Principles of Electromagnetics 6th edition

Asian Adaptation

Matthew N.O. Sadiku

Prairie View A\&M University

Adapted by S.V. Kulkarni

Indian Institute of Technology Bombay

OXFORD

OXFORD
 UNIVERSITY PRESS

Oxford University Press is a department of the University of Oxford. It furthers the University's objective of excellence in research, scholarship, and education by publishing worldwide. Oxford is a registered trade mark of Oxford University Press in the UK and in certain other countries.

Published in India by Oxford University Press
YMCA Library Building, 1 Jai Singh Road, New Delhi 110001, India
© Oxford University Press 2015
Elements of Electromagnetics, International Sixth Edition, 6e (ISBN: 9780199321407) was originally published in English in 2015. This adapted edition is published in arrangement with Oxford University Press, Inc. Oxford University Press India is solely responsible for this adaptation from the original work.

Copyright © 2015, 2010, 2007, 2000 by Oxford University Press. Previously published by Saunders College Publishing, a division of Holt, Rinehart, \& Winston, Inc. 1994, 1989.

The moral rights of the author/s have been asserted.
All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, without the prior permission in writing of Oxford University Press, or as expressly permitted by law, by licence, or under terms agreed with the appropriate reprographics rights organization. Enquiries concerning reproduction outside the scope of the above should be sent to the Rights Department, Oxford University Press, at the address above.

You must not circulate this work in any other form and you must impose this same condition on any acquirer.

This Asian edition of the text has been adapted and customized for South and South-East Asia. Not for sale in the USA, Canada, and the UK.

ISBN-13: 978-0-19-946185-1
ISBN-10: 0-19-946185-6
Typeset in TimesLTStd-Roman
by Welkyn Software Solutions Pvt. Ltd Printed in India by Multivista Global Ltd., Chennai

Third-party website addresses mentioned in this book are provided by Oxford University Press in good faith and for information only.
Oxford University Press disclaims any responsibility for the material contained therein.

To my wife, Kikelomo
-Matthew N.O. Sadiku

To God who gave me wisdom and strength
-S.V. Kulkarni

Preface

Electromagnetics is a branch of Electrical and Electronics Engineering which entails the study of the principles, synthesis, and physical interpretation of electric and magnetic fields. The subject requires thorough knowledge of vector calculus and an ability to imagine field distribution in space. The various applications of electromagnetics include power transformers, rotating machines, and actuators (low-frequency devices) and microwave devices, waveguides, antennas, and radars (high-frequency devices). The principles of electromagnetics help us understand the design and operation of these low- and high-frequency devices. The main objective of this book is to present the fundamental laws and principles of electromagnetics and its applications in a clearer and more interesting manner than other books do.

ABOUT THE BOOK

The Asian adaptation of Principles of Electromagnetics, sixth edition, is a comprehensive textbook designed for undergraduate students of Electrical and Electronics Engineering. Using a vectors-first approach, the book explains electrostatics, magnetostatics, fields, waves, and applications such as transmission lines, waveguides, and antennas. The book also provides a balanced presentation of static and time-varying fields, preparing students for employment in today's industrial and manufacturing sectors.

KEY FEATURES

- Treats mathematical theorems separately from physical concepts, making it easier for students to grasp the theorems
- Presents real-world applications of the concepts covered at the end of each chapter
- Provides MATLAB codes developed for the computer implementation of the concepts presented in each chapter
- Devotes an entire part to the different numerical techniques with practical applications and computer programs
- Comprises numerous examples, each worked step-by-step, and a set of multiple-choice questions at the end of each chapter
- Contains more than 450 figures to help students visualize the different electromagnetic phenomena

Each revision of this book has involved many changes that have made the contents of the book even better. The fully revised and updated sixth edition now features the following:

- An appendix called Summary of Important Concepts in Electromagnetics explains the fundamentals of electromagnetics succinctly. This appendix will help students consolidate their understanding of the subject. Numerous comments and explanations have been added at various places so that theories and concepts are understood better.
- The text contains new material/sections on constant coordinate surfaces, classification of vector fields, torque on a dipole, homogeneous and heterogeneous dielectric systems, classification
of magnetic materials, permanent magnets, wave polarization, transients on transmission lines, transmission lines as circuit elements, and current and mode excitation in waveguides.
- Coverage of numerical methods has been enhanced, with separate chapters dedicated to the different types of methods. These have been exemplified by solving real-life problems using all the techniques through additional MATLAB codes. The finite difference time domain method has been newly added.
- Sixteen new application notes have been added, which explain the connections between the concepts discussed in the text and the real world.
- There are additional solved examples in all the chapters.
- New practice exercises and chapter-end problems have been added.

Although this book is intended to be self-explanatory and useful for self-instruction, the personal contact that is always needed in teaching has not been forgotten. The actual choice of course topics, as well as their emphasis, depends on the preference of the individual instructor. For example, an instructor who feels too much importance has been devoted to vector analysis or static fields may skip some of the material; however, students may use them as reference. In addition, it is pertinent to note, having covered Chapters $1-3$, it is possible to explore Chapters 9-15. Instructors who disagree with the vector calculus-first approach may proceed with Chapters 1 and 2 , skip to Chapter 4, and then refer to Chapter 3 as needed. Enough material has been covered for the two-semester courses. If the text is to be covered in one semester, covering Chapters $1-9$ is recommended; some sections may be skipped, explained briefly, or assigned as homework. Sections marked with the dagger sign (\dagger) may be in this category.

ONLINE RESOURCES

The following resources are available at http://oupinheonline.com to support the faculty and students using this book.

For Faculty

- Solutions Manual
- Figures-only PPTs
- Math Assessment with Solutions

For Students

- Multiple-choice Questions

ACKNOWLEDGMENTS

I thank Dr Sudarshan Nelatury of Penn State University for providing the new application notes, as well as solving the problems present in the book and working with me on the solutions manual. I appreciate the help of Dr Josh Nickel of Santa Clara University for developing the MATLAB code at the end of each chapter. Special thanks are due to Nancy Blaine and Patrick Lynch at Oxford University Press for their efforts. I also thank the reviewers who provided helpful feedback for this edition:

Dentcho Angelov Genov
Douglas T. Petkie
Sima Noghanian

Louisiana Tech University
Wright State University
University of North Dakota

Vladimir Rakov	University of Florida
James E. Richie	Marquette University
Charles R. Westgate Sr.	SUNY-Binghamton
Elena Semouchkina	Michigan Technological University
Weldon J. Wilson	University of Central Oklahoma
Murat Tanik	University of Alabama-Birmingham
I offer my thanks to those who reviewed the previous editions of the text:	
Yinchao Chen	University of South Carolina
Perambur S. Neelakantaswamy	Florida Atlantic University
Satinderpaul Singh Devgan	Tennessee State University
Kurt E. Oughstun	University of Vermont
Scott Grenquist	Wentworth Institute of Technology
Barry Spielman	Washington University
Xiaomin Jin	Cal Poly State University, San Luis Obispo
Erdem Topsakal	Mississippi State University
Jaeyoun Kim	Iowa State University
Yan Zhang	University of Oklahoma
Caicheng Lu	University of Kentucky

I am grateful to Dr Kendall Harris, dean of the College of Engineering at Prairie View A\&M University, and Dr Pamela Obiomon, interim head of the Department of Electrical and Computer Engineering, for their constant support. Special thanks are due to Dr Iain R. McNab, University of Toronto, for sending me a list of errors found in the fourth edition. I would like to acknowledge Dr Sarhan Musa and my daughter Joyce Sadiku for helping with the quotes at the beginning of the chapters. A well-deserved expression of appreciation goes to my wife and our children (Motunrayo, Ann, and Joyce) for their support and prayer. I owe special thanks to the professors and students who used the earlier editions of the book. Please keep sending those errors directly to the publisher or to me at sadiku@ieee.org.

Matthew N.O. Sadiku Prairie View, Texas, USA

I thank Dr Sadiku and Oxford University Press India for giving me the opportunity to add value to this already established and popular textbook on electromagnetics.

I also thank my Institute, IIT Bombay, for providing an excellent ambience for completing the work. I am grateful to Prof. R.K. Shevgaonkar, my colleague and Professor, IIT Bombay, Prof. G.B. Kumbhar, IIT Roorkee, and Dr K.P. Ray, Programme Director \& Head, RF \& Microwave System Division, SAMEER, for their useful comments.

I also offer thanks to my students, B. Sairam and Tinu Baby, who helped me tremendously throughout this project. I place on record the contributions of Kiran Kandregula, project staff, Dr Ajay Pal Singh, Dr Sarang Pendharkar, and my students, Shaimak Reddy, Rahul Bhat, Akshay Hindole, Ganesh Avhad, Greeshma Mohan, and Pragati Patel.

Thanks are also due to the editorial staff of Oxford University Press India who constantly supported the project with patience and handled the editing job meticulously.

Writing a book is a difficult task and requires support and encouragement from family members. The overwhelming support and understanding of my wife, Sushama, is admirable. My son, Anandchaitanya, was quite considerate in allowing me to work even on weekends; thanks are due to the little one for his sacrifice and patience.
S.V. Kulkarni

IIT Bombay, Mumbai, India

A Note to the Student

Electromagnetic theory is generally regarded by students as one of the most difficult courses in physics or the electrical engineering curriculum. But this misconception may be proved wrong if you take some precautions. From experience, the following ideas are provided to help you perform to the best of your ability with the aid of this textbook:

1. Pay particular attention to Part 1 on vector analysis, the mathematical tool for this course. Without a clear understanding of this section, you may have problems with the rest of the book.
2. Do not attempt to memorize too many formulas. Memorize only the basic ones, which are usually boxed, and try to derive others from these. Try to understand how formulas are related. Obviously, there is nothing like a general formula for solving all problems. Each formula has some limitations owing to the assumptions made in obtaining it. Be aware of those assumptions and use the formula accordingly.
3. Try to identify the key words or terms in a given definition or law. Knowing the meaning of these key words is essential for proper application of the definition or law.
4. Attempt to solve as many problems as you can. Practice is the best way to gain skill. The best way to understand the formulas and assimilate the material is by solving problems. It is recommended that you solve at least the problems in the Practice Exercise immediately following each illustrative example. Sketch a diagram illustrating the problem before attempting to solve it mathematically. Sketching the diagram not only makes the problem easier to solve, it also helps you understand the problem by simplifying and organizing your thinking process. Note that unless otherwise stated, all distances are in meters. For example $(2,-1,5)$ actually means ($2 \mathrm{~m},-1 \mathrm{~m}, 5 \mathrm{~m}$).

You may use MATLAB to do number crunching and plotting. A brief introduction to MATLAB is provided in Appendix D .
Important formulas in calculus, vectors, and complex analysis are provided in Appendix B. Answers to problems are given in Appendix F.

FEATURES OF

PART 1

VECTOR ANALYSIS

Chapter 1 Vector Algebra
Chapter 2 Coordinate Systems and Transformations
Chapter 3 Vector Calculus

Historical Profile of Scientists

Select chapters open with the profile of a pioneer in the field of electromagnetics, describing the contribution of the scientist in this area of study.
${ }^{\dagger}$ 11.8 APPLICATION NOTE—MICROSTRIP LINES AND

${ }^{\dagger}$ A. Microstrip Transmission Lines

Microstrip lines belong to a group of lines widely used in present-day electronics. Apa mission lines for microwave integrated circt
${ }^{\dagger}$ 12.10 APPLICATION NOTE—CLOAKING AND INVISIB
The practice of using metamaterials to Metamaterials are ideal for cloaking beca index. All materials have an index of refrac

Coverage of Vector Analysis

Vector analysis is covered in the beginning of the book and the concepts gradually applied, thus helping students separate mathematical theorems from physical concepts. This makes it easier for them to grasp the generality of those theorems.

Michael Faraday (1791-1867), an English physicist, is known for his pioneering experi tricity and magnetism. Many consider him experimentalist who ever lived.

Born at Newington, near London, to a pc received little more than an elementary educa seven-year apprenticeship as a bookbinder, F oped his interest in science and in particular a result, Faraday started a second apprentice

Application Notes

The last section in each chapter is devoted to the applications of the concepts covered therein. This helps students understand how the concepts apply to real-life situations.
$\left[\begin{array}{l}A_{r} \\ A_{\theta} \\ A_{\phi}\end{array}\right]=\left[\begin{array}{ccc}\sin \theta \cos \phi & \sin \theta \sin \phi & \cos \theta \\ \cos \theta \cos \phi & \cos \theta \sin \phi & -\sin \theta \\ -\sin \phi & \cos \phi & 0\end{array}\right]\left[\begin{array}{l}A_{x} \\ A_{y} \\ A_{z}\end{array}\right]$

Stokes's theorem states that the circulation of a vec to the surface integral of the curl of \mathbf{A} over the oper provided \mathbf{A} and $\nabla \times \mathbf{A}$ are continuous on S.

THE BOOK

MATLAB Programs

Each chapter concludes with a MATLAB code developed for computer implementation of the concepts studied in that chapter. A short tutorial on MATLAB is provided in Appendix D.

EXAMPLE 2.1 Given point $P(-2,6,3)$ and vector $\mathbf{A}=y \mathbf{a}_{x}+(x+z) \mathbf{a}_{y}$ drical and spherical coordinates. Evaluate \mathbf{A} at P in the Cartesian, cylindri

Solution: At point $P, x=-2, y=6, z=3$. Hence,

$$
\begin{aligned}
\rho & =\sqrt{x^{2}+y^{2}}=\sqrt{4+36}=6.32 \\
\phi & =\tan ^{-1} \frac{y}{x}=\tan ^{-1} \frac{6}{-2}=108.43^{\circ} \\
z & =3
\end{aligned}
$$

Review Questions

Each chapter ends with review questions in the form of multiple-choice questions with answers immediately following them. This encourages students to check the answers and gain immediate feedback.

MATLAB 10.1

\% This script assists with the solution and graphing of E \% We use symbolic variables in the creation of the wavefo \% that describes the expression for the electric field
clear
syms E omega Beta $t x \quad$ \% symbolic variables \% time, and frequency
\% Enter the frequency (in rad/s)

Examples

Each chapter includes worked-out examples which give students the confidence to solve problems themselves. Each illustrative example is followed by a problem in the form of a Practice Exercise with its answer.

REVIEW QUESTIONS

11.1 Which of the following statements are not true o
(a) R and L are series elements.
(b) G and C are shunt elements.
(c) $G=\frac{1}{R}$.

> Answers $11.1 \mathrm{c}, \mathrm{d}, \mathrm{e}, 11.2 \mathrm{~b}, \mathrm{c}, 11.3 \mathrm{c}, 11.4 \mathrm{a}, \mathrm{c}, 11.5 \mathrm{c}, 11$ (viii) A, 11.7a, 11.8 (a) T, (b) F, (c) F, (d) T, (e) F, (f)

End-chapter Problems

A large number of problems are provided and presented in the same order as the material in the main text. Problems of intermediate difficulty are identified by a single asterisk (*); the most difficult problems are marked with a double asterisk (**).

Companion Online Resources for Instructors and Students

Visit www.oupinheonline.com to access both teaching and learning solutions online.

The following resources are available to support the faculty and students using this book:

For Faculty

- Solutions Manual
- Figures-only PPTs
- Math Assessment with Solutions
- PowerPoint Slides

For Students

- Multiple-choice Questions

Brief Contents

Preface v
A Note to the Student $i x$
Features of the Book x
Online Resources xii
Detailed Contents $x v$
PART 1 VECTOR ANALYSIS1
Chapter 1 Vector Algebra 3
Chapter 2 Coordinate Systems and Transformation 29
Chapter 3 Vector Calculus 57
PART 2 ELECTROSTATICS 103
Chapter 4 Electrostatic Fields 105
Chapter 5 Electric Fields in Material Space 169
Chapter 6 Electrostatic Boundary-Value Problems 207
PART 3 MAGNETOSTATICS 271
Chapter 7 Magnetostatic Fields 273
Chapter 8 Magnetic Forces, Materials, and Devices 317
PART 4 TIME VARYING FIELDS, WAVES, AND APPLICATIONS 381
Chapter 9 Maxwell's Equations 383
Chapter 10 Electromagnetic Wave Propagation 427
Chapter 11 Transmission Lines 495
Chapter 12 Waveguides 573
Chapter 13 Antennas 625
PART 5 NUMERICAL METHODS 679
Chapter 14 Methods Based on Finite Differences and Integral Formulations 681
Chapter 15 The Finite Element Method 755
Appendix A Summary of Important Concepts in Electromagnetics 795
Appendix B Mathematical Formulas 827
Appendix C Material Constants 833
Appendix D MATLAB 836
Appendix E The Complete Smith Chart 848
Appendix F Answers to Problems 849
Index 885
About the Authors 889

Detailed Contents

Preface v
A Note to the Student $i x$
Features of the Book x
Online Resources xii
Brief Contents xiii
PART 1 VECTOR ANALYSIS 1
1 Vector Algebra
1.1 Introduction
1.2 A Preview of the Book 4
1.3 Scalars and Vectors 4
1.4 Unit Vector 5
1.5 Vector Addition and Subtraction
1.6 Position and Distance Vectors6
1.7 Vector Multiplication7
A. Dot Product 10
B. Cross Product 11
C. Scalar Triple Product 13
D. Vector Triple Product 13
1.8 Components of a Vector
2 Coordinate Systems and Transformation 29
2.1 Introduction 29
2.2 Cartesian Coordinates (x, y, z) 30
3 2.3 Circular Cylindrical Coordinates (ρ, ϕ, z)30
2.4 Spherical Coordinates (r, θ, ϕ) 33
2.5 Constant-Coordinate Surfaces 42
3 Vector Calculus 57
3.1 Introduction 57
3.2 Differential Length, Area, and Volume 57
A. Cartesian Coordinate Systems 57
B. Cylindrical Coordinate Systems 59
C. Spherical Coordinate Systems 60
3.3 Line, Surface, and Volume Integrals 63
3.4 Del Operator 66
14 3.5 Gradient of a Scalar 67
3.6 Divergence of a Vector and Divergence Theorem 71
3.7 Curl of a Vector and Stokes's Theorem 77
3.8 Laplacian of a Scalar 84
3.9 Classification of Vector Fields 86
PART 2 ELECTROSTATICS103
4 Electrostatic Fields 105
4.1 Introduction 105
4.2 Coulomb's Law and Field Intensity 106
4.3 Electric Fields due to Continuous Charge Distributions 113
A. A Line Charge 114
B. A Surface Charge 115
C. A Volume Charge 117
4.4 Electric Flux Density 123
4.5 Gauss's Law-Maxwell's Equation 125
4.6 Applications of Gauss's Law 126
A. Point Charge 126
B. Infinite Line Charge 127
C. Infinite Sheet of Charge 128
D. Uniformly Charged Sphere 128
4.7 Electric Potential 132
4.8 Relationship between \mathbf{E} and
V-Maxwell's Equation 137
4.9 An Electric Dipole and Flux Lines 140
4.10 Energy Density in Electrostatic Fields 144
4.11 Application Note-Electrostatic Discharge 148
4.12 Application Note-Cathode Ray Oscilloscope 152
5 Electric Fields In Material Space 169
5.1 Introduction 169
5.2 Properties of Materials 169
5.3 Convection and Conduction Currents 170
5.4 Conductors 172
5.5 Polarization in Dielectrics 177
5.6 Dielectric Constant and Strength 180
5.7 Linear, Isotropic, and Homogeneous Dielectrics 181
5.8 Continuity Equation and Relaxation Time 185
5.9 Boundary Conditions 187
A. Dielectric-Dielectric Boundary Conditions 187
B. Conductor-Dielectric Boundary Conditions 190
7 Magnetostatic Fields273
7.1 Introduction 273
7.2 Biot-Savart's Law 275
7.3 Ampère's Circuit Law-Maxwell's Equation 283
7.4 Applications of Ampère's Law 284
A. Infinite Line Current 284
B. Infinite Sheet of Current 284
C. Infinitely Long Coaxial
Transmission Line 285
7.5 Magnetic Flux Density-Maxwell's Equation 289
7.6 Maxwell's Equations for Static Fields 291
7.7 Magnetic Scalar and Vector Potentials 291
7.8 Derivation of Biot-Savart's
Law and Ampère's Law 296
C. Conductor-Free Space
Boundary Conditions 191
5.10 Application Note-Materials with High Dielectric Constant 195
5.11 Application Note-Graphene 196
5.12 Application Note-Inkjet Printer 197
6 Electrostatic Boundary-Value Problems 207
6.1 Introduction 207
6.2 Poisson's and Laplace's Equations 207
6.3 Uniqueness Theorem 208
6.4 General Procedures for Solving
Poisson's or Laplace's Equation 210
6.5 Resistance and Capacitance 228
A. Parallel-Plate Capacitor 230
B. Coaxial Capacitor 231
C. Spherical Capacitor 232
6.6 Method of Images 242A. A Point Charge Above a GroundedConducting Plane 243
B. A Line Charge Above a Grounded Conducting Plane 245
6.7 Application Note-Capacitance of Microstrip Lines 248
6.8 Application Note-RF Mems 250
6.9 Application Note-Multi-Dielectric Systems 251
PART 3 MAGNETOSTATICS 271
8.10 Magnetic Circuits 355
8.11 Force on Magnetic Materials 356
8.12 Application Note-Magnetic Levitation 361
8.13 Application Note-Hall Effect 362
8.14 Application Note- Electromagnetic Pump 363
PART 4 TIME VARYING FIELDS, WAVES, AND APPLICATIONS 381
9 Maxwell's Equations 383
9.1 Introduction 383
9.2 Faraday's Law 384
9.3 Transformer and Motional Electromotive Forces 385
A. Stationary Loop in Time-Varying B Field (Transformer emf) 386
B. Moving Loop in Static B Field (Motional emf) 387
C. Moving Loop in Time-Varying Field 388
9.4 Displacement Current 393
9.5 Maxwell's Equations in Final Forms 396
9.6 Time-Varying Potentials 398
9.7 Time-Harmonic Fields 401
9.8 Application Note-Memristor 412
9.9 Application Note-Optical Nanocircuits 413
10 Electromagnetic Wave Propagation 427
10.1 Introduction 427
10.2 Waves in General 428
10.3 Wave Propagation in Lossy Dielectrics 434
10.4 Plane Waves in Lossless Dielectrics 439
10.5 Plane Waves in Free Space 440
10.6 Plane Waves in Good Conductors 441
10.7 Wave Polarization 449
10.8 Power and the Poynting Vector 452
10.9 Reflection of a Plane Wave at Normal Incidence 456
10.10 Reflection of a Plane Wave at Oblique Incidence 465
A. Parallel Polarization 467
B. Perpendicular Polarization 470
10.11 Application Note-Microwaves 476
10.12 Application Note-60 GHz Technology 480
11 Transmission Lines 495
11.1 Introduction 495
11.2 Transmission Line Parameters 496
11.3 Transmission Line Equations 498
A. Lossless Line ($R=0=G$) 502
B. Distortionless Line $(R / L=G / C)$ 502
11.4 Input Impedance, Standing Wave Ratio, and Power 505
A. Shorted Line $\left(Z_{L}=0\right)$ 510
B. Open-Circuited Line $\left(Z_{L}=\infty\right)$ 510
C. Matched Line $\left(Z_{L}=Z_{0}\right) 511$
11.5 The Smith Chart513
11.6 Some Applications of
Transmission Lines 525
A. Quarter-Wave Transformer (Matching) 525
B. Single-Stub Tuner (Matching) 527
C. Slotted Line (ImpedanceMeasurement) 528
D. Transmission Lines as Circuit Elements 529
11.7 Transients on Transmission Lines 533
11.8 Application Note-Microstrip Lines and Characterization of Data Cables 543
A. Microstrip Transmission Lines 543
B. Characterization of Data Cables 547
11.9 Application Note-Metamaterials 550
11.10 Application Note-Microwave Imaging 551
12 Waveguides 573
12.1 Introduction 573
12.2 Rectangular Waveguides 574
12.3 Transverse Magnetic (TM) Modes 578
12.4 Transverse Electric (TE) Modes 582
12.5 Wave Propagation in the Guide 592
12.6 Power Transmission and Attenuation 594
12.7 Waveguide Current and Mode Excitation 598
12.8 Waveguide Resonators 603
A. TM Mode to z 604
B. TE Mode to z 606
12.9 Application Note-Optical Fiber 608
12.10 Application Note-Cloaking and Invisibility 614
13 Antennas 625
13.1 Introduction 625
13.2 Hertzian Dipole 627
13.3 Half-Wave Dipole Antenna 630
13.4 Quarter-Wave Monopole Antenna 634
13.5 Small-Loop Antenna 634
13.6 Antenna Characteristics 639
A. Antenna Patterns 639
B. Radiation Intensity 640
PART 5 NUMERICAL METHODS
14 Methods Based on Finite Differences and Integral Formulations 681
14.1 Introduction 681
14.2 Field Plotting 682
14.3 The Finite Difference Method 688
A. Iteration Method 691
B. Band Matrix Method 691
14.4 Applications of FDM700
A. Capacitor 700
B. Waveguides 704
14.5 The Finite Difference Time Domain Method 709
14.6 The Moment Method 717
14.7 Application Note-Microstrip Lines 735
C. Directive Gain 641
D. Power Gain 642
13.7 Antenna Arrays 646
13.8 Effective Area and the Friis Equation 654
13.9 The Radar Equation 657
13.10 Application Note-Electromagnetic Interference and Compatibility 660
A. Source and Characteristics of EMI 661
B. EMI Control Techniques 663
13.11 Application Note-Textile Antennas and Sensors 665
13.12 Application Note-RFID 667679
15 The Finite Element Method 755
15.1 Introduction 755
15.2 Variational Technique 756
15.3 FEM Procedure 758
A. Finite Element Discretization 758
B. Element-Governing Equations 759
C. Assembling all the Elements 763
D. Solving the Resulting Equations 765
15.4 Magnetostatic Fields 778
15.5 Wave Equation 781
15.6 Weighted Residual Technique 783
15.7 Use of PDE Toolbox in Writing a MATLAB-based FEM Code 785
Appendix A Summary of Important Concepts in Electromagnetics 795
Appendix B Mathematical Formulas 827
Appendix C Material Constants 833
Appendix D MATLAB 836
Appendix E The Complete Smith Chart 848
Appendix F Answers to Problems 849
Index 885
About the Authors 889

PART 1 VECTOR ANALYSIS

Chapter 1 Vector Algebra

Chapter 2 Coordinate Systems and Transformations

Chapter 3 Vector Calculus

CODES OF ETHICS

Engineering is a profession that makes significant contributions to the economic and social well-being of people all over the world. As members of this important profession, engineers are expected to exhibit the highest standards of honesty and integrity. Unfortunately, the engineering curriculum is so crowded that there is no room for a course on ethics in most schools. Although there are over 850 codes of ethics for different professions all over the world, the code of ethics of the Institute of Electrical and Electronics Engineers (IEEE) is presented here to give students a flavor of the importance of ethics in engineering professions.
We, the members of the IEEE, in recognition of the importance of our technologies in affecting the quality of life throughout the world, and in accepting a personal obligation to our profession, its members and the communities we serve, do hereby commit ourselves to the highest ethical and professional conduct and agree:

1. to accept responsibility in making engineering decisions consistent with the safety, health, and welfare of the public, and to disclose promptly factors that might endanger the public or the environment;
2. to avoid real or perceived conflicts of interest whenever possible, and to disclose them to affected parties when they do exist;
3. to be honest and realistic in stating claims or estimates based on available data;
4. to reject bribery in all its forms;
5. to improve the understanding of technology, its appropriate application, and potential consequences;
6. to maintain and improve our technical competence and to undertake technological tasks for others only if qualified by training or experience, or after full disclosure of pertinent limitations;
7. to seek, accept, and offer honest criticism of technical work, to acknowledge and correct errors, and to credit properly the contributions of others;
8. to treat fairly all persons regardless of such factors as race, religion, gender, disability, age, or national origin;
9. to avoid injuring others, their property, reputation, or employment by false or malicious action;
10. to assist colleagues and co-workers in their professional development and to support them in following this code of ethics.
-Courtesy of IEEE

CHAPTER 1

Vector Algebra

One machine can do the work of fifty ordinary men. No machine can do the work of one extraordinary man.
-ELbERT HUBBARD

1.1 INTRODUCTION

Electromagnetics (EM) may be regarded as the study of the interactions between electric charges at rest and in motion. It entails the analysis, synthesis, physical interpretation, and application of electric and magnetic fields.

Electromagnetics (EM) is a branch of physics or electrical engineering in which electric and magnetic phenomena are studied.

EM principles find applications in various allied disciplines such as microwaves, antennas, electric machines, satellite communications, bioelectromagnetics, plasmas, nuclear research, fiber optics, electromagnetic interference and compatibility, electromechanical energy conversion, radar meteorology, and remote sensing. ${ }^{1,2}$ In physical medicine, for example, EM power, in the form of either shortwaves or microwaves, is used to heat deep tissues and to stimulate certain physiological responses in order to relieve certain pathological conditions. EM fields are used in induction heaters for melting, forging, annealing, surface hardening, and soldering operations. Dielectric heating equipment uses shortwaves to join or seal thin sheets of plastic materials. EM energy offers many new and exciting possibilities in agriculture. It is used, for example, to change vegetable taste by reducing acidity.

EM devices include transformers, electric relays, radio/TV, telephones, electric motors, transmission lines, waveguides, antennas, optical fibers, radars, and lasers. The design of these devices requires thorough knowledge of the laws and principles of EM.

[^0]
†1.2 A PREVIEW OF THE BOOK

The subject of electromagnetic phenomena in this book can be summarized in Maxwell's equations:

$$
\begin{align*}
& \nabla \cdot \mathbf{D}=\rho_{v} \tag{1.1}\\
& \nabla \cdot \mathbf{B}=0 \tag{1.2}\\
& \nabla \times \mathbf{E}=-\frac{\partial \mathbf{B}}{\partial t} \tag{1.3}\\
& \nabla \times \mathbf{H}=\mathbf{J}+\frac{\partial \mathbf{D}}{\partial t} \tag{1.4}
\end{align*}
$$

where $\nabla=$ the vector differential operator
$\mathbf{D}=$ the electric flux density
$\mathbf{B}=$ the magnetic flux density
$\mathbf{E}=$ the electric field intensity
$\mathbf{H}=$ the magnetic field intensity
$\rho_{v}=$ the volume charge density
$\mathbf{J}=$ the current density
Maxwell based these equations on previously known results, both experimental and theoretical. A quick look at these equations shows that we shall be dealing with vector quantities. It is consequently logical that we spend some time in Part 1 examining the mathematical tools required for this course. The derivation of eqs. (1.1) to (1.4) for time-invariant conditions and the physical significance of the quantities $\mathbf{D}, \mathbf{B}, \mathbf{E}, \mathbf{H}, \mathbf{J}$, and ρ_{v} will be our aim in Parts 2 and 3. In Part 4, we shall reexamine the equations for time-varying situations and apply them in our study of practical EM devices.

1.3 SCALARS AND VECTORS

Vector analysis is a mathematical tool with which electromagnetic concepts are most conveniently expressed and best comprehended. We must learn its rules and techniques before we can confidently apply it. Since most students taking this course have little exposure to vector analysis, considerable attention is given to it in this and the next two chapters. ${ }^{3}$ This chapter introduces the basic concepts of vector algebra in Cartesian coordinates only. The next chapter builds on this and extends to other coordinate systems.

A quantity can be either a scalar or a vector.
A scalar is a quantity that has only magnitude.
Quantities such as time, mass, distance, temperature, entropy, electric potential, and population are scalars.

[^1]
A vector is a quantity that has both magnitude and direction.

Vector quantities include velocity, force, displacement, and electric field intensity. Another class of physical quantities is called tensors, of which scalars and vectors are special cases. For most of the time, we shall be concerned with scalars and vectors. ${ }^{4}$

To distinguish between a scalar and a vector it is customary to represent a vector by a letter with an arrow on top of it, such as $\overrightarrow{\mathrm{A}}$ and $\overrightarrow{\mathrm{B}}$, or by a letter in boldface type such as \mathbf{A} and \mathbf{B}. A scalar is represented simply by a letter-for example, A, B, U, and V.

EM theory is essentially a study of some particular fields.
A field is a function that specifies a particular quantity everywhere in a region.
If the quantity is scalar (or vector), the field is said to be a scalar (or vector) field. Examples of scalar fields are temperature distribution in a building, sound intensity in a theater, electric potential in a region, and refractive index of a stratified medium. The gravitational force on a body in space and the velocity of raindrops in the atmosphere are examples of vector fields.

1.4 UNIT VECTOR

A vector \mathbf{A} has both magnitude and direction. The magnitude of \mathbf{A} is a scalar written as A or $|\mathbf{A}|$. A unit vector \mathbf{a}_{A} along \mathbf{A} is defined as a vector whose magnitude is unity (i.e., 1) and its direction is along \mathbf{A}, that is,

$$
\begin{equation*}
\mathbf{a}_{A}=\frac{\mathbf{A}}{|\mathbf{A}|}=\frac{\mathbf{A}}{A} \tag{1.5}
\end{equation*}
$$

Note that $\left|\mathbf{a}_{A}\right|=1$. Thus we may write \mathbf{A} as

$$
\begin{equation*}
\mathbf{A}=A \mathbf{a}_{A} \tag{1.6}
\end{equation*}
$$

which completely specifies \mathbf{A} in terms of its magnitude A and its direction \mathbf{a}_{A}.
A vector \mathbf{A} in Cartesian (or rectangular) coordinates may be represented as

$$
\begin{equation*}
\left(A_{x}, A_{y}, A_{z}\right) \quad \text { or } \quad A_{x} \mathbf{a}_{x}+A_{y} \mathbf{a}_{y}+A_{z} \mathbf{a}_{z} \tag{1.7}
\end{equation*}
$$

where A_{x}, A_{y}, and A_{z} are called the components of \mathbf{A} in the x-, y-, and z-directions, respectively; \mathbf{a}_{x}, \mathbf{a}_{y}, and \mathbf{a}_{z} are unit vectors in the x-, y-, and z-directions, respectively. For example, \mathbf{a}_{x} is a dimensionless vector of magnitude one in the direction of the increase of the x-axis. The unit vectors $\mathbf{a}_{x}, \mathbf{a}_{y}$, and \mathbf{a}_{z} are illustrated in Figure 1.1(a), and the components of \mathbf{A} along the coordinate axes are shown in Figure 1.1(b). It should be noted that the projection of \mathbf{A} on the $x y$-plane $(z=0)$ is a vector which is the addition of its vector components in the x and y directions; this is a vector addition (see Section 1.5). The magnitude of vector \mathbf{A} is given by

$$
\begin{equation*}
A=\sqrt{A_{x}^{2}+A_{y}^{2}+A_{z}^{2}} \tag{1.8}
\end{equation*}
$$

and the unit vector along \mathbf{A} is given by

[^2]

Figure 1.1 (a) Unit vectors $\mathbf{a}_{x^{\prime}} \mathbf{a}_{y^{\prime}}$ and $\mathbf{a}_{z^{\prime}}(\mathbf{b})$ components of \boldsymbol{A} along $\mathbf{a}_{x^{\prime}} \mathbf{a}_{y^{\prime}}$ and $\mathbf{a}_{z^{\prime}}$.

$$
\begin{equation*}
\mathbf{a}_{A}=\frac{A_{x} \mathbf{a}_{x}+A_{y} \mathbf{a}_{y}+A_{z} \mathbf{a}_{z}}{\sqrt{A_{x}^{2}+A_{y}^{2}+A_{z}^{2}}} \tag{1.9}
\end{equation*}
$$

1.5 VECTOR ADDITION AND SUBTRACTION

Two vectors \mathbf{A} and \mathbf{B} can be added together to give another vector \mathbf{C}; that is,

$$
\begin{equation*}
\mathbf{C}=\mathbf{A}+\mathbf{B} \tag{1.10}
\end{equation*}
$$

The vector addition is carried out component by component. Thus, if $\mathbf{A}=\left(A_{x}, A_{y}, A_{z}\right)$ and $\mathbf{B}=\left(B_{x}, B_{y}, B_{z}\right)$.

$$
\begin{equation*}
\mathbf{C}=\left(A_{x}+B_{x}\right) \mathbf{a}_{x}+\left(A_{y}+B_{y}\right) \mathbf{a}_{y}+\left(A_{z}+B_{z}\right) \mathbf{a}_{z} \tag{1.11}
\end{equation*}
$$

Vector subtraction is similarly carried out as

$$
\begin{equation*}
\mathbf{D}=\mathbf{A}-\mathbf{B}=\mathbf{A}+(-\mathbf{B})=\left(A_{x}-B_{x}\right) \mathbf{a}_{x}+\left(A_{y}-B_{y}\right) \mathbf{a}_{y}+\left(A_{z}-B_{z}\right) \mathbf{a}_{z} \tag{1.12}
\end{equation*}
$$

Graphically, vector addition and subtraction are obtained by either the parallelogram rule or the head-to-tail rule as portrayed in Figures 1.2 and 1.3, respectively.

The three basic laws of algebra obeyed by any given vectors \mathbf{A}, \mathbf{B}, and \mathbf{C}, are summarized as follows:

Law	Addition	Multiplication
Commutative	$\mathbf{A}+\mathbf{B}=\mathbf{B}+\mathbf{A}$	$k \mathbf{A}+\mathbf{A} k$
Associative	$\mathbf{A}+(\mathbf{B}+\mathbf{C})=(\mathbf{A}+\mathbf{B})+\mathbf{C}$	$k(1 \mathbf{A})=(k l) \mathbf{A}$
Distributive	$k(\mathbf{A}+\mathbf{B})=k \mathbf{A}+k \mathbf{B}$	

where k and ℓ are scalars. Multiplication of a vector with another vector will be discussed in Section 1.7.

1.6 POSITION AND DISTANCE VECTORS

A point P in Cartesian coordinates may be represented by (x, y, z).
The position vector \mathbf{r}_{p} (or radius vector) of point P is defined as the directed distance from the origin O to P, that is,

$$
\begin{equation*}
\mathbf{r}_{p}=O P=x \mathbf{a}_{x}+y \mathbf{a}_{y}+z \mathbf{a}_{z} \tag{1.13}
\end{equation*}
$$

The position vector of point P is useful in defining its position in space. Point (3, 4, 5), for example, and its position vector $3 \mathbf{a}_{x}+4 \mathbf{a}_{y}+5 \mathbf{a}_{z}$ are shown in Figure 1.4. Its distance from the origin is $\sqrt{3^{2}+4^{2}+5^{2}}=7.071$. This distance can also be calculated as follows. The projection of the position vector in the $x y$-plane $(z=0)$ is:

$$
\mathbf{r}_{P^{\prime}}=3 \mathbf{a}_{x}+4 \mathbf{a}_{y} \rightarrow\left|\mathbf{r}_{P^{\prime}}\right|=O P^{\prime}=\sqrt{3^{2}+4^{2}}=5
$$

The vector addition of $\mathbf{r}_{P^{\prime}}$ and $\mathbf{r}_{P^{\prime} P}$ results in the position vector of the point P . The angle between the two vectors, $\mathbf{r}_{P^{\prime}}$ and $\mathbf{r}_{P^{\prime} p}\left(=5 \mathbf{a}_{z}\right)$, is 90°.

Figure 1.4 Illustration of position vector $\mathbf{r}_{p}=3 \mathbf{a}_{x}+4 \mathbf{a}_{y}+5 \mathbf{a}_{z}$.

Figure 1.5 Distance vector \mathbf{r}_{PQ}.

$$
\mathbf{r}_{p}=\mathbf{r}_{p^{\prime}}+\mathbf{r}_{P^{\prime} P} \text { and }\left|\mathbf{r}_{p}\right|=O P=\sqrt{5^{2}+5^{2}}=7.071
$$

It may be noted that $\mathbf{r}_{P P^{\prime}}$ is at 90° to all possible vectors, in the $x y$-plane, originating from point P^{\prime}.

The distance vector is the displacement from one point to another.

If two points P and Q are given by $\left(x_{P}, y_{P}, z_{P}\right)$ and $\left(x_{Q}, y_{Q}, z_{Q}\right)$, the distance vector (or separation vector) is the displacement from P to Q as shown in Figure 1.5; that is,

$$
\begin{equation*}
\mathbf{r}_{P Q}=\mathbf{r}_{Q}-\mathbf{r}_{P}=\left(x_{Q}-x_{P}\right) \mathbf{a}_{x}+\left(y_{Q}-y_{P}\right) \mathbf{a}_{y}+\left(z_{Q}-z_{P}\right) \mathbf{a}_{z} \tag{1.14}
\end{equation*}
$$

The difference between a point P and a vector \mathbf{A} should be noted. Though both P and \mathbf{A} may be represented in the same manner as (x, y, z) and $\left(A_{x}, A_{y}, A_{z}\right)$, respectively, the point P is not a vector; only its position vector \mathbf{r}_{P} is a vector. Vector \mathbf{A} may depend on point P, however. For example, if $\mathbf{A}=2 x y \mathbf{a}_{x}+y^{2} \mathbf{a}_{y}-x z^{2} \mathbf{a}_{z}$ and P is $(2,-1,4)$, then \mathbf{A} at P would be $-4 \mathbf{a}_{x}+\mathbf{a}_{y}-32 \mathbf{a}_{z}$. A vector field is said to be constant or uniform if it does not depend on space variables x, y, and z. For example, vector $\mathbf{B}=3 \mathbf{a}_{x}-2 \mathbf{a}_{y}+10 \mathbf{a}_{z}$ is a uniform vector while vector $\mathbf{A}=2 x y \mathbf{a}_{x}+y^{2} \mathbf{a}_{y}-x z^{2} \mathbf{a}_{z}$ is not uniform because \mathbf{B} is the same everywhere, whereas \mathbf{A} varies from point to point.

EXAMPLE 1.1 If $\mathbf{A}=10 \mathbf{a}_{x}-4 \mathbf{a}_{y}+6 \mathbf{a}_{z}$ and $\mathbf{B}=2 \mathbf{a}_{x}+\mathbf{a}_{y}$, find (a) the component of \mathbf{A} along \mathbf{a}_{y}, (b) the magnitude of $3 \mathbf{A}-\mathbf{B}$, (c) a unit vector along $\mathbf{A}+2 \mathbf{B}$.

Solution:

(a) The component of \mathbf{A} along \mathbf{a}_{y} is $A_{y}=-4$.
(b) $3 \mathbf{A}-\mathbf{B}=3(10,-4,6)-(2,1,0)$

$$
\begin{aligned}
& =(30,-12,18)-(2,1,0) \\
& =(28,-13,18)
\end{aligned}
$$

Hence,

$$
|3 \mathbf{A}-\mathbf{B}|=\sqrt{28^{2}+(-13)^{2}+(18)^{2}}=\sqrt{1277}=35.74
$$

(c) Let $\mathbf{C}=\mathbf{A}+2 \mathbf{B}=(10,-4,6)+(4,2,0)=(14,-2,6)$.

A unit vector along \mathbf{C} is

$$
\mathbf{a}_{c}=\frac{\mathbf{C}}{|\mathbf{C}|}=\frac{(14,-2,6)}{\sqrt{14^{2}+(-2)^{2}+6^{2}}}
$$

or

$$
\mathbf{a}_{c}=0.9113 \mathbf{a}_{x}-0.1302 \mathbf{a}_{y}+0.3906 \mathbf{a}_{z}
$$

Note that $\left|\mathbf{a}_{c}\right|=1$ as expected.

PRACTICE EXERCISE 1.1

Given vectors $\mathbf{A}=\mathbf{a}_{x}+3 \mathbf{a}_{z}$ and $\mathbf{B}=5 \mathbf{a}_{x}+2 \mathbf{a}_{y}-6 \mathbf{a}_{z}$, determine
(a) $|\mathbf{A}+\mathbf{B}|$
(c) The component of \mathbf{A} along \mathbf{a}_{y}
(b) $5 \mathbf{A}-\mathbf{B}$
(d) A unit vector parallel to $3 \mathbf{A}+\mathbf{B}$

Answer: (a) 7, (b) $(0,-2,21)$, (c) 0 , (d) $\pm(0.9117,0.2279,0.3419)$.

EXAMPLE 1.2 Points P and Q are located at $(0,2,4)$ and $(-3,1,5)$. Calculate
(a) The position of vector \mathbf{r}_{P}
(c) The distance between P and Q
(b) The distance vector from P to Q
(d) A vector parallel to $P Q$ with magnitude of 10

Solution:

(a) $\mathbf{r}_{P}=0 \mathbf{a}_{x}+2 \mathbf{a}_{y}+4 \mathbf{a}_{z}=2 \mathbf{a}_{y}+4 \mathbf{a}_{z}$
(b) $\mathbf{r}_{P Q}=\mathbf{r}_{Q}-\mathbf{r}_{P}=(-3,1,5)-(0,2,4)=(-3,-1,1)$
or $\mathbf{r}_{P Q}=-3 \mathbf{a}_{x}-\mathbf{a}_{y}+\mathbf{a}_{z}$
(c) Since $\mathbf{r}_{P Q}$ is the distance vector from P to Q, the distance between P and Q is the magnitude of this vector; that is,

$$
d=\left|\mathbf{r}_{P Q}\right|=\sqrt{9+1+1}=3.317
$$

Alternatively:

$$
\begin{aligned}
d & =\sqrt{\left(x_{Q}-x_{P}\right)^{2}+\left(y_{Q}-y_{P}\right)^{2}+\left(z_{Q}-z_{P}\right)^{2}} \\
& =\sqrt{9+1+1}=3.317
\end{aligned}
$$

(d) Let the required vector be \mathbf{A}, then

$$
\mathbf{A}=A \mathbf{a}_{A}
$$

where $A=10$ is the magnitude of \mathbf{A}. Since \mathbf{A} is parallel to $P Q$, it must have the same unit vector as $\mathbf{r}_{P Q}$ or $\mathbf{r}_{Q P}$. Hence,

$$
\mathbf{a}_{A}= \pm \frac{\mathbf{r}_{P Q}}{\left|\mathbf{r}_{P Q}\right|}= \pm \frac{(-3,-1,1)}{3.317}
$$

and

$$
\mathbf{A}= \pm \frac{10(-3,-1,1)}{3.317}= \pm\left(-9.045 \mathbf{a}_{x}-3.015 \mathbf{a}_{y}+3.015 \mathbf{a}_{z}\right)
$$

PRACTICE EXERCISE 1.2

Given points $P(1,-3,5), Q(2,4,6)$, and $R(0,3,8)$, find (a) the position vectors of P and R, (b) the distance vector $\mathbf{r}_{Q R}$, (c) the distance between Q and R.

Answer: (a) $\mathbf{a}_{x}-3 \mathbf{a}_{y}+5 \mathbf{a}_{z}, 3 \mathbf{a}_{y}+8 \mathbf{a}_{z}$, (b) $-2 \mathbf{a}_{x}-\mathbf{a}_{y}+2 \mathbf{a}_{z}$, (c) 3 .

EXAMPLE 1.3 A river flows southeast at $10 \mathrm{~km} / \mathrm{hr}$ and a boat floats upon it with its bow pointed in the direction of travel. A man walks upon the deck at $2 \mathrm{~km} / \mathrm{hr}$ in a direction to the right and perpendicular to the direction of the boat's movement. Find the velocity of the man with respect to the earth.

Solution: Consider Figure 1.6 as illustrating the problem. The velocity of the boat is

$$
\begin{aligned}
\mathbf{u}_{b} & =10\left(\cos 45^{\circ} \mathbf{a}_{x}-\sin 45^{\circ} \mathbf{a}_{y}\right) \\
& =7.071 \mathbf{a}_{x}-7.071 \mathbf{a}_{y} \mathrm{~km} / \mathrm{hr}
\end{aligned}
$$

Figure 1.6 For Example 1.3.

The velocity of the man with respect to the boat (relative velocity) is

$$
\begin{aligned}
\mathbf{u}_{m} & =2\left(-\cos 45^{\circ} \mathbf{a}_{x}-\sin 45^{\circ} \mathbf{a}_{y}\right) \\
& =-1.414 \mathbf{a}_{x}-1.414 \mathbf{a}_{y} \mathrm{~km} / \mathrm{hr}
\end{aligned}
$$

Thus the absolute velocity of the man is

$$
\begin{gathered}
\mathbf{u}_{a b}=\mathbf{u}_{m}+\mathbf{u}_{b}=5.657 \mathbf{a}_{x}-8.485 \mathbf{a}_{y} \\
\left|\mathbf{u}_{a b}\right|=10.2 \angle-56.3^{\circ}
\end{gathered}
$$

that is, $10.2 \mathrm{~km} / \mathrm{hr}$ at 56.3° south of east.

PRACTICE EXERCISE 1.3

An airplane has a ground speed of $350 \mathrm{~km} / \mathrm{hr}$ in the direction due west. If there is a wind blowing northwest at $40 \mathrm{~km} / \mathrm{hr}$, calculate the true air speed and heading of the airplane.

Answer: $379.3 \mathrm{~km} / \mathrm{hr}, 4.275^{\circ}$ north of west.

1.7 VECTOR MULTIPLICATION

When two vectors \mathbf{A} and \mathbf{B} are multiplied, the result is either a scalar or a vector depending on how they are multiplied. Thus there are two types of vector multiplication:

1. Scalar (or dot) product: $\mathbf{A} \cdot \mathbf{B}$
2. Vector (or cross) product: $\mathbf{A} \times \mathbf{B}$

Multiplication of three vectors \mathbf{A}, \mathbf{B}, and \mathbf{C} can result in either:
3. Scalar triple product: $\mathbf{A} \cdot(\mathbf{B} \times \mathbf{C})$
or
4. Vector triple product: $\mathbf{A} \times(\mathbf{B} \times \mathbf{C})$

A. Dot Product

The dot product of two vectors \mathbf{A} and \mathbf{B}, written as $\mathbf{A} \cdot \mathbf{B}$, is defined geometrically as the product of the magnitudes of \mathbf{A} and \mathbf{B} and the cosine of the smaller angle between them, when they are drawn tail to tail.

Thus,

$$
\begin{equation*}
\mathbf{A} \cdot \mathbf{B}=A B \cos \theta_{A B} \tag{1.15}
\end{equation*}
$$

where $\theta_{A B}$ is the smaller angle between \mathbf{A} and \mathbf{B}. The result of $\mathbf{A} \cdot \mathbf{B}$ is called either the scalar product because it results into a scalar quantity, or the dot product due to the dot sign. If $\mathbf{A}=\left(A_{x}, A_{y}, A_{z}\right)$ and $\mathbf{B}=\left(B_{x}, B_{y}, B_{z}\right)$, then

$$
\begin{equation*}
\mathbf{A} \cdot \mathbf{B}=A_{x} B_{x}+A_{y} B_{y}+A_{z} B_{z} \tag{1.16}
\end{equation*}
$$

which is obtained by multiplying \mathbf{A} and \mathbf{B} component by component. Two vectors \mathbf{A} and \mathbf{B} are said to be orthogonal (or perpendicular) with each other if $\mathbf{A} \cdot \mathbf{B}=0$.

Note that dot product obeys the following:
(i) Commutative law:

$$
\begin{equation*}
\mathbf{A} \cdot \mathbf{B}=\mathbf{B} \cdot \mathbf{A} \tag{1.17}
\end{equation*}
$$

(ii) Distributive law:
(iii)

$$
\begin{equation*}
\mathbf{A} \cdot(\mathbf{B}+\mathbf{C})=\mathbf{A} \cdot \mathbf{B}+\mathbf{A} \cdot \mathbf{C} \tag{1.18}
\end{equation*}
$$

$$
\begin{equation*}
\mathbf{A} \cdot \mathbf{A}=|\mathbf{A}|^{2}=A^{2} \tag{1.19}
\end{equation*}
$$

Also note that

$$
\begin{align*}
& \mathbf{a}_{x} \cdot \mathbf{a}_{y}=\mathbf{a}_{y} \cdot \mathbf{a}_{z}=\mathbf{a}_{z} \cdot \mathbf{a}_{x}=0 \tag{1.20a}\\
& \mathbf{a}_{x} \cdot \mathbf{a}_{x}=\mathbf{a}_{y} \cdot \mathbf{a}_{y}=\mathbf{a}_{z} \cdot \mathbf{a}_{z}=1 \tag{1.20b}
\end{align*}
$$

It is easy to prove the identities in eqs. (1.17) to (1.20) by applying eq. (1.15) or (1.16).

B. Cross Product

The cross product of two vectors \mathbf{A} and \mathbf{B}, written as $\mathbf{A} \times \mathbf{B}$, is a vector quantity whose magnitude is the area of the parallelogram formed by \mathbf{A} and \mathbf{B} (see Figure 1.7) and is in the direction of advance of a right-handed screw as A is turned into B.

Thus,

$$
\begin{equation*}
\mathbf{A} \times \mathbf{B}=A B \sin \theta_{A B} \mathbf{a}_{n} \tag{1.21}
\end{equation*}
$$

where \mathbf{a}_{n} is a unit vector normal to the plane containing \mathbf{A} and \mathbf{B}. The direction of \mathbf{a}_{n} is taken as the direction of the right thumb when the fingers of the right hand rotate from \mathbf{A} to \mathbf{B} as shown in Figure 1.8(a). Alternatively, the direction of \mathbf{a}_{n} is taken as that of the advance of a right-handed

Figure 1.7 The cross product of \mathbf{A} and \mathbf{B} is a vector with magnitude equal to the area of the parallelogram and direction as indicated.

Figure 1.8 Direction of $\mathbf{A} \times \mathbf{B}$ and \mathbf{a}_{n} using (a) the right-hand rule and (b) the right-handed-screw rule.
screw as \mathbf{A} is turned into \mathbf{B} as shown in Figure 1.8(b). Here \mathbf{A}, \mathbf{B} and $\mathbf{A} \times \mathbf{B}$ form a right-handed triplet in which when \mathbf{A} is rotated towards \mathbf{B} through an angle $\theta_{A B}$, which is less than π as in Figure 1.7, $\mathbf{A} \times \mathbf{B}$ points in the direction of a right-handed screw turned anticlockwise. However, if the screw is turned clockwise from \mathbf{A} to \mathbf{B} through an angle greater than π in Figure 1.7, this leads to a left handed triplet with $\mathbf{A} \times \mathbf{B}$ directed downward (in the direction opposite to that shown in the figure).

The vector multiplication of eq. (1.21) is called cross product owing to the cross sign; it is also called vector product because the result is a vector. If $\mathbf{A}=\left(A_{x}, A_{y}, A_{z}\right)$ and $\mathbf{B}=\left(B_{x}, B_{y}, B_{z}\right)$, then

$$
\mathbf{A} \times \mathbf{B}=\left|\begin{array}{ccc}
\mathbf{a}_{x} & \mathbf{a}_{y} & \mathbf{a}_{z} \tag{1.22a}\\
A_{x} & A_{y} & A_{z} \\
B_{x} & B_{y} & B_{z}
\end{array}\right|
$$

$$
\begin{equation*}
=\left(A_{y} B_{z}-A_{z} B_{y}\right) \mathbf{a}_{x}+\left(A_{z} B_{x}-A_{x} B_{z}\right) \mathbf{a}_{y}+\left(A_{x} B_{y}-A_{y} B_{x}\right) \mathbf{a}_{z} \tag{1.22b}
\end{equation*}
$$

which is obtained by "crossing" terms in cyclic permutation, hence the name "cross product."
Note that the cross product has the following basic properties:
(i) It is not commutative:

$$
\begin{equation*}
\mathbf{A} \times \mathbf{B} \neq \mathbf{B} \times \mathbf{A} \tag{1.23a}
\end{equation*}
$$

It is anticommutative:

$$
\begin{equation*}
\mathbf{A} \times \mathbf{B}=-\mathbf{B} \times \mathbf{A} \tag{1.23b}
\end{equation*}
$$

(ii) It is not associative:

$$
\begin{equation*}
\mathbf{A} \times(\mathbf{B} \times \mathbf{C}) \neq(\mathbf{A} \times \mathbf{B}) \times \mathbf{C} \tag{1.24}
\end{equation*}
$$

(iii) It is distributive:

$$
\begin{equation*}
\mathbf{A} \times(\mathbf{B}+\mathbf{C})=(\mathbf{A} \times \mathbf{B})+\mathbf{A} \times \mathbf{C} \tag{1.25}
\end{equation*}
$$

(iv)

$$
\begin{equation*}
\mathbf{A} \times \mathbf{A}=\mathbf{0} \tag{1.26}
\end{equation*}
$$

Also note that

$$
\begin{align*}
& \mathbf{a}_{x} \times \mathbf{a}_{y}=\mathbf{a}_{z} \\
& \mathbf{a}_{y} \times \mathbf{a}_{z}=\mathbf{a}_{x} \tag{1.27}\\
& \mathbf{a}_{z} \times \mathbf{a}_{x}=\mathbf{a}_{y}
\end{align*}
$$

which are obtained in cyclic permutation and illustrated in Figure 1.9. The identities in eqs. (1.23) to (1.27) are easily verified by using eq. (1.21) or (1.22). It should be noted that in obtaining \mathbf{a}_{n}, we have used the right-hand or right-handed-screw rule because we want to be consistent with our coordinate system illustrated in Figure 1.1, which is right-handed. A right-handed coordinate system is one in which the right-hand rule is satisfied: that is, $\mathbf{a}_{x} \times \mathbf{a}_{y}=\mathbf{a}_{z}$ is obeyed. In a lefthanded system, we follow the left-hand or left-handed screw rule and $\mathbf{a}_{x} \times \mathbf{a}_{y}=-\mathbf{a}_{z}$ is satisfied. Throughout this book, we shall stick to right-handed coordinate systems.

Just as multiplication of two vectors gives a scalar or vector result, multiplication of three vectors \mathbf{A}, \mathbf{B}, and \mathbf{C} gives a scalar or vector result, depending on how the vectors are multiplied. Thus, we have a scalar or vector triple product.

C. Scalar Triple Product

Given three vectors \mathbf{A}, \mathbf{B}, and \mathbf{C}, we define the scalar triple product as

$$
\begin{equation*}
\mathbf{A} \cdot(\mathbf{B} \times \mathbf{C})=\mathbf{B} \cdot(\mathbf{C} \times \mathbf{A})=\mathbf{C} \cdot(\mathbf{A} \times \mathbf{B}) \tag{1.28}
\end{equation*}
$$

obtained in cyclic permutation. If $\mathbf{A}=\left(A_{x}, A_{v}, A_{z}\right), \mathbf{B}=\left(B_{x}, B_{v}, B_{z}\right)$, and $\mathbf{C}=\left(C_{y}, C_{v}, C_{z}\right)$, then $\mathbf{A} \cdot(\mathbf{B} \times \mathbf{C})$ is the volume of a parallelepiped having \mathbf{A}, \mathbf{B}, and \mathbf{C} as edges and is easily obtained by finding the determinant of the 3×3 matrix formed by \mathbf{A}, \mathbf{B}, and \mathbf{C}; that is,

$$
\mathbf{A} \cdot(\mathbf{B} \times \mathbf{C})=\left|\begin{array}{lll}
A_{x} & A_{y} & A_{z} \tag{1.29}\\
B_{x} & B_{y} & B_{z} \\
C_{x} & C_{y} & C_{z}
\end{array}\right|
$$

Since the result of this vector multiplication is scalar, eq. (1.28) or (1.29) is called the scalar triple product.

D. Vector Triple Product

For vectors \mathbf{A}, \mathbf{B}, and \mathbf{C}, we define the vector triple product as

$$
\begin{equation*}
\mathbf{A} \times(\mathbf{B} \times \mathbf{C})=\mathbf{B}(\mathbf{A} \cdot \mathbf{C})-\mathbf{C}(\mathbf{A} \cdot \mathbf{B}) \tag{1.30}
\end{equation*}
$$

which may be remembered as the "bac-cab" rule. It should be noted that

$$
\begin{equation*}
(\mathbf{A} \cdot \mathbf{B}) \mathbf{C} \neq \mathbf{A}(\mathbf{B} \cdot \mathbf{C}) \tag{1.31}
\end{equation*}
$$

but

$$
\begin{equation*}
(\mathbf{A} \cdot \mathbf{B}) \mathbf{C}=\mathbf{C}(\mathbf{A} \cdot \mathbf{B}) \tag{1.32}
\end{equation*}
$$

1.8 COMPONENTS OF A VECTOR

A direct application of scalar product is its use in determining the projection (or component) of a vector in a given direction. The projection can be scalar or vector. Given a vector \mathbf{A}, we define the scalar component A_{B} of \mathbf{A} along vector \mathbf{B} as [see Figure 1.10(a)]

$$
A_{B}=A \cos \theta_{A B}=|\mathbf{A}|\left|\mathbf{a}_{B}\right| \cos \theta_{A B}
$$

or

$$
\begin{equation*}
A_{B}=\mathbf{A} \cdot \mathbf{a}_{B} \tag{1.33}
\end{equation*}
$$

The vector component \mathbf{A}_{B} of \mathbf{A} along \mathbf{B} is simply the scalar component in eq. (1.33) multiplied by a unit vector along \mathbf{B}; that is,

$$
\begin{equation*}
A_{B}=A_{B} \mathbf{a}_{B}=\left(\mathbf{A} \cdot \mathbf{a}_{B}\right) \mathbf{a}_{B} \tag{1.34}
\end{equation*}
$$

Both the scalar and vector components of \mathbf{A} are illustrated in Figure 1.10. Notice from Figure 1.10(b) that the vector can be resolved into two orthogonal components: one component \mathbf{A}_{B} parallel to \mathbf{B}, another $\left(\mathbf{A}-\mathbf{A}_{B}\right)$ perpendicular to \mathbf{B}. In fact, our Cartesian representation of a vector is essentially resolving the vector into three mutually orthogonal components as in Figure 1.1(b).

We have considered addition, subtraction, and multiplication of vectors. However, division of vectors \mathbf{A} / \mathbf{B} has not been considered because it is undefined except when \mathbf{A} and \mathbf{B} are parallel so that $(\mathbf{A}=k \mathbf{B})$, where k is a constant. Differentiation and integration of vectors will be considered in Chapter 3.

(a)

(b)

Figure 1.10 Components of \mathbf{A} along \mathbf{B} : (a) scalar component $A_{B^{\prime}}$ (b) vector component \mathbf{A}_{B}.

EXAMPLE 1.4 Given vectors $\mathbf{A}=3 \mathbf{a}_{x}+4 \mathbf{a}_{y}+\mathbf{a}_{z}$ and $\mathbf{B}=2 \mathbf{a}_{y}-5 \mathbf{a}_{z}$, find the angle between A and B.

Solution: The angle $\theta_{A B}$ can be found by using either dot product or cross product.

$$
\begin{aligned}
\mathbf{A} \cdot \mathbf{B} & =(3,4,1) \cdot(0,2,-5) \\
& =0+8-5=3 \\
|\mathbf{A}| & =\sqrt{3^{2}+4^{2}+1}=\sqrt{26} \\
|\mathbf{B}| & =\sqrt{0^{2}+2^{2}+(-5)^{2}}=\sqrt{29} \\
\cos \theta_{A B} & =\frac{\mathbf{A} \cdot \mathbf{B}}{|\mathbf{A}||\mathbf{B}|}=\frac{3}{\sqrt{(26)(29)}}=0.1092 \\
\theta_{A B} & =\cos ^{-1} 0.1092=83.73^{\circ}
\end{aligned}
$$

Alternatively:

$$
\begin{aligned}
\mathbf{A} \times \mathbf{B} & =\left|\begin{array}{ccc}
\mathbf{a}_{x} & \mathbf{a}_{y} & \mathbf{a}_{z} \\
3 & 4 & 1 \\
0 & 2 & -5
\end{array}\right| \\
& =(-20-2) \mathbf{a}_{x}+(0+15) \mathbf{a}_{y}+(6-0) \mathbf{a}_{z} \\
& =(-22,15,6) \\
|\mathbf{A} \times \mathbf{B}| & =\sqrt{(-22)^{2}+15^{2}+6^{2}}=\sqrt{745} \\
\sin \theta_{A B} & =\frac{|\mathbf{A} \times \mathbf{B}|}{|\mathbf{A}||\mathbf{B}|}=\frac{\sqrt{745}}{\sqrt{(26)(29)}}=0.994 \\
\theta_{A B} & =\sin ^{-1} 0.994=83.73^{\circ}
\end{aligned}
$$

PRACTICE EXERCISE 1.4

If $\mathbf{A}=\mathbf{a}_{x}+3 \mathbf{a}_{z}$ and $\mathbf{B}=5 \mathbf{a}_{x}+2 \mathbf{a}_{y}-6 \mathbf{a}_{z}$, find $\theta_{A B}$.
Answer: 120.6°.

EXAMPLE 1.5 Three field quantities are given by

$$
\begin{aligned}
& \mathbf{P}=2 \mathbf{a}_{x}-\mathbf{a}_{z} \\
& \mathbf{Q}=2 \mathbf{a}_{x}-\mathbf{a}_{y}+2 \mathbf{a}_{z} \\
& \mathbf{R}=2 \mathbf{a}_{x}-3 \mathbf{a}_{y}+\mathbf{a}_{z}
\end{aligned}
$$

Determine
(a) $(\mathbf{P}+\mathbf{Q}) \times(\mathbf{P}-\mathbf{Q})$
(e) $\mathbf{P} \times(\mathbf{Q} \times \mathbf{R})$
(b) $\mathbf{Q} \cdot \mathbf{R} \times \mathbf{P}$
(f) A unit vector perpendicular to both \mathbf{Q} and \mathbf{R}
(c) $\mathbf{P} \cdot \mathbf{Q} \times \mathbf{R}$
(g) The component of \mathbf{P} along \mathbf{Q}
(d) $\sin \theta_{\mathrm{QR}}$

Solution:

(a) $(\mathbf{P}+\mathbf{Q}) \times(\mathbf{P}-\mathbf{Q})=\mathbf{P} \times(\mathbf{P}-\mathbf{Q})+\mathbf{Q} \times(\mathbf{P}-\mathbf{Q})$

$$
\begin{aligned}
& =\mathbf{P} \times \mathbf{P}-\mathbf{P} \times \mathbf{Q}+\mathbf{Q} \times \mathbf{P}-\mathbf{Q} \times \mathbf{Q} \\
& =\mathbf{0}+\mathbf{Q} \times \mathbf{P}+\mathbf{Q} \times \mathbf{P}-\mathbf{0} \\
& =2 \mathbf{Q} \times \mathbf{P} \\
& =2\left|\begin{array}{ccc}
\mathbf{a}_{x} & \mathbf{a}_{y} & \mathbf{a}_{z} \\
2 & -1 & 2 \\
2 & 0 & -1
\end{array}\right| \\
& =2(1-0) \mathbf{a}_{x}+2(4+2) \mathbf{a}_{y}+2(0+2) \mathbf{a}_{z} \\
& =2 \mathbf{a}_{x}+12 \mathbf{a}_{y}+4 \mathbf{a}_{z}
\end{aligned}
$$

(b) The only way $\mathbf{Q} \cdot \mathbf{R} \times \mathbf{P}$ makes sense is

$$
\begin{aligned}
\mathbf{Q} \cdot(\mathbf{R} \times \mathbf{P}) & =(2,-1,2) \cdot\left|\begin{array}{ccc}
2 & -3 & 1 \\
2 & 0 & -1
\end{array}\right| \\
& =(2,-1,2) \cdot(3,4,6) \\
& =6-4+12=14
\end{aligned}
$$

Alternatively:

$$
\mathbf{Q} \cdot(\mathbf{R} \times \mathbf{P})=\left|\begin{array}{ccc}
2 & -1 & 2 \\
2 & -3 & 1 \\
2 & 0 & -1
\end{array}\right|
$$

To find the determinant of a 3×3 matrix, we repeat the first two rows and cross multiply; when the cross multiplication is from right to left, the result should be negated as shown diagrammatically here. This technique of finding a determinant applies only to a 3×3 matrix. Hence,

as obtained before.
(c) From eq. (1.28)

$$
\mathbf{P} \cdot(\mathbf{Q} \times \mathbf{R})=\mathbf{Q} \cdot(\mathbf{R} \times \mathbf{P})=14
$$

or

$$
\begin{aligned}
\mathbf{P} \cdot(\mathbf{Q} \times \mathbf{R}) & =(2,0,-1) \cdot(5,2,-4) \\
& =10+0+4 \\
& =14
\end{aligned}
$$

(d) $\sin \theta_{Q R}=\frac{|\mathbf{Q} \times \mathbf{R}|}{|\mathbf{Q}||\mathbf{R}|}=\frac{(5,2,-4) \mid}{|(2,-1,2)||2,-3,1|}$

$$
=\frac{\sqrt{45}}{3 \sqrt{14}}=\frac{\sqrt{5}}{\sqrt{14}}=0.5976
$$

(e) $\mathbf{P} \times(\mathbf{Q} \times \mathbf{R})=(2,0,-1) \times(5,2,-4)$

$$
=(2,3,4)
$$

Alternatively, using the bac-cab rule,

$$
\begin{aligned}
\mathbf{P} \times(\mathbf{Q} \times \mathbf{R}) & =\mathbf{Q}(\mathbf{P} \cdot \mathbf{R})-\mathbf{R}(\mathbf{P} \cdot \mathbf{Q}) \\
& =(2,-1,2)(4+0-1)-(2,-3,1)(4+0-2) \\
& =(2,3,4)
\end{aligned}
$$

(f) A unit vector perpendicular to both \mathbf{Q} and \mathbf{R} is given by

$$
\begin{aligned}
\mathbf{a} & =\frac{ \pm \mathbf{Q} \times \mathbf{R}}{|\mathbf{Q} \times \mathbf{R}|}=\frac{ \pm(5,2,-4)}{\sqrt{45}} \\
& = \pm(0.745,0.298,-0.596)
\end{aligned}
$$

Note that $|\mathbf{a}|=1, \mathbf{a} \cdot \mathbf{Q}=0=\mathbf{a} \cdot \mathbf{R}$. Any of these can be used to check \mathbf{a}.
(g) The component of \mathbf{P} along \mathbf{Q} is

$$
\begin{aligned}
\mathbf{P}_{Q} & =|\mathbf{P}| \cos \theta_{P Q} \mathbf{a}_{Q} \\
& =\left(\mathbf{P} \cdot \mathbf{a}_{Q}\right) \mathbf{a}_{Q}=\left(\mathbf{P} \cdot \frac{\mathbf{Q}}{|\mathbf{Q}|}\right)\left(\frac{\mathbf{Q}}{|\mathbf{Q}|}\right)=\frac{(\mathbf{P} \cdot \mathbf{Q}) \mathbf{Q}}{|\mathbf{Q}|^{2}} \\
& =\frac{(4+0-2)(2,-1,2)}{(4+1+4)}=\frac{2}{9}(2,-1,2) \\
& =0.4444 \mathbf{a}_{x}-0.2222 \mathbf{a}_{y}+0.4444 \mathbf{a}_{z}
\end{aligned}
$$

PRACTICE EXERCISE 1.5

Let $\mathbf{E}=3 \mathbf{a}_{y}+4 \mathbf{a}_{z}$ and $\mathbf{F}=4 \mathbf{a}_{x}-10 \mathbf{a}_{y}+5 \mathbf{a}_{z}$.
(a) Find the component of \mathbf{E} along \mathbf{F}.
(b) Determine a unit vector perpendicular to both \mathbf{E} and \mathbf{F}.

Answer: (a) ($-0.2837,0.7092,-0.3546$), (b) $\pm(0.9398,0.2734,-0.205)$.

EXAMPLE 1.6 Derive the cosine formula

$$
a^{2}=b^{2}+c^{2}-2 b c \cos A
$$

and the sine formula

$$
\frac{\sin A}{a}=\frac{\sin B}{b}=\frac{\sin C}{c}
$$

using dot product and cross product, respectively.

Figure 1.11 For Example 1.6.

Solution: Consider a triangle as shown in Figure 1.11. From the figure, we notice that

$$
\mathbf{a}+\mathbf{b}+\mathbf{c}=\mathbf{0}
$$

that is,

$$
\mathbf{b}+\mathbf{c}=-\mathbf{a}
$$

Hence,

$$
\begin{aligned}
a^{2} & =\mathbf{a} \cdot \mathbf{a}=(\mathbf{b}+\mathbf{c}) \cdot(\mathbf{b}+\mathbf{c}) \\
& =\mathbf{b} \cdot \mathbf{b}+\mathbf{c} \cdot \mathbf{c}+2 \mathbf{b} \cdot \mathbf{c} \\
a^{2} & =b^{2}+c^{2}-2 b c \cos A
\end{aligned}
$$

where $(\pi-A)$ is the angle between \mathbf{b} and \mathbf{c}.
The area of a triangle is half of the product of its height and base. Hence,

$$
\begin{aligned}
& \left|\frac{1}{2} \mathbf{a} \times \mathbf{b}\right|=\left|\frac{1}{2} \mathbf{b} \times \mathbf{c}\right|=\left|\frac{1}{2} \mathbf{c} \times \mathbf{a}\right| \\
& a b \sin C=b c \sin A=c a \sin B
\end{aligned}
$$

Dividing through by $a b c$ gives

$$
\frac{\sin A}{a}=\frac{\sin B}{b}=\frac{\sin C}{c}
$$

PRACTICE EXERCISE 1.6

Show that vectors $\mathbf{a}=(4,0,-1), \mathbf{b}=(1,3,4)$, and $\mathbf{c}=(-5,-3,-3)$ form the sides of a triangle . Is this a right angle triangle? Calculate the area of the triangle.

Answer: Yes, 10.5.

EXAMPLE 1.7 Show that points $P_{1}(5,2,-4), P_{2}(1,1,2)$, and $P_{3}(-3,0,8)$ all lie on a straight line. Determine the shortest distance between the line and point $P_{4}(3,-1,0)$.

Solution: The distance vector $\mathbf{r}_{P_{1} P_{2}}$ is given by

$$
\begin{aligned}
\mathbf{r}_{P_{1} P_{2}} & =\mathbf{r}_{P_{2}}-\mathbf{r}_{P_{1}}=(1,1,2)-(5,2,-4) \\
& =(-4,-1,6)
\end{aligned}
$$

Similarly,

$$
\begin{aligned}
\mathbf{r}_{P_{1} P_{3}}=\mathbf{r}_{P_{3}}-\mathbf{r}_{P_{1}} & =(-3,0,8)-(5,2,-4) \\
& =(-8,-2,12) \\
\mathbf{r}_{P_{1} P_{4}}=\mathbf{r}_{P_{4}}-\mathbf{r}_{P_{1}} & =(3,-1,0)-(5,2,-4) \\
& =(-2,-3,4) \\
\mathbf{r}_{P_{1} P_{2}} \times \mathbf{r}_{P_{1} P_{3}} & =\left|\begin{array}{ccc}
\mathbf{a}_{x} & \mathbf{a}_{y} & \mathbf{a}_{z} \\
-4 & -1 & 6 \\
-8 & -2 & 12
\end{array}\right| \\
& =(0,0,0)
\end{aligned}
$$

showing that the angle between $\mathbf{r}_{P_{1} P_{2}}$ and $\mathbf{r}_{P_{1} P_{3}}$ is zero $(\sin \theta=0)$. This implies that P_{1}, P_{2}, and P_{3} lie on a straight line.

Figure 1.12 For Example 1.7.
Alternatively, the vector equation of the straight line is easily determined from Figure 1.12(a). For any point P on the line joining P_{1} and P_{2}

$$
\mathbf{r}_{P_{1} P}=\lambda \mathbf{r}_{P_{1} P_{2}}
$$

where λ is a constant. Hence the position vector \mathbf{r}_{P} of the point P must satisfy

$$
\mathbf{r}_{p}-\mathbf{r}_{P_{1}}=\lambda\left(\mathbf{r}_{p_{2}}-\mathbf{r}_{P_{1}}\right)
$$

that is,

$$
\begin{aligned}
\mathbf{r}_{p} & =\mathbf{r}_{P_{1}}+\lambda\left(\mathbf{r}_{p_{2}}-\mathbf{r}_{p_{1}}\right) \\
& =(5,2,-4)-\lambda(4,1,-6) \\
\mathbf{r}_{p} & =(5-4 \lambda, 2-\lambda,-4+6 \lambda)
\end{aligned}
$$

This is the vector equation of the straight line joining P_{1} and P_{2}. If P_{3} is on this line, the position vector of P_{3} must satisfy the equation; \mathbf{r}_{3} does satisfy the equation when $\lambda=2$.

The shortest distance between the line and point $P_{4}(3,-1,0)$ is the perpendicular distance from the point to the line. From Figure 1.12(b), it is clear that

$$
\begin{aligned}
d & =r_{P_{1} P_{4}} \sin \theta=\left|\mathbf{r}_{P_{1} P_{4}} \times \mathbf{a}_{P_{1} P_{2}}\right| \\
& =\frac{|(-2,-3,4) \times(-4,-1,6)|}{|(-4,-1,6)|} \\
& =\frac{\sqrt{312}}{\sqrt{53}}=2.426
\end{aligned}
$$

Any point on the line may be used as a reference point. Thus, instead of using P_{1} as a reference point, we could use P_{3}. If $\angle P_{4} P_{3} P_{2}=\theta^{\prime}$, then

$$
d=\left|\mathbf{r}_{P_{3} P_{4}}\right| \sin \theta^{\prime}=\left|\mathbf{r}_{P_{3} P_{4}} \times \mathbf{a}_{P_{3} P_{2}}\right|
$$

PRACTICE EXERCISE 1.7

If P_{1} is $(1,2,-3)$ and P_{2} is $(-4,0,5)$, find
(a) The distance $P_{1} P_{2}$
(b) The vector equation of the line $P_{1} P_{2}$
(c) The shortest distance between the line $P_{1} P_{2}$ and point $P_{3}(7,-1,2)$

Answer: (a) 9.644, (b) $(1-5 \lambda) \mathbf{a}_{x}+2(1-\lambda) \mathbf{a}_{y}+(8 \lambda-3) \mathbf{a}_{z}$, (c) 8.2 .

MATLAB 1.1

```
% This script allows the user to input two vectors and
% then compute their dot product, cross product, sum,
% and difference
clear
vA = input('Enter vector A in the format [x y z]... \n > ');
if isempty(vA); vA = [0 0 0]; end % if the input is
    % entered incorrectly set the vector to 0
vB = input('Enter vector B in the format [x y z]... \n > ');
if isempty(vB); vB = [0 O O]; end
disp('Magnitude of A:')
disp(norm(vA)) % norm finds the magnitude of a
                        % multi-dimensional vector
disp('Magnitude of B:')
disp(norm(vB))
disp('Unit vector in direction of A:')
disp(vA/norm(vA)) % unit vector is the vector
                                % divided by its magnitude
disp('Unit vector in direction of B:')
disp(vB/norm(vB))
disp('Sum A+B:')
disp(vA+vB)
disp('Difference A-B:')
disp(vA-vB)
disp('Dot product (A • B):')
disp(dot(vA,vB)) % dot takes the dot product of vectors
disp('Cross product (A < B):')
disp(cross(vA,vB)) % cross takes cross product of vectors
```


ADDITIONAL EXAMPLES

EXAMPLE 1.8 Electric field intensity is produced by a charge distribution as explained in Appendix A and Chapter 4. It is a vector and denoted by \mathbf{E}. The electric field components at a point P due to two different sources (charge distributions) are as follows:
$\mathbf{E}_{1}=10 \mathrm{~V} / \mathrm{m}$ at an angle of 30° with the horizontal in the anticlockwise direction
$\mathbf{E}_{2}=12 \mathrm{~V} / \mathrm{m}$ at an angle of 50° with the horizontal in the clockwise direction
(a) Determine the net electric field at the point P.
(b) Convert the given values into vector quantities and determine the net electric field using vector addition.

Solution:

(a) By the parallelogram rule, the net electric field is given by

$$
\begin{aligned}
|\mathbf{E}| & =\sqrt{\left|\mathbf{E}_{1}\right|^{2}+\left|\mathbf{E}_{2}\right|^{2}-\left(2\left|\mathbf{E}_{1}\right|\left|\mathbf{E}_{2}\right| \cos \left(\mathbf{E}_{1}, \mathbf{E}_{2}\right)\right)} \\
& =\sqrt{10^{2}+12^{2}-\left(2 \times 10 \times 12 \cos \left(100^{\circ}\right)\right)} \\
& =16.90 \mathrm{~V} / \mathrm{m}
\end{aligned}
$$

Figure 1.13 For Example 1.8.
Note: In the cosine rule we have to take the angle between the two vectors when the head of one vector is connected to the tail of the other vector as shown in Figure 1.13.

Let θ be the angle made by the resultant electric field with \mathbf{E}_{2}

$$
\begin{aligned}
\theta & =\tan ^{-1}\left(\frac{\left|\mathbf{E}_{1}\right| \sin 80^{\circ}}{\left|\mathbf{E}_{2}\right|+\left|\mathbf{E}_{1}\right| \cos 80^{\circ}}\right) \\
& =\tan ^{-1}\left(\frac{10 \sin 80^{\circ}}{12+10 \cos 80^{\circ}}\right) \\
& =35.64^{\circ}
\end{aligned}
$$

The angle made by \mathbf{E} with the horizontal is 14.36° in the clockwise direction.

$$
\mathbf{E}=16.90 \cos (-14.36)^{\circ} \mathbf{a}_{x}+16.90 \sin (-14.36)^{\circ} \mathbf{a}_{y}=16.373 \mathbf{a}_{x}-4.192 \mathbf{a}_{y} \mathrm{~V} / \mathrm{m}
$$

(b) In vector notation,

$$
\begin{aligned}
& \mathbf{E}_{1}=10 \cos 30 \mathbf{a}_{x}+10 \sin 30 \mathbf{a}_{y}=8.660 \mathbf{a}_{x}+5 \mathbf{a}_{y} \mathrm{~V} / \mathrm{m} \\
& \mathbf{E}_{2}=12 \cos \left(-50^{\circ}\right) \mathbf{a}_{x}+12 \sin \left(-50^{\circ}\right) \mathbf{a}_{y}=7.713 \mathbf{a}_{x}-9.192 \mathbf{a}_{y} \mathrm{~V} / \mathrm{m}
\end{aligned}
$$

The net electric field at the point is

$$
\begin{aligned}
& \mathbf{E}=\mathbf{E}_{1}+\mathbf{E}_{2}=8.660 \mathbf{a}_{x}+5 \mathbf{a}_{y}+7.713 \mathbf{a}_{x}-9.192 \mathbf{a}_{y} \\
& \mathbf{E}=16.373 \mathbf{a}_{x}-4.192 \mathbf{a}_{y} \mathrm{~V} / \mathrm{m}
\end{aligned}
$$

It can be observed that the procedure of vector addition is simple and straightforward.

PRACTICE EXERCISE 1.8

If $\mathbf{A}=4 \mathbf{a}_{x}-2 \mathbf{a}_{y}+6 \mathbf{a}_{z}$ and $\mathbf{B}=12 \mathbf{a}_{x}+18 \mathbf{a}_{y}-8 \mathbf{a}_{z}$, determine:
(a) $\mathbf{A}-3 \mathbf{B}$
(c) $\mathbf{a}_{x} \times \mathbf{A}$
(b) $(2 \mathbf{A}+5 \mathbf{B}) /|\mathbf{B}|$
(d) $\left(\boldsymbol{B} \times \mathbf{a}_{x}\right) \cdot \mathbf{a}_{y}$

Answers: (a) $-32 \mathbf{a}_{x}-56 \mathbf{a}_{y}+30 \mathbf{a}_{z}$ (b) $2.94 \mathbf{a}_{x}+3.72 \mathbf{a}_{y}-1.214 \mathbf{a}_{z}$ (c) $-6 \mathbf{a}_{y}-2 \mathbf{a}_{z}$ (d) -8

EXAMPLE 1.9 Let us consider a two-dimensional plane having a uniform electric field of $3 \mathbf{a}_{x}-2 \mathbf{a}_{y} \mathrm{~V} / \mathrm{m}$. Determine the dot product between the electric field and
(a) the vector joining points $(0,0)$ and $(12,-8)$;
(b) the vector joining points $(0,0)$ and $(8,12)$; and
(c) the vector joining points $(0,0)$ and $(8,-12)$.

Solution: Electric field in the given plane $\mathbf{E}=3 \mathbf{a}_{x}-2 \mathbf{a}_{y} \mathrm{~V} / \mathrm{m}$
(a) The position vector joining the points $(0,0)$ and $(12,-8)$ is $\mathbf{r}=12 \mathbf{a}_{x}-8 \mathbf{a}_{y} \mathrm{~m}$

The unit vector along the \mathbf{E} field is $0.83 \mathbf{a}_{x}-0.55 \mathbf{a}_{y}$
The unit vector along the \mathbf{r} vector is $0.83 \mathbf{a}_{x}-0.55 \mathbf{a}_{y}$
Both vectors are in the same direction, and the dot product is:

$$
\left(3 \mathbf{a}_{x}-2 \mathbf{a}_{y}\right) \cdot\left(12 \mathbf{a}_{x}-8 \mathbf{a}_{y}\right)=36+16=52 \mathrm{~V}
$$

(b) The position vector joining the points $(0,0)$ and $(8,12)$ is $\mathbf{r}=8 \mathbf{a}_{x}+12 \mathbf{a}_{y} \mathrm{~m}$

The dot product is: $\left(3 \mathbf{a}_{x}-2 \mathbf{a}_{y}\right) \cdot\left(8 \mathbf{a}_{x}+12 \mathbf{a}_{y}\right)=24-24=0$
The dot product has the minimum magnitude when \mathbf{r} is in the direction orthogonal to \mathbf{E}.
(c) The position vector joining the points $(0,0)$ and $(8,-12)$ is $\mathbf{r}=8 \mathbf{a}_{x}-12 \mathbf{a}_{y} \mathrm{~m}$

The dot product is: $\left(3 \mathbf{a}_{x}-2 \mathbf{a}_{y}\right) \cdot\left(8 \mathbf{a}_{x}-12 \mathbf{a}_{y}\right)=24+24=48 \mathrm{~V}$
Incidentally, dot product gives the magnitude of the potential difference between two points under consideration, as explained in Appendix A and in Section 4.7 of Chapter 4. The rate of change of potential is maximum along \mathbf{E} (case-a) and minimum along the orthogonal direction (case-b) which is an equipotential contour. It has intermediate values for other directions (case-c).

PRACTICE EXERCISE 1.9

Determine the dot product, cross product, and angle between $\mathbf{P}=2 \mathbf{a}_{x}-6 \mathbf{a}_{y}+5 \mathbf{a}_{z}$ and $\mathbf{Q}=3 \mathbf{a}_{y}+\mathbf{a}_{z}$
Answer: $-13,-21 \mathbf{a}_{x}-2 \mathbf{a}_{y}+6 \mathbf{a}_{z}, 120.66^{\circ}$

EXAMPLE 1.10 A wave propagation phenomenon can be explained in terms of two vectors: electric field intensity (\mathbf{E}) and magnetic field intensity (\mathbf{H}). A uniform plane wave propagating from a radiating source is characterized by constant amplitudes of \mathbf{E} and \mathbf{H} vectors in any plane transverse to the direction of propagation. Consider a uniform plane wave originating from an antenna and traveling through a homogenous unbounded medium. The electric field and magnetic field at an instant of time at a point in a plane near the receiver is $75.196 \mathbf{a}_{x}+43.415 \mathbf{a}_{y} \mathrm{~V} / \mathrm{m}$ and $-0.115 \mathbf{a}_{x}+0.199 \mathbf{a}_{y} \mathrm{~A} / \mathrm{m}$ respectively. Determine the instantaneous power transferred to that point by the antenna at the instant of time.

Solution: The following data is given-

$$
\begin{aligned}
& \text { Electric field vector }(\mathbf{E})=75.196 \mathbf{a}_{x}+43.415 \mathbf{a}_{y} \mathrm{~V} / \mathrm{m} \\
& \text { Magnetic field vector }(\mathbf{H})=-0.115 \mathbf{a}_{x}+0.199 \mathbf{a}_{y} \mathrm{~A} / \mathrm{m}
\end{aligned}
$$

The instantaneous power density in the wave is given by Poynting Vector (\mathbf{P}) which is the cross product of \mathbf{E} and \mathbf{H} :

$$
\mathbf{P}=\mathbf{E} \times \mathbf{H}
$$

$$
\begin{aligned}
& =\left|\begin{array}{ccc}
\mathbf{a}_{x} & \mathbf{a}_{y} & \mathbf{a}_{z} \\
75.196 & 43.415 & 0 \\
-0.115 & 0.199 & 0
\end{array}\right| \\
& =(14.96+4.99) \mathbf{a}_{z} \\
& =19.95 \mathbf{a}_{z} \mathrm{~W} / \mathrm{m}^{2}
\end{aligned}
$$

It should be noted that \mathbf{E} and \mathbf{H} are orthogonal in space for a uniform plane wave (see in Appendix A and Chapter 10). This fact can be verified by taking the dot product of the two vectors in this example, which is zero. Needless to say that \mathbf{E}, \mathbf{H}, and \mathbf{P} form a right-handed system. The direction of \mathbf{P} is the direction of wave propagation.

PRACTICE EXERCISE 1.10

Find the area of the parallelogram formed by the vectors $\mathbf{D}=4 \mathbf{a}_{x}-\mathbf{a}_{y}+5 \mathbf{a}_{z}$ and $\mathbf{E}=-\mathbf{a}_{x}+2 \mathbf{a}_{y}+3 \mathbf{a}_{z}$ Answer: 8.646

EXAMPLE 1.11 Consider a straight line in the $x y$-plane represented by $3 x+2 y=6$. Find the unit vector directed from the origin perperdicular to this line.

Solution: The line $3 x+2 y=6$ intersects the x-axis and the y-axis in points $A(2,0)$ and $B(0,3)$ respectively. The equation of the line segment from $(2,0)$ to $(0,3)$ is

$$
\mathbf{r}_{A B}=(2-0) \mathbf{a}_{x}+(0-3) \mathbf{a}_{y}=2 \mathbf{a}_{x}-3 \mathbf{a}_{y}
$$

Let us consider a point $P(x, y)$ on the given line such that the vector joining the origin and (x, y) is perpendicular to the line. As per eq. (1.14), the vector directed from the origin to $P(x, y)$ is as follows:

$$
\mathbf{r}_{P}=\mathbf{r}_{O P}=x \mathbf{a}_{x}+y \mathbf{a}_{y}
$$

The unit vector along it is given by the following equation:

$$
\mathbf{a}_{O P}=\frac{x \mathbf{a}_{x}+\mathrm{y} \mathbf{a}_{y}}{\sqrt{x^{2}+\mathrm{y}^{2}}}
$$

As the vectors \mathbf{r}_{AB} and \mathbf{r}_{p} are orthogonal, their dot product will be zero:

$$
\begin{gathered}
\mathbf{r}_{A B} \cdot \mathbf{r}_{P}=0 \\
2 x-3 y=0
\end{gathered}
$$

Solving the above equation with $3 x+2 y=6$ gives $x=1.38$ and $y=0.92$ Therefore,

$$
\mathbf{r}_{P}=1.38 \mathbf{a}_{x}+0.92 \mathbf{a}_{y}
$$

And the unit vector along it is given as follows:

$$
\mathbf{a}_{o P}=\frac{1.38 \mathbf{a}_{x}+0.92 \mathbf{a}_{y}}{\sqrt{(1.38)^{2}+(0.92)^{2}}}=0.83 \mathbf{a}_{x}+0.55 \mathbf{a}_{y}
$$

PRACTICE EXERCISE 1.11

If $\mathbf{A}=4 \mathbf{a}_{x}-6 \mathbf{a}_{y}+\mathbf{a}_{z}$ and $\mathbf{B}=2 \mathbf{a}_{x}+5 \mathbf{a}_{z}$, find:
(a) $\mathbf{A} \cdot \mathbf{B}+2|\mathbf{B}|^{2}$
(b) a unit vector perpendicular to both \mathbf{A} and \mathbf{B}

Answers: (a) 71 , (b) $\pm\left(-0.8111 \mathbf{a}_{x}-0.4867 \mathbf{a}_{y}+0.3244 \mathbf{a}_{z}\right)$

SUMMARY

1. A field is a function that specifies a quantity in space. For example, $\mathbf{A}(x, y, z)$ is a vector field, whereas $V(x, y, z)$ is a scalar field.
2. A vector \mathbf{A} is uniquely specified by its magnitude and a unit vector along it, that is, $\mathbf{A}=A \mathbf{a}_{A}$.
3. Multiplying two vectors \mathbf{A} and \mathbf{B} results in either a scalar $\mathbf{A} \cdot \mathbf{B}=A B \cos \theta_{A B}$ or a vector $\mathbf{A} \times \mathbf{B}=A B$ $\sin \theta_{A B} \mathbf{a}_{n}$. Multiplying three vectors \mathbf{A}, \mathbf{B}, and \mathbf{C} yields a scalar $\mathbf{A} \cdot(\mathbf{B} \times \mathbf{C})$ or a vector $\mathbf{A} \times(\mathbf{B} \times \mathbf{C})$.
4. The scalar projection (or component) of vector \mathbf{A} onto \mathbf{B} is $A_{B}=\mathbf{A} \cdot \mathbf{a}_{B}$, whereas vector projection of \mathbf{A} onto \mathbf{B} is $\mathbf{A}_{B}=A_{B} \mathbf{a}_{B}$.

REVIEW QUESTIONS

1.1 Tell which of the following quantities is not a vector: (a) force, (b) momentum, (c) acceleration, (d) work, (e) weight.
1.2 Which of the following is not a scalar field?
(a) Displacement of a mosquito in space
(d) Atmospheric pressure in a given region
(b) Light intensity in a drawing room
(e) Humidity of a city
(c) Temperature distribution in your classroom
1.3 Of the rectangular coordinate systems shown in Figure 1.14, which are not right handed?

(a)

(d)
(b)

(e)

(c)

(f)

Figure 1.14 For Review Question 1.3.
1.4 Which of these is correct?
(a) $\mathbf{A} \times \mathbf{A}=|\mathbf{A}|^{2}$
(d) $\mathbf{a}_{x} \cdot \mathbf{a}_{y}=\mathbf{a}_{z}$
(b) $\mathbf{A} \times \mathbf{B}+\mathbf{B} \times \mathbf{A}=\mathbf{0}$
(e) $\mathbf{a}_{k}=\mathbf{a}_{x}-\mathbf{a}_{y}$, where \mathbf{a}_{k} is a unit vector
(c) $\mathbf{A} \cdot \mathbf{B} \cdot \mathbf{C}=\mathbf{B} \cdot \mathbf{C} \cdot \mathbf{A}$
1.5 Which of the following identities is not valid?
(a) $\mathbf{a}(\mathbf{b}+\mathbf{c})=\mathbf{a b}+\mathbf{b c}$
(d) $\mathbf{c} \cdot(\mathbf{a} \times \mathbf{b})=-\mathbf{b} \cdot(\mathbf{a} \times \mathbf{c})$
(b) $\mathbf{a} \times(\mathbf{b}+\mathbf{c})=\mathbf{a} \times \mathbf{b}+\mathbf{a} \times \mathbf{c}$
(e) $\mathbf{a}_{A} \cdot \mathbf{a}_{B}=\cos \theta_{A B}$
(c) $\mathbf{a} \cdot \mathbf{b}=\mathbf{b} \cdot \mathbf{a}$
1.6 Which of the following statements are meaningless?
(a) $\mathbf{A} \cdot \mathbf{B}+2 \mathbf{A}=0$
(c) $\mathbf{A}+(\mathbf{A}+\mathbf{B})+2=0$
(b) $\mathbf{A} \cdot \mathbf{B}+5=2 \mathbf{A}$
(d) $\mathbf{A} \cdot \mathbf{A}+\mathbf{B} \cdot \mathbf{B}=0$
1.7 Let $\mathbf{F}=2 \mathbf{a}_{x}-6 \mathbf{a}_{y}+10 \mathbf{a}_{z}$ and $\mathbf{G}=\mathbf{a}_{x}+G_{y} \mathbf{a}_{y}+5 \mathbf{a}_{z}$. If \mathbf{F} and \mathbf{G} have the same unit vector, G_{y} is
(a) 6
(c) 0
(b) -3
(d) 6
1.8 Given that $\mathbf{A}=\mathbf{a}_{x}+\alpha \mathbf{a}_{y}+\mathbf{a}_{z}$ and $\mathbf{B}=\alpha \mathbf{a}_{x}+\mathbf{a}_{y}+\mathbf{a}_{z}$, if \mathbf{A} and \mathbf{B} are normal to each other, α is
(a) -2
(d) 2
(b) $-1 / 2$
(e) 1
(c) 0
1.9 The component of $6 \mathbf{a}_{x}+2 \mathbf{a}_{y}-3 \mathbf{a}_{z}$ along $3 \mathbf{a}_{x}-4 \mathbf{a}_{y}$ is
(a) $-12 \mathbf{a}_{x}-9 \mathbf{a}_{y}-3 \mathbf{a}_{z}$
(d) 2
(b) $30 \mathbf{a}_{x}-40 \mathbf{a}_{y}$
(e) 10
(c) $10 / 7$
1.10 Given $\mathbf{A}=-6 \mathbf{a}_{x}+3 \mathbf{a}_{y}+2 \mathbf{a}_{z}$, the projection of \mathbf{A} along \mathbf{a}_{y} is
(a) -12
(d) 7
(b) -4
(e) 12
(c) 3

Answers 1.1d, 1.2a, 1.3b, e, 1.4b, 1.5a, 1.6a, b, c, 1.7b, 1.8b, 1.9d, 1.10c.

PROBLEMS

Section 1.4—Unit Vector

1.1 Determine the unit vector along the direction $O P$, where O is the origin and P is point $(4,-5,1)$.
1.2 Find the unit vector along the line joining point $(2,4,4)$ to point $(-3,2,2)$.

Sections 1.5-1.7-Vector Addition, Subtraction, and Multiplication

1.3 Given vectors $\mathbf{A}=4 \mathbf{a}_{x}-6 \mathbf{a}_{y}+3 \mathbf{a}_{z}$ and $\mathbf{B}=-\mathbf{a}_{x}+8 \mathbf{a}_{y}+5 \mathbf{a}_{z}$, find (a) $\mathbf{A}-2 \mathbf{B}$, (b) $\mathbf{A} \cdot \mathbf{B}$, (c) $\mathbf{A} \times \mathbf{B}$.
1.4 Let $\mathbf{A}=4 \mathbf{a}_{x}+2 \mathbf{a}_{y}+\mathbf{a}_{z}, \mathbf{B}=3 \mathbf{a}_{x}+5 \mathbf{a}_{y}+\mathbf{a}_{z}$, and $\mathbf{C}=\mathbf{a}_{y}-7 \mathbf{a}_{z}$. Find $\mathbf{A} \cdot(\mathbf{B} \times \mathbf{C})$.
1.5 Let $\mathbf{A}=\mathbf{a}_{x}-\mathbf{a}_{z}, \mathbf{B}=\mathbf{a}_{x}+\mathbf{a}_{y}+\mathbf{a}_{z}, \mathbf{C}=\mathbf{a}_{y}+2 \mathbf{a}_{z}$, find:
(a) $\mathbf{A} \cdot(\mathbf{B} \times \mathbf{C})$
(c) $\mathbf{A} \times(\mathbf{B} \times \mathbf{C})$
(b) $(\mathbf{A} \times \mathbf{B}) \cdot \mathbf{C}$
(d) $(\mathbf{A} \times \mathbf{B}) \times \mathbf{C}$
1.6 If the position vectors of points T and S are $3 \mathbf{a}_{x}-2 \mathbf{a}_{y}+\mathbf{a}_{z}$ and $4 \mathbf{a}_{x}+6 \mathbf{a}_{y}+2 \mathbf{a}_{z}$, respectively, find (a) coordinates of T and S, (b) the distance vector from T to S, (c) the distance between T and S.
1.7 Let $\mathbf{A}=\alpha \mathbf{a}_{x}+3 \mathbf{a}_{y}-2 \mathbf{a}_{z}$ and $\mathbf{B}=4 \mathbf{a}_{x}+\beta \mathbf{a}_{y}+8 \mathbf{a}$.
(a) Find α and β if \mathbf{A} and \mathbf{B} are parallel.
(b) Determine the relationship between α and β if \mathbf{B} is perpendicular to \mathbf{A}.
1.8 (a) Show that

$$
(\mathbf{A} \cdot \mathbf{B})^{2}+|\mathbf{A} \times \mathbf{B}|^{2}=(A B)^{2}
$$

(b) Show that

$$
\mathbf{a}_{x}=\frac{\mathbf{a}_{y} \times \mathbf{a}_{z}}{\mathbf{a}_{x} \cdot \mathbf{a}_{y} \times \mathbf{a}_{z}}, \mathbf{a}_{y}=\frac{\mathbf{a}_{z} \times \mathbf{a}_{x}}{\mathbf{a}_{x} \cdot \mathbf{a}_{y} \times \mathbf{a}_{z}}, \mathbf{a}_{z}=\frac{\mathbf{a}_{x} \times \mathbf{a}_{y}}{\mathbf{a}_{x} \cdot \mathbf{a}_{y} \times \mathbf{a}_{z}}
$$

1.9 Given that

$$
\begin{aligned}
& \mathbf{P}=2 \mathbf{a}_{x}-\mathbf{a}_{y}-2 \mathbf{a}_{z} \\
& \mathbf{Q}=4 \mathbf{a}_{x}+3 \mathbf{a}_{y}+2 \mathbf{a}_{z} \\
& \mathbf{R}=-\mathbf{a}_{x}+\mathbf{a}_{y}+2 \mathbf{a}_{z}
\end{aligned}
$$

find: (a) $|\mathbf{P}+\mathbf{Q}-\mathbf{R}|$, (b) $\mathbf{P} \cdot \mathbf{Q} \times \mathbf{R}$, (c) $\mathbf{Q} \times \mathbf{P} \cdot \mathbf{R}$, (d) $(\mathbf{P} \times \mathbf{Q}) \cdot(\mathbf{Q} \times \mathbf{R})$, (e) $(\mathbf{P} \times \mathbf{Q}) \times(\mathbf{Q} \times \mathbf{R})$, (f) $\cos \theta_{P R}$, (g) $\sin \theta_{P Q}$.
1.10 Show that vectors $\mathbf{A}=\mathbf{a}_{x}-2 \mathbf{a}_{y}+3 \mathbf{a}_{z}$ and $\mathbf{B}=-2 \mathbf{a}_{x}+4 \mathbf{a}_{y}-6 \mathbf{a}_{z}$ are parallel.
1.11 Simplify the following expressions:
(a) $\mathbf{A} \times(\mathbf{A} \times \mathbf{B})$
(b) $\mathbf{A} \times[\mathbf{A} \times(\mathbf{A} \times \mathbf{B})]$
1.12 A right angle triangle has its corners located at $P_{1}(5,-3,1), P_{2}(1,-2,4)$, and $P_{3}(3,3,5)$. (a) Which corner is a right angle? (b) Calculate the area of the triangle.
1.13 Points P, Q, and R are located at $(-1,4,8),(2,-1,3)$, and $(-1,2,3)$, respectively. Determine (a) the distance between P and Q, (b) the distance vector from P to R, (c) the angle between $Q P$ and $Q R$, (d) the area of triangle $P Q R$, (e) the perimeter of triangle $P Q R$.
1.14 Two points $P(2,4,-1)$ and $Q(12,16,9)$ form a straight line. Calculate the time taken for a sonar signal traveling at $300 \mathrm{~m} / \mathrm{s}$ to get from the origin to the midpoint of $P Q$.
1.15 Show that the dot and cross in the triple scalar productmay be interchanged, that is, $\mathbf{A} \cdot(\mathbf{B} \times \mathbf{C})=(\mathbf{A} \times \mathbf{B}) \cdot \mathbf{C}$.
*1.16 (a) Prove that $\mathbf{P}=\cos \theta_{1} \mathbf{a}_{x}+\sin \theta_{1} \mathbf{a}_{y}$ and $\mathbf{Q}=\cos \theta_{2} \mathbf{a}_{x}+\sin \theta_{2} \mathbf{a}_{y}$ are unit vectors in the xy-plane, respectively, making angles θ_{1} and θ_{2} with the x-axis.
(b) By means of dot product, obtain the formula for $\cos \left(\theta_{2}-\theta_{1}\right)$. By similarly formulating \mathbf{P} and \mathbf{Q}, obtain the formula for $\cos \left(\theta_{2}+\theta_{1}\right)$.
(c) If θ is the angle between \mathbf{P} and \mathbf{Q}, find $\frac{1}{2}|\mathbf{P}-\mathbf{Q}|$ in terms of θ.
1.17 Consider a rigid body rotating with a constant angular velocity ω radians per second about a fixed axis through O as in Figure 1.15. Let \mathbf{r} be the distance vector from O to P, the position of a particle in the body. The magnitude of the velocity \mathbf{u} of the body at P is $|\mathbf{u}|=d|\omega|=|\mathbf{r}| \sin \theta|\omega|$. or $\mathbf{u}=\omega \times \mathbf{r}$ If the rigid body is rotating at $3 \mathrm{rad} / \mathrm{s}$ about an axis parallel to $\mathbf{a}_{x}-2 \mathbf{a}_{y}+2 \mathbf{a}_{z}$ and passing through point, (2, $-3,1$) determine the velocity of the body at $(1,3,4)$.
1.18 A cube of side 1 m has one corner placed at the origin. Determine the angle between the diagonals of the cube.
1.19 Given vectors $\mathbf{T}=2 \mathbf{a}_{x}-6 \mathbf{a}_{y}+3 \mathbf{a}_{z}$ and $\mathbf{S}=\mathbf{a}_{x}+2 \mathbf{a}_{y}+\mathbf{a}_{z}$, find (a) the scalar projection of \mathbf{T} on \mathbf{S}, (b) the vector projection of \mathbf{S} on \mathbf{T}, (c) the smaller angle between \mathbf{T} and \mathbf{S}.

Section 1.8-Components of a Vector

1.20 Given two vectors \mathbf{A} and \mathbf{B}, show that the vector component of \mathbf{A} perpendicular to \mathbf{B} is

$$
\mathbf{C}=\mathbf{A}-\frac{\mathbf{A} \cdot \mathbf{B}}{\mathbf{B} \cdot \mathbf{B}} \mathbf{B}
$$

Figure 1.15 For Problem 1.17.

[^3]1.21 If $\mathbf{H}=2 x y \mathbf{a}_{x}-(x+z) \mathbf{a}_{y}+z^{2} \mathbf{a}_{z}$, find:
(a) A unit vector parallel to \mathbf{H} at $P(1,3,-2)$
(b) The equation of the surface on which $|\mathbf{H}|=10$
1.22 Given three vectors
\[

$$
\begin{aligned}
& \mathbf{A}=4 \mathbf{a}_{x}-\mathbf{a}_{y}+\mathbf{a}_{z} \\
& \mathbf{B}=\mathbf{a}_{x}-\mathbf{a}_{y} \\
& \mathbf{C}=\mathbf{A}+\mathbf{B}
\end{aligned}
$$
\]

Find: (a) $\mathbf{A} \cdot(\mathbf{B} \times \mathbf{C})$, (b) the vector component of \mathbf{A} along \mathbf{B}.
1.23 Let $\mathbf{G}=x^{2} \mathbf{a}_{x}-y \mathbf{a}_{y}+2 z \mathbf{a}_{z}$ and $\mathbf{H}=y z \mathbf{a}_{x}+3 \mathbf{a}_{y}+x z \mathbf{a}_{z}$. At point $(1,-2,3)$, (a) calculate the magnitude of \mathbf{G} and \mathbf{H}, (b) determine $\mathbf{G} \cdot \mathbf{H}$, (c) find the angle between \mathbf{G} and \mathbf{H}.
1.24 Determine the scalar component of vector $\mathbf{H}=y \mathbf{a}_{x}-x \mathbf{a}_{z}$ at point $P(1,0,3)$ that is directed toward point $Q(-2,1,4)$.
1.25 Given two vector fields

$$
\mathbf{D}=y z \mathbf{a}_{x}+x z \mathbf{a}_{y}+x y \mathbf{a}_{z} \text { and } \mathbf{E}=5 x y \mathbf{a}_{x}+6\left(x^{2}+3\right) \mathbf{a}_{y}+8 x^{2} \mathbf{a}_{z}
$$

(a) Evaluate $\mathbf{C}=\mathbf{D}+\mathbf{E}$ at point $P(-1,2,4)$.
(b) Find the angle \mathbf{C} makes with the x-axis at P.
1.26 \mathbf{E} and \mathbf{F} are vector fields given by $\mathbf{E}=2 x \mathbf{a}_{x}+\mathbf{a}_{y}+y z \mathbf{a}_{z}$ and $\mathbf{F}=x y \mathbf{a}_{x}-y^{2} \mathbf{a}_{y}+x y z \mathbf{a}_{z}$. Determine:
(a) $|\mathbf{E}|$ at $(1,2,3)$
(b) The component of \mathbf{E} along \mathbf{F} at $(1,2,3)$
(c) A vector perpendicular to both \mathbf{E} and \mathbf{F} at $(0,1,-3)$ whose magnitude is unity

ENHANCING YOUR SKILLS AND CAREER

The Accreditation Board for Engineering and Technology (ABET) establishes eleven criteria for accrediting engineering, technology, and computer science programs. The criteria are as follows:
A. Ability to apply mathematics science and engineering principles
B. Ability to design and conduct experiments and interpret data
C. Ability to design a system, component, or process to meet desired needs
D. Ability to function on multidisciplinary teams
E. Ability to identify, formulate, and solve engineering problems
F. Ability to understand professional and ethical responsibility
G. Ability to communicate effectively
H. Ability to understand the impact of engineering solutions in a global context
I. Ability to recognize the need for and to engage in lifelong learning
J. Ability to know of contemporary issues
K. Ability to use the techniques, skills, and modern engineering tools necessary for engineering practice

Criterion A applies directly to electromagnetics, As students, you are expected to study mathematics, science, and engineering with the purpose of being able to apply that knowledge to the solution of engineering problems. The skill needed here is the ability to apply the fundamentals of EM in solving a problem. The best approach is to attempt as many problems as you can. This will help you to understand how to use formulas and assimilate the material. Keep nearby all your basic mathematics, science, and engineering textbooks. You may need to consult them from time to time.

[^0]: ${ }^{1}$ For numerous applications of electrostatics, see J. M. Crowley, Fundamentals of Applied Electrostatics. New York: John Wiley \& Sons, 1986.
 ${ }^{2}$ For other areas of applications of EM, see, for example, D. Teplitz, ed., Electromagnetism: Paths to Research. New York: Plenum Press, 1982.

[^1]: ${ }^{\dagger}$ Indicates sections that may be skipped, explained briefly, or assigned as homework if the text is covered in one semester.
 ${ }^{3}$ The reader who feels no need for review of vector algebra can skip to the next chapter.

[^2]: ${ }^{4}$ For an elementary treatment of tensors, see, for example, A. I. Borisenko and I. E. Tarapor, Vector and Tensor Analysis with Applications. New York: Dover, 1979.

[^3]: *Single asterisks indicate problems of intermediate difficulty

