-dependent voltage, and (c) v–i characteristics

From	 the	 v–i	 characteristics	 in	 Fig.	 1.20(c),	 it	 is	 seen	 that	 the	magnitude	V	 of	
the	voltage	source	is	independent	of	the	magnitude	of	the	current	supplied	by	it.	
Open	circuit	(OC)	and	short	circuit	(SC)	conditions	in	an	ideal	voltage	source	are,	
respectively,	represented	by	i vS Sand= =0 0.
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Definitions and Basic Circuit Concepts  23

1.6.5 Ideal Independent Current Sources
An	ideal	independent	current	source	is	an	element	which	can	maintain	any	mag-
nitude	of	voltage	while	supplying	specified	constant	current	 from	its	 terminals.	
Figure	 1.21	 shows	 the	 symbolic	 representation	 and	 the	v–i	 characteristic	 of	 an	
ideal	independent	current	source.

I

)c()b()a(

IS iS(t) 

iS(t) 

v(t)

+

–

+

–

From	the	v–i	characteristics	in	Fig.	1.21(c),	it	is	seen	that	the	magnitude	I	of	the	
current	source	is	 independent	of	the	magnitude	of	the	voltage	maintained	by	it.	
Open	circuit	and	SC	conditions	in	an	ideal	current	source	are,	respectively,	repre-
sented	by	v iS Sand= =0 0.
In	practice,	it	has	been	found	that	it	is	more	convenient	to	use	voltage	sources	

for	analysing	electric	circuits	whereas	the	use	of	current	sources	has	been	found	to	
be	handy	for	electronic	circuit	analyses.

Example 1.25	 An	8	Ω	 resistance	 is	 connected	 across	 a	 24	V	 ideal	 voltage	 source.	
Determine	(i)	circuit	current	and	(ii)	voltage	drop	across	the	resistance.	If	a	4	Ω	resistance	
is	connected	in	series	with	the	8	Ω	resistance,	calculate	(iii)	circuit	current,	(iv)	voltage	
drop	across	each	resistor,	and	(v)	power	delivered	by	the	source	in	each	case.

Solution

(i)	 Circuit	current	 = =24 8 3/ A
(ii)	 Since	the	full	voltage	of	the	voltage	source	is	applied	across	the	8	Ω	resistance,	voltage	

across	it	is	24	V.
(iii)	 In	this	case,	full	voltage	of	the	source	is	applied	across	the	(8	+	4)	Ω	resistances	in	

series.	Thus,	current	 I = +( ) =24 8 4 2/ A
(iv)	 Voltage	across	8	Ω	resistance	2	×	8	=	16	V
	 Voltage	across	4	Ω	resistance	2	×	4	=	8	V
(v)	 Power	delivered	to	the	8	Ω	resistor	=	V	×	I	=	24	×	3	=	72	W
Power	delivered	to	the	8	Ω	resistor	in	series	combination	=	V	×	I	=	16	×	2	=	32	W
Power	delivered	to	the	4	Ω	resistor	in	series	combination	=	V	×	I	=	8	×	2	=	16	W
Total	power	delivered	by	the	source	=	32	+	16	=	48	W.

Example 1.26	 Repeat	Example	1.25	when	the	voltage	source	is	replaced	by	an	ideal	
current	source	of	24	A.

Solution	 In	this	case,	the	ideal	current	source	supplies	a	constant	current	of	24	A	under	
both	types	of	connections.

Fig. 1.21 Symbolic representation of an ideal independent current source: 
(a) DC current, (b) time-dependent current, and (c) v–i characteristics
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24 Circuits and Networks

(i)	 Voltage	drop	across	the	8	Ω	resistance	= × =24 8 192V
(ii)	 When	a	4	Ω	resistance	is	connected	in	series,	the	constant	current	of	24	A	from	the	

current	source	flows	through	both	the	resistances.
(iii)	Voltage	drop	across	8	Ω	resistance	= × =24 8 192V
	 Voltage	drop	across	4	Ω	resistance	 = × =24 4 96 V
(iv)	 Voltage	drop	across	the	series	combination	 = × +( ) =24 4 8 288V
(v)	 Power	delivered	to	the	8	Ω	resistor	=	V	×	I	=	192	×	24	=	4608	W

Power	delivered	to	the	8	Ω	resistor	in	series	combination	=	V	×	I	=	192	×	24	=	4608	W
Power	delivered	to	the	4	Ω	resistor	in	series	combination	=	V	×	I	=	96	×	24	=	2304	W
Total	power	delivered	by	the	source	=	V	×	I	=	288	×	24	=	6912	W

From	the	foregoing	 it	can	be	concluded	 that	 there	 is	no	 limit	on	 the	voltage	and	power	
delivered	by	a	current	source.

1.6.6 Dependent Energy Sources
An	 energy	 source,	whose	 output	 voltage	 or	 current	 is	 either	 dependent	 on	 the	
voltage	or	current	 in	another	part	of	 the	circuit,	 is	classified	as	a	dependent	(or	
controlled)	source.	All	dependent	sources	are	unidirectional	and	linear.	Thus,	both	
dependent	voltage	and	current	sources	are	obtainable.	Figure	1.22	shows	the	sym-
bolic	representation	of	the	four	types	of	dependent	sources.
It	may	be	observed	that	there	are	four	variants	of	controlled	energy	sources	

and	in	order	to	fully	specify	a	source,	four	parameters	are	needed,	that	is,	source	
voltage	 or	 source	 current	 (v iS Sor ),	 controlling	 voltage	 or	 current	 (vi	 or	 is)	 in	
another	 part	 of	 the	 circuit,	 multiplying	 constants	 (such	 as	α β µ ρ, , , or )	 and	
reference	 polarity.	 It	would	 also	 be	 useful	 to	 note	 that	 constants	μ	 and	β	 are	
dimensionless	constants	whereas	α	has	the	unit	of	A/V	and	ρ	has	the	unit	of	V/A.	
The	 relationship	 for	 each	 type	 of	 dependent	 source	 along	with	 the	 reference	
polarity	is	shown	in	Fig.	1.22.

Fig. 1.22 Symbolic representation of dependent energy sources
(a) Voltage-controlled voltage source (VCVS), (b) current-controlled  
voltage source (CCVS), (c) voltage-controlled current source (VCCS),  
(d) current-controlled current source (CCCS)

(a) (b) (c) (d)

vs = μ vi
–

+
vs = ρ ii

–

+
is = α vi is = β ii

Example 1.27	 Compute	the	load	voltage	across	the	resistor	RL	for	the	given	circuit	in	
Fig.	1.23.
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Definitions and Basic Circuit Concepts  25

Solution	 The	circuit	in	Fig.	1.23,	in	addition	to	an	independent	voltage	source	VS	=	18	V,	
is	also	made	up	of	a	dependent	VCVS	=	0.5VS	and	a	dependent	CCCS	=	2iS.
Application	of	Ohm's	law	to	the	closed	circuit	containing	the	VCVS	gives

or, 
From	the	circuit	containing	CCCS,	it	is	seen	that	the	voltage	across	the	load	is

1.6.7 Practical Voltage and Current Sources
An	ideal	voltage	source	does	not	exist	in	practice.	Figure	1.24	shows	the	simula-
tion	of	a	practical	voltage	source.

18 3 0 5 18 0
18 9 3 3

+ × − × =
= −( ) =

i
i

S

S A
.

/

R iL S V= × ( ) = × ×( ) =2 2 2 2 3 12

R1 = 3 Ω

iS

VS = 18 V 0.5 VS 2 iS RL = 3 Ω
+
–

+
–

+

Fig. 1.23

Fig. 1.24 Simulation of a practical voltage source 

+

–

RL RL

RL

iS (t)

iS max(t)

iS (t)

vS (t) vS (t)

vS (t)

vL(t)

iL(t)

vL(t)

vL(t)

iL(t) +

–

rS

+

–

+
–

+– +–

+–

(a) (b)

(c)

From	Fig.	1.24(a),	the	load	current	iL	through	the	variable	load	resistor	RL	Ω	is	
given	by

	 (1.19)

In	addition,	current,	through	RL	when	a	resistance	rS	is	connected	in	series	with	the	
ideal	voltage	source	[see	Fig.	1.24(b)]	is	written	as

	 (1.20)

i t i t v t
RL S
S

L
A( ) = ( ) =

( )

i t i t
v t

r RL S
S

S L
V( ) = ( ) =

( )
+
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26 Circuits and Networks

And	the	load	voltage	is

	 (1.21)

The	following	conclusions	may	be	drawn	from	the	above	equations:

•	 From	Eq.	 (1.19),	 it	 is	 seen	 that	 as	RL → 0,	 current	 iS	 supplied	by	 the	 ideal	
source	tends	to	∞,	a	condition	impossible	to	achieve.

•	 Equation	 (1.20)	 represents	 the	 load	 current	
supplied	by	a	practical	source.	It	may	be	noted	
that	under	a	SC	condition	 RL =( )0 ,	the	current	
supplied	by	the	source	is	limited	by	its	internal	
resistance	rS,	that	is,	i t v t rSmax S S( ) = ( ) / .

•	 Equation	 (1.21)	 is	 employed	 to	 plot	 the	 v–i 
characteristics	of	a	practical	voltage	source	and	
is	shown	in	Fig.	1.25.

•	 The	 resistance	 rS,	 which	 has	 a	 typically	 low	
magnitude,	 is	 internal	 to	 the	 voltage	 source.	
Its	presence	affects	the	load	voltage,	and	in	the	
limiting	condition	as	rS → 0,	the	magnitude	of	the	load	voltage	vL	approaches	
the	magnitude	of	the	source	voltage	vS.

In	a	similar	manner,	a	practical	current	source	can	be	simulated.	Modelling	of	a	prac-
tical	current	source	is	shown	in	Fig.	1.26	and	Fig.	1.27	depicts	its	v–i	characteristics.

v t i t R
v t

r R
R v t i t rL L L

S

S L
L S L S( ) = ( )× =

( )
+

= ( ) − ( )×( )

rS

O

Practical
source

Ideal
source

iL(t)

vL(t) vL(t)= vS(t)

vS(t)=

iS max(t)

Fig. 1.25 v–i Characteristics 
of a practical voltage source 

Fig. 1.26 Modelling of a practical current source

Fig. 1.27 v–i Characteristics of a practical current source

iS

iS

(iS – iL)
rS vS

iL

RL rS vS
iS

iS

++

– –

Ideal source
iL

iS

vL

vOC = vS max

Practical source

It	is	left	as	a	tutorial	exercise	for	the	reader	to	verify	the	drooping	nature	of	the	
characteristic	and	prove	that	the	internal	resistance	possesses	a	high	magnitude	in	
order	to	simulate	the	behaviour	of	an	ideal	current	source.
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Definitions and Basic Circuit Concepts  27

Example 1.28	 A	practical	48	V	independent	source	can	supply	a	maximum	cur-
rent	of	120	A.	Determine	(a)	the	internal	resistance	of	the	source	and	(b)	plot	the	load	
characteristics.	Compute	the	load	(c)	current	and	(d)	voltage	when	the	source	is	a	load	
of	50	Ω.

Solution
(a)	 	The	internal	resistance	of	the	source	is	determined	by	making	use	of	i t v t rSmax S S( ) = ( ) /  

as	under
 

(b)	When	 the	 source	 is	 supplying	maximum	
current,	it	is	a	SC	condition:

 vL	(t)	=	0	V	and	iL	=	120	A.
	 Under	OC	condition,	vL	(t)	=	48	V	and	iL	=	

0	A.	The	 load	 characteristic	 is	 shown	 in	
Fig.	1.28.

(c)	 Load	 current	 is	 obtained	 by	 using	
Eq.	(1.20)	as	under

 i tL A( ) =
+

=48
0 4 50 0 952. .

(d)	 Equation	 (1.21)	 is	 used	 to	 compute	 load	
voltage	as	follows:

 

Example 1.29	 In	 the	 circuit	 shown	 in	Fig.	 1.26,	 the	practical	 current	 source	has	 a	
capacity	of	10	A	and	an	 internal	 resistance	of	100	Ω.	Plot	 the	v–i	 characteristics	of	 the	
current	source	when	load	resistance	is	equal	to	(a)	10	Ω,	(b)	50	Ω,	and	(c)	100	Ω.

Solution	 From	Fig.	1.26,	the	following	data	is	available:	i t rS SA and( ) = =10 100 Ω.

On	OC and VL L LR i t v t= ∞( ) ( ) = ( ) = × =0 10 100 1000,

(a)	 For , A,

and

L L

L

R i t

v t

= ( ) = ×
+( ) =

( ) = × =

10 10 100
100 10

9 091

9 091 10 90

Ω .

. ..91V

(b)	 For , A,

and

L L

L

R i t

v t

= ( ) = ×
+( ) =

( ) = × =

50 10 100
100 50

6 667

6 667 50 33

Ω .

. 33 333. V

(c)	 For , A,

and

L L

L

R i t

v t

= ( ) = ×
+( ) =

( ) = × =

100 10 100
100 100

5 0

5 0 100 500

Ω .

. VV

The	v–i	characteristics	are	plotted	in	Fig.	1.29.

1.6.8 Source Transformation
Practical	voltage	sources	can	be	transformed	into	current	sources	and	vice	versa	
since	their	terminal	characteristics	are	linear.	Figure	1.30	shows	the	transforma-
tion	of	a	practical	voltage	source	into	a	current	source.

rS = =48
120 0 4. Ω

v tL V( ) = × =0 952 50 47 62. .

v L (
t) 

= 
v S (

t) 
= 

48
 V

vL (t)

vL (t)

iS (t)rS

iL (t)120 A

Fig. 1.28  

v L (
t) 

= 
10

00
 V

vL (t)

RL = 50 Ω

RL = 10 ΩRL = 100 Ω

iL (t)
Fig. 1.29  
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28 Circuits and Networks

Fig. 1.30 Source transformation

+

–

+–
Network

N

rS

rSrS

 (b) Practical current source 

+

–

Network
N

iL(t)

iS(t) = 

iL(t)

vL(t) vL(t)vS(t)
vS(t) rS

vL(t)

(a) Practical voltage source

From	Fig.	1.30(a),	the	voltage	at	the	terminals	of	the	network	N	is	expressed	as

 (1.22)

where	iL(t)	is	the	current	flowing	into	the	network.
Dividing	Eq.	(1.22)	by	rs	yields

 (1.23)

Equation	(1.23)	can	be	interpreted	as	consisting	of	a	current	source	of	magni-
tude	v t rL S A( ) / 	and	an	internal	resistance	of	magnitude	rS	Ω	connected	across	
its	terminals.	Figure	1.30(b)	schematically	translates	Eq.	(1.23)	and	represents	
the	 transformation	 of	 a	 practical	 voltage	 source	 into	 an	 equivalent	 current	
source.	Similarly,	a	practical	current	source	can	be	transformed	into	a	voltage	
source.

Example 1.30	 Calculate	the	voltages	across	the	10	Ω	and	5	Ω	resistors	in	the	circuit	
shown	in	Fig.	1.31,	using	source	conversion	technique.

v t v t i t rL S L S( ) = − ( )×( )

v t
r

v t
r i tL

S

S

S
L

( )
=

( )
− ( )

Fig. 1.31  

5 Ω

4 Ω10 A 6 Ω

10 Ω

Fig. 1.32  

5 Ω

6 Ω

4 Ω 10 Ω

+
vS (t) = 10 × 4 = 40 V

i(t)

Solution
Step 1:	Transform	the	current	source	into	a	voltage	and	redraw	the	circuit	as	shown	in	Fig.	1.32.
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Definitions and Basic Circuit Concepts  29

Step 2:	Calculate	current	i(t)	supplied	by	the	voltage	source.
 

Step 3:		Calculate	the	voltage	across	the	10	Ω	resistor	as	under
 

Step 4:		Calculate	the	current	through	the	10	Ω	resistor	as	follows:

 

The	computations	are	easily	verified	by	computing	 the	current	 through	 the	6	Ω	resistor	
which	is	 i i i i t6 10 6

11 765
6 1 961Ω Ω Ω= = + ( ). . .A, and adding to get

Example 1.31	 Show	that	the	circuits	in	Fig.	1.33(a)	and	(b)	and	Fig.1.34	(a)	and	(b)	
are	equivalent.

i t( ) =
+ + ×

+


 




= =40

4 5 10 6
10 6

40
12 75 3 137. . A

v t10 40 3 137 4 5 11 765Ω ( ) = − × +( ) =. . V

i t10
11 765

10 1 177Ω ( ) = =. . A

Fig. 1.33

++

vS (t)R1

RR

vS (t)

A

B
(a) (b)

A

B

iS (t)R2 R2iS (t)

A

B
(a) (b)

A

B

R

Fig. 1.34

Solution	 To	show	the	equivalence	between	respective	circuits,	it	is	required	to	prove	that	
the	conditions	across	terminals	A–B	are	the	same.
It	is	seen	that	in	both	the	circuits	in	Figs	1.33(a)	and	1.33(b),	the	voltage	across	and	current	
through	 the	 terminals	A–B	 are	 vS(t)	 and	 zero,	 respectively.	Hence,	 the	 two	 circuits	 are	
equivalent.
Similarly,	 in	 the	 circuits	 in	 Figs	 1.34(a)	 and	 1.34(b),	 the	 voltage	 across	 and	 current	
through	the	terminals	A–B	are	iS(t)R2	and	zero,	respectively.	Hence,	the	two	circuits	are	
equivalent.
From	the	foregoing,	 it	can	be	concluded	that	a	resistance	connected	in	parallel	across	a	
voltage	source	and	a	resistance	connected	in	series	with	a	current	source	can	be	removed	
without	 affecting	 the	 terminal	 conditions	 in	 the	 circuit.	Application	 of	 the	 equivalence	
principle	is	demonstrated	in	the	next	example.
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30 Circuits and Networks

Example 1.32	 For	the	circuit	shown	in	Fig.	1.35,	use	source	transformation	to	calcu-
late	the	voltage	vL	across	the	120	Ω	resistor.

Fig. 1.35  

30 Ω

150 Ω
10 A

vL300 V

100 Ω

120 Ω 20 Ω

10 Ω

+–

Solution	 The	given	circuit	is	simplified	by	removing	the	150	Ω	resistor	and	shorting	the	
100	Ω	resistors	connected	across	the	voltage	and	current	sources,	respectively.	The	simpli-
fied	circuit	is	redrawn	in	Fig.	1.36	by	combining	the	10	Ω	and	20	Ω	resistors	in	series.

30 Ω

10 A300 V 120 Ω 30 Ω+–

Fig. 1.36  

Next,	the	voltage	source	of	300	V	is	transformed	into	a	current	source	as	shown	
in	Fig.	1.37.

30 Ω 10 A10 A 120 Ω 30 Ω

Fig. 1.37  

Fig. 1.38  

13.33 Ω20 A

In	 the	next	 step,	 the	 two	parallel	 current	 sources	 and	 the	 three	
parallel	 resistors	are	combined	to	arrive	at	 the	circuit	shown	in	
Fig.	1.38.
Thus,	voltage	vL V= × =20 13 33 266 67. . .

1.7 Kirchhoff's Laws
The	foundation	of	circuit	analysis	is	based	on	the	two	laws	of	(i)	current	distribu-
tion	and	(ii)	voltage	division	in	a	network	and	is	named	after	the	German	physicist,	
Gustav	Robert	Kirchhoff.
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Definitions and Basic Circuit Concepts  31

The	property	of	an	electric	charge,	that	it	can	neither	be	created	nor	be	destroyed	
but	must	be	conserved,	forms	the	basis	of	Kirchhoff's current law	(KCL).	It	states	
that	the	sum	of	the	currents	at	a	junction	(also	called	a	node)	in	a	circuit	is	zero,	at	
any	instant	of	time.	Mathematically	KCL	is	written	as

	 (1.24)

where	im(t)	is	the	current	in	the	mth	element	at	a	node	k	and	the	total	number	of	
elements	connected	to	the	node	is	n.	Figure	1.39	
shows	the	application	of	KCL.
Since	a	direction	 is	associated	with	 the	flow	

of	 current,	 it	 is	 necessary	 to	 define	 directions.	
Assume	that	the	currents	flowing	into	the	junc-
tion	 are	 positive	 and	 currents	 flowing	 out	 are	
negative.	Based	on	 this	assumption,	KCL	may	
be	applied	to	the	junction	in	Fig.	1.39	as	under

 (1.25a)
or,   (1.25b)

Example 1.33	 In	Fig.	1.40,	calculate	v1	at	the	node	and	i1.
The	data	is	as	follows:	i2	=	6	A,	v3	=	10e–	2t,	v4	=	e–	2t.

Solution	 Application	of	Ohm’s	law	gives

The	current	i4	is	computed	by	employing	Eq.	(1.14)	as

Application	of	KCL	to	the	node	yields

or
 

The	negative	sign	shows	that	the	direction	of	flow	of	current	is	opposite	to	the	assumed	
direction.	In	order	to	calculate	v1,	Eq.	(1.10)	is	used	as	under

Likewise	that	energy	can	neither	be	created	nor	be	destroyed	but	must	be	conserved,	forms	
the	basis	of	Kirchhoff's voltage law	(KVL).	Thus,	KVL	states	that	in	a	closed	circuit,	the	
sum	of	voltages	at	any	instant	of	time	is	zero.	Mathematically,	KVL	is	expressed	in	the	
following	manner.

 (1.26)

where	vk(t)	represents	the	voltage	across	the	kth	element	in	a	closed	loop	containing	n	elements.
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i i i i i2 4 1 3 5+ = + +

i e e
t

t
3

2
210

5
2= =

−
− A

i d
dt

e et t
4

2 21
4

0 5= × ( ) = −− −. A

i i i i
i i i e e et t t

1 2 3 4

1 2 3 4
2 2 2

0
6 2 0 5 6 2 5

+ − − =
= − + + = − − + − = − +− − −i ( . ) ( . )AA

v
d e

dt
e

t
t

1

2
21

5

6 2 5
= ×

− +( )
=

−
−

.
V

k

k n

kv t
=

=

∑ ( ) =
1

0

Fig. 1.39 Application of KCL
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32 Circuits and Networks

In order to demonstrate the application of KVL, consider the circuit shown in Fig. 1.41.

Fig. 1.41 Application of KVL

As in the case of current flow, a direction is associated with potential difference. 
Therefore, assume that an increase in potential difference (i.e., a voltage rise from 
−ve polarity to +ve polarity) is positive and conversely a decrease in potential dif-
ference (i.e., a voltage drop from +ve polarity to −ve polarity) is negative. Starting 
at the bottom node F and applying KVL to the closed loop FABEF yields,

 (1.27a)

In order to firm up the concept of the application of KVL, consider the closed circuit 
FABCDEF and again start at node F.
Hence,  (1.27b)

It is left to the reader, as a tutorial exercise, to apply KVL to the closed circuit EBCDE. 
Hint: Start at the bottom node.
Example 1.34 Apply Kirchhoff's laws to determine the source current IS and the 
power consumed in the 6 Ω resistor for the circuit shown in Fig. 1.42.
Solution Current through the 6 Ω resistor is I1 = 4 A
Voltage of node C, vc = 6 × 4 = 24V
Application of KCL to node C yields I2 + I3 = 6 – 4 = 2A

v t L didt i R C i dt1 1
1

2 1
1 0( ) − − − =∫

v t L didt L didt v t C i dt1 1
1

2
3

2 1
1 0( ) − − + ( ) − =∫

6 A
I5 I2I4

I1 = 4 A
6 Ω5 Ω

4 Ω 4 Ω

4 Ω

I3

CBA

VS

D

+–

Fig. 1.42  

BA

v1 (t) v2 (t)vR (t)

i1 (t)

i2 (t)

i1 (t)

i3 (t)

+

–
R

+ –L1 + –L2

F

C

D+–
C

–
++–

E

Since the two 4 Ω resistors are in parallel, I2 = I3 = 1.0 A
Voltage of node B is 24 – I2 × 4 = 24 – 1.0 × 4 = 20 V
Current through the 5 Ω resistor is I4

20
5 4= = A

Applying KCL to node B leads to the source current. IS = I4 + I2 + I3 = 4 – 1.0 – 1.0 =2 A
Energy consumed by the 6 Ω resistor = × = × =I4

2 25 2 5 20 W .
VS = VB + 4 × IS = 20 + 4 × 2 =28 V

Example 1.35 Given that L1 = 0.25 H, L2 = 0.5 H, C = 0.25 F, R = 2 Ω, vR(t) = 4 cos t V, 
and i3 = 4 sin t A, determine v1(t) and v2(t) for the circuit shown in Fig. 1.41.
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Definitions and Basic Circuit Concepts  33

Solution  The current through R is given by 
Application of KCL to node B leads to

i t i t i t t t1 2 3 2 4( ) = ( ) + ( ) = +( )cos sin A

Commencing with the node F, apply KVL to the closed circuit FABEF as follows:

− + × + + × + +∫v t d
dt

t t t t t dt1 0 25 2 4 2 2 1
0 25

2 4( ) . ( cos sin ) cos
.

( cos sin ) == 0

or,  v t t t t t t
t t

1 0 5 4 8 16
7 5 11

( ) = − + + + −
= −( )

. sin cos cos sin cos
. sin cos V

v t t t t t t
t t

1 0 5 4 8 16
7 5 11

( ) = − + + + −
= −( )

. sin cos cos sin cos
. sin cos V

Put  K Ksin cos .ϕ ϕ= − =11 7 5and .

Therefore, K = + = = −





 = − °−121 56 25 13 3135 11

7 5
55 711. . tan

.
.and ϕ

Thus, v1(t) = 13.3135 sin (t – 55.71°)

Now apply KVL to EBCDE and start with node E.

or,  v2(t) = – 4 cos t + 2 cos t = – 2 cos t V

Example 1.36  Determine  the voltage  at  (a)  node A and  (b) power  supplied by  the 
voltage source in the circuit shown in Fig. 1.43. All the relevant data is indicated in the 
circuit diagram.

i t v t
R

t tR
2

4
2 2( ) ( ) cos cos A= = =

− × + × ( ) − =2 2 0 5 4 02cos . sin ( )t d
dt

t v t

6 Ω

i3 (t)

i1 (t)

4 ΩA B

5 A12 V8 Ω

is (t)
i2 (t)

+ +

+–

2 Ω
vs (t) = 50 V

Fig. 1.43  

Solution  It would be useful to start from the independent current source side. Since the 
voltage of node B is 12 V, current through the 2 Ω resistor  i t2 12 2 6( ) = =/ A .

Application of KCL at node B gives  i t3 6 5 1( ) = − = A

Voltage at node A  = + × =12 1 4 16 V

Current through the 8 Ω resistor  i ti ( ) = =16 8 2/ A

Current supplied by the voltage source  i t i t i tS A( ) = ( ) + ( ) = + =1 3 2 1 3

Power supplied by the voltage source  v t i tS S W( ) ( ) = × =50 3 150

Example 1.37  For the circuit shown 
in  Fig.  1.44,  compute  (a)  current  i,  (b) 
voltage  v  across  the  dependent  current 
source. Prove that the power generated is 
equal to the power absorbed.

2 kΩ

25 i(t)

i(t)v(t) 60 kΩ
A

B
C

D

10 V

 2 V

8 kΩ 6 V
+ +

+ + ––

Fig. 1.44  
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34 Circuits and Networks

If	the	current	flowing	through	the	circuit	is	iS	(t)	A	and	KVL	is	applied	around	the	
closed	circuit,	then

Solution	 Current	through	the	8	kΩ	resistor	is	=	25i(t)	+	i(t)	=	26i(t)
Application	of	Ohm's	law	around	the	closed	circuit	DCBD	yields

or	 i t( ) =
+( )×

=8
60 208 10

29 853 . µA

Voltage	at	point	A	is	determined	as	under

Voltage	at	point	B	is	given	by
v tB ( ) = × × × × =−8 10 26 29 85 10 6 20903 6. . V

v t v t v t( ) = ( ) + ( ) = − + =A B 8 5075 6 2090 2 2985. . .

Power	generated	by	the	voltage	sources	 Pg W= +( )× + × × =6 2 29 85 10 25 29 85 7701 3. . . µ

Power	is	absorbed	by	the	three	resistors	and	the	current	dependent	source	and	is	obtained	
as	under
P i t i t i t v ta = × × ( ) + × × ( )  + × × ( )  − ( )×6 10 8 10 26 2 10 25 253 2 3 2 3 2 ii t( )

= × × ×( ) + × × × ×( ) + × × ×− −6 10 29 85 10 8 10 26 29 85 10 2 10 25 29 853 6 2 3 6 2 3. . . ××( )
− −( )× × ×( ) =

−

−

10

2 2985 25 29 85 10 7701 3

6 2

6. . . µW
Thus,	the	power	generated	is	equal	to	the	power	absorbed.

1.8 Connection of Circuit Elements
Circuits	can	be	connected	in	several	ways	to	obtain	desired	outputs.	This	section	
discusses	the	different	methods	of	connecting	the	circuit	elements.

1.8.1 Series Connections
When	circuit	elements	are	connected	end	to	end,	the	elements	are	said	to	be	con-
nected	in	series.	A	distinct	property	of	the	series	connection	is	that	the	same	cur-
rent	flows	through	all	the	elements	connected	in	the	circuit.
Resistors in series and the voltage divider circuit:
Figure	1.45	(a)	shows	resistors	R1	Ω,	R2	Ω,	R3	Ω,......,	Rn	Ω	connected	in	series	across	
a	voltage	source	vS(t)	V.

− + × × ( ) − + × × ( ) =6 60 10 2 8 10 26 03 3i t i t

v tA V( ) = − + × × × × = −−10 2 10 25 29 85 10 8 50753 6. .

Fig. 1.45 (a) Resistors in series, (b) equivalent resistance

R2

(a) (b)

R1 R3 Rn

vS

+ – + – + – + –v1 v2 v3 v4

iS

+ –

Req

+ –vS

iS

vS
+ –
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Definitions and Basic Circuit Concepts  35

	 (1.28a)

Figure	1.45(b)	shows	a	circuit	in	which	a	resistor	Req	is	connected	across	a	voltage	
source	vS(t)	such	that	the	same	current	iS(t),	as	in	the	circuit	of	Fig.	1.45(a),	flows	
through	it.	Thus,

	 (1.28b)

Comparison	of	Eqs	(1.28a)	and	(1.28b)	gives,

 (1.29)

Equation	(1.29)	shows	that	resistors	connected	in	series	can	be	directly	added	to	
obtain	the	equivalent	resistor.
Referring	to	Fig.	1.45(a),	it	is	seen	that	by	Ohm's	law,

Substitution	off	iS(t)	from	Eq.	(1.28b)	yields

	 (1.30)

Similarly,	

Equation	(1.30)	shows	that	it	is	possible	
to	 obtain	 any	 desired	 voltage	 output	
by	 dividing	 it	 across	 a	 resistor.	 Such	 a	
circuit	is	called	a	voltage divider	circuit	
and	 is	 shown	 in	 Fig.	 1.46.	 It	 may	 be	
noted	that	Req,	 is	called	the	input	resis-
tance	Rin,	R1	is	the	output	resistance,	Ro,	
vs(t)	is	the	input	voltage,	and	v1(t)	is	the	
output	voltage	vo(t).

Example 1.38	 Design	a	voltage	divider	to	obtain	a	variable	voltage	for	a	DC	source	
of	220	V	and	a	current	supply	of	2.0	A.	(a)	Determine	the	output	resistance	for	an	output	
voltage	of	60	V.	(b)	If	the	output	resistance	is	75	Ω,	calculate	the	percentage	voltage	output.

Solution	 Referring	to	Fig.	1.46,	R v t
i tin
S

S
= = =

( )
( ) .

220
2 0 110 Ω

(a)	 Equation	(1.30)	is	used	to	determine	the	output	resistance	as	follows:

(b)	 Again	from	Eq.	(1.30),	percentage	output	voltage	is	given	by

i t R i t R i t R i t R v tnS S S S S( ) + ( ) + ( ) +…+ ( ) − =1 2 3 0( )

i t
v t

R R R Rn
S

S( ) =
( )

+ + +…+( )1 2 3

i t
v t
RS
S

eq
( ) =

( )

R R R R Rneq = + + +…+1 2 3

v t i t R1 1( ) ( )= ×S

v t R
R v t1

1( ) = ( )
eq

S

v t R
R v t v t R

R v t v t R
R v tn

n
2

2
3

3( ) = ( ) ( ) = ( ) … ( ) = ( )
eq

S
eq

S
eq

S, ,

R v t R
v to

o in

S
=

×
= × =

( )
( )

60 110
220 30 Ω

v t
v t

R
R

o

S

o

in

( )
( ) . %= × = × =100 75

220 100 34 09

Fig. 1.46 Voltage divider circuit

Ro Ω
Rin Ω

+
–+–

IS(t)

vS(t)
vo(t)
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36 Circuits and Networks

Inductors in series:
Figure	1.47	shows	inductors	 L L L Ln1 2 3H H H H, , ,........, 	connected	in	series	across	a	time-
varying	voltage	source	vS(t)	V.

Leq

iS

vS

+ –

+ –+ – + – + –v1 v2 vn

L2 LnL1

iS

vS

+ –

(a) (b)

Fig. 1.47 (a) Inductors in series, (b) equivalent inductor

Fig. 1.48 (a) Capacitors in series, (b) equivalent capacitor 

Ceq

iS

+ –
vS

+ –

+ – + – + –v1 v2 vn

C2 CnC1

iS

vS
(a) (b)

+ –

Assume	that	the	circuit	current	is	iS(t)	A.	Application	of	KVL	to	the	circuit	leads	to

or	 v t L d
dt i t L d

dt i t L d
dt i t L d

dt i tnS S S S S( ) [ ] [ ] [ ] [= ( ) + ( ) + ( ) +…+ ( )1 2 3 ]]
 

(1.31a)

Application	of	Ohm's	law	to	Fig.	1.47(b)	gives

	 (1.31b)

Comparison	of	Eqs	(1.31a)	and	(1.31b)	gives	the	equivalent	inductance	as

	 (1.32)
Capacitors in series:	 Similarly	 an	 equivalent	 circuit	 for	 capacitors	 connected	 in	 series	
can	be	developed.	Figure	1.48	shows	capacitors	connected	in	series	across	a	time-varying	
voltage	source	vS(t).

L d
dt i t L d

dt i t L d
dt i t L d

dt i t v tn1 2 3[ ] [ ] [ ] [ ] (S S S S S( ) + ( ) + ( ) +…+ ( ) − )) = 0

v t L d
dt i tS eq S( ) [ ]= ( )

L L L L Lneq = + + +…+1 2 3

Equation	(1.33)	gives	the	expression	for	the	equivalent	capacitance.

	 (1.33)

Derivation	of	the	expression	is	left	as	an	exercise	for	the	reader.

1.8.2 Parallel Connections
When	the	two	ends	of	all	the	circuit	elements	are	joined	together	at	two	nodes,	
the	elements	are	said	to	be	connected	in	parallel.	A	characteristic	of	elements	con-
nected	in	parallel	is	that	same	voltage	appears	across	the	terminals.

1 1 1 1 1
1 2 3C C C C Cneq

= + + +…+
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Definitions and Basic Circuit Concepts  37

R1

i1

R2

i2

R3

i3

vS

iS

in

Rn
+
–+– vS

iS

+
–+– Req

(a) (b)
Fig. 1.49 (a) Resistors in parallel, (b) equivalent resistors 

Resistors in parallel and the current divider rule:	Resistors	R R R Rn1 2 3Ω Ω Ω Ω, , , ,…  
are	 connected	 in	 parallel	 across	 a	 voltage	 source	 vS(t)	 V	 and	 are	 shown	 in	
Fig.	1.49(a).

If	 i t i t i t i tnS S S S1 2 3
( ), ( ), ( ),... ( )	 represent	 currents	 flowing	 through	 the	 respective	

resistors	R R R Rn1 2 3, , ,..., ,	application	of	KCL	to	the	node	gives

 (1.34)

where	iS(t)	is	the	total	current	supplied	by	the	voltage	source.
Current	in	the	ith	element	in	Fig.	1.49(a)	is	determined	by	Ohm's	law	as

 (1.35a)

Substitution	of	Eq.	(1.35a)	for	various	currents	in	Eq.	(1.34)	yields

 (1.35b)

From	the	equivalent	circuit	in	Fig.	1.49(b),	it	is	seen	that

	 (1.35c)

Comparison	of	Eqs	(1.35b)	and	(1.35c)	leads	to

	 (1.36a)

Thus,	equivalent	resistance	of	n	parallel-connected	resistances	is	the	reciprocal	of	
the	sum	of	the	reciprocals	of	individual	resistances.	In	the	remaining	text	in	this	
book,	parallel	combination	of	resistors	will	be	mathematically	represented	in	the	
following	manner.

In	terms	of	the	conductance	of	a	resistance,	Eq.	(1.36a)	may	be	expressed	as

	 (1.36b)
In	Eq.	(1.36b),	G G G G Gneq , , , ,...,1 2 3 	are	conductances	corresponding	to	resistances	
R R R R Rneq , , , ,..., ,1 2 3 	respectively.

i t i t i t i t i tnS S S S S( ) ( ) ( ) ( ) ( )= + + +…+
1 2 3

i
v t

Ri
i

S
S=

( )

i t v t R R R Rn
S S( ) ( )= + + +…+





1 1 1 1
1 2 3

i t v t
RS
S

eq
( )

( )
=

1 1 1 1 1
1 2 3R R R R Rneq

= + + +…

R

R R R Rn

eq =
+ + +…+

Ω1
1 1 1 1
1 2 3

R R R Rn1 2 3 ...

G G G G Gneq S= + + + +( ... )1 2 3
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38 Circuits and Networks

Complementing	the	voltage	divider	circuit	is	the	current divider	circuit	which	is	
associated	with	resistors	in	parallel.
Writing	the	current	components	i t i t i t i tnS S S S1 2 3

( ), ( ), ( ), ... ( )	in	Eq.	(1.34),	in	terms	
of	iS(t)	and	the	corresponding	resistor	values	gives

  
(1.37)

Application	of	the	current	divider	principle	is	shown	in	the	following	example.

Example 1.39 	 For	the	current	divider	circuit	shown	in	Fig.	1.50,	determine	the	value	
of	RL	if	the	current	IS	supplied	by	the	voltage	source	is	50	mA.	What	is	the	voltage	across	
RL?	Compute	the	power	consumed	by	RL.	All	values	are	shown	in	the	figure.

i t
R
R i t R

R i t G
G i t1

1

1 11
1

( ) ( ) /
/

( ) ( )= = =eq
S

eq
S

eq
S A

i t
R
R i t R

R i t G
G i tS2

2

2 21
1

( ) ( ) /
/

( ) ( )= = =eq
S

eq eq
S A

i t
R
R i t R

R i t G
G i t3

3

3 31
1

( ) ( )
/
/

( ) ( )= = =eq
S

eq
S

eq
S A

i t
R
R i t R

R i t G
G i tn

n

n n( ) ( )
/
/

( ) ( )= = =eq
S

eq
S

eq
S A

1
1

Fig. 1.50

VS = 220 V

2.5 kΩ 0.5 kΩ

IS
I1

I2

10 kΩ RL
++
–+–

Solution
Equivalent	resistance	of	the	circuit	R R

Req
L

L
= +

× +
+ +( )2 5 10 0 5

10 0 5
. ( . )

.
	 (1.39.1)

By	Ohm's	law		 (1.39.2)

Equating	Eqs	(1.39.1)	and	(1.39.2)	gives

 (1.39.3)

Simplification	of	Eq.	(1.39.3)	yields	

Current	through	RL mA= ×
+ +( )

=50 10
10 0 5 1 85

40 50
. .

.

Voltage	across	RL V= × =40 50 1 85 74 80. . .
Power	consumed	by	RL W= × ×( ) =−74 80 40 50 10 3 033. . .
Inductors in parallel:	 Inductors	L L L Ln1 2 3H H H H, , ,... 	 are	 shown	connected	 in	parallel,	
across	a	time-varying	voltage	source	vS(t),	in	Fig.	1.51	(a)	along	with	its	equivalent	circuit	
in	Fig.	1	.51(b).

R V
Ieq

S

S
k= = =220

50 4 4. Ω

2 5 10 0 5
10 0 5

4 4. ( . )
.

.+
× +
+ +( ) =

R
R

L

L

RL k=1 85. Ω
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Definitions and Basic Circuit Concepts 39

Fig 1.51 (a) Inductors in parallel, (b) equivalent inductor circuit

+

–
vS (t) vS (t)

i1

L1

i2

L2

i3

L3

i

+

–

i

Leq

(a) (b)

Assuming that the initial currents at t = 0 at are zero and equating the source currents in 
both the circuits gives

or,

 1 1 1 1 1
1 2 3L v t dt L v t dt L v t dt L v t dt L v t

n
∫ ∫ ∫ ∫ ∫( ) + ( ) + ( ) +… ( ) = (S S S S

eq
S ))

= + + +…

dt

L L L L Ln
or

eq

1 1 1 1 1
1 2 3

 

(1.38)

Equation (1.38) expresses the equivalent inductance of L L L Ln1 2 3, , ,...  inductors connected 
in parallel.

Example 1.40 Compute (a) the equivalent 
inductance, (b)i1(t), (c) i2(t), and (d)i(t) for the 
inductive circuit shown in Fig. 1.52. Assume the 
voltage at the terminals is v t e t

S mV( ) = − −40 8  
and that the energy in both the inductors for 
t ≤ 0s is zero.

Solution
(a) Assuming L L1 280 320= =mH and mH, the parallel combination of inductors is com-

puted by using Eq. (1.38) as follows:

(b) Noting that for t ≤ 0 s, the stored energy is zero; Eq. (1.11) is suitably modified and the 
currents calculated as under 

 

(c)  

(d) The circuit current i t i t i t e t( ) = ( ) + ( ) = −
1 2

80 0781. A

Capacitors in parallel: Figure 1.53 (a) shows capacitors C C C Cn1 2 3F, F, F F...  connected in 
parallel across a voltage source vS(t) V and Fig. 1.53(b) is the equivalent circuit in which Ceq 
is the equivalent capacitor such that the charge acquired, in both the cases, is the same.

1 1 1 80 320
400 64

1 2

1 2

1 2L L L L L L
L L= + =

+
= × =or mH

i t e e e
t

t
t

t
1

0

8
8

81
80 40 1

80 40
8

0 0625( ) = −( ) = − ×
−( )









 =∫ −

−
−. A

i t e e e
t

t
t

t
2

0

8
8

81
320 40 1

320 40
8

0 0156( ) = −( ) = − ×
−( )









 =∫ −

−
−. A

vS (t) i1 (t)

i (t)

i2 (t)80 mH 320 mH

Fig. 1.52 

Fig. 1.53 (a) Capacitors in parallel, (b) equivalent capacitor circuit

+

–

i1

C1

i2

C2

i3

C3

i

+

–

i

Ceq

(a) (b)

vS (t) vS (t)
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40 Circuits and Networks

In Fig. 1.55(a), the two parallel capacitors of 0.5 µF and 0.5 µF between points D and E can 
be added [using Eq. (1.39)] to an equivalent capacitor of 1 µF, which in series with 1 µF 
capacitor between points E and F combine to make equivalent capacitor of 0.5 µF between 
points D and F. Again, two parallel capacitors of 1 µF and 0.5 µF between points D and 
F add to form equivalent capacitor of 1.5 µF. The new equivalent circuit is shown in Fig. 
1.55(b). Equation (1.33) yields the equivalent capacitor of Fig. 1.55(b) as

Ceq / / . /
.= ( ) + ( ) + ( ) = =1

1 3 1 1 5 1 5
5
6 0 83 µF

1.8.3 Series-Parallel Connections
In order to obtain desired outputs, circuits in practice, more often than not, are a 
series–parallel combination of resistors, inductors, and capacitors. The techniques for 
analysing series–parallel connections are best explained by taking up a few examples.

Example 1.42 A DC voltage source 
of 12 V is connected across the terminals 
A–B of the circuit shown in Fig. 1.56. 
Determine the source current and power 
supplied by the source. What is the power 
consumed by the 2 Ω resistor? Values of 
all resistors are shown in the figure.

By equating the source currents in the two circuits, it is seen that

 
(1.39)or 

Equation (1.39) shows that when capacitors C C C Cn1 2 3F, F, F F...  are connected in parallel, 
the equivalent capacitance is obtained by a direct sum of all the capacitors.

Example 1.41 For the circuit shown in Fig. 1.54, 
calculate the capacitance of the equivalent capacitor 
between terminals A and B.

Solution Two capacitors, 1 µF each, in series between 
points D and E can be combined, using Eq. (1.33), to 
make one capacitor of 0.5 µF. Similarly, two sets of 
series capacitances of 2 µF each between points D and 
F and E and F combine to make 1 µF each. Figure 1.54 
is redrawn replacing series-connected capacitors by their equivalents as shown in Fig. 1.55(a).

C C C C d
dt v t C d

dt v t
C C C C

n1 2 3

1 2 3

+ + +…( ) ( )  = ( ) 
= + + +…

S eq S

eqOr CCn( ) F

1 µF3 µF

1 µF

2 µF
E0.5 µF

A

B 5 µF 2 µFF

2 µF

2 µF

D

Fig. 1.56

12 V 100 Ω 5 Ω

2 Ω

A

B

+–

25 Ω
7.5 Ω

Fig. 1.55

D 0.5 µF

0.5 µF 1.5 µF

E

FB
(a) (b)

A 3 µF

1 µF1 µF
5 µF

3 µF

B

A

5 µF

Fig. 1.54  
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Definitions and Basic Circuit Concepts 41

Solution In order to visualize the 
series–parallel connections in the cir-
cuit, it is redrawn in Fig. 1.57.

Equivalent resistance of branch 
consisting of 7.5, 5.0 and 2 Ω resistors

= ×
+

+ =7 5 5 0
7 5 5 0 2 0 5 0. .
. . . . Ω

The equivalent resistance Req at the terminals A–B is given by 1 1
5

1
25

1
100 0 25Req

= + + = .

or  Req = 4 Ω

Source current I
V
RS

S

eq
A= = =12

4 3 0.

Power supplied by the source = × = × =V IS S W12 3 36

The equivalent resistance of the 25 Ω and 100 Ω parallel branches = ×
+( ) =25 100

25 100
20 Ω

The current through the 2 Ω resistor = ×
+( ) = × =IS A20

20 5
3 0 20

25 2 4. .

Therefore, power consumed by the 2 Ω resistor = ( ) × =2 4 2 11 522. . W

Example 1.43 In the circuit shown in Fig. 1.58 calculate (a) currents I, I1, and I2; 
(b) the power consumed by each resistor; (c) the voltage drop V2 across the 2 Ω resistor.

Solution
(a) I

I I

=
+ ( ) =

+ ×
+

= =

= ×
+

= × =

12
2 12 24

12

2 12 24
12 24

12
10 1 2

24
24 12 1 2 2

31

�
. A

. 00 8

12
24 12 1 2 1

3 0 42

.

. .

A

AI I= ×
+

= × =

(b) Power consumed in the 2 Ω resistor = I2 × 2 = 1.22 × 2 = 2.88 W
 Power consumed in the 12 Ω resistor = I1

2 × 12 = 0.82 × 12 = 7.68 W
 Power consumed in the 24 Ω resistor = I2

2 × 24 = 0.42 ×24 = 3.84 W
(c) Voltage drop V2 = I × 2 = 1.2 × 2 = 2.4 V

Example 1.44 The RLC circuit in Fig. 1.59 is operating in the steady-state condition. 
Compute the energy stored in the capacitor and inductor.

12 V

A

B

7.5 W 5.0 W

2 W C

25 W++
–
+
– 100 W

Fig. 1.57 

Fig. 1.58

12 V

V2
+

2 Ω

12 Ω 24 Ω

a

b

I1
I2

I
–

4 Ω

6 Ω 5 mH

200 µF

6 Ω

9 V +–

Fig. 1.59 
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42 Circuits and Networks

Solution Under steady-state condition, 
the capacitor is on OC and the inductor is 
on SC. Figure 1.60 shows the circuit in the 
steady-state condition.

In order to determine the stored ener-
gies, it is necessary to calculate the ca-
pacitor OC voltage VC and the inductor SC  
current IL.

The source current IS A=
+ × +( ) =9

1 5 6 6 6 6
2

. /

The voltage at point A, VC V= − × =9 2 1 5 6.

The current through the inductor IL A=1

Energy stored in the capacitor = × × × ( ) =−1
2 200 10 6 0 00366 2 . J

Energy stored in the inductor = × × × ( ) =−1
2 5 10 1 0 00253 2 . J

Example 1.45 In Fig.1.61, the energy stored in the capacitor is equal to the energy 
stored in the inductor when the circuit is operating under steady-state condition. What is 
the magnitude of R? All data is shown in the figure.

Solution Figure 1.62 shows the circuit when it is operating under steady-state  
condition.

3 Ω 6 mH

180 µF

R

10 A

Fig. 1.61 Fig. 1.62 

3 Ω

VC

I1

R

10 A

IL

Assume that the steady-state voltage across the capacitor is VC volts.

Current through the inductor I V
RL
C A=

Energy stored in the capacitor JC= × × ×−1
2 180 10 6 2V

 
(1.45.1)

Energy stored in the inductor JC= × × ×







−1
2 6 10 3

2V
R

 
(1.45.2)

Equating Eqs (1.47.1) and (1.47.2) results in

R = ×
×

=
−

−
6 10

180 10
5 774

3

6 . Ω

1.5 Ω A

6 Ω

6 Ω

9 V

IS IL

VC

+–

Fig. 1.60 
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Definitions and Basic Circuit Concepts 43

Example 1.46 Show that the output in 

the circuit in Fig. 1.63 is − ( )RC
dv t

dt
i  when 

the input voltage is vi(t).

Solution The given circuit is easily identi-
fied as an amplifier circuit. Since, points 'a' 
and 'b' are at the same potential, applica-
tion of KCL at point 'a' yields

i t i tR C( ) = ( )  (1.46.1)

In addition, i t
v t

RR ( ) = −
( )0  and i C d

dt v tC i= ( ) 

Substituting in Eq. (1.46.1) and rearranging results in

 (1.46.2)

Equation (1.46.2) shows that the output voltage is a differential of the input voltage.

Example 1.47 The applied input voltage to the circuit in Example 1.46, is

v t t ti ( ) = < <1500 0 3when ms

v t t ti ( ) = − < <9 1500 6when 3 ms

(a) Determine the form of output voltage.
(b) Use MATLAB facility to sketch the input and output voltages. Assume R = 6 kΩ, and 

C = 0.25 μF and that the capacitor carries no initial charge.

Solution

(a) Equation (1.46.2) is used to compute the output voltage as under

For 0 3< <t , output voltage v t d
dt t0

3 66 10 0 25 10 1500 2 25( ) = × × × [ ] =−. . V

For 0 3< <t , output voltage v t d
dt t0

3 66 10 0 25 10 9 1500 2 25( ) = × × × −[ ] = −−. . V

(b)  The time t and input voltage vi(t) coordinates for the input voltage are first expressed as 
vectors as shown below.

t = [ ]0 3 6 9 12, , , ,

v ti ( ) = [ ]0 4 5 0 4 5 0, . , , . ,

Each t v ti− ( )  pair along with the line command is used to plot the input voltage.

>> line([0, 3], [0, 4.5]) % Plots co-ordinates (0, 0) and 
(3, 4.5)

>> hold on

>> line([3, 6], [4.5, 0]) % Plots co-ordinates (3, 4.5) and 
(6, 0)

v t RC d
dt v ti0 ( ) = − ( ) 

C

R

a

b

iR  (t)

vi  (t) vO  (t)

iC  (t) +

+

+

– –

–

Fig. 1.63 
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44 Circuits and Networks

>> line([6, 9], [0, 4.5]) % Plots co-ordinates (6, 0) and 
(9, 4.5)

>> line([9, 12], [4.5, 0]) % Plots co-ordinates (9, 4.5) and 
(12, 0)

>> grid on

>>  xlabel('Time t in milli sec')
>>  ylabel('Input voltage in volts')

Figure 1.64 shows the plot of the input voltage vi(t) versus t.
By following a similar procedure, line command is used to plot the output voltage 
vo(t) versus t.

>> line([0, 3], [2.25, 2.25]) % Plots co-ordinates (0, 2.25) and 
(3, 2.25)

>> hold on
>> line([3, 3], [2.25, −2.25]) % Plots co-ordinates (3, 2.25) and 

(3, −2.25)
>> line([3, 6], [−2.25, −2.25]) % Plots co-ordinates (3, −2.25) 

and (6, −2.25)
>> line([6, 6], [−2.25, 0]) % Plots co-ordinates (6, −2.25) 

and (6, 0)
>> grid on
>> xlabel('Time t in millisec')
>>  ylabel('Output voltage v in 

volts')
>> line([6, 6], [−2.25, 2.25]) % Plots co-ordinates (6, −2.25) 

and (6, 2.25)
>> line([6, 9], [2.25, 2.25]) % Plots co-ordinates (6, 2.25) and 

(9, 2.25)

4.5

4

3.5

3

2.5

2

1.5

1

0.5

0
0 2 4 6

Time t in milli sec.

In
pu

t v
ol

ta
ge

 in
 v

ol
ts

8 10 12

Fig. 1.64 
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Definitions and Basic Circuit Concepts 45

>> line ([9, 9], [2.25, −2.25]) % Plots co-ordinates (9, 2.25) and 
(9, −2.25)

>> line ([9, 12], [−2.25, −2.25]) % Plots co-ordinates (9, −2.25) 
and (12, −2.25)

>> line ([12, 12], [−2.25, 2.25]) % Plots co-ordinates (12, −2.25) 
and (12, 2.25)

>> line ([12, 13], [2.25, 2.25]) % Plots co-ordinates (12, 2.25) 
and (13, 2.25)

Figure 1.65 shows the plot of output voltage vo(t) versus t.

Fig. 1.65 

2

2.5

1.5

1

0.5

0

–0.5
–1

–1.5

–2

–2.5
0 2 4 6

Time t in milli sec.

O
ut

pu
t v

ol
ta

ge
 v

 in
 v

ol
ts

8 10 12 14

1.9 STAR (Y)–DELTA (Δ), (Δ)–(Y) TRANSFORMATIONS
Combinations of elements to form series, parallel, and series–parallel circuits 
become so complex that their simplification often becomes very complicated. 
Simplification of such circuits is facilitated by identifying star connections and 
transforming them into delta connections and vice versa.

Figure 1.66 (a) shows resistors R Rn n1 2, , and R n3  connected in star between 
nodes 1, 2, and 3, respectively, whereas Fig. 1.66(b) represents resistors R R1 2 2 3− −, , 
and R3 1−  connected in delta between the corresponding nodes.

Fig. 1.66 (a) Star connection, (b) delta connection 

R
1n

R
2n

R
3n

1

3 2 3 2

1

R
2 – 3

R
1 – 2

R
3 – 1

(a) (b)

n
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46 Circuits and Networks

In order to effect transformation of one type of connection into the other type, it 
is necessary that the resistance between any two pair of nodes of a network being 
transformed is equal to the resistance between the same pair of nodes of the other 
network. Equating the resistance between nodes 1 and 2 in Figs 1.66(a) and (b), 
it is seen that

R R Rn n1 2 1 2+ = −
|| R R

R R R R
R R R2 3 3 1

1 2 2 3 1 2 3 1

1 2 2 3 3 1
− −

− − − −

− − −
+( ) =

× + ×
+ +  (1.40a)

Similarly, resistance between nodes 2 and 3 gives

R R Rn n2 3 2 3+ = −
|| 

 (1.40b)

And between nodes 3 and 1 yields

R R Rn n3 1 3 1+ = −
||
  (1.40c)

For a transformation of the delta network of Fig. 1.66(b) into an equivalent star 
network of Fig. 1.66(a), Eqs (140 a–c) are solved simultaneously.

Subtraction of Eq. (1.40b) from Eq. (1.40a) gives

 (1.40d)

Addition of Eqs (140c) and (140d) and dividing the sum by 2 results in

 (1.41a)

Similarly expressions for R n2  and R n3  can be derived and are given below:

 (1.41b)

 (1.41c)

From Eqs (1.41), it is seen that transformation equations can be developed by 
inspection by following the thumb rule given below:

'The equivalent star resistance connected to a node is equal to the product of 
the two delta resistances connected to the same node divided by the sum of the 
delta resistances.'

Simultaneous solution of Eqs (1.40) or (1.41) results in expressions for trans-
forming a star connected network into a delta network. The equations are

 (1.42a)

 (1.42b)

 (1.42c)

R R
R R R R

R R R3 1 1 2
2 3 3 1 2 3 1 2

1 2 2 3 3 1
− −

− − − −

− − −
+( ) =

× +
+ +

R R
R R R R

R R R1 2 2 3
3 1 1 2 3 1 2 3

1 2 2 3 3 1
− −

− − − −

− − −
+( ) =

× + ×
+ +

R R R R R R
R R Rn n1 3

1 2 3 1 2 3 3 1

1 2 2 3 3 1
− =

× − ×
+ +

− − − −

− − −

R R R
R R Rn1

3 1 1 2

1 2 2 3 3 1
=

×
+ +

− −

− − −
Ω

R R R
R R Rn2

1 2 2 3

1 2 2 3 3 1
=

×
+ +
− −

− − −
Ω

R R R
R R Rn3

2 3 3 1

1 2 2 3 3 1
=

×
+ +

− −

− − −
Ω

R R R R R
Rn n
n n

n
1 2 1 2

1 2

3
− = + + Ω

R R R R R
Rn n
n n

n
2 3 2 3

2 3

1
− = + + Ω

R R R R R
Rn n
n n

n
3 1 3 1

3 1

2
− = + + Ω
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Definitions and Basic Circuit Concepts 47

The derivation of Eqs (1.42) is left as a tutorial exercise for the reader.
The thumb rule for transforming a star network into equivalent delta network 

is stated below.
'The equivalent delta resistance between two nodes is the sum of two star resis-

tances connected to those nodes plus the product of the same two star resistances 
divided by the third star resistance.'

Example 1.48 The circuit shown in 
Fig. 1.67 consists of eight resistors, each of 3 
Ω, and is connected as shown below. Deter-
mine the source current when a DC voltage 
source of 6 V is connected between (a) A and 
B and (b) A and C.

Solution

(a) In order to calculate the source current, 
it is required to determine the equivalent 
resistance between nodes A–B. As a first step, transform delta connections between 
nodes NAD and NBC into equivalent star connections. The resistance of the equivalent 
star connection is 3 3

3 3 3 1×
+ +

=( ) Ω. The equivalent circuit is shown in Fig. 1.68(a)

Fig. 1.67 

3 Ω

3 Ω

3 Ω

3 Ω

3 Ω3 Ω

3 Ω

3 Ω

B

A

N

C

D

Fig. 1.68

6 V
+

–
3 Ω

1 Ω

1 Ω

1 Ω

1 Ω
N

1 Ω

1 Ω

3 Ω

N2

N1

A
(a) (b)

B

D

C

6 V
+

–
3 Ω

1 Ω

1 Ω

1.43 Ω

N2

N1

A

B

 From the circuit in Fig. 1.68(a), it is seen that resistances between nodes N1 N2 || with 
series resistors between nodes N1C, CD, and DN2. Thus, equivalent resistance of the 
parallel combination between nodes N1 N2 is 2 5

2 1 3 1 1 43×
+ + +

=( ) . Ω

 The equivalent resistance between nodes AB is obtained by the parallel combination of 
the 3 Ω resistances with the series combination of resistors between nodes AN2, N2N1, 
and N1B as shown in Fig. 1.68(b). Hence,

RAB = × + +
+

=3 1 1 43 1
3 3 43 1 60( . )

( . ) . Ω

 Therefore, source current = =6
1 6 3 75. . A

(b) When the supply source is connected between nodes A and C, the two delta networks 
ANB and DNC are transformed into two equivalent star networks and the transformed 
circuit is shown in Fig. 1.69(a).

 The circuit in Fig. 1.69(b) is obtained by combining the series resistances between 
nodes N1B and BC and N2D and DA. The delta AN1N2 is transformed into an equivalent 
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48 Circuits and Networks

Fig. 1.69

1 Ω

1 Ω

N2

1 Ω1 Ω N

3 Ω

3 Ω

1 Ω

1 Ω
N1

A

(a) (b)

B

+

–
6 V

D

+

–6 V
4 Ω

1 Ω

4 Ω

1 Ω
2 Ω

A

C

N1
N2

C

– +

6 V

A C

1.14 Ω

0.29 Ω 4 Ω

1 Ω

N2

N1

0.57 Ω

(c)

star and the circuit is shown in Fig. 1.69(c). The resistance between nodes A and C is 
computed as follows:

RAC = +
+( )× +( )

+( ) =0 57
0 29 4 0 1 14 1 0

4 29 2 14
2 0.

. . . .
. .

. Ω

The source current = =6
2 3 0. A.

Recapitulation
	 • Electrical materials are classified into conductors, semiconductors, and insulators.

	 • Voltage is work done per unit charge: v dw
dq=  J/C or V.

	 • Current, i dq
dt=  C/sec or A

	 • Electric power, p v i dw
dq

dq
dt

v
R Gv i

G= × = × = = =
2

2
2

 J/sec or W

	 • Energy, E p t v i t vit= × = × × =  J, or, watt-sec

	 • Resistance of a conductor, R l
a= ρ Ω

	 • Resistivity, ρ = ×R a
l Ω-m

	 • Conductance, G a
l= ×σ S

	 • Resistance of a conductor, R R t t2 1 1 2 11= + −( ) α Ω

	 • Power dissipated in a resistor, p i R v
R= =2
2

W
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Definitions and Basic Circuit Concepts 49

	 • Energy dissipated in a resistor, W pdt p t i R t v
R t

t

= = × = ( )× =








×∫

0

2
2

 W-sec

	 • Inductance of an inductor, L v
di
dt

=  V/A or H

	 • Current in an inductor, i L vdt i
t

= +∫1 0
0

( )A , where i(0) is the current in the circuit  
at t = 0.

	 • Instantaneous power in the inductor at time t, p vi Li di
dt= = W

	 • Energy stored in an inductor, W L di
dt idt L idi Li

i i

L J= = =∫ ∫
0 0

21
2( )

	 • Current through a capacitor, i dq
dt C dv

dt= = A

	 • Voltage across a capacitor at time t, v C idt v
t

= +∫1 0
0

( ), where v(0) is voltage across the 
capacitor at t = 0.

	 • Instantaneous power in the capacitor, p vi Cv dv
dt= = W

	 • Energy stored in the capacitor, W Cv dv
dt dt C v dv Cv

v v

C J= = =∫ ∫
0 0

21
2( )

	 • v‒i characteristics of a practical voltage source,

	 • v–i characteristics of a practical current source, v t i t R r i t i tL L L L( ) = ( )× = ( ) − ( )( )S S

	 • Kirchhoff's current law, 
k

k n

ki
=

=

∑ =
1

0

	 • Kirchhoff's voltage law, 
k

k n

kv
=

=

∑ =
1

0

	 • Resistors in series, R R R R Rneq = + + +…+1 2 3

	 • Voltage divider rule, v t R
R v t1

1( ) = ( )
eq

S

	 • Inductors in series, L L L L Lneq = + + + +1 2 3 ...

	 • Capacitors in series, 1 1 1 1 1
1 2 3C C C C Cneq

= + + +…+

	 • Resistors in parallel, 1 1 1 1 1
1 2 3R R R R Rneq

= + + +…  or R

R R R Rn

eq =
+ + +…+

1
1 1 1 1

1 2 3

Ω

	 • In terms of conductances, G G G G Gneq S= + + +…+( )1 2 3

	 • Current divider rule, i t
R
R i t R

R i t G
G i t1

1

1 11
1( ) ( ) ( ) ( )= = =eq

S
eq

S
eq

S
/
/ A

	 • Inductors in parallel, 1 1 1 1 1
1 2 3L L L L Lneq

= + + +…

	 • Capacitors in parallel, C C C C Cneq F= + + +…( )1 2 3

v t i t R
v t

r R R v t i t rL L L
S

S L
L S L S( ) = ( )× =

( )
+

= ( ) − ( )×( )
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50 Circuits and Networks

	 • Delta–star transformation, R
R R

R R Rn1
3 1 1 2

1 2 2 3 3 1
=

×
+ +

− −

− − −
Ω, R R R

R R Rn2
1 2 2 3

1 2 2 3 3 1
=

×
+ +
− −

− − −
Ω, 

R R R
R R Rn3

2 3 3 1

1 2 2 3 3 1
=

×
+ +

− −

− − −
Ω

	 • Star–delta transformation, R R R R R
Rn n
n n

n
1 2 1 2

1 2

3
− = + + Ω, R R R R R

Rn n
n n

n
2 3 2 3

2 3

1
− = + + Ω, 

R R R R R
Rn n
n n

n
3 1 3 1

3 1

2
− = + + Ω

Exercises
Review Questions
 1. Name different types of electrical materials and discuss their classification.
 2. Describe the structure of an atom.
 3. State Coulomb's law and explain (a) voltage and (b) current.
 4. (a) How are voltage and current correlated to power and energy?
 (b) Explain passive sign convention and discuss its significance.
 5. Specify the basic circuit elements and state how they are categorized?
 6. Write clear and concise notes on the characteristics of (a) resistors, (b) inductors, and 

(c) capacitors.
 7. Discuss the significance of temperature coefficient of resistance of a material.
 8. Classify different types of energy sources. Draw their symbolic representation circuits 

and discuss the properties of each.
 9. Explain with the help of load characteristics, the difference between ideal and practical 

voltage and current sources.
 10. Define and explain Kirchhoff's laws. State the basis of these laws.
 11. Explain series connection of resistors and the voltage divider circuit.
 12. Explain parallel connection of resistors and the current divider circuit.
 13. Derive expressions for (a) inductors and (b) capacitors connected in series.
 14. Derive expressions for (a) inductors and (b) capacitors connected in parallel.
 15. State the rules for (a) star–delta and (b) delta–star transformation by inspection.
 16. Derive expressions for delta–star conversion of networks.

Multiple Choice Questions
 1. The width of the forbidden zone in a conductor is

(a) overlapping 
(b) more than that of an insulating material
(c)  equal to that of a semiconductor
(d) none of these

 2.  Which of the following is a dielectric?
(a) Carbon (b) silicon (c) iron (d) Mica

 3. What is the rate of electron drift if a current of 3.2 A is flowing through a conductor?
(a) 3.2 electrons/s   (b) 1.0× 1019 electrons/s 
(c) 2.0 × 1019 electrons/s (d) 3.2 × 1019 electrons/s

 4. The magnitude of the static force between two charged bodies, separated by r metre, 
is F N. What is the magnitude of the charge when the distance is doubled?
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Definitions and Basic Circuit Concepts 51

(a) 2F N (b) 0.5F N (c) 0.25F N (d) none of these
 5. Power p J/sec is generated when an object is moved inside a magnetic field. What is 

the power generated when the magnetic field is halved and velocity of the object is 
increased three times?
(a) p J/s (b) 0.67 p J/s (c) 6.0 p J/s (d) 1.5 p J/s

 6. Which of the following is representative of power?

(a) [ ( )]v t
R

S
2

 (b) v t i tS S( ) ( )  (c) [ ( )]i t RS
2  (d) all of these

 7. A 5 kΩ resistor is connected across a 50 V supply. The power consumed by the 
resistor is
(a) 1000 mW (b) 500 mW (c) 250 mW (d) 10 mW

 8. Which of the following is a unit of energy?
(a) Joule (b) Joule/sec (c) Joule-sec (d) none of these

 9. Which of the following is not generating power as per the passive sign convention?
(a)  (b)   (c)  (d) none of these

Ai

v

–

+

B

Ai

v

–

+

B

A

v

i

–

+

 10. Which of the following is not a bilateral element?
(a) transistor (b) resistor (c) inductor (d) capacitor

 11. A conductor of diameter d and length l has a resistance of R Ω. What is the value of 
the resistance if the conductor diameter and length are both halved?
(a) 8R (b) 4R (c) 2R (d) R

 12. The power consumed by a conductor of diameter d and length l is W when a current 
of I A flows through it. What will be the power consumed if the conductor diameter, 
length, and current are halved?
(a) 8 W (b) 4 W (c) 2 W (d) 0.5 W

 13. A 16 W resistor has a maximum current rating of 400 mA. What is the maximum 
current rating if the power rating of the resistor is limited to 1 W?
(a) 400 mA (b) 300 mA (c) 200 mA (d) 100 mA

 14. Resistivity has the unit of
(a) Ω-metre2 (b) Ω-metre (c) Ω/metre (d) Ω/metre2

 15. Two resistors connected in series draw a current of 5 A from a voltage source of 
100 V. When one of the resistors is connected across the same voltage source, the 
current in the resistor is 20 A. The resistance of the disconnected resistor is
(a) 15 Ω (b) 10 Ω (c) 5 Ω (d) 1.5 Ω

 16. The current flowing in a 2 H inductor increases from 0 to 10 A in 1 s and then 
decreases to zero in the next 2.5 s. The voltage at the end of 3.5 s in the inductor is 
equal to
(a) 20 V (b) 15 V (c) 8 V (d) −8 V
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52 Circuits and Networks

 17. A current of 100 mA flows through a capacitor of 100 μF for 1 s. If the capacitor is 
initially uncharged, the charge on the capacitor is
(a) 0.001 C (b) 0.01 C (c) 0.1 C (d) 1.0 C

 18. The power supplied by the source in Q. 17 is
(a) 10 mW (b) 100 mW (c) 10 W (d) 100 W

 19. The two laws which form the basis of circuit analysis were stated by
(a) Bohr (b) Ohm (c) Kirchhoff (d) Faraday

 20. When two capacitors are connected in series across a voltage source v t e t
S( ) = −2 2 , 

the current supplied by the source is i t e t
S( ) = − −12 2 . When one of the capacitors is 

removed from the circuit, the current supplied by the source is i t e t
S( ) = − −16 2 . The 

capacitance of the disconnected capacitor is
(a) 2 (b) 4 (c) 6 (d) 12

 21. A branch in a circuit is said to be active when it contains
(a) an energy source (b) resistor (c) inductor (d) capacitor

 22. A circuit is said to be linear when the current–voltage relationship can be expressed 
by linear
(a) algebraic equations (b) differential equations
(c) integral equations (d) all of these

 23. Which of the following is not a characteristic of an independent voltage source?
(a) voltage independent of magnitude of current drawn
(b) voltage dependent of magnitude of current drawn
(c) independent of the direction of current flow
(d) can supply or receive uninterrupted energy at constant voltage

 24. Which of the following pair is dimensionless?
(a) α–β (b) β–μ (c) μ–ρ (d) ρ–α

 25. A practical voltage source can be represented by
(a) an ideal voltage source with it internal resistance connected in series
(b)  an ideal voltage source with it internal resistance connected across its 

terminals 
(c) by neglecting the internal resistance 
(d) none of these

 26. A practical current source iS(t) A has an internal resistance rS Ω. It can be trans-
formed into a voltage source by putting

(a) v i t
rS

S

S
=

( )  and neglecting the internal resistance 

(b) v i t
rS

S

S
=

( )
 and connecting the internal resistance in series 

(c) v i t rS S S= ×( )  and connecting the internal resistance in series 
(d) v i t rS S S= ×( )  and connecting the internal resistance in parallel

 27. An ideal voltage source of 10 V has internal resistance of 0.2 Ω and it supplies a load 
current of 10 A. The power supplied by the practical voltage source is
(a) 100 W (b) 80 W (c) 10 W (d) 20 W
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Definitions and Basic Circuit Concepts 53

 28. Two resistors, each of 10 kΩ and 15 kΩ, are connected in series across a DC voltage 
source to form a voltage divider. What should be the magnitude of the source voltage 
in order to obtain an output of 60 V across the 15 kΩ resistor?
(a) 75 V (b) 100 V (c) 125 V (d) 150 V

 29. Two resistances of 5 Ω and 20 Ω are connected in parallel. The parallel combination 
is connected in series with a 1 Ω resistance and this series–parallel combination is 
connected across a DC source of 50 V. The current in the 20 Ω resistor is
(a) 10 A (b) 8 A (c) 2 A (d) none of these

 30. In Q. 29, the power dissipated in the 5 Ω resistor is
(a) 500 W (b) 320 W (c) 100 W (d) 80 W

 31. The current flowing through two series inductors of 3 H and 6 H is i t tS A( ) sin=10 2 . 
The source voltage across the combined inductors is given by
(a) 10 2sin t  (b) 20 2cos t  (c) 120 2cos t  (d) 180 2cos t

 32. In Q. 31, the voltage output, as a percentage of the source voltage, is
(a) 100% (b) 66.67% (c) 33.33% (d) none of these

 33. Star-to-delta and vice versa transformations are employed to simplify circuit 
elements connected in
(a) series–parallel (b) series (c) parallel (d) none of these

 34. Inductors, each of 9 H, are connected to form a rectangle ABCD. Another inductor of 
9 H is connected between the diagonal nodes A and C. A voltage source is connected 
between nodes A and D which supplies a current of i e t

S A= −4 4 . The voltage of the 
supply source is equal to
(a) 16 4e t− V  (b) − −16 4e t V  (c) − −90 4e t V  (d) 90 4e t− V

Unsolved Problems
 1.1  A voltage of 220 V is applied across a 1000 W heater. Determine the following: (i) re-

sistance of the heater, (ii) current supplied, and (iii) the charge transferred in 10 s.
 1.2  A voltage source v t tS sin V( ) = 311 ω  is applied across a resistor of 500 Ω. Write 

expressions for (i) resistor current and (ii) power. If ω = 314 rad/s, draw the voltage, 
current, and power waveforms. Discuss the results.

 1.3 In problem 1.2, determine the charge transferred in (i) 0.01 s and (ii) 0.02 s.
 1.4 Repeat problem 1.2 with (a) an inductor of 500 mH and (b) a capacitor of 500 Ω 

connected across the voltage source.
 1.5 The current flowing through a conductor is given by

i t
i t t

= < <
= >

6 0 1
6 12

A for s
A for

  Compute the total charge entering the conductor from t = 0 to t = 2 s. 
 1.6 The current entering an electrical conductor is

i t= 20 5000cos .A

  Assume the charge is zero at the instant the current is passing through its maximum 
value. Find the expression for q(t).
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54 Circuits and Networks

 1.7 A fully discharged 6-V battery is slowly (trickle) charged by a battery charger for 6 
hours. If the rate of charging is set at i t e t( ) = −6 3600/ A for 0 ≤ t ≤ 6h and i t( ) = 0 for 
t > 6 h, compute for the charging period (i) total charge transferred to the battery, 
(ii) maximum power absorbed by the battery, (iii) total energy in kJ supplied by the 
charger, and (iv) average power in watts absorbed by the battery.

 1.8 A 220 V DC motor is supplying a load of 30 kW at an efficiency of 80%. Calculate 
(i) input power and (ii) motor current. If energy is priced at Rs 3.50/kWh, what is the 
cost of running the motor for 6 h.

 1.9 A voltage source, v t e t
S V( ) = −5 5  is applied across a capacitor of 2 F. What is 

the current flowing through the capacitor? Calculate the current in the capacitor  
at t = ∞.

 1.10 A rectangle having sides of 50 cm and 25 cm is made up of copper wire of diameter 
4.0 cm. The rectangle is opened out and stretched in a straight wire. What is the 
resistance of the wire? Take ρ = 1.72 × 10−8 Ωm

 1.11 A current of 7.5 A flows through the parallel combination of two wires, one of which 
is an aluminium wire 10.0 m long and the other wire is of an unknown metal and is 
7.0 m long. The current through the aluminium wire is 5.5 A. The diameters of the 
aluminium and unknown metal wires are 1.5 and 0.6 mm, respectively. Compute 
the resistivity of the unknown metal wire. Assume resistivity of aluminium equal to  
2.8 × 10−8 Ωm.

 1.12 A heating coil is made by winding a bare copper wire of diameter 0.75 mm on to a 
porcelain cylinder 25 cm long and having a diameter of 5 cm. The distance between 
the consecutive turns is equal to the diameter of the wire. If the heating coil is con-
nected across a 200 V DC supply, calculate (i) the current supplied and (ii) the heat 
produced. Determine the heat dissipated per square cm. Neglect the end areas for 
heat dissipation and assume resistivity of copper at 1.74 ×10−8Ωm.

 1.13 Calculate the equivalent capacitance be-
tween terminals (a) A–B and (b) A–G for the 
network shown in Fig. P 1.13. Assume each 
capacitance to be of C farad. Determine the 
source current when a voltage source of 
v t e t

S V( ) = −3 3  is connected, in turn between 
each pair of terminals.

 1.14 For the circuit shown in Fig. P1.14, compute 
the value of R. Calculate (a) the voltage 
across terminals A–B, (b) power dissipated 
in R, and (c) total power consumed in the 
circuit.

 1.15 An ideal voltage source of 230 V is con-
nected across a 200 W bulb. Calculate 
the supply current and resistance of 
the bulb. Three bulbs of 100 W each 
are now connected, along with the 200 
W bulb, in series across the voltage 
source. Determine (a) source current 
and (b) voltage drop across each bulb.

H

E

A B

C

G

D

F

55 A

A B

10 W

R W

40 W

60 W

5 A

Fig. P 1.13 

Fig. P 1.14 
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Definitions and Basic Circuit Concepts 55

 1.16 Repeat problem 1.15 with the ideal voltage source replaced by an ideal current 
source of 100 A. Determine (a) the supply current, (b) the voltage drop across each 
bulb, and (c) the power dissipated in each of the bulbs.

 1.17 A short-circuit test on a practical voltage source gave a current of 1.2 A. If the 
open-circuit voltage of the source is 36 V, compute the internal resistance of the 
source. The source delivers a load current of 0.3 A, when it is connected across a 
load. Calculate (i) load resistance, (ii) voltage drop across the load, and (iii) power 
dissipated.

 1.18 Calculate (i) internal resistance, (ii) open-circuit voltage, and (iii) voltage regulation 
of a voltage source from the following loading conditions: (a) VL = 105 V, IL = 
500 mA, and (b) VL = 90 V, IL = 1.0 A.

 1.19 Use source transformation technique to determine I in the given circuit. 
 

 1.20 Compute the current and power dissipated in the 3 Ω resistance in the given circuit 
by the source transformation method.

 1.21 An inductor L1 = 0.05 H is connected in series with a parallel combination of two 
inductors L2 = 0.02 H and L3 = 0.04 H. (a) Find the equivalent inductance of the 
combination. (b) Determine the value of the emf across L2 when the current in L1 is 
changing at the rate of 1500 A/s.

 1.22 Two capacitors, each of 4 μF and 10 μF, are connect-
ed in series as shown in P1.22. If the capacitors are 
charged to initial voltages of v1 3= − V and v2 6= − V, 
determine the total energy in the capacitors at 
t → ∞  when a current i t e t( ) = −250 12 5. µ A for t ≥ 0 
is applied across the terminals of the circuit. [Hint: 
Determine the energy in each capacitor separately.]

 1.23 Figure P 1.23 below shows a voltage divider  
circuit. Calculate the output voltage Vo. What is 
the output voltage if the internal resistance of the 

5 kΩ
I

4 kΩ

8 mA6 V 4.5 kΩ
+

10 Ω

3 Ω 4 Ω3 Vx

Vx  

8 Ω
15 Ω

4 Ω 6 A2 A

+

I

Fig. P 1.20 

Fig. P 1.19 

Fig. P 1.22 

i(t)

10 μF

4 μF

v1

v2

–

–

+

+
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56 Circuits and Networks

voltage source is neglected? Calculate the per-
centage error introduced by neglecting internal 
resistance. Assume an internal resistance of 1.5 
Ω for the voltage source.

 1.24 A load resistor RL is connected across the output 
voltage v t0 ( ) in Fig. 1.46. Develop an expression 
for the output voltage and derive the condition 
for the output voltage to remain constant. 

 1.25 In the voltage divider circuit in Fig. 1.46, R Rin ok and k= =150 125Ω Ω. If the com-
mercial resistors have a tolerance of ±10%, calculate the maximum and minimum 
output voltage vo(t).

 1.26 Figure P 1.26 shows a current divider 
circuit. Compute (a) the value of 
R which will cause a current of 3 
A to flow through the 50 Ω resis-
tor, (b) power dissipated in R, and  
(c)  magnitude of power required to 
be generated by the current source 
to meet the requirement of power  
dissipation in R.

 1.27 Show that the output of the circuit in Fig. P 1.27 is an integral of the input. Assume 
that the capacitor is not charged.

 1.28 Using the method of series–parallel combination, determine i t i t v tS o( ), ( ), ( ),1  and v t1( )  
for the circuit shown in Fig. P 1.28, when a source voltage of v t tS V( ) sin= 4 3  is applied 
across terminals A–B. All values of the inductors are shown in the following figure.

50 Ω

25 A R Ω
100 Ω

50 Ω

a

b
vi(t)

vO(t)

+

+

+

+ –

–
R

iR(t)

CiC (t)

Fig. P 1.26 

Fig. P 1.27 

R1 = 60 Ω R2 = 120 Ω
V0

rS= 1.5 Ω E = 120 V

A
1 H

B

2 H 4 H

2 H+
–+– 2 H 2 H

iS (t)

i1 (t)

vS (t)

vS (t) v0 (t)= 4 sin 3t

Fig. P 1.28 

Fig. P 1.23 

 1.29 The currents flowing through three capacitors, connected in parallel, are 25, 50, and 
75 A, when a voltage varying at the rate of 100 V/s is applied across the terminals. 
Determine the equivalent capacitance.
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Definitions and Basic Circuit Concepts 57

 1.30 The three capacitors of Problem 1.29 are now connected in series across a voltage 
source of 230 V. Compute (a) the equivalent capacitance, (b) the charge on each 
capacitor, (c) the voltage drop across each capacitor, and (d) the total energy stored.

 1.31 Determine the resistance between the points A and B of the networks shown in 
Figs P 1.32.

Answers to Multiple Choice Questions
1. (a) 2. (d) 3. (c) 4. (c) 5. (d) 6. (d) 7. (b)
8. (a) 9. (a) 10. (a) 11. (c) 12. (d) 13. (d) 14. (b)

15. (a) 16. (d) 17. (c) 18. (d) 19. (c) 20. (d) 21. (a)
22. (d) 23. (b) 24. (b) 25. (a) 26. (c) 27. (b) 28. (c)
29. (c) 30. (b) 31. (d) 32. (b) 33. (a) 34. (c)

6 Ω

4 Ω2 Ω
B

A
1 Ω

3 Ω

3 Ω

3 Ω

5 Ω

5 Ω 5 Ω
4 Ω4 Ω

3 Ω

2 Ω

6 Ω 6 Ω
4 Ω 4 Ω

2 Ω

C

A
(a) (b)

2 Ω

B

Fig. P 1.32
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