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Preface
Electromagnetics is a branch of Electrical and Electronics Engineering which entails the study 
of the principles, synthesis, and physical interpretation of electric and magnetic fields. The sub-
ject requires thorough knowledge of vector calculus and an ability to imagine field distribu-
tion in space. The various applications of electromagnetics include power transformers, rotating 
machines, and actuators (low-frequency devices) and microwave devices, waveguides, antennas, 
and radars (high-frequency devices). The principles of electromagnetics help us understand the 
design and operation of these low- and high-frequency devices. The main objective of this book 
is to present the fundamental laws and principles of electromagnetics and its applications in a 
clearer and more interesting manner than other books do.

About the Book

The Asian adaptation of Principles of Electromagnetics, sixth edition, is a comprehensive text-
book designed for undergraduate students of Electrical and Electronics Engineering. Using a 
vectors-first approach, the book explains electrostatics, magnetostatics, fields, waves, and appli-
cations such as transmission lines, waveguides, and antennas. The book also provides a balanced 
presentation of static and time-varying fields, preparing students for employment in today’s 
industrial and manufacturing sectors.

Key features

•	 Treats mathematical theorems separately from physical concepts, making it easier for students 
to grasp the theorems

•	 Presents real-world applications of the concepts covered at the end of each chapter
•	 Provides MATLAB codes developed for the computer implementation of the concepts 

presented in each chapter
•	 Devotes an entire part to the different numerical techniques with practical applications and 

computer programs
•	 Comprises numerous examples, each worked step-by-step, and a set of multiple-choice ques-

tions at the end of each chapter
•	 Contains more than 450 figures to help students visualize the different electromagnetic phenomena

Each revision of this book has involved many changes that have made the contents of the book 
even better. The fully revised and updated sixth edition now features the following:

•	 An appendix called Summary of Important Concepts in Electromagnetics explains the fun-
damentals of electromagnetics succinctly. This appendix will help students consolidate their 
understanding of the subject. Numerous comments and explanations have been added at vari-
ous places so that theories and concepts are understood better.

•	 The text contains new material/sections on constant coordinate surfaces, classification of vector 
fields, torque on a dipole, homogeneous and heterogeneous dielectric systems, classification 
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vi   ■   P r e fac e

of magnetic materials, permanent magnets, wave polarization, transients on transmission 
lines, transmission lines as circuit elements, and current and mode excitation in waveguides.

•	 Coverage of numerical methods has been enhanced, with separate chapters dedicated to the 
different types of methods. These have been exemplified by solving real-life problems using 
all the techniques through additional MATLAB codes. The finite difference time domain 
method has been newly added.

•	 Sixteen new application notes have been added, which explain the connections between the 
concepts discussed in the text and the real world.

•	 There are additional solved examples in all the chapters.
•	 New practice exercises and chapter-end problems have been added.

Although this book is intended to be self-explanatory and useful for self-instruction, the personal 
contact that is always needed in teaching has not been forgotten. The actual choice of course top-
ics, as well as their emphasis, depends on the preference of the individual instructor. For example, 
an instructor who feels too much importance has been devoted to vector analysis or static fields 
may skip some of the material; however, students may use them as reference. In addition, it is per-
tinent to note, having covered Chapters 1–3, it is possible to explore Chapters 9–15. Instructors 
who disagree with the vector calculus-first approach may proceed with Chapters 1 and 2, skip 
to Chapter 4, and then refer to Chapter 3 as needed. Enough material has been covered for the 
two-semester courses. If the text is to be covered in one semester, covering Chapters 1–9 is rec-
ommended; some sections may be skipped, explained briefly, or assigned as homework. Sections 
marked with the dagger sign (†) may be in this category.

Online Resources

The following resources are available at http://oupinheonline.com to support the faculty and stu-
dents using this book.

For Faculty
• Solutions Manual
• Figures-only PPTs
• Math Assessment with Solutions 

For Students
• Multiple-choice Questions
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A Note to the Student
Electromagnetic theory is generally regarded by students as one of the most difficult courses in 
physics or the electrical engineering curriculum. But this misconception may be proved wrong 
if you take some precautions. From experience, the following ideas are provided to help you 
perform to the best of your ability with the aid of this textbook:

1.	 Pay particular attention to Part 1 on vector analysis, the mathematical tool for this course. 
Without a clear understanding of this section, you may have problems with the rest of the 
book.

2.	 Do not attempt to memorize too many formulas. Memorize only the basic ones, which are 
usually boxed, and try to derive others from these. Try to understand how formulas are related. 
Obviously, there is nothing like a general formula for solving all problems. Each formula has 
some limitations owing to the assumptions made in obtaining it. Be aware of those assump-
tions and use the formula accordingly.

3.	 Try to identify the key words or terms in a given definition or law. Knowing the meaning of 
these key words is essential for proper application of the definition or law.

4.	 Attempt to solve as many problems as you can. Practice is the best way to gain skill. The 
best way to understand the formulas and assimilate the material is by solving problems. It is 
recommended that you solve at least the problems in the Practice Exercise immediately fol-
lowing each illustrative example. Sketch a diagram illustrating the problem before attempting 
to solve it mathematically. Sketching the diagram not only makes the problem easier to solve, 
it also helps you understand the problem by simplifying and organizing your thinking process. 
Note that unless otherwise stated, all distances are in meters. For example (2, −1, 5) actually 
means (2 m, −1 m, 5 m).

You may use MATLAB to do number crunching and plotting. A brief introduction to MATLAB 
is provided in Appendix D.
Important formulas in calculus, vectors, and complex analysis are provided in Appendix B. 
Answers to problems are given in Appendix F.
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FEATURES OF

PART 1
VECTOR ANALYSIS

Chapter 1 Vector algebra

Chapter 2 coordinate systems and transformations

Chapter 3 Vector calculus

PE_Chapter 01.indd   1 6/10/2015   2:34:54 PM

Coverage of Vector Analysis
Vector analysis is covered in the beginning of 
the book and the concepts gradually applied, 
thus helping students separate mathematical 
theorems from physical concepts. This makes it 
easier for them to grasp the generality of those 
theorems.

Application Notes
The last section in each chapter is devoted to 
the applications of the concepts covered 
therein. This helps students understand how 
the concepts apply to real-life situations.
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PRACTICE EXERCISE 12.9

A silica fiber has a refractive index of  1.48. It is surrounded by a cladding material with a 
refractive index of 1.465. Find (a) the critical angle above which total internal reflection occurs, 
(b) the numerical aperture of the fiber.

Answer: (a) 81.83°, (b) 0.21.

 EXAMPLE 12.10  Light pulses propagate through a fiber cable with an attenuation of 0.25 dB/
km. Determine the distance through which the power of pulses is reduced by 40%.

Solution: If the power is reduced by 40%, it means that
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PRACTICE EXERCISE 12.10

A 10 km fiber with an attenuation of 0.2 dB/km serves as an optical link between two cities. How 
much of input power is received?

Answer: 63.1%.

†12.10 APPLICATION NOTE—CLOAKING AND INVISIBILITY

The practice of using metamaterials to hide an object is called metamaterial cloaking. 
Metamaterials are ideal for cloaking because they are designed to have a negative refractive 
index. All materials have an index of refraction, a number that describes that amount of light, or 
electromagnetic wave, that is reflected as the wave passes through the material. All materials that 
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and so on. From V(ℓ, t), we can obtain I(ℓ, t) as
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The plots of V(ℓ, t) and I(ℓ, t) are shown in Figure 11.35(b) and (c).

PRACTICE EXERCISE 11.9

Repeat Example 11.9, replacing the rectangular pulse by the triangular pulse of Figure 11.36.

Answer: (I
o
)

max
 = 100 mA. See Figure 11.37 for the current waveforms.

100

1.521

−21.43
0 2 4 6 8 10

I(0, t) mA

(a)

t(µs) t(µs)

85.71

−6.122

0.4373

0 2 4 6 8 10 12

I(l, t) mA

(b)

Figure 11.37 current waves for Practice exercise 11.9.

10 V

Vg

0 2 t(µs)
Figure 11.36 triangular pulse 
for Practice exercise 11.9.

†11.8 APPLICATION NOTE—MICROSTRIP LINES AND CHARACTERIZATION OF DATA CABLES

†A. Microstrip Transmission Lines
Microstrip lines belong to a group of lines known as parallel-plate transmission lines. They are 
widely used in present-day electronics. Apart from being the most commonly used form of trans-
mission lines for microwave integrated circuits, microstrips are used for circuit components such 
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Boxes
Important formulas are boxed to help students 

identify the essential ones. Key terms are 
de� ned and highlighted to ensure students 

clearly understand the subject matter.
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dS

d l

L Closed path L

Surface S Figure 3.21 Determining 
the sense of dl and dS 
involved in Stokes’s 
theorem.

This is called Stokes’s theorem.

The proof of Stokes’s theorem is similar to that of the divergence theorem. The surface S is 
subdivided into a large number of cells as in Figure 3.22. If the kth cell has surface area ΔS

k
 and 

is bounded by path L
k

 A l A l
A l

⋅ = ⋅ =
⋅

∆
∆∫ ∫∑

∫
∑d d

d

S
S

L L
k

L

k
k
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�

 (3.58)

As shown in Figure 3.22, there is cancellation on every interior path, so the sum of the line inte-
grals around the L

k
’s is the same as the line integral around the bounding curve L. Therefore, tak-

ing the limit of the right-hand side of eq. (3.58) as ΔS
k
 → 0 and incorporating eq. (3.45) leads to

 A l A S⋅ = ×( ) ⋅∫ ∫d d
L S� ∇∇

which is Stokes’s theorem.
The direction of dl and dS in eq. (3.57) must be chosen using the right-hand rule or right-

handed-screw rule. Using the right-hand rule, if we let the fingers point in the direction of dl, 
the thumb will indicate the direction of dS (see Figure 3.21). Note that whereas the divergence 

Stokes’s theorem states that the circulation of a vector field A around a (closed) path L is equal 
to the surface integral of the curl of A over the open surface S bounded by L (see Figure 3.21), 
provided A and — × A are continuous on S.

Figure 3.22 Illustration 
of Stokes’s theorem.
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and from this, we obtain
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Alternatively, we may obtain eqs. (2.27) and (2.28) by using the dot product. For example,
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For the sake of completeness, it may be instructive to obtain the point or vector transformation 
relationships between cylindrical and spherical coordinates. We shall use Figures 2.5 and 2.6 
(where f is held constant, since it is common to both systems). This will be left as an exercise 
(see Problem  2.15). Note that in a point or vector transformation, the point or vector is not 
changed; it is only expressed differently. Thus, for example, the magnitude of a vector will 
remain the same after the transformation, and this may serve as a way of checking the result of 
the transformation.

The distance between two points is usually necessary in EM theory. The distance d between 
two points with position vectors r

1
 and r

2
 is generally given by

 d = −r r2 1  (2.30)

or

 d x x y y z z2
2 1

2

2 1

2

2 1

2
Cartesian= −( ) + −( ) + −( ) ( )  (2.31)

 d z z2
1 2 2 1 2 1

2
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2
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           Michael Faraday  (1791−1867), an English chemist and 
physicist, is known for his pioneering experiments in elec-
tricity and magnetism. Many consider him the greatest 
experimentalist who ever lived.  

  Born at Newington, near London, to a poor family, he 
received little more than an elementary education. During a 
seven-year apprenticeship as a bookbinder, Faraday devel-
oped his interest in science and in particular chemistry. As 
a result, Faraday started a second apprenticeship in chem-
istry. Following in the footsteps of Benjamin Franklin and 

other early scientists, Michael Faraday studied the nature of electricity. Later in life, 
Faraday became professor of chemistry at the Royal Institution. He discovered ben-
zene and formulated the second law of electrolysis. Faraday’s greatest contribution 
to science was in the fi eld of electricity. Faraday’s introduction of the concept of 
lines of force was initially rejected by most of the mathematical physicists of Europe. 
He discovered electromagnetic induction (to be covered in this chapter), the bat-
tery, the electric arc (plasmas), and the Faraday cage (electrostatics). His biggest 
breakthrough was his invention of the electric motor and dynamo (or generator). 
Despite his achievements, Faraday remained a modest and humble person. In his day, 
Faraday was deeply religious. The unit of capacitance, the farad, is named after him.    

    James Clerk Maxwell  (1831−1879), Scottish mathemati-
cian and physicist, published physical and mathematical 
theories of the electromagnetic fi eld.  

  Born at Edinburgh, Scotland, Maxwell showed an 
early understanding and love for the fi eld of mathematics. 
Dissatisfi ed with the toys he was given, he made his own 
scientifi c toys at the age of 8! Maxwell was a true genius 
who made several contributions to the scientifi c community, 
but his most important achievement was his development 
of the equations of electromagnetic waves, which we now call Maxwell’s equa-
tions. In 1931, on the centennial anniversary of Maxwell’s birth, Einstein described 
Maxwell’s work as the “ most profound and the most fruitful that physics has experi-
enced since the time of Newton.”  Without Maxwell’s work, radio and television could 
not exist. The 1888 announcement by the German physics professor Heinrich Rudolf 
Hertz (see Chapter 10) that he had transmitted and received electromagnetic waves 
was almost universally received as a glorious confi rmation of Maxwell’s equations. 
The maxwell (Mx), the unit of measurement of magnetic fl ux in the centimeter-
gram-second (cgs) system of units, was named in his honor.  
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Historical Pro� le of Scientists
Select chapters open with the pro� le of a 

pioneer in the � eld of electromagnetics, 
describing the contribution of the scientist in 

this area of study.
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THE BOOK

Examples
Each chapter includes worked-out examples 
which give students the con� dence to solve 
problems themselves. Each illustrative example 
is followed by a problem in the form of a 
Practice Exercise with its answer.

c h a P t e r  2  co o r D i n at e  s y s t e M s  a n D  t r a n s F o r M at i o n  ■  37

EXAMPLE 2.1 Given point P(-2, 6, 3) and vector A = ya
x
 + (x + z)a

y
, express P and A in cylin-

drical and spherical coordinates. Evaluate A at P in the Cartesian, cylindrical, and spherical systems.

Solution: At point P, x = -2, y = 6, z = 3. Hence,

ρ = + = + =x y2 2 4 36 6 32.

φ = =
−

=− −tan tan .1 1 6

2
108 43

y
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°
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r x y z= + + = + + =2 2 2 4 36 9 7
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+
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2 2

1 40
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64 62

x y

z
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Thus,

P P P−( ) = °( ) = ° °( )2  6  3 6 32  1 8 43  3 7  64 62  1 8 43, , . , . , , . , .0 0

In the Cartesian system, A at P is

A a a= +6 x y
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Figure 2.6 Unit vector transformations for 
cylindrical and spherical coordinates.
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Review Questions
Each chapter ends with review questions in the 

form of multiple-choice questions with answers 
immediately following them. This encourages 

students to check the answers and gain 
immediate feedback.
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(a) 7
(b) 6
(c) 5

(d) 3
(e) None

 11.8 Write true (T) or false (F) for each of the following statements.
(a) All r- and x-circles pass through point (Γ

r
, Γ

i
) = (1, 0).

(b) Any impedance repeats itself every l/4 on the Smith chart.
(c) An s = 2 circle is the same as | Γ | = 0.5 circle on the Smith chart.
(d) The basic principle of any matching scheme is to eliminate the reflected wave between the source 

and the matching device.
(e) The slotted line is used to determine Z

L
 only.

(f) At any point on a transmission line, the current reflection coefficient is the reciprocal of the volt-
age reflection coefficient at that point.

 11.9 In an air line, adjacent maxima are found at 12.5 cm and 37.5 cm. The operating frequency is
(a) 1.5 GHz
(b) 600 MHz

(c) 300 MHz
(d) 1.2 GHz

    
   

 
 

  

  
  

PROBLEMS  
Section 11.2—transmission line Parameters

 11.1 The copper leads of a diode are 16 mm in length and have a radius of 0.3 mm. They are separated by a 
distance of 2 mm as shown in Figure 11.48. Find the capacitance between the leads and the ac resist-
ance at 10 MHz.

±180°

−150°

−90°

90°

0°

P

Figure 11.47 smith chart 
for review Question 11.7.

Answers 11.1c,d,e, 11.2b,c, 11.3c, 11.4a,c, 11.5c, 11.6 (i) D (ii) A, (iii) E, (iv) C, (v) B, (vi) D, (vii) B, 
(viii) A, 11.7a, 11.8 (a) T, (b) F, (c) F, (d) T, (e) F, (f) F, 11.9b, 11.10e

16 mm

2 mm Figure 11.48 the diode 
of Problem 11.1.
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REVIEW QUESTIONS  
 11.1 Which of the following statements are not true of the line parameters R, L, G, and C?

(a) R and L are series elements.
(b) G and C are shunt elements.

(c) G
R

=
1

.

  and the propagation constant g  (per meter) is given by

γ α β ω ω= + = + +j R j L G j C( )( )

  The wavelength and wave velocity are

λ
π
β

ω
β

λ= = =
2

, u f

 4. The general case is that of the lossy transmission line (G ≠ 0 ≠ R) considered earlier. For a lossless 
line, R = 0 = G; for a distortionless line, R/L = G/C. It is desirable that power lines be lossless and 
telephone lines be distortionless.

 5. The voltage reflection coefficient at the load end is defined as

ΓL
L

L

V

V

Z Z

Z Z
= =

−
+

−

+
o

o

o

o

 and the standing wave ratio is

s L

L

=
+

−

1

1

Γ

Γ

  where Z
L
 is the load impedance.

 6. At any point on the line, the ratio of the phasor voltage to phasor current is the impedance at that point 
looking toward the load and would be the input impedance to the line if the line were that long. For a 
lossy line,

Z z
V z

I z
Z Z

Z Z

Z Z
s

s

L

L

( )
( )

( )
= = =

+
+









in o

o

o

 tanh

 tanh

γ
γ
l
l

  where ℓ is the distance from load to the point. For a lossless line (a = 0), tanh g  ℓ = j tan bℓ; for a 
shorted line, Z

L
 = 0; for an open-circuited line, Z

L
 = ∞; and for a matched line, Z

L
 = Z

o
.

 7. The Smith chart is a graphical means of obtaining line characteristics such as Γ, s, and Z
in
. It is con-

structed within a circle of unit radius and based on the formula for Γ
L
 given in eq. (11.36). For each r 

and x, there are two explicit circles (the resistance and reactance circles) and one implicit circle (the 
constant s-circle). The Smith chart is conveniently used in determining the location of a stub tuner and 
its length. It is also used with the slotted line to determine the value of the unknown load impedance.

 8. When a dc voltage is suddenly applied at the sending end of a line, a pulse moves forth and back on 
the line. The transient behavior is conveniently analyzed by using bounce diagrams.

 9. Microstrip transmission lines are useful in microwave integrated circuits. Useful formulas for con-
structing microstrip lines and determining losses on the lines have been presented.

10. Some parameters that are commonly used in characterizing data communication cables are presented. 
These parameters include attenuation, return loss, NEXT, and ELFEXT.
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End-chapter Problems
A large number of problems are provided and 
presented in the same order as the material 
in the main text. Problems of intermediate 
di�  culty are identi� ed by a single asterisk (*); 
the most di�  cult problems are marked with a 
double asterisk (**).
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 3.37 Let A = r sin f ar + r2af; evaluate �∫  
L
 A · d1 if L is the contour of Figure 3.32.

 3.38 If F = 2rzar + 3z sin f af − 4r cos f a
z
, verify Stokes’s theorem for the open surface defined by  

z = 1, 0 < r < 2, 0 < f < 45°.
 3.39 Let A = 4x2e−ya

x
 − 8xe−ya

y
. Determine — × — [—(—· A)].

 3.40 Let V =
sin cosθ φ

r
. Determine:

    
 **3.41 A vector field is given by

Q =
+ +

+
−( ) + +( ) 

x y z

x y
x y x yx y

2 2 2

2 2
a a

   Evaluate the following integrals:
 (a)  ∫

L
 Q · d1, where L is the circular edge of the volume in the form of an ice cream cone shown in 

Figure 3.33.

 (b) ∇∇ ×( ) ⋅∫ Q S
S

d
1

, where S
1
 is the top surface of the volume

 (c) ∇∇ ×( ) ⋅∫ Q S
S

d
2

, where S
2
 is the slanting surface of the volume

 (d) Q S
S

d
1

∫ ⋅

 (e) Q S
S

d
2

∫ ⋅

 (f) ∫
v
 — · Q dv

**Double asterisks indicate problems of highest difficulty.

y

x

1

2

0 1 2

L

Figure 3.32 For Problem 3.37.

30°
2m

S2

S1

z

y

x

L

Figure 3.33 Volume in 
form of ice cream cone 
for Problem 3.41.

   How do your results in parts (a) to (f) compare?
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3.40 Let V =
r

. Determine:

**3.41 A vector field is given by
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 3.25 Let D = 2rz2ar + r cos2 fa
z
. Evaluate

 (a) �∫  
S
 D · dS  (b) ∫

v
 —· Ddv

  over the region defined by 2 ≤ r ≤ 5, − 1 ≤ z ≤ 1, 0 < f < 2π.
 3.26 If H = 10 cos q a

r
, evaluate ∫

S
 H · dS over a hemisphere defined by r = 1, 0 < f < 2π, 0 < q < π/2.

 3.27 Evaluate both sides of the divergence theorem for the vector field

H = 2xya
x
 + (x2 + z2)a

y
 + 2yza

z

 and the rectangular region defined by 0 < x < 1, 1 < y < 2, − 1 < z < 3.
 3.28 Given that B = rar + 10za

z
 evaluate both sides of the divergence theorem for the region defined by 0 ≤ 

r ≤ 3, 0 ≤ f ≤ 2π, 0 ≤ z ≤ 4.
 *3.29 Apply the divergence theorem to evaluate A S

s
d�∫ ⋅ , where A = x2a

x
 + y2a

y
 + z2a

z
 and S is the surface of 

the solid bounded by the cylinder r = 1 and planes z = 2 and z = 4.
 3.30 Verify the divergence theorem for the function A = r2a

r
 + r sin q cos f aq over the surface of a quarter 

of a hemisphere defined by 0 < r < 3, 0 < f < π/2, 0 < q < π/2.
 3.31 Calculate the total outward flux of vector 

 F = r2 sin f ar + z cos f af + rza
z
 

 through the hollow cylinder defined by 2 ≤ r ≤ 3, 0 ≤ z ≤ 5.

Section 3.7—Curl of a Vector and Stokes’s Theorem

 3.32 Evaluate the curl of the following vector fields:
(a) A = xya

x
 + y2a

y
 + xza

z

(b) B = rz2ar + r sin2 faf + 2rz sin2 fa
z

(c) C = ra
r
 + r cos2 q af

 3.33 Evaluate — × A and — · (— × A) if:
(a) A = x2ya

x
 + y2za

y
 − 2xza

z

(b) B = r2zar + r3 af + 3rz2a
z

(c) A a a= −
sin cosφ φ

θr rr2 2

 3.34 Let H = r sin far + r cos faf − ra
z
 ; find — × H and — × — × H.

 *3.36 Given that F = x2ya
x
 − ya

y
, find

 (a) �∫  
L
 F · d1 where L is shown in Figure 3.31.

 (b) ∫
S
 (— × F) · dS, where S is the area bounded by L.

 (c) Is Stokes’s theorem satisfied?
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MATLAB Programs
Each chapter concludes with a MATLAB code 
developed for computer implementation of 

the concepts studied in that chapter. A short 
tutorial on MATLAB is provided in Appendix D.
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		•	 			At 60	GHz,	the	path	loss	is	higher,	but	higher	transmitting	power	overcomes	this,	especially	
when the operation is restricted to indoor environments. The effective interference levels 
for 60 GHz are less severe than those systems located in the congested 2–2.5 and 5–5.8 GHz 
bands. In addition, higher frequency reuse can also be achieved in indoor environments, 
allowing a very high throughput.   

		•	 			The	compact	size	of	the 60	GHz	radio	band	permits	the	use	of	multiple	antenna	arrays,	which	
can be conveniently integrated into consumer electronic products.   

		•	 			Operators	at	these	bands	are	exempt	from	license	fees.			
		•	 			Narrow	beamwidth	is	possible.			
		•	 			For	example,	this	technology	can	be	applied	to	an	in-fl	ight	entertainment	distribution	system	

without causing interference with fl ight controls or navigation equipment.   
		•	 			Oxygen	absorption	does	not	pose	a	problem	when	a 60	GHz	system	is	used	between	satellites.			

   While the advantages of 60 GHz technology are very attractive, there are also some challenges to 
be met. At the data rates and range of communication offered by 60 GHz technology, ensuring a 
reliable communication link with suffi cient power margin is not a trivial task. Delay spread of the 
channel under study, another limiting factor for high-speed transmissions, necessitates sophis-
ticated coding techniques. Large delay spread values can easily increase the complexity of the 
system beyond the practical limit for channel equalization. The technology permits instant wire-
less downloading of multimedia content. Transmitting a large amount of data across remotely 
controlled miniature robots or vehicles without cable connections would be possible. Rescuing 
people in case of emergency or accidents becomes less problematic. Applications of mmWave 
technology to automobiles are also attractive. Overall, this technology could signifi cantly affect 
the way computers and electronic devices communicate with each other.  

  Intense efforts are under way to expedite the commercialization of this fascinating technol-
ogy. For example, industrial alliances and regulatory bodies are working to draft standards for 
mmWave.  

  % This script assists with the solution and graphing of  Example 10.1  
 % We use symbolic variables in the creation of the waveform equation 
 % that describes the expression for the electric fi eld 

 clear 
 syms E omega Beta t x        % symbolic variables for fi elds, 
                     % time, and frequency 

 % Enter the frequency (in rad/s) 
 w = input('Enter the angular frequency\n > '); 

 % The expression for the y-component of the electric fi eld 
 E = 50*cos(w*t+Beta*x); 

 % part (b) 
 % solve for Beta 
 B = w/3e8;        % B is the numeric variable for Beta, 
               % with value as calculated here 
 E = subs(E,Beta,B); % substitute the value B in for 
            % variable Beta 

   MATLAB 10.1  
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  Engineering is a profession that makes signifi cant contributions to the economic and 
social well-being of people all over the world. As members of this important profes-
sion, engineers are expected to exhibit the highest standards of honesty and integrity. 
Unfortunately, the engineering curriculum is so crowded that there is no room for a 
course on ethics in most schools. Although there are over 850 codes of ethics for dif-
ferent professions all over the world, the code of ethics of the Institute of Electrical 
and Electronics Engineers (IEEE) is presented here to give students a fl avor of the 
importance of ethics in engineering professions.  

  We, the members of the IEEE, in recognition of the importance of our technologies 
in affecting the quality of life throughout the world, and in accepting a personal 
obligation to our profession, its members and the communities we serve, do hereby 
commit ourselves to the highest ethical and professional conduct and agree: 

    1.    to accept responsibility in making engineering decisions consistent with the 
safety, health, and welfare of the public, and to disclose promptly factors that 
might endanger the public or the environment;   

   2.    to avoid real or perceived confl icts of interest whenever possible, and to disclose 
them to affected parties when they do exist;   

   3.    to be honest and realistic in stating claims or estimates based on available data;   
   4.    to reject bribery in all its forms;   
   5.    to improve the understanding of technology, its appropriate application, and 

potential consequences;   
   6.    to maintain and improve our technical competence and to undertake technologi-

cal tasks for others only if qualifi ed by training or experience, or after full 
disclosure of pertinent limitations;   

   7.    to seek, accept, and offer honest criticism of technical work, to acknowledge 
and correct errors, and to credit properly the contributions of others;   

   8.    to treat fairly all persons regardless of such factors as race, religion, gender, 
disability, age, or national origin;   

   9.    to avoid injuring others, their property, reputation, or employment by false or 
malicious action;   

  10.    to assist colleagues and co-workers in their professional development and to 
support them in following this code of ethics.   

    —Courtesy of IEEE  

       CODES OF  ETHICS  
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1For numerous applications of electrostatics, see J. M. Crowley, Fundamentals of Applied Electrostatics. New York: John 
Wiley & Sons, 1986.
2For other areas of applications of EM, see, for example, D. Teplitz, ed., Electromagnetism: Paths to Research. New York: 
Plenum Press, 1982.

    CHAPTER 1

  Vector Algebra  

One machine can do the work of fi fty ordinary men. No machine can do the work of one extraordinary 
man.   

  —ELBERT HUBBARD  

   1.1   INTRODUCTION  

  Electromagnetics (EM) may be regarded as the study of the interactions between electric charges 
at rest and in motion. It entails the analysis, synthesis, physical interpretation, and application of 
electric and magnetic fi elds.  

  EM principles fi nd applications in various allied disciplines such as microwaves, antennas, elec-
tric machines, satellite communications, bioelectromagnetics, plasmas, nuclear research, fi ber 
optics, electromagnetic interference and compatibility, electromechanical energy conversion, 
radar meteorology, and remote sensing. 1  ,  2  In physical medicine, for example, EM power, in the 
form of either shortwaves or microwaves, is used to heat deep tissues and to stimulate certain 
physiological responses in order to relieve certain pathological conditions. EM fi elds are used in 
induction heaters for melting, forging, annealing, surface hardening, and soldering operations. 
Dielectric heating equipment uses shortwaves to join or seal thin sheets of plastic materials. 
EM energy offers many new and exciting possibilities in agriculture. It is used, for example, to 
change vegetable taste by reducing acidity.  

   EM devices include transformers, electric relays, radio/TV, telephones, electric motors, trans-
mission lines, waveguides, antennas, optical fi bers, radars, and lasers. The design of these devices 
requires thorough knowledge of the laws and principles of EM.  

Electromagnetics (EM) is a branch of physics or electrical engineering in which electric and 
magnetic phenomena are studied.
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4  ■   Pa r t  1 :   V e c to r  A n a ly s i s

† Indicates sections that may be skipped, explained briefly, or assigned as homework if the text is covered in one semester.
3 The reader who feels no need for review of vector algebra can skip to the next chapter.

†1.2  A PREVIEW OF THE BOOK

The subject of electromagnetic phenomena in this book can be summarized in Maxwell’s 
equations:

	 ∇ =·D ρv  	 (1.1)

	 ∇ =·B 0 	 (1.2)

	 ∇× = −
∂
∂

E
B
t

	 (1.3)

	 ∇× = +
∂
∂

H J
D
t

	 (1.4)

where — = the vector differential operator
	 D = the electric flux density
	 B = the magnetic flux density
	 E = the electric field intensity
	 H = the magnetic field intensity
	 r

v
 = the volume charge density

	 J = the current density

Maxwell based these equations on previously known results, both experimental and theoretical. 
A quick look at these equations shows that we shall be dealing with vector quantities. It is con-
sequently logical that we spend some time in Part 1 examining the mathematical tools required 
for this course. The derivation of eqs. (1.1) to (1.4) for time-invariant conditions and the physical 
significance of the quantities D, B, E, H, J, and ρv will be our aim in Parts 2 and 3. In Part 4, we 
shall reexamine the equations for time-varying situations and apply them in our study of practical 
EM devices.

1.3  SCALARS AND VECTORS

Vector analysis is a mathematical tool with which electromagnetic concepts are most conveni-
ently expressed and best comprehended. We must learn its rules and techniques before we can 
confidently apply it. Since most students taking this course have little exposure to vector analysis, 
considerable attention is given to it in this and the next two chapters.3 This chapter introduces the 
basic concepts of vector algebra in Cartesian coordinates only. The next chapter builds on this 
and extends to other coordinate systems.

A quantity can be either a scalar or a vector.

Quantities such as time, mass, distance, temperature, entropy, electric potential, and population 
are scalars.

A scalar is a quantity that has only magnitude.
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c h a p t e r  1   V e c to r  A lg e b r a   ■   5

Vector quantities include velocity, force, displacement, and electric field intensity. Another class 
of physical quantities is called tensors, of which scalars and vectors are special cases. For most 
of the time, we shall be concerned with scalars and vectors.4

To distinguish between a scalar and a vector it is customary to represent a vector by a letter 
with an arrow on top of it, such as A

��
 and B

��
, or by a letter in boldface type such as A and B. 

A scalar is represented simply by a letter—for example, A, B, U, and V.
EM theory is essentially a study of some particular fields.

If the quantity is scalar (or vector), the field is said to be a scalar (or vector) field. Examples of 
scalar fields are temperature distribution in a building, sound intensity in a theater, electric poten-
tial in a region, and refractive index of a stratified medium. The gravitational force on a body in 
space and the velocity of raindrops in the atmosphere are examples of vector fields.

1.4  UNIT VECTOR

A vector A has both magnitude and direction. The magnitude of A is a scalar written as A or A . 
A unit vector a

A
 along A is defined as a vector whose magnitude is unity (i.e., 1) and its direction 

is along A, that is,

	 a
A
A

A
A A
= = 	 (1.5)

Note that a A = 1. Thus we may write A as

	 A a= A A 	 (1.6)

which completely specifies A in terms of its magnitude A and its direction a
A
.

A vector A in Cartesian (or rectangular) coordinates may be represented as

	 A A A A A Ax y z x x y y z z, ,( ) + +or a a a 	 (1.7)

where A
x
, A

y
, and A

z
 are called the components of A in the x-, y-, and z-directions, respectively; a

x
, 

a
y
, and a

z
 are unit vectors in the x-, y-, and z-directions, respectively. For example, a

x
 is a dimen-

sionless vector of magnitude one in the direction of the increase of the x-axis. The unit vectors 
a

x
, a

y
, and a

z
 are illustrated in Figure 1.1(a), and the components of A along the coordinate axes 

are shown in Figure 1.1(b). It should be noted that the projection of A on the xy-plane (z = 0) is 
a vector which is the addition of its vector components in the x and y directions; this is a vector 
addition (see Section 1.5). The magnitude of vector A is given by

	 A A A Ax y z= + +2 2 2 	 (1.8)

and the unit vector along A is given by

A field is a function that specifies a particular quantity everywhere in a region.

4 For an elementary treatment of tensors, see, for example, A. I. Borisenko and I. E. Tarapor, Vector and Tensor Analysis 
with Applications. New York: Dover, 1979.

A vector is a quantity that has both magnitude and direction.
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6  ■   Pa r t  1 :   V e c to r  A n a ly s i s

	 a
a a a

A
x x y y z z

x y z

A A A

A A A
=

+ +

+ +2 2 2
	 (1.9)

1.5  VECTOR ADDITION AND SUBTRACTION

Two vectors A and B can be added together to give another vector C; that is,

	 C A B= + 	 (1.10)

The vector addition is carried out component by component. Thus, if A = (A
x
, A

y
, A

z
) and  

B = (B
x
, B

y
, B

z
).

	 C a a a= + + + + +( ) ( ) ( )A B A B A Bx x x y y y z z z 	 (1.11)

(a)

ay
y

x

z

ax

az

(b)

Axax

Ayay

AzazA

z

y

x

Figure 1.1  (a) Unit vectors ax, ay, and az, (b) components of A along ax, ay, 
and az.

(b)

B

A C

(a)
B

A C

Figure 1.2  Vector addition 
C = A + B: (a) parallelogram 
rule, (b) head-to-tail rule.

(a) (b)

B

A
D

-B B

AD

Figure 1.3  Vector subtraction 
D = A − B: (a) parallelogram rule, 
(b) head-to-tail rule.
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c h a p t e r  1   V e c to r  A lg e b r a   ■   7

Vector subtraction is similarly carried out as

	 D A B A B a a a= − = + − = − + − + −( ) ( ) ( ) ( )A B A B A Bx x x y y y z z z 	 (1.12)

Graphically, vector addition and subtraction are obtained by either the parallelogram rule or the 
head-to-tail rule as portrayed in Figures 1.2 and 1.3, respectively.

The three basic laws of algebra obeyed by any given vectors A, B, and C, are summarized as 
follows:

where k and ℓ are scalars. Multiplication of a vector with another vector will be discussed in 
Section 1.7.

1.6  POSITION AND DISTANCE VECTORS

A point P in Cartesian coordinates may be represented by (x, y, z).

	 r a a ap x y zOP x y z= = + + 	 (1.13)

The position vector of point P is useful in defining its position in space. Point (3, 4, 5), for exam-
ple, and its position vector 3 4 5a a ax y z+ +  are shown in Figure 1.4. Its distance from the origin 

is 3 4 52 2 2+ +  = 7.071. This distance can also be calculated as follows. The projection of the 
position vector in the xy-plane (z = 0) is:

	 r r′ ′+ → = = + =P x y P OP=3 4a a ′ 3 4 52 2

The vector addition of r ′P  and r ′P P results in the position vector of the point P. The angle between 
the two vectors, r ′P  and r a′ =P P z( )5 , is 90°.

Law Addition Multiplication

Commutative A + B = B + A kA + Ak

Associative A + (B + C) = (A + B) + C k(lA) = (kl )A

Distributive k(A + B) = kA + kB

The position vector rP (or radius vector) of point P is defined as the directed distance from the 
origin O to P, that is,

O

y = 4

x = 3

z = 5

P(3, 4, 5)

P′

z

rP

y

x
Figure 1.4  Illustration of position 
vector rP = 3ax + 4ay + 5az.
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8  ■   Pa r t  1 :   V e c to r  A n a ly s i s

r r r rp p P P p= + = = + =′′ and OP 5 5 7 0712 2 .

It may be noted that rPP′ is at 90° to all possible vectors, in the xy-plane, 
originating from point P′.

If two points P and Q are given by (x
P
, y

P
, z

P
) and (x

Q
, y

Q
, z

Q
), the distance 

vector (or separation vector) is the displacement from P to Q as shown in Figure 1.5; that is,

	 r r r a a aPQ Q P Q P x Q P y Q P zx x y y z z= − = − + − + −( ) ( ) ( ) 	 (1.14)

The difference between a point P and a vector A should be noted. Though both P and A may be 
represented in the same manner as (x, y, z) and (A

x
, A

y
, A

z
), respectively, the point P is not a vector; 

only its position vector r
P
 is a vector. Vector A may depend on point P, however. For example, 

if A a a a= + −2 2 2xy y xzx y z and P is (2, −1, 4), then A at P would be − + −4 32a a ax y z . A vector 
field is said to be constant or uniform if it does not depend on space variables x, y, and z. For 
example, vector B a a a= − +3 2 10x y z  is a uniform vector while vector A a a a= + −2 2 2xy y xzx y z  
is not uniform because B is the same everywhere, whereas A varies from point to point.

 EXAMPLE 1.1 	 If A a a a= − +10 4 6x y z and B a a= +2 x y, find (a) the component of A along 
a

y
, (b) the magnitude of 3A − B, (c) a unit vector along A + 2B.

Solution:
(a)	 The component of A along a

y
 is Ay = −4.

(b)	 3 3 10 4 6 2 1 0

30 12 18 2 1 0

28 13 18

A B− = − −
= − −
= −

( , , ) ( , , )

( , , ) ( , , )

( , , )

	 Hence,

3 28 13 18 1277 35 742 2 2A B− = + − + = =( ) ( ) .

(c)	 Let C A B= + = − + = −2 10 4 6 4 2 0 14 2 6( , , ) ( , , ) ( , , ).
	 A unit vector along C is

a
C
Cc = =

−

+ − +

( , , )

( )

14 2 6

14 2 62 2 2

	 or

a a a ac x y z= − +0 9113 0 1302 0 3906. . .

	 Note that ac = 1 as expected.

The distance vector is the displacement from one point to another.

PRACTICE EXERCISE  1.1

Given vectors A = a
x
 + 3a

z
 and B = 5a

x
 + 2a

y
 − 6a

z
, determine

(a)	 A B+
(b)	 5A - B

(c)	 The component of A along a
y

(d)	 A unit vector parallel to 3A + B

Answer:  (a) 7, (b) (0, −2, 21), (c) 0, (d) ± (0.9117, 0.2279, 0.3419).

O

P

Q

rPQ

rQ

rP

Figure 1.5  Distance vector rPQ.
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c h a p t e r  1   V e c to r  A lg e b r a   ■   9

 EXAMPLE 1.2 	 Points P and Q are located at (0, 2, 4) and (−3, 1, 5). Calculate

(a)	 The position of vector r
P

(b)	 The distance vector from P to Q
(c)  The distance between P and Q
(d)  A vector parallel to PQ with magnitude of 10

Solution:
(a)	 r a a a a aP x y z y z= + + = +0 2 4 2 4

(b)	 rPQ Q P= − = − − = − −r r ( , , ) ( , , ) ( , , )3 1 5 0 2 4 3 1 1

	 or r a a aPQ x y z= − − +3

(c)	 Since r
PQ

 is the distance vector from P to Q, the distance between P and Q is the magnitude 
of this vector; that is,

d PQ= = + + =r 9 1 1 3 317.

	 Alternatively:

d x x y y z zQ P Q P Q P= − + − + −

= + + =

( ) ( ) ( )

.

2 2 2

9 1 1 3 317

(d)	 Let the required vector be A, then

A a= A A

	 where A = 10 is the magnitude of A. Since A is parallel to PQ, it must have the same unit 
vector as r

PQ
 or r

QP
. Hence,

a
r

rA
PQ

PQ

= ± = ±
− −( , , )

.

3 1 1

3 317

	 and

A a a a= ±
− −

= ± − − +
10 3 1 1

3 317
9 045 3 015 3 015

( , , )

.
( . . . )x y z

PRACTICE EXERCISE 1.2

Given points P(1, −3, 5), Q(2, 4, 6), and R(0, 3, 8), find (a) the position vectors of P and R, 
(b) the distance vector r

QR
, (c) the distance between Q and R.

Answer:  (a) a
x
 − 3a

y
 + 5a

z
, 3a

y
 + 8a

z
, (b) −2a

x
 − a

y
 + 2a

z
, (c) 3.

 EXAMPLE 1.3 	 A river flows southeast at 10 km/hr and a boat floats upon it with its bow pointed 
in the direction of travel. A man walks upon the deck at 2 km/hr in a direction to the right and 
perpendicular to the direction of the boat’s movement. Find the velocity of the man with respect 
to the earth.

Solution: Consider Figure 1.6 as illustrating the problem. The velocity of the boat is

u a a

a a

b x y

x y

= ° − °

= −

10 45 45

7 071 7 071

(cos sin )

. . km/hr
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10  ■   Pa r t  1 :   V e c to r  A n a ly s i s

The velocity of the man with respect to the boat (relative velocity) is

u a a

a a
m x y

x y

= − ° − °

= − −

2 45 45

1 414 1 414

( cos sin )

. . km/hr

Thus the absolute velocity of the man is

u u u a a

u

ab m b x y

ab

= + = −

= ∠− °

5 657 8 485

10 2 56 3

. .

. .

that is, 10.2 km/hr at 56.3° south of east.

W

N y

x

ubum uab

E

45°45°

S Figure 1.6  For Example 1.3.

PRACTICE EXERCISE 1.3

An airplane has a ground speed of 350 km/hr in the direction due west. If there is a wind blowing 
northwest at 40 km/hr, calculate the true air speed and heading of the airplane.

Answer:  379.3 km/hr, 4.275° north of west.

1.7  VECTOR MULTIPLICATION

When two vectors A and B are multiplied, the result is either a scalar or a vector depending on 
how they are multiplied. Thus there are two types of vector multiplication:

1.	 Scalar (or dot) product: A B⋅
2.	 Vector (or cross) product: A B×
Multiplication of three vectors A, B, and C can result in either:
3.	 Scalar triple product: A B C⋅ ×( )
or
4.	 Vector triple product: A B C× ×( )

A.  Dot Product

The dot product of two vectors A and B, written as A · B, is defined geometrically as the prod-
uct of the magnitudes of A and B and the cosine of the smaller angle between them, when they 
are drawn tail to tail.
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c h a p t e r  1   V e c to r  A lg e b r a   ■   11

Thus,

	 A B⋅ = AB ABcosθ 	 (1.15)

where q
AB

 is the smaller angle between A and B. The result of A B⋅  is called either the scalar prod-
uct because it results into a scalar quantity, or the dot product due to the dot sign. If A = (A

x
, A

y
, A

z
) 

and B = (B
x
, B

y
, B

z
), then

	 A B⋅ = + +A B A B A Bx x y y z z 	 (1.16)

which is obtained by multiplying A and B component by component. Two vectors A and B are 
said to be orthogonal (or perpendicular) with each other if A B⋅ = 0.

Note that dot product obeys the following:
	 (i)	 Commutative law:

	 A B B A⋅ = ⋅ 	 (1.17)

	 (ii)	 Distributive law:

	 A B C A B A C⋅ + = ⋅ + ⋅( ) 	 (1.18)

	 (iii)	 A A A⋅ = =
2 2A � (1.19) 

		  Also note that

	 a a a a a ax y y z z x⋅ = ⋅ = ⋅ =0 	 (1.20a)

	 a a a a a ax x y y z z⋅ = ⋅ = ⋅ =1 	 (1.20b)

It is easy to prove the identities in eqs. (1.17) to (1.20) by applying eq. (1.15) or (1.16).

B.  Cross Product

Thus,

	 A B a× = AB AB nsinθ 	 (1.21)

where a
n
 is a unit vector normal to the plane containing A and B. The direction of a

n
 is taken as 

the direction of the right thumb when the fingers of the right hand rotate from A to B as shown in 
Figure 1.8(a). Alternatively, the direction of a

n
 is taken as that of the advance of a right-handed 

The cross product of two vectors A and B, written as A × B, is a vector quantity whose magni-
tude is the area of the parallelogram formed by A and B (see Figure 1.7) and is in the direction 
of advance of a right-handed screw as A is turned into B.

A × B

A

B

Figure 1.7  The cross product of A and B 
is a vector with magnitude equal to the 
area of the parallelogram and direction 
as indicated.
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12  ■   Pa r t  1 :   V e c to r  A n a ly s i s

screw as A is turned into B as shown in Figure 1.8(b). Here A, B and A × B form a right-handed 
triplet in which when A is rotated towards B through an angle q

AB
, which is less than π as in 

Figure 1.7, A × B points in the direction of a right-handed screw turned anticlockwise. However, 
if the screw is turned clockwise from A to B through an angle greater than π in Figure 1.7, this 
leads to a left handed triplet with A × B directed downward (in the direction opposite to that 
shown in the figure).

The vector multiplication of eq. (1.21) is called cross product owing to the cross sign; it is also 
called vector product because the result is a vector. If A = (A

x
, A

y
, A

z
) and B = (B

x
, B

y
, B

z
), then

	 A B

a a a

× =
x y z

x y z

x y z

A A A

B B B

	 (1.22a)

	 = − + − + −( ) ( ) ( )A B A B A B A B A B A By z z y x z x x z y x y y x za a a 	 (1.22b)

which is obtained by “crossing” terms in cyclic permutation, hence the name “cross product.”
Note that the cross product has the following basic properties:

	 (i)	 It is not commutative:

	 A B B A× ≠ × 	 (1.23a)

		  It is anticommutative:

	 A B B A× = − × 	 (1.23b)

	 (ii)	 It is not associative:

	 A B C A B C× × ≠ × ×( ) ( ) 	 (1.24)

	 (iii)	 It is distributive:

	 A B C A B A C× + = × + ×( ) ( ) 	 (1.25)

	 (iv) 

	 A A 0× = 	 (1.26)

(a)

A × B

an B

A
qAB

(b)

A × B

an

A

B

qAB

Figure 1.8  Direction of A × B and an using (a) the right-hand rule and 
(b) the right-handed-screw rule.
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c h a p t e r  1   V e c to r  A lg e b r a   ■   13

		  Also note that

	

a a a

a a a

a a a

x y z

y z x

z x y

× =

× =

× =

	 (1.27)

which are obtained in cyclic permutation and illustrated in Figure 1.9. The identities in eqs. (1.23) 
to (1.27) are easily verified by using eq. (1.21) or (1.22). It should be noted that in obtaining a

n
, 

we have used the right-hand or right-handed-screw rule because we want to be consistent with 
our coordinate system illustrated in Figure 1.1, which is right-handed. A right-handed coordinate 
system is one in which the right-hand rule is satisfied: that is, a

x
 × a

y
 = a

z
 is obeyed. In a left-

handed system, we follow the left-hand or left-handed screw rule and a
x
 × a

y
 = −a

z
 is satisfied. 

Throughout this book, we shall stick to right-handed coordinate systems.
Just as multiplication of two vectors gives a scalar or vector result, multiplication of three 

vectors A, B, and C gives a scalar or vector result, depending on how the vectors are multiplied. 
Thus, we have a scalar or vector triple product.

C.  Scalar Triple Product
Given three vectors A, B, and C, we define the scalar triple product as

	 A B C B C A C A B⋅ × = ⋅ × = ⋅ ×( ) ( ) ( ) 	 (1.28)

obtained in cyclic permutation. If A = (A
x
, A

y
, A

z
), B = (B

x
, B

y
, B

z
), and C = (C

y
, C

y
, C

z
), then  

A · (B × C) is the volume of a parallelepiped having A, B, and C as edges and is easily obtained 
by finding the determinant of the 3 × 3 matrix formed by A, B, and C; that is,

	 A B C⋅ × =( )

A A A

B B B

C C C

x y z

x y z

x y z

	 (1.29)

Since the result of this vector multiplication is scalar, eq. (1.28) or (1.29) is called the scalar 
triple product.

D.  Vector Triple Product
For vectors A, B, and C, we define the vector triple product as

	 A B C B A C C A B× × = ⋅ − ⋅( ) ( ) ( ) 	 (1.30)

ax

ax

azay

ayaz

(b)(a)

−ax

 ax

−az−ay

ay
az

Figure 1.9  Cross product using 
cyclic permutation. (a) Moving 
clockwise leads to positive results. 
(b) Moving counterclockwise leads 
to negative results.
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14  ■   Pa r t  1 :   V e c to r  A n a ly s i s

which may be remembered as the “bac-cab” rule. It should be noted that

	 ( ) ( )A B C A B C⋅ ≠ ⋅ 	 (1.31)

but

	 ( ) ( )A B C C A B⋅ = ⋅ 	 (1.32)

1.8  COMPONENTS OF A VECTOR

A direct application of scalar product is its use in determining the projection (or component) of 
a vector in a given direction. The projection can be scalar or vector. Given a vector A, we define 
the scalar component A

B
 of A along vector B as [see Figure 1.10(a)]

A AB AB B AB= =cos cosθ θA a

or

	 AB B= ⋅A a 	 (1.33)

The vector component A
B
 of A along B is simply the scalar component in eq. (1.33) multiplied 

by a unit vector along B; that is,

	 A AB B B B B= = ⋅a A a a( ) 	 (1.34)

Both the scalar and vector components of A are illustrated in Figure  1.10. Notice from 
Figure 1.10(b) that the vector can be resolved into two orthogonal components: one component 
A

B
 parallel to B, another (A − A

B
) perpendicular to B. In fact, our Cartesian representation of 

a vector is essentially resolving the vector into three mutually orthogonal components as in 
Figure 1.1(b).

We have considered addition, subtraction, and multiplication of vectors. However, division of 
vectors A/B has not been considered because it is undefined except when A and B are parallel so 
that (A = kB), where k is a constant. Differentiation and integration of vectors will be considered 
in Chapter 3.

(a)

A A

BAB
q

AB

(b)

B

A − AB

AB
q

AB

Figure 1.10  Components of A along B: (a) scalar component AB, 
(b) vector component AB.

 EXAMPLE 1.4 	 Given vectors A a a a= + +3 4x y z and B a a= −2 5y z, find the angle between  
A and B.

Solution: The angle q
AB

 can be found by using either dot product or cross product.
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c h a p t e r  1   V e c to r  A lg e b r a   ■   15

A B

A

⋅ = ⋅ −

= + − =

= + + =

= + + − =

( , , ) ( , , )

( )

co

3 4 1 0 2 5

0 8 5 3

3 4 1 26

0 2 5 29

2 2

2 2 2B

ss
( )( )

.

cos . .

θ

θ

AB

AB

=
⋅

= =

= = °−

A B
A B

3

26 29
0 1092

0 1092 83 731

Alternatively:

A B

a a a

a a a

A B

× =
−

= − − + + + −

= −

×

x y z

x y z

3 4 1

0 2 5

20 2 0 15 6 0

22 15 6

( ) ( ) ( )

( , , )

== − + + =

=
×

= =

= −

( )

sin
( )( )

.

sin

22 15 6 745

745

26 29
0 994

2 2 2

1

θ

θ

AB

AB

A B

A B

00 994 83 73. .= °

PRACTICE EXERCISE  1.4

If A a a= +x z3  and B a a a= + −5 2 6x y z, find q
AB

.

Answer:  120.6°.

 EXAMPLE 1.5 	 Three field quantities are given by

P a a

Q a a a

R a a a

= −

= − +

= − +

2

2 2

2 3

x z

x y z

x y z

Determine
(a)	 ( ) ( )P Q P Q+ × −
(b)	 Q R P⋅ ×
(c)	 P Q R⋅ ×
(d)	 sinθQR

(e)	 P Q R× ×( )
(f)	 A unit vector perpendicular to both Q 

and R
(g)	 The component of P along Q
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16  ■   Pa r t  1 :   V e c to r  A n a ly s i s

Solution:
(a)	 ( ) ( ) ( ) ( )P Q P Q P P Q Q P Q

P P P Q Q P Q Q

0 Q P Q P 0

Q

+ × − = × − + × −

= × − × + × − ×

= + × + × −

= 2 ××

= −
−

= − + + + +

= + +

P

a a a

a a a

a a a

2 2 1 2

2 0 1

2 1 0 2 4 2 2 0 2

2 12 4

x y z

x y z

x y

( ) ( ) ( )

zz

(b)	 The only way Q R P⋅ ×  makes sense is

Q R P

a a a

⋅ × = − ⋅ −
−

= − ⋅
= − + =

( ) ( , , )

( , , ) ( , , )

2 1 2 2 3 1

2 0 1

2 1 2 3 4 6

6 4 12 14

x y z

	 Alternatively:

Q R P⋅ × =
−
−

−
( )

2 1 2

2 3 1

2 0 1

	� To find the determinant of a 3 × 3 matrix, we repeat the first two rows and cross multiply; when 
the cross multiplication is from right to left, the result should be negated as shown diagram-
matically here. This technique of finding a determinant applies only to a 3 × 3 matrix. Hence,

 

Q R P⋅ × = −
−
−

−
−

−
−
−

+
+
+

= + + − + − −
=

( )

2 1 2

2 3 1

2 0 1

2 1 2

2 3 1

6 0 2 12 0 2

14

	 as obtained before.
(c)	 From eq. (1.28)

P Q R Q R P⋅ × = ⋅ × =( ) ( ) 14

	 or

P Q R⋅ × = − ⋅ −
= + +
=

( ) ( , , ) ( , , )2 0 1 5 2 4

10 0 4

14
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c h a p t e r  1   V e c to r  A lg e b r a   ■   17

(d)

	

sin
( , , )

( , , ) , ,

.

θQR =
×

=
−

− −

= = =

Q R

Q R

5 2 4

2 1 2 2 3 1

45

3 14

5

14
0 5976

(e)
	

P Q R× × = − × −
=

( ) ( , , ) ( , , )

( , , )

2 0 1 5 2 4

2 3 4

	 Alternatively, using the bac-cab rule,

P Q R Q P R R P Q× × = ⋅ − ⋅
= − + − − − + −
=

( ) ( ) ( )

( , , ) ( ) ( , , ) ( )

( ,

2 1 2 4 0 1 2 3 1 4 0 2

2 3,, )4

(f)	 A unit vector perpendicular to both Q and R is given by

a
Q R

Q R
=

± ×
×

=
± −

= ± −

( , , )

( . , . , . )

5 2 4

45

0 745 0 298 0 596

	 Note that a a Q a R= ⋅ = = ⋅1 0, . Any of these can be used to check a.

(g)	 The component of P along Q is

P P a

P a a
P Q Q

Q
P

Q
Q

Q
Q

Q PQ Q

Q Q

=

= ⋅( ) =
⋅

=
+

⋅

















 =

cos

( )

(

θ

2

4 0 −− −
+ +

= −

= − +

2 2 1 2

4 1 4

2

9
2 1 2

0 4444 0 2222 0 4444

)( , , )

( )
( , , )

. . .a a ax y z

PRACTICE EXERCISE  1.5

Let E a a= +3 4y z  and F a a a= − +4 10 5x y z.

(a)  Find the component of E along F.
(b)  Determine a unit vector perpendicular to both E and F.

Answer:  (a) (−0.2837, 0.7092, −0.3546), (b) ±(0.9398, 0.2734, −0.205).

 EXAMPLE 1.6 	 Derive the cosine formula

a b c bc A2 2 2 2= + − cos

and the sine formula
sin sin sinA

a

B

b

C

c
= =

using dot product and cross product, respectively.
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18  ■   Pa r t  1 :   V e c to r  A n a ly s i s

Solution: Consider a triangle as shown in Figure 1.11. From the figure, we 
notice that

a b c 0+ + =

that is,

b c a+ = −
Hence,

a

a b c bc A

2

2 2 2

2

2

= ⋅ = + ⋅ +
= ⋅ + ⋅ +
= + −

⋅
a a b c b c
b b c c b c

( ) ( )

cos

where ( )π − A is the angle between b and c.
The area of a triangle is half of the product of its height and base. Hence,

1

2

1

2

1

2
a b b c c a× = × = ×

= =ab C bc A ca Bsin sin sin

Dividing through by abc gives

sin sin sinA

a

B

b

C

c
= =

A

B

Ca

b

c

Figure 1.11  For Example 1.6.

PRACTICE EXERCISE  1.6

Show that vectors a = (4, 0, −1), b = (1, 3, 4), and c = (−5, −3, −3) form the sides of a triangle. 
Is this a right angle triangle? Calculate the area of the triangle.

Answer:  Yes, 10.5.

 EXAMPLE 1.7 	 Show that points P
1
(5, 2, −4), P

2
(1, 1, 2), and P

3
(−3, 0, 8) all lie on a straight 

line. Determine the shortest distance between the line and point P
4
(3, −1, 0).

Solution: The distance vector rP P1 2
 is given by

r r rP P P P1 2 2 1
1 1 2 5 2 4

4 1 6

= − = − −

= − −

( , , ) ( , , )

( , , )

Similarly,

r r r

r r r

P P P P

P P P P

1 3 3 1

1 4 4 1

3 0 8 5 2 4

8 2 12
3

= − = − − −
= − −

= − =

( , , ) ( , , )

( , , )
( ,, , ) ( , , )

( , , )

(

− − −
= − −

× = − −
− −

=

1 0 5 2 4

2 3 4

4 1 6

8 2 12

0

1 2 1 3
r r

a a a

P P P P

x y z

,, , )0 0

showing that the angle between rP P1 2
 and rP P1 3

 is zero (sin )θ =0 . This implies that P
1
, P

2
, and P

3
 

lie on a straight line.
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c h a p t e r  1   V e c to r  A lg e b r a   ■   19

Alternatively, the vector equation of the straight line is easily determined from Figure 1.12(a). 
For any point P on the line joining P

1
 and P

2

r rP P P P1 1 2
= λ

where l is a constant. Hence the position vector r
P
 of the point P must satisfy

r r r rp P P P− = −
1 2 1

λ( )

that is,

r r r r

r

p P p p

p

= + −
= − − −
= − − − +

1 2 1

5 2 4 4 1 6
5 4 2 4 6

λ
λ

λ λ λ

( )

( , , ) ( , , )
( , , )

This is the vector equation of the straight line joining P
1
 and P

2
. If P

3
 is on this line, the position 

vector of P
3
 must satisfy the equation; r

3
 does satisfy the equation when λ =2.

The shortest distance between the line and point P
4
(3, −1, 0) is the perpendicular distance 

from the point to the line. From Figure 1.12(b), it is clear that

d rP P P P P P= = ×

=
− − × − −

− −

=

1 4 1 4 1 2

2 3 4 4 1 6

4 1 6

312

53

sin

( , , ) ( , , )

( , , )

θ r a

== 2 426.

Any point on the line may be used as a reference point. Thus, instead of using P
1
 as a reference 

point, we could use P
3
. If ∠ = ′P P P4 3 2 θ , then

d P P P P P P= ′ = ×r r a
3 4 3 4 3 2

sin θ

(b)(a)

rP2
P2

P1

P
rP1 rP

0 P2

P1

P4

d

q

Figure 1.12  For Example 1.7.

PRACTICE EXERCISE  1.7

If P
1
 is (1, 2, −3) and P

2
 is (−4, 0, 5), find

(a)	 The distance P
1
P

2

(b)	 The vector equation of the line P
1
P

2

(c)	 The shortest distance between the line P
1
P

2
 

and point P
3
 (7, −1, 2)

Answer:  (a) 9.644,  (b) ( ) ( ) ( )1 5 2 1 8 3− + − + −λ λ λa ax y za ,  (c) 8.2.
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20 ■  Pa r t  1 :  V e c to r  a n a ly s i s

    ADDITIONAL EXAMPLES     
   EXAMPLE 1.8     Electric fi eld intensity is produced by a charge distribution as explained in 
Appendix A  and Chapter 4. It is a vector and denoted by  E .   The electric fi eld components at a 
point  P  due to two different sources (charge distributions) are as follows:  
E  

1
  = 10 V/m at an angle of 30° with the horizontal in the anticlockwise direction  

E  
2
  = 12 V/m at an angle of 50° with the horizontal in the clockwise direction 

   (a)    Determine the net electric fi eld at the point  P .   
  (b)    Convert the given values into vector quantities and determine the net electric fi eld using vec-

tor addition.   

       Solution :  
   (a)    By the parallelogram rule, the net electric fi eld is given by  

E E E E E E E= + − ( )( )1

2

2

2

1 2 1 22 cos ,

   = + − × ×( )°10 12 2 10 12 1002 2 cos( )    

= 16 90.   V/m  

  % This script allows the user to input two vectors and 
 % then compute their dot product, cross product, sum, 
 % and difference 
 clear 
 vA = input('Enter vector A in the format [x y z]... \n > '); 
 if isempty(vA); vA = [0 0 0]; end % if the input is 
                 % entered incorrectly set the vector to 0  
 vB = input('Enter vector B in the format [x y z]... \n > '); 
 if isempty(vB); vB = [0 0 0]; end 
 disp('Magnitude of A:') 
 disp(norm(vA))              % norm fi nds the magnitude of a 
                           % multi-dimensional vector 
 disp('Magnitude of B:') 
 disp(norm(vB)) 
 disp('Unit vector in direction of A:') 
 disp(vA/norm(vA))           % unit vector is the vector 
                           % divided by its magnitude 
 disp('Unit vector in direction of B:') 
 disp(vB/norm(vB)) 
 disp('Sum A+B:') 
 disp(vA+vB) 
 disp('Difference A-B:') 
 disp(vA-vB) 
 disp('Dot product (A  ·  B):') 
 disp(dot(vA,vB))            % dot takes the dot product of vectors 
 disp('Cross product (A × B):') 
 disp(cross(vA,vB))          % cross takes cross product of vectors  

     MATLAB 1.1  
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c h a p t e r  1   V e c to r  A lg e b r a   ■   21

Note: In the cosine rule we have to take the angle between the two vectors when the head of one 
vector is connected to the tail of the other vector as shown in Figure 1.13.

Let q be the angle made by the resultant electric field with E
2

θ =
°

+ °











−tan
sin

cos
1 1

2 1

80
80

E
E E

 
 

=
°

+ °








−tan
sin

cos
1 10 80

12 10 80

 
 

= °35 64.  

The angle made by E with the horizontal is 14 36. °  in the clockwise direction.

E a a a= − ° + − ° = −16 90 14 36 16 90 14 36 16 373 4 192. cos( . ) . sin ( . ) . .  x y x aa y V/m

(b)	 In vector notation,

E a a a a1 10 30 10 30 8 660 5= + = +cos sin .x y x yV/m

E a a a a2 12 50 12 50 7 713 9 192= − ° + − ° = −cos( ) sin( ) . .x y x y V/m

	 The net electric field at the point is

E E E a a a a= + = + + −1 2 8 660 5 7 713 9 192. . .x y x y

E a a= −16 373 4 192. .x y V/m 

It can be observed that the procedure of vector addition is simple and straightforward.

|E|

|E2|

|E1|

E2

E1

E

E2

100°

100°

30°

50°
14.36°

q

Figure 1.13  For Example 1.8.

PRACTICE EXERCISE  1.8

If A a a a= − +4 2 6x y z  and B a a a= + −12 18 8x y z , determine:

(a)	 A B−3
(b)	 ( )2 5A B B+ /

(c)	 a Ax×
(d)	 ( )B a a× ⋅x y

Answers:  (a)  -32a
x
 - 56a

y
 + 30a

z 
(b)  2.94a

x
 + 3.72a

y
 - 1.214a

z 
(c)  -6a

y
 - 2a

z 
(d)  -8
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22  ■   Pa r t  1 :   V e c to r  A n a ly s i s

 EXAMPLE 1.9 	 Let us consider a two-dimensional plane having a uniform electric field of 
3 2a ax y− V/m. Determine the dot product between the electric field and
(a)	 the vector joining points (0, 0) and (12, −8);
(b)	 the vector joining points (0, 0) and (8, 12); and
(c)	 the vector joining points (0, 0) and (8, −12).

Solution: Electric field in the given plane E a a= −3 2x y  V/m

(a)	 The position vector joining the points (0, 0) and (12, −8) is r a a= −12 8x y  m
	 The unit vector along the E field is 0 83 0 55. .a ax y−
	 The unit vector along the r vector is 0 83 0 55. .a ax y−
	 Both vectors are in the same direction, and the dot product is:

3 2 12 8 36 16 52a a a ax y x y− − = + =( ) ⋅ ( ) V

(b)	 The position vector joining the points (0, 0) and (8, 12) is r a a= +8 12x y m

	 The dot product is: 3 2 8 12 24 24 0a a a ax y x y− + = − =( ) ⋅ ( )
	 The dot product has the minimum magnitude when r is in the direction orthogonal to E.
(c)	 The position vector joining the points (0, 0) and (8, −12) is r a a= −8 12x y m 

	 The dot product is: 3 2 8 12 24 24 48a a a ax y x y−( ) ⋅ −( ) = + = V

	 Incidentally, dot product gives the magnitude of the potential difference between two points 
under consideration, as explained in Appendix A and in Section 4.7 of Chapter 4. The rate of 
change of potential is maximum along E (case-a) and minimum along the orthogonal direc-
tion (case-b) which is an equipotential contour. It has intermediate values for other directions 
(case-c).

PRACTICE EXERCISE  1.9

Determine the dot product, cross product, and angle between P a a a= − +2 6 5x y z and Q a a= +3 y z

Answer:  -13, -21a
x
 - 2a

y
 + 6a

z 
, 120.66°

EXAMPLE 1.10 	 A wave propagation phenomenon can be explained in terms of two vectors: 
electric field intensity (E) and magnetic field intensity (H). A uniform plane wave propagating 
from a radiating source is characterized by constant amplitudes of E and H vectors in any plane 
transverse to the direction of propagation. Consider a uniform plane wave originating from an 
antenna and traveling through a homogenous unbounded medium. The electric field and magnetic 
field at an instant of time at a point in a plane near the receiver is 75 196 43 415. .a ax y+ V/m and 
− +0 115 0 199. .a ax yA/m respectively. Determine the instantaneous power transferred to that point 
by the antenna at the instant of time.

Solution: The following data is given—

Electric field vector ( ) . .E = +75 196 43 415a ax y V/m

Magnetic field vector ( ) . .H = − +0 115 0 199a ax y A/m

The instantaneous power density in the wave is given by Poynting Vector (P) which is the cross 
product of E and H:

P E H�= ×
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=
−

a a ax y z

75 196 43 415 0

0 115 0 199 0

. .

. .

= +( )14 96 4 99. . a z

= 19 95. a z  W/m2

It should be noted that E and H are orthogonal in space for a uniform plane wave (see in 
Appendix A and Chapter 10). This fact can be verified by taking the dot product of the two vec-
tors in this example, which is zero. Needless to say that E, H, and P form a right-handed system. 
The direction of P is the direction of wave propagation.

PRACTICE EXERCISE  1.10

Find the area of the parallelogram formed by the vectors D a a a= − +4 5x y z and E a a a= − + +x y z2 3

Answer:  8.646

EXAMPLE 1.11 	 Consider a straight line in the xy-plane represented by 3x + 2y = 6. Find the 
unit vector directed from the origin perperdicular to this line.

Solution: The line 3x + 2y = 6 intersects the x-axis and the y-axis in points A(2, 0) and B(0, 3) 
respectively. The equation of the line segment from (2, 0) to (0, 3) is

r a a a aAB x y x y= − + − = −( ) ( )2 0 0 3 2 3

Let us consider a point P(x, y) on the given line such that the vector joining the origin and(x, y) 
is perpendicular to the line. As per eq. (1.14), the vector directed from the origin to P(x, y) is as 
follows:

r r a aP OP x yx y= = +

The unit vector along it is given by the following equation:

a
a a

OP
x yx

x
=

+

+

y

y2 2

As the vectors r
AB

 and r
P
 are orthogonal, their dot product will be zero:

r rAB P⋅ = 0

2 3 0x y− =

Solving the above equation with 3 2 6x y+ =  gives x = 1 38.  and y = 0 92.
Therefore,

r a aP x y= +1 38 0 92. .

And the unit vector along it is given as follows:

a
a a

a aOP
x y

x y=
+

( ) + ( )
= +

1 38 0 92

1 38 0 92
0 83 0 55

2 2

. .

. .
. .
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REVIEW QUESTIONS 	
	1.1	 Tell which of the following quantities is not a vector: (a) force, (b) momentum, (c) acceleration, (d) work, 

(e) weight.
	1.2	 Which of the following is not a scalar field?
	 (a)	 Displacement of a mosquito in space
	 (b)	 Light intensity in a drawing room
	 (c)	 Temperature distribution in your classroom

	 (d)	 Atmospheric pressure in a given region
	 (e)	 Humidity of a city

	1.3	 Of the rectangular coordinate systems shown in Figure 1.14, which are not right handed?

	1.4	 Which of these is correct?
	 (a)	 A A A× =

2

	 (b)	 A B B A 0× + × =

	 (c)	 A B C B C A⋅ ⋅ = ⋅ ⋅

	 (d)	 a a ax y z⋅ =

	 (e)	 a a ak x y= − , where a
k
 is a unit vector

(a)

y

x

z

(d)
x

y

z

(e)

y

x

z
(f )

z

y

x

(b)

x

y

z
(c)

z

x

y

Figure 1.14  For Review Question 1.3.

PRACTICE EXERCISE  1.11

If A a a a= − +4 6x y z  and B a a= +2 5x z , find:

(a)	 A B B⋅ + 2
2

(b)	 a unit vector perpendicular to both A and B

Answers:  (a) 71, (b) ± (-0.8111a
x 
- 0.4867a

y
 + 0.3244a

z 
)

SUMMARY
1.	 A field is a function that specifies a quantity in space. For example, A(x, y, z) is a vector field, whereas 

V(x, y, z) is a scalar field.
2.	 A vector A is uniquely specified by its magnitude and a unit vector along it, that is, A = Aa

A
.

3.	 Multiplying two vectors A and B results in either a scalar A · B = AB cos q
AB

 or a vector A × B = AB 
sin q

AB
 a

n
. Multiplying three vectors A, B, and C yields a scalar A · (B × C) or a vector A × (B × C).

4.	 The scalar projection (or component) of vector A onto B is A
B
 = A · a

B
, whereas vector projection of A 

onto B is A
B
 = A

B
a

B
.
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	 1.5	 Which of the following identities is not valid?
	 (a)	 a b c ab bc( )+ = +
	 (b)	 a × +( ) = × + ×b c a b a c
	 (c)	 a b b a⋅ = ⋅

	 (d)	 c a ab c⋅ ( ) = − ⋅( )× ×b

	 (e)	 a aA B AB⋅ = cosθ

	 1.6	 Which of the following statements are meaningless?
	 (a)	 A B A⋅ + =2 0

	 (b)	 A ⋅ + =B A5 2

	 (c)	 A + +( ) + =A B 2 0

	 (d)	 A A B B⋅ + ⋅ = 0
	 1.7	 Let F a a a= − +2 6 10x y z and G a a a= + +x y y zG 5 . If F and G have the same unit vector, G

y
 is

	 (a)	 6
	 (b)	 −3

	 (c)	 0
	 (d)	 6

	 1.8	 Given that A a a a= + +x y zα  and B a a a= + +α x y z , if A and B are normal to each other, α is
	 (a)	 −2
	 (b)	 −1/2
	 (c)	 0

	 (d)	 2
	 (e)	 1

	 1.9	 The component of 6 2 3a a ax y z+ −  along 3 4a ax y−  is
	 (a)	 − − −12 9 3a a ax y z

	 (b)	 30 40a ax y−
	 (c)	 10/7

	 (d)	 2
	 (e)	 10

	1.10	 Given A a a a= − + +6 3 2x y z, the projection of A along a
y
 is

	 (a)	 −12
	 (b)	 −4
	 (c)	 3

	 (d)	 7
	 (e)	 12

Answers  1.1d,  1.2a,  1.3b, e,  1.4b,  1.5a,  1.6a, b, c,  1.7b,  1.8b,  1.9d,  1.10c.

PROBLEMS �
Section 1.4—Unit Vector

	1.1	 Determine the unit vector along the direction OP, where O is the origin and P is point (4, −5, 1).
	1.2	 Find the unit vector along the line joining point (2, 4, 4) to point (−3, 2, 2).

Sections 1.5–1.7—Vector Addition, Subtraction, and Multiplication

	1.3	 Given vectors A a a a= − +4 6 3x y z and B a a a= − + +x y z8 5 , find (a) A B− 2 , (b) A B⋅ , (c) A B× .
	1.4	 Let A a a a= + +4 2x y z , B a a a= + +3 5x y z , and C a a= −y z7 . Find A B C⋅ ×( ).
	1.5	 Let A a a= −x z, B a a a= + +x y z, C a a= +y z2 , find:
	 (a)	 A B C⋅ ×( )
	 (b)	 ( )A B C× ⋅

	 (c)	 A B C× ×( )
	 (d)	 ( )A B C× ×

	1.6	 If the position vectors of points T and S are 3 2a a ax y z− +  and 4 6 2a a ax y z+ + , respectively, find 
(a) coordinates of T and S, (b) the distance vector from T to S, (c) the distance between T and S.

	1.7	 Let A a a a= + −α x y z3 2  and B a a a= + +4 8x yβ .
	 (a)	 Find a and b if A and B are parallel.
	 (b)	 Determine the relationship between a and b if B is perpendicular to A.
	1.8	 (a)  Show that

( ) ( )A B A B⋅ + × =2 2 2AB
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	 (b)	 Show that

a
a a

a a a
a

a a

a a a
a

a a

a a ax
y z

x y z
y

z x

x y z
z

x y

x y z

=
×

⋅ ×
=

×
⋅ ×

=
×

⋅ ×
, ,

	 1.9	 Given that

P a a a

Q a a a

R a a a

= − −

= + +

= − + +

2 2

4 3 2

2

x y z

x y z

x y z

	� find: (a) P Q R+ − , (b) P Q R⋅ × , (c) Q P R× ⋅ , (d) ( ) ( )P Q Q R× ⋅ × , (e) ( ) ( )P Q Q R× × × , (f) cosθPR, 
(g) sin θPQ.

	1.10	 Show that vectors A a a a= − +x y z2 3  and B a a a= − + −2 4 6x y z  are parallel.
	1.11	 Simplify the following expressions:
	 (a)	 A A B× ×( ) 	 (b)	 A A A B× × ×[ ( )]
	1.12	 A right angle triangle has its corners located at P

1
(5, −3, 1), P

2
(1, −2, 4), and P

3
(3, 3, 5). (a) Which 

corner is a right angle? (b) Calculate the area of the triangle.
	1.13	 Points P, Q, and R are located at (−1, 4, 8), (2, −1, 3), and (−1, 2, 3), respectively. Determine (a) the 

distance between P and Q, (b) the distance vector from P to R, (c) the angle between QP and QR, (d) 
the area of triangle PQR, (e) the perimeter of triangle PQR.

	1.14	 Two points P(2, 4, −1) and Q(12, 16, 9) form a straight line. Calculate the time taken for a sonar signal 
traveling at 300 m/s to get from the origin to the midpoint of PQ.

	1.15	 Show that the dot and cross in the triple scalar product may be interchanged, that is,  A B C A B C⋅ × = × ⋅( ) ( ) .
	*1.16	(a) � Prove that P a a= +cos sinθ θ1 1x y  and Q a a= +cos sinθ θ2 2x y  are unit vectors in the xy-plane, 

respectively, making angles θ1  and θ2  with the x-axis.
	 (b)	� By means of dot product, obtain the formula for cos( )θ θ2 1− . By similarly formulating P and Q, 

obtain the formula for cos( )θ θ2 1+ .
	 (c)	� If q is the angle between P and Q, find 1

2 P Q−  in terms of q.
	1.17	 Consider a rigid body rotating with a constant angular velocity w radians per second about a fixed 

axis through O as in Figure 1.15. Let r be the distance vector from O to P, the position of a particle 
in the body. The magnitude of the velocity u of the body at P is u r= =d ω θsin ω  . or u r= ×ω  If 
the rigid body is rotating at 3 rad/s about an axis parallel 
to a a ax y z− +2 2  and passing through point, (2, −3, 1) 
determine the velocity of the body at (1, 3, 4).

	1.18	 A cube of side 1 m has one corner placed at the origin. 
Determine the angle between the diagonals of the cube.

	1.19	 Given vectors T a a a= − +2 6 3x y z  and S a a a= + +x y z2  , 
find (a) the scalar projection of T on S, (b) the vector pro-
jection of S on T, (c) the smaller angle between T and S.

Section 1.8—Components of a Vector

	1.20	 Given two vectors A and B, show that the vector compo-
nent of A perpendicular to B is

C A
A B
B B

B= −
⋅
⋅

*Single asterisks indicate problems of intermediate difficulty

u
d

q

w

r

P

O

Figure 1.15  For Problem 1.17.
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	1.21	 If H a a a= − + +2xy x z zx y z( ) 2 , find:
	 (a)	 A unit vector parallel to H at P(1, 3, −2)
	 (b)	 The equation of the surface on which H = 10
	1.22	 Given three vectors

A a a a

B a a

C A B

= − +

= −

= +

4 x y z

x y

	 Find: (a) A B C⋅ ×( ) , (b) the vector component of A along B.

	1.23	 Let G a a a= − +x y zx y z
2 2  and H a a a= yz xzx y z+ +3 . At point (1, −2, 3), (a) calculate the magnitude 

of G and H, (b) determine G H⋅ , (c) find the angle between G and H.
	1.24	 Determine the scalar component of vector H a a= −y xx z  at point P(1, 0, 3) that is directed toward point 

Q(−2, 1, 4).
	1.25	 Given two vector fields

D a a a= + +yz xz xyx y z  and E a a a= + + +5 6 3 82 2xy x xx y z( )

	 (a)	 Evaluate C D E= +  at point P(−1, 2, 4).
	 (b)	 Find the angle C makes with the x-axis at P.
	1.26	 E and F are vector fields given by E a a a= + +2x yzx y z and F a a a= − +xy y xyzx y z

2 . Determine:
	 (a)	 E  at (1, 2, 3)
	 (b)	 The component of E along F at (1, 2, 3)
	 (c)	 A vector perpendicular to both E and F at (0, 1, −3) whose magnitude is unity
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  The Accreditation Board for Engineering and Technology ( ABET) establishes 
eleven criteria for accrediting engineering, technology, and computer science pro-
grams. The criteria are as follows: 

   A.    Ability to apply mathematics science and engineering principles   
  B.    Ability to design and conduct experiments and interpret data   
  C.    Ability to design a system, component, or process to meet desired needs   
  D.    Ability to function on multidisciplinary teams   
  E.    Ability to identify, formulate, and solve engineering problems   
  F.    Ability to understand professional and ethical responsibility   
  G.    Ability to communicate effectively   
  H.    Ability to understand the impact of engineering solutions in a global context   
  I.    Ability to recognize the need for and to engage in lifelong learning   
  J.    Ability to know of contemporary issues   
  K.    Ability to use the techniques, skills, and modern engineering tools necessary for 

engineering practice   

    Criterion A applies directly to electromagnetics. As students, you are expected to 
study mathematics, science, and engineering with the purpose of being able to apply 
that knowledge to the solution of engineering problems. The skill needed here is the 
ability to apply the fundamentals of EM in solving a problem. The best approach is 
to attempt as many problems as you can. This will help you to understand how to 
use formulas and assimilate the material. Keep nearby all your basic mathematics, 
science, and engineering textbooks. You may need to consult them from time to time.  

     ENHANCING YOUR SKILLS AND CAREER  
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