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R13 Bending of Curved 

Bars and Beams

LEARNING OBJECTIVES
After reading through this chapter, you will be able to
	 Derive the Winkler-Bach formula governing the bending of curved bars
	 Draw the stress distribution diagram for curved bars subjected to bending
	 Analyse the bending of curved bars of different sections and in crane hooks, rings, 

and chain links
	 Explain the structural behaviour of beams curved in plan
	 Analyse beams curved in plan for different support conditions
	 Draw the BM and torsion diagrams for beams curved in plan

13.1 INTRODUCTION
We have dealt with beams and their behaviour in the earlier chapters. One characteristic feature 
of such beams was that their centroidal lines were all straight. In this chapter we are going 
to study the behaviour of beams that have curved centre lines. There are two types of beams 
having curved centroidal lines. One refers to curvature in elevation (the beam will look straight 
in plan). The second type is a beam curved in plan (They will look straight in elevation).

Except for the similarity in their curved centroidal lines, these two types of beams are quite 
different in their use and structural action. The beams shown in Fig. 13.1 explain the similarities 
and differences in the two cases.

(b) Water tank

Ring beams 

(a) Crane hook

Load

Fig. 13.1

The crane hook has a curved centroidal line in elevation. The plane containing this line is also 
the plane of loading and bending. The ring beam of the water tank, on the other hand, has a curved 
centre line in plan. The plane of loading is perpendicular to the plane containing the centre line.
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CHAPTER 1 BASIC CONCEPTS
1.1 A smooth right circular cylinder of radius 0.5 m rests on a horizontal plane and is kept 
from rolling by an inclined string AC of length 1 m. A prismatic bar of length 1.5 m and weight 
125 N is hinged at point A and leans against the cylinder as shown in Fig. Q1.1. Find the tension 
S that will be induced in the string AC. (2009)

A

C

Fig. Q1.1

Solution: 
CA = 1 m; CD = 0.5 m. Angle CDA is a right angle. Angle CAD = sin–1(0.5) = 30 degrees. The 
cylinder is smooth. Hence the angle CBA is a right angle. Angle CAB is also 30 degrees. From 
the free body diagram of the bar, we find the reaction at B,

125 × 0.75 cos 60 = RB × 1 cos 30; RB = 93.75 N

B

30°
30°

0.5

1 m

A D

C

From the free body diagram of the cylinder, it is acted upon by three forces concurrent at C. 
Load from the prismatic bar acting towards C; tension in the string acting away from C, and 
reaction from the ground which is vertical. We take ΣH = 0 to find S.

S is inclined at 30° to the horizontal and RB is also inclined at the same angle to horizontal. 
Therefore, S = RB = 93.75 N. 
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R14 Stresses Due to 
Rotation

LEARNING OBJECTIVES
After reading this chapter, you will be able to
	 analyse rotating wheels, discs, and cylinders to find stresses 
	 determine the limiting speed of rotating discs using failure theories
	 draw stress distribution diagram for different stresses in discs and cylinders 
	 find the thickness variation for a solid disc of uniform strength 

14.1 INTRODUCTION
There are many components in a variety of machines which rotate. A few examples include 
simple wheels, fly wheels, discs, and drums or cylinders. Such components are subjected to 
stresses due to rotation of the component. In this chapter we study simple cases of rotating 
components and find expressions for the stresses induced in them. This will also help us to 
determine the dimensions of such rotating parts so that the stresses do not exceed the permissible 
value. Figure 14.1 shows some of the elements.

(a) Wheel rim (b) Solid disc (c) Hollow disk (d) Solid cylinder (e) Hollow cylinder

Fig. 14.1

14.2 BASIC CONCEPTS—RADIAL ACCELERATION AND CENTRIFUGAL FORCE
We recall the concept of centrifugal force from mechanics that you would have studied earlier. 
Consider the particle of mass m moving along a circular path as shown in Fig. 14.2.

The particle of mass m is moving along a circular arc of radius r with uniform angular 
velocity w. The linear (tangential) velocity is uniform and has a magnitude wr. The magnitude 
of tangential velocity is constant but changes direction as it moves along the circular path. 

Consider the two positions of the particle at A and B. You notice that the velocity is not the 
same at A and B. Even though the magnitude is the same at the two positions, the velocity 
has changed direction. The change in direction of velocity is caused by acceleration directed 
towards the centre of the circle.
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Find the MI about the horizontal and vertical axes passing through the centroid of the unequal angle 
section shown in Fig. 1.39.

Solution The angle section is unsymmetrical in both directions. Here x  as well as y  have to be determined. 
Taking moments about the left edge of the areas,

(100 × 10 + 110 × 10) x  = 100 × 10 × 5 + 110 × 10 × 65

x  = 36.43 mm

Similarly, taking moments about the bottom edge,

(100 × 10 + 110 × 10) y  = 100 × 10 × 50 + 110 × 10 × 5

y  = 26.43 mm

10

10
0

10
0

10

120120

(a) (b)

36.43 83.57

26.43

73.57

Y

X X

Y

Y

Y

X
X

x

y
10

10

Fig. 1.39

Example 1.12 MI of an unequal angle section

Find the MI through the centroidal axes X-X and Y-Y for the 
T-shaped section shown in Fig. 1.38. (All lengths are in mm.)

Solution The section is symmetrical about the y-axis. To locate 
the distance x (from the upper edge), take the moment about the 
top edge of the T-section of the areas:

(150 × 10 + 140 × 10) x = 150 × 10 × 5 + 140 × 10 × 80

x = 41.2 mm

IXX = 150 × 
310

12
 + 150 × 10 (41.2 – 5)2 

  + 
310 140

12

×  + 140 × 10 (108.8 – 70)2

     = 6.372 × 106 mm4

IYY = 
3 310 150 140 10

12 12

× ×+  = 2.8242 × 106 mm4 

Example 1.11 MI of a T-section

150

10

10

15
0

x

X X

Y

Fig. 1.38

D:\Nirdosh_Tempwork\OUP_Project\Strength of Materials_OUP\
Chapter 01_Revised\Chapter01_Art\Fig-1.39.eps
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This is equal to IXX.

7.2 × 106 + 6.2513 × 106 + 7600 
2

4

d
 + 217,968d = 45.86 × 106

1900d2 + 217,968d – 32.41 × 106 = 0

d = 85.3 mm 

From a rectangular plate, 100 mm × 200 mm, a circular portion is 
removed as shown in Fig. 1.41. Find the MI of the plate about an axis 
through its base.

Solution The circular portion can be taken as a negative area and its MI 
subtracted from that of the full rectangular plate.

IX′X′  =100 × 
3 4 2200 80 80

– –
3 64 4

p p¥ ¥
 × 1502

= 1.5156 × 108 mm4

100

80

X

X¢ X¢

X

50

20
0

Fig. 1.41

Find the MI of the composite area shown in Fig. 1.42(a) about the X-X and Y-Y axes.

Solution The distances of the centroids of each part of the area from the respective reference lines are shown in 
Fig. 1.42(b). IXX and IYY can be calculated as

IXX = 
3 4 2

2200 100 50 50
50

3 8 2

p p× × ×+ + ×
23200 50 200 50 350

36 2 3

× ×  + + ×   
 

 = 1.4768 × 108 mm4

IYY = 
3 4 2

2100 200 50 50
(221.22)

3 8 2

p p× × ×+ + ×
3

50 200 50 200 400

36 2 3

3× ×  + +   
 = 5.613 × 108 mm4 

Y

X X X X

Y

10
0

10
0

200

(a) (b)

200

200
4 × 50

3p

3

3

5050

50 50

Fig. 1.42

Example 1.14 MI of a rectangular lamina with hole

Example 1.15 MI of a composite area
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The second moment of area is the second moment of area of the 
three rectangles marked 1 (100 × 10), 2(180 × 10) and 3(100 × 10). 
As the two flanges are placed symmetrically about NA, their MI 
about X-X will be equal. The MI can be calculated as

IXX – 2 [100 × 103/12 + 100 × 10 × 952] + 10 × 1803/12 

= 2[105/12 + 9.025 × 106] + 4.86 × 106 = 4.868 × 106 mm4. 

Section modulus Zt = Zb = 4.868 × 106/100 = 4.868 × 104 mm4.

The I-section shown in Fig. 1.51 (b) is not symmetrical about the 
horizontal axis.
We locate the centroid of the section.

Area of the section = 100 × 10 + 170 × 10 + 50 × 20 = 3700 mm2.

Ŷ  = [100 × 10 ×  5 + 170 × 10 ×  95 + 50 × 20 × 190] /3700 = 96.35 mm from bottom.

The distance of NA from the top = 103.65 mm.

IXX = [100 × 103/12 + 1000 × 91.352 + 10 × 1703/12 + 1700 × 1.352 + 50 × 203/12 + 1000 × 93.652]

 = 21.26 × 106 mm4.

Section modulus with respect to top Zt = 21.25 × 106/103.65 = 205017 mm3.
Section modulus with respect to bottom Zb = 21.25 × 106/96.35 = 220550 mm3.

X X

100 × 10 50 × 20

20

100 × 10

10 × 180

AN

(a) (b)

10 × 17010
3.

65
96

.3
5

100 × 10

Fig. 1.51

Find the section modulus of the trapezium shown in Fig. 1.52.

Solution We first find the centroid of the section. Taking moments 
about the bottom edge, considering two triangles as shown,

Area, y  = [20 × (20/2) (2 × 20/3) + 40 × (20/2) (20/3)] = 5333.33 cm3

Area of trapezium = [(40 +20)/2] × 20 = 600 cm2

ŷ  = 5333.33/600 = 8.89 cm

Height of centroid from top = 20 – 8.89 = 11.11 cm

 MI about NA = 40 × 203/12 + (40 × 20/2) (8.89 – 6.67)2 

   + 20 × 203/12 + 20 × (20/2) (11.11 – 6.67)2

 = 26,666.67 + 1971.36 + 13,333.33 + 3942.72

 = 45,914 cm4

 Zt = 45,914/11.11 = 4132.68 cm3

 Zb = 45,914/8.89 = 514.68 cm3 

Example 1.23 Section modulus of a trapezoidal section 

Fig. 1.52

20

20
C

A B

D

40

Two unequal angle sections are kept as shown in Fig. 1.53. Find the distance x so that the MI about X-X 
and Y-Y axes are equal. Also find the section modulii.

Solution We first locate Ŷ , the distance of centroid from the top flange.

Ŷ  = [60 × 10 × 5 + 110 × 10 × 65]/(60 × 10 + 110 × 10) = 43.82 mm

Example 1.24 Section modulii of two angle sections
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 1. A mild steel rod tapers uniformly from 24 mm dia. to 12 mm dia. over its length of 400 
mm. The rod when held vertical is subjected to an axial tensile load of 12 kN. E = 2 × 105 
N/mm2. The extension of the rod in mm would be
(a) 3p/2 (b) 2/3p  (c) p/3 (d) 1/3p

 2. A mild steel bar of square cross-section has a sectional area of 200 mm2. It is subjected 
to an axial force of 20 kN as shown in figure below. The intensity of the normal tensile 
stress in N/mm2 on the oblique plane 1-1 at 45° with the Y-Y axis which is normal to the 
longitudinal axis will be

1

20 kN 20 kN

= 45º
1

Y

Y
Q

(a) 25 (b) 50 (c) 75 (d) 100

 3. Poisson’s ratio of a material is 0.3. The ratio of Young’s modulus to bulk modulus is
(a) 0.6 (b) 0.8 (c) 1.2 (d) 1.4

 4. The relationship between Young’s modulus E, modulus of rigidity C and bulk modulus K in 
an elastic material is given by the relation

(a) 9 KC
3K + C

 (b) 3 KC
3K + C

 (c) 9 KC
9K + C

 (d) 3 KC
9K + C

 5. In a plane stress problem, there are normal tensile stresses sX and sY, with sX > sY, 
accompanied by shear stress tXY at a point in the X-Y plane. If it is observed that the 
minimum principal stress on a certain section is zero, then
(a) tXY = √[sX sY]  (b) tXY = √[sX / sY]
(c) tXY = √[sX – sY]  (d) tXY = √[sX + sY]

 6. A rectangular bar of cross sectional area A is subjected to an axial load P. The maximum 
shear stress occurs on a plane at X° to any normal cross section where X is
(a) 90° (b) 270° (c) 180° (d) 45°

 7. A solid circular shaft has been subjected to a pure torsion moment. The ratio of maximum 
shear stress to maximum normal stress at any point would be
(a) 1:2 (b) 1:1 (c) 2:3 (d) 2:1

 8. A rectangular beam of dimensions b × d is to be cut from a circular log of diameter D. For 
the beam to be strongest in bending, the dimensions will be
(a) D/√2, D√(2/3) (b) D/√3, D√(2/3) (c) D/√2, √(2D/3) (d) D/√3, √(2D/3)

A
P

P
E

N
D

IX5B UPSC MCQs
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Illustrations
Improved 2D and 3D illustrations for better readability and 
pictorial representation of objects and structures. Grey-scale 
shading enhances the figures further to enable a three-
dimensional effect. 

Coverage
This new edition expands its coverage through two 
new chapters—Chapter 13: Bending of Curved Bars 
and Beams and Chapter 14: Stresses due to Rotation. 
Addition of new topics such as Bearing Stress, Flitched 
Beams, Application of Euler’s and Rankine’s Formulae, 
etc. enhances the depth of coverage in chapters.

UPSC Questions
Appendix 5 offers a rich resource of solved examples 
from previous years’ UPSC question papers for 
aspiring candidates of competitive examinations. 
Problems from the IES, IFS, and UPSC mains civil 
engineering papers have been solved and placed 
chapter-wise according to the theoretical concept 
they are based on. 

MCQs from the objective papers of IES 
examination have also been given in this appendix.

Application-oriented Solved Examples
Applications of theoretical concepts to different 
sections and structures in varying load conditions 
have been explained using solved examples. 
This is the USP of the book. It ensures clear 
understanding of the concept and helps formulate 
analytical thinking in the reader’s mind with minimal 
description and more solved examples.

38  STRENGTH OF MATERIALS

The second moment of area is the second moment of area of the 
three rectangles marked 1 (100 × 10), 2(180 × 10) and 3(100 × 10). 
As the two flanges are placed symmetrically about NA, their MI 
about X-X will be equal. The MI can be calculated as

IXX – 2 [100 × 103/12 + 100 × 10 × 952] + 10 × 1803/12 

= 2[105/12 + 9.025 × 106] + 4.86 × 106 = 4.868 × 106 mm4. 

Section modulus Zt = Zb = 4.868 × 106/100 = 4.868 × 104 mm4.

The I-section shown in Fig. 1.51 (b) is not symmetrical about the 
horizontal axis.
We locate the centroid of the section.

Area of the section = 100 × 10 + 170 × 10 + 50 × 20 = 3700 mm2.

Ŷ  = [100 × 10 ×  5 + 170 × 10 ×  95 + 50 × 20 × 190] /3700 = 96.35 mm from bottom.

The distance of NA from the top = 103.65 mm.

IXX = [100 × 103/12 + 1000 × 91.352 + 10 × 1703/12 + 1700 × 1.352 + 50 × 203/12 + 1000 × 93.652]

 = 21.26 × 106 mm4.

Section modulus with respect to top Zt = 21.25 × 106/103.65 = 205017 mm3.
Section modulus with respect to bottom Zb = 21.25 × 106/96.35 = 220550 mm3.

X X

100 × 10 50 × 20

20

100 × 10

10 × 180

AN

(a) (b)

10 × 17010
3.

65
96

.3
5

100 × 10

Fig. 1.51

Find the section modulus of the trapezium shown in Fig. 1.52.

Solution We first find the centroid of the section. Taking moments 
about the bottom edge, considering two triangles as shown,

Area, y  = [20 × (20/2) (2 × 20/3) + 40 × (20/2) (20/3)] = 5333.33 cm3

Area of trapezium = [(40 +20)/2] × 20 = 600 cm2

ŷ  = 5333.33/600 = 8.89 cm

Height of centroid from top = 20 – 8.89 = 11.11 cm

 MI about NA = 40 × 203/12 + (40 × 20/2) (8.89 – 6.67)2 

   + 20 × 203/12 + 20 × (20/2) (11.11 – 6.67)2

 = 26,666.67 + 1971.36 + 13,333.33 + 3942.72

 = 45,914 cm4

 Zt = 45,914/11.11 = 4132.68 cm3

 Zb = 45,914/8.89 = 514.68 cm3 

Example 1.23 Section modulus of a trapezoidal section 

Fig. 1.52
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20
C

A B

D
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Two unequal angle sections are kept as shown in Fig. 1.53. Find the distance x so that the MI about X-X 
and Y-Y axes are equal. Also find the section modulii.

Solution We first locate Ŷ , the distance of centroid from the top flange.

Ŷ  = [60 × 10 × 5 + 110 × 10 × 65]/(60 × 10 + 110 × 10) = 43.82 mm

Example 1.24 Section modulii of two angle sections
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Find the value of Young’s modulus of elasticity of the material of a tapering bar from the following data: 
The bar has 20 mm diameter at one end, 40 mm diameter at the other, length 1 m, and load 10 kN. The 
elongation observed was 0.1 mm.

Solution Elongation in the case of a tapering bar of circular section is given by L = 4PL/(pEd1d2), where P is the 
load, d1, d2 are the end diameters, l is the length, and E is the Young’s modulus of elasticity. From this, E is 
given by

E = 4PL/(pd1d2L)

In this case, P = 10 kN, L = 1 m = 1000 mm, d1 = 20 mm, d2 = 40 mm, and L = 0.1 mm. Substituting,

E = 4  10,000  1000 / (p  20  40  0.1) = 159,155 N/mm2

Note that the result is obtained in N/mm2. This is the same as MPa. Therefore,

E = 159,15 MPa = 159 GPa

Example 2.15 Young’s modulus of elasticity of a tapering bar

A tapering bar of rectangular section, 20 mm wide at one end and 40 mm wide at the other, 8 mm thick, 
and 800 mm long, had an elongation of 0.08 mm under a load P. Find the load P if the modulus of 
elasticity of the material of the bar is 100 GPa.

Solution In the case of a tapering bar of rectangular section, the elongation is given by 

L = PL loge(w2/w1)/[Et(w2 – w1)]

The load P is given by

P = L [Et(w2 – w1)] / [Lloge(w2/w1)]

In this case, L = 0.08 mm, E = 100 GPa = 100,000 N/mm2, t = 8 mm, w2 = 40 mm, and w1 = 20 mm. 
Substituting,

P = 0.08 [ 100,000  8 (40 – 20)] / [800 loge(40/20)]

 = 2308 N = 2.3 kN

2.4 DEFORMATION UNDER SELF-WEIGHT
When a rod or body is not subject ed to any external force but is just hung so that the self-
weight of the body acts as a force, it gets stretched. The weights acting at different levels vary, 
depending upon the length of the body below the section. The following examples illustrate the 
proce dure for solving problems relating to such situations.

Example 2.16 Calculation of load on a tapering bar

A uniform rod of length L is hung from its top end. Determine the elongation of the bar. What is the 
maximum stress in the bar?

Solution The situation is represented in Fig. 2.13(a). L is the length of the bar, A its area of cross section, g  its 
density, and E the modulus of elasticity of the material. We isolate a length dx of the bar at a distance of 
x from the bottom end. The free body diagram of this elementary length is shown in Fig. 2.13(b).

Example 2.17 Deformation under self-weight

SOM_Revised_Book_Ch01-13.indb   90 4/4/2016   5:56:12 PM

SOM_FM.indd   4 4/20/2016   7:07:12 PM

© Oxford University Press. All rights reserved.

Oxfo
rd

 U
niversi

ty
 Pre

ss



SIMpLE STRESSES ANd STRAINS  159

eX= 
s s n s nX Y Z

E E E
− − , s s n s nY X Z

E E E
− −

and 

ez = 
s s n s nZ X Y

E E E
− −  

These three equations form what is known as 
generalised Hooke’s law. The three relations for shear 
tresses,

fXY = 
t XY

G
, fYz = tYZ

G
 and fzX = t ZX

G
also make up the total of stresses and strains 
relationships in a general case.

Normal strains and lateral strains result in a change 
in the volume of the body. The volumetric strain eV 
is the change in volume per unit volume. The bulk 
modulus K = s/eV where s = sX = sY = sZ. The three 
elastic constants, E, G, and K can be related to each 
other by the relationships, E = 3K (1 – 2n) = 2G (1 + n).

Stresses and strains in the elements of a single 
material or of compound sections can be calculated 
from the above relationships. In the case of compound 
materials, a condition of compatibility of deformations 
is available for this purpose.

Materials when subjected to temperature changes 
deform, causing a change in length. When such 
deformations are restrained, stresses are developed 
in the materials. Due to temperature changes, change 

in length = Lat, where L is the length, a = coefficient 
of linear expansion, and t = change in temperature. 
Compound sections of two or more materials are 
subjected to stresses even without a restraint because 
of the difference in the coefficients of expansion.

Important properties of materials are proportional 
limit, which is the stress up to which stress is 
proportional to strain; elastic limit, which is the stress 
up to which the material behaves elastically (meaning 
that the deformations disappear when the load is 
removed); yield stress, which is the stress beyond 
which the material undergoes plastic deformations. 
The stress-strain diagram for a material is drawn by 
conducting a tension/compression test on a standard 
piece of material to evaluate such properties.

Stress concentration is the increase in stress (above 
the average stress) at change of section, discontinuities 
like holes, etc. Residual stresses are stresses that 
remain in the material even after applied load is 
removed. Fatigue is a condition due to cyclic loading 
and the material loses strength and may fail at a much 
lower stress due to fatigue.

EXERCISES

Multiple Choice Questions
 1. If a 100 mm long bar elongates by 0.1 mm when 

stressed to 100 N/mm2, the value of Young’s 
modulus elasticity (in GPa) is
(a) 200 (b) 100 (c) 50 (d) 1

 2. Poisson’ ratio for any material cannot be more than
(a) 0.3 (b) 0.5 (c) 0.8 (d) 1

 3. If the Young’s modulus of elasticity of a material 
is 100 GPa, Poisson’s ratio is 0.35 and a bar of that 
material is stressed to 100 N/mm2 under an axial 
load, the lateral strain is
(a) 0.35 (b) 0.035
(c) 0.0035 (d) 0.00035

 4. For a bar 100 mm long of square section, 40 mm 
side, with an axial load, the decrease in the side 
was seen to be 0.01 mm. If the Poison’s ratio is 
0.3, the change in the length of the bar is
(a) 0.083 mm decrease (b) 0.083 mm increase    
(c) 0.03 mm increase (d) 0.03 mm decrease.

 5. A square bar, 1m long and 40 mm side, is subjected 
to an axial tensile load. If the side is seen to decrease 
in size by 0.01 mm, If E = 200 GPa and Poisson’s 
ratio is 0.3, the stress in the bar (in N/mm2) is
(a) 6.67  (b) 66.67 (c) 100 (d) 166.67

 6. A 1m long bar, 100 mm2 in section, is subjected to 
a temperature rise of 100°C. The bar is rigidly held 
at both ends. If coefficient of thermal expansion is 
15 × 10–6/°C and E = 100 GPa, the stress in the bar 
is (in N/mm2) 
(a) 60 (b) 150 (c) 180 (d) 240

  Answer questions 2.7 to 2.9 based on the data 
below:

  Two bars, of different materials and of common 
length 1 m, are rigidly joined together. The 
coefficient of thermal expansion of one material 
(steel) is 12 × 10–6/°C (E = 200 GPa) and of second 
material (brass) is 18 × 10–6/°C (E = 100 GPa)
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EXERCISES

Multiple Choice Questions

 1. In the bending of a curved bar, the stress 
distribution across the section is
(a) linear

(b) parabolic

(c) same throughout

(d) hyperbolic

 2. From the following statements, the true statement 
is
(a) All beams are subjected to twisting moments

(b)  Only beams with curved centre lines are 
subjected to twisting moment

(c)  Beams curved in plan are subjected to twisting 
moment

(d)  Beams with curvature in the plane of bending 
have twisting moment

 3. In a beam curved in plan and subjected to a 
vertical UD load, the true statement from the 
following is
(a)  Bending moment is maximum where the SF is 

zero

(b)  Twisting moment is maximum where the BM 
is zero

(c)  Bending moment is maximum where the 
twisting moment is zero

(d)  Twisting moment is maximum where the SF is 
zero.

  Answer questions 14.4 to 14.6 based on the 
beam curved in plan on three supports shown in 
Fig. 14.42. RA is the reaction at A.

a
A

A
R R

B

Plan
w/m

C

C

B

P

Fig. 14.42

 4. The expression for SF at P is
(a) RA – wR (b) RA  – 2wR
(c) RA – wRa (d) RA – wRa/2

 5. The expression for BM at P is
(a) RA – wRa
(b) Ra (R sin a) – wR a sina
(c) RA R sin a – wRa cos a
(d) RA R sin a – wR2 2 sin2(a/2)

 6. The expression for twisting moment at P is
(a) RA cos a – wRa sin a
(b) RA sin a – wRa cos a
(c) RA R(1 – cos a) – wR (a – sin a)
(d) RA R (1 – sin) – wR (a – cos a)

 7. The neutral axis in a curved bar (curved in 
elevation) is (with usual notations) 
(a) coincident with the centroidal axis
(b) is obtained from (1/A) ∫(RY dA)
(c) (1/A) ∫ y2 dA
(d) A / ∫(RY dA)

Review Questions
 1. State the Winkler-Bach formula for bending of 

curved bars and indicate what each term in the 
formula means.

 2. Explain the location of the neutral axis in the 
bending of curved bars with a sketch.

 3. Show the stress distribution diagram for a bar 
curved in elevation and subjected to bending.

 4. Explain the structural action of a beam curved in 
plan using a neat sketch.

 5. Explain the vector notation for moments using a 

sketch.
 6. Derive the formula SF, BM, and TM for a curved 

ring beam having eight supports. 
 7. State the difference in the structural action of 

curved and straight members. What is the difference 
in the bending stress distributions of the members?

 8. State the difference in the structural action 
of curved and straight members. What is the 
difference in the bending stress distributions of the 
members?
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Beams are very common structural elements carrying 
loads predomi nantly transverse to their length. Under 
the action of loads, beams bend and take up an 
equilibrium position. The deformations in beams are 
small and hence the changes in the geometry of the 
loads are generally neglected. Beams are subjected to 
bending moments and shear forces under the action of 
loads. At any sec tion of the beam, the external effects 
of loads are resisted by internal stress resultants. 
Stresses due to bending moment are normal stresses. 
Shear force is resisted by tangential stresses developed 
in the section. The two effects are generally considered 
separately for designing beams.

In the theory of bending, a case of pure bending 
couples at the ends is taken so that the SF is absent. The 
bending equation is derived in such cases with certain 
assumptions. One is that plane sections before bending 
remain plane after bending. If that be so, we obtain a 
linear strain diagram. If we take it that E is constant in 
tension and compression, our first assumption leads 
to a linear stress distribution for bending stresses. The 
bending equation M/I = s/y = E/R is derived based on 
such assumptions. M/I = s/y helps us arrive at the stress 
distribution and maximum bending stresses (smax) in 
the section either in tension or compression. The neutral 
layer in the beam section is one which has no strain. M/I 
= s/y relates the stresses to the applied BM while M/I = 
E/R relates the deformation in beams to the applied BM.

Based on similar assumptions, stresses due to SF 
can be worked out. The shear stress t is tangential 
to the section and is dis tributed over the section with 
maximum value at the neutral axis. It is assumed to be 
constant across the width. The shear stress distribution 
equation t = (V/Ib) Ay shows a parabolic distribution of 
shear stress over the depth of the section.

Beams can be designed separately for BM and SF. 
The larger section satisfying the permissible stress 
values in bending and shear is selected.

Composite beams are so called because they are 
made of two materials, such as timber and steel or 
concrete and steel. Such beams can be analysed for 
BM and SF, based on the same principles as for 
single-material sections. The strains at any depth 
being the same in the two materials, the stresses 
will be in the ratio of the modulus of elasticity of 
the materials (known as modular ratio). Composite 
beams can be made into a section of one of the materi-
als by converting the areas (but without altering the 
depth) by increasing the width as modular ratio × 
actual width.

In the case of thin-walled sections, such as I, T, [, 
and angles, the shear flow can be worked out assuming 
that the shear stress is constant across the depth which 
is small. Shear flow q = t t. The concept of shear centre 
comes from that of shear flow. Sections with two axes 
of symmetry, such as I-sections, have the shear centre 
at the intersection of the axes. In the case of a channel 
section, the shear centre can be located by applying the 
concept of shear flow, and is not at the intersection of the 
centroidal axes. If the applied loads do not pass through 
the shear centre, the section will be subjected to twisting.

Unsymmetrical bending occurs when a beam of 
unsymmetrical or symmetrical sections is subjected 
to loads which are out of the plane of symmetry but 
pass through the shear centre of the section. The beam 
bends about the principal axes of the section in two 
planes but without twisting. The bending stresses 
can be obtained by superposition. The NA may be 
an oblique line in the section and can be located by 
finding points of zero stress.

Summary

EXERCISES

Multiple Choice Questions
 1. The assumption made in the theory of simple 

bending that plane sections before bending remain 
plane after bending leads to
(a) the stress diagram being linear
(b) the strain diagram being linear
(c) maximum stress occurring in the extreme fibres
(d) bending stress becoming zero at the neutral axis

 2. In the case of an equilateral triangular section, the 
maximum shear stress occurs at
(a) at the neutral axis
(b) below the neutral axis
(c) at one-fourth depth from top
(d) at mid-depth
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IX 2 Material Properties

Material Elastic  
modulus (GPa)

Modulus of 
rigidity (GPa)

Bulk modulus 
(GPa)

Poisson’s 
ratio (u)

Coefficient of linear 
expan sion ( 10 –6)

Aluminium 70.5 25.5 75 0.34 23

Brass 96 34.5 95 0.35 18.9

Bronze 95 37 93 0.36 18

Copper 119.5 40 136.5 0.3 16.7

Gold 80 28 166 0.42 13.9

Iron (cast) 115 440 96 0.27 10.6

Iron (wrought) 205 800 153 0.28 11.7

Lead 16 6 50 0.45 29.2

Nickel 207 76 177 0.36 12.8

Silver 78 29 109 0.38 19.2

Steel (mild) 220 84.5 175 0.28 12

Tin 54 20 53 0.33 22.3

Zinc 110 43 72 0.25 31
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IX

3.1 Fixed End Moments in Fixed Beams
(The positive moment is anticlockwise at the left support and clockwise at the right support.)

Beam loading FEM at left support A FEM at right support B

1. (a)
a b 

P

l

Pa b

l

2

2

Pa b

l

2

2

(b) a = b Pl/8 Pl/8

2. w m/ wl2

12

wl2

12

3. (a) w/m

l – c c 

w

l12 2
[6l2c2 – 8c3l + 3c4] w

l12 2
[4c3l – 3c4]

(b) c = l/2 11

192

2wl 5

192
2wl

4. w/m

c (l – c)
w

l12 2 [l4 – 6l2c2 + 8lc3 – 3c4]
w

l12 2 [l4 – 4lc3 + 3c4]

5. (a)
w m/a

c

b
wc

l12 2 [12b2a + 6b2c + 12abc 

  + 4ac2 + 4bc2 + c3]

wc

l12 2 [12a2b + 12abc + 4bc2 

  + 6a2c + 4ac2 + c3]

(b) a = b wc

l12 2 [12a3 + 18a2c + 8ac2 + c3]
wc

l12 2 [12a3 + 18a2c + 8ac2 + c3]

6. w/m wl2

20

wl2

30

7. (a) w/m

l – cc
wc

l

2

260
[10l2 – 10lc + 3c2]

wc

l

3

260
[5l – 3c]

(b) c = l/2 23

960
wl2 7

960
wl2

3 Beam Formulae
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IX3 Beam Formulae
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Maximum and minimum stesss are:

921.7 921.7 0.596 2.25

4.5 7.6
σ × ×= ±

[Area of section = 4.5 × 1 = 4.5 m2; I = 
31 4.5

12

×
= 7.6 m4]

s = 204.8 ± 162.6 = 367.43 kN/m2, 42.2 kN/m2

Many structural elements such as dams, retaining 
walls and chimneys are subjected to axial stresses 
and bending moments due to self-weight as well 
as pressures, due to water, earth, wind, etc. In such 
cases, the axial stress and the stress due to bending are 
combined algebraically. These formulae are applicable 
to short compression members. Axial stress = P/bd and 
bending stress = ± My/I. 

The axial compressive stress and the compressive 
stress due to bending together yield a larger compressive 
stress. In the case of a rectangular section of dimensions 
b × d, the maximum stress can be calculated as

2

6P Pe

bd bd
σ = ±

If P/bd > 6Pe/bd2, the whole section will be under 
compression and if they are equal, stress will be zero 
at one end. If P/bd < 6Pe/bd2, tensile stresses will be 
produced.

For a rectangular section, the middle-third rule states 
that if the eccentricity of the load is less than or equal 

to d/6 on either side of the bending axis, no tension 
will be produced. The above formula for single-axis 
bending can be extended to biaxial bending, where the 
axial load has eccentricity about both the axes of the 
section. In such a case,

yx

Y Y

Pe yPe xP

A I I
= ± ±σ

The neutral axis in such cases is obtained by 

2 2
1 0yx

Y X

e ye x

r r
+ ± =

which is the equation for a line of zero stress.

The kern or core of a section gives the outer limits 
for eccentricity of the load. No tensile stresses are 
produced in the section within these limits. The kern 
of a rectangular section is a diamond-shaped area of 
diagonal lengths d/3 and b/3. In structures subjected 
to lateral pressure, these formulae are used—the direct 
stresses being produced by self-weight or other causes 
and the BM being produced by the lateral load.

Summary

EXERCISES

Multiple Choice Questions
 1. A short pillar of circular section, radius r, is 

subjected to an eccentric load. The eccentricity 
such that the maximum stress is twice the 
minimum stress is
(a) r/3 (b) r/4
(c) r/8 (d) r/12

 2. The kern of a section is an area in the section 
within which if any load acts
(a)  The maximum and minimum stresses will be 

equal.
(b) Maximum stress will be minimum
(c) There will be no tension in the section
(d) There will be no compression in the section

 3. The kern of a circular section of radius r is a 
circular area of radius
(a) r (b) r/2 (c) r/4 (d) r/8

 4. A short pillar of square section of side ’a’ is 
subjected to an eccentric load lying along one 
of its diagonals. The eccentricity such that the 
minimum stress is zero is
(a) 0.06 a (b) 0.118 a (c) 0.236 a (d) 0.472 a

 5. The middle-third rule is
(a) applicable to all sections
(b) applicable to square and circular sections
(c) applicable to rectangular sections only
(d) applicable to circular sections only.
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Problems
 1. A semicircular bar, of radius 80 mm, is of circular 

section of diamater 30 mm and is subjected to 
couples at the ends that open the ring. Find the 
maximum value of the couple if the bending stress 
is limited to 100 MPa.

 2. If the semicircular ring of Problem 1 is of trapezoidal 
section of sides 50 mm and 25 mm and depth 40 
mm, find the maximum value of the moments 
applied at the ends.

 3. A crane hook is of trapezoidal section of sides 
40 mm and 20 mm, and depth 40 mm. The radius 
of the hook is 50 mm and the load along the radius 
through the centre of curvature applied is 20 kN. 
Find the maximum tensile stress along a radial 
section (horizontal) that passes through the centre.

 4. A curved beam has a T-section shown in Fig. 13.43. 
The inner radius is 300 mm. What is the eccentricity 
of the section?

Axis

80
m

m

300mm

20 60 mm

Fig. 13.43

 5. A steel ring of 20 cm mean diameter has a rectangular 
cross section of 5 cm in the radial direction and 3 cm 
perpendicular to the radial direction. If the maximum 
tensile stress is limited to 120 MPa, determine the 
tensile load that the ring can carry.

 6. A chain link, of the size and shape shown in 
Fig. 13.44, is subjected to loads P as shown in the 
figure. Prove that the maximum bending moment 
at the point of application of the load is 

 PR(1 + 2R)/[1 + pR]

d
R

P P

Fig. 13.44

 7. A steel rod is to be bent in the form of a hook to 
lift a load of 8 kN such that the maximum stress 
does not exceed 140 MPa. The ratio of the radius of 
curvature of the centroidal plane to the radius of the 
rod is to be 4 and the load acts through the centre of 
curvature. Determine the diameter of the rod. 

 8. A cantilever beam, 4 m radius, is a quarter circular 
arc carrying a point load 10 kN at the free end. 
Draw the BM and TM diagrams.

 9. A cantilever beam of quarter circular arc has a 
radius of 6 m and carries UD load of 5 kN/m 
over its whole length. Find the reactions at the 
supports and draw the SF, BM, and TM diagrams.

 10. A cantilever beam of quarter circular arc of radius 
4 m carries a point load of 30 kN at its mid-point, 
Draw the SF, BM, and TM diagrams.

 11. A cantilever beam of 6 m radius is a quarter 
circular arc and carries a UD load of 10 kN/m for 
half its length from the free end. Draw SF, BM, 
and TM diagrams.

 12. A curved beam made up of a semi-circular arc is of 
radius 6 m and carries a UD load 20 kN/m over its 
whole length. It is supported at the ends and at its 
mid-point, Draw the SF, BM, and TM diagrams.

 13. A curved beam of semi-circular arc of radius 
4.5 m is supported symmetrically at the ends and 
at its mid-point. It carries two equal point loads, 
20 kN, at the mid-point of each segment, Draw the 
BM and TM diagrams.

 14. A curved beam of three continuous quarter circular 
arcs is supported at the ends and at the end of 
quarter circular arcs symmetrically. It carries a UD 
load of 10 kN/m over its whole length. Draw the SF, 
BM, and TM diagrams indicating salient values.

 15. A ring beam is symmetrically supported on 
five supports and carries a UD load. Prove the 
coefficients given in the table for BM and TM.

 16. A ring beam 15 m radius is supported on eight 
supports. It carries a UD load of 12 kN/m over its 
whole length. Draw the SF, BM, and TM diagrams 
indicating salient values. 

 17. A semicircular bar, of radius 80 mm, is of circular 
section of diamater 30 mm and is subjected to 
couples at the ends that open the ring. Find the 
maximum value of the couple if the bending stress 
is limited to 100 MPa.

 18. If the semicircular ring of Problem 21 is of 
trapezoidal section of sides 50 mm and 25 mm 
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Maximum and minimum stesss are:

921.7 921.7 0.596 2.25

4.5 7.6
σ × ×= ±

[Area of section = 4.5 × 1 = 4.5 m2; I = 
31 4.5

12

×
= 7.6 m4]

s = 204.8 ± 162.6 = 367.43 kN/m2, 42.2 kN/m2

Many structural elements such as dams, retaining 
walls and chimneys are subjected to axial stresses 
and bending moments due to self-weight as well 
as pressures, due to water, earth, wind, etc. In such 
cases, the axial stress and the stress due to bending are 
combined algebraically. These formulae are applicable 
to short compression members. Axial stress = P/bd and 
bending stress = ± My/I. 

The axial compressive stress and the compressive 
stress due to bending together yield a larger compressive 
stress. In the case of a rectangular section of dimensions 
b × d, the maximum stress can be calculated as

2

6P Pe

bd bd
σ = ±

If P/bd > 6Pe/bd2, the whole section will be under 
compression and if they are equal, stress will be zero 
at one end. If P/bd < 6Pe/bd2, tensile stresses will be 
produced.

For a rectangular section, the middle-third rule states 
that if the eccentricity of the load is less than or equal 

to d/6 on either side of the bending axis, no tension 
will be produced. The above formula for single-axis 
bending can be extended to biaxial bending, where the 
axial load has eccentricity about both the axes of the 
section. In such a case,

yx

Y Y

Pe yPe xP

A I I
= ± ±σ

The neutral axis in such cases is obtained by 

2 2
1 0yx

Y X

e ye x

r r
+ ± =

which is the equation for a line of zero stress.

The kern or core of a section gives the outer limits 
for eccentricity of the load. No tensile stresses are 
produced in the section within these limits. The kern 
of a rectangular section is a diamond-shaped area of 
diagonal lengths d/3 and b/3. In structures subjected 
to lateral pressure, these formulae are used—the direct 
stresses being produced by self-weight or other causes 
and the BM being produced by the lateral load.

Summary

EXERCISES

Multiple Choice Questions
 1. A short pillar of circular section, radius r, is 

subjected to an eccentric load. The eccentricity 
such that the maximum stress is twice the 
minimum stress is
(a) r/3 (b) r/4
(c) r/8 (d) r/12

 2. The kern of a section is an area in the section 
within which if any load acts
(a)  The maximum and minimum stresses will be 

equal.
(b) Maximum stress will be minimum
(c) There will be no tension in the section
(d) There will be no compression in the section

 3. The kern of a circular section of radius r is a 
circular area of radius
(a) r (b) r/2 (c) r/4 (d) r/8

 4. A short pillar of square section of side ’a’ is 
subjected to an eccentric load lying along one 
of its diagonals. The eccentricity such that the 
minimum stress is zero is
(a) 0.06 a (b) 0.118 a (c) 0.236 a (d) 0.472 a

 5. The middle-third rule is
(a) applicable to all sections
(b) applicable to square and circular sections
(c) applicable to rectangular sections only
(d) applicable to circular sections only.
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Multiple-Choice Questions
Multiple-choice Questions have been included in the end-
of-chapter exercises. This makes it easy for students 
and faculty to refer to the MCQs as soon as the chapter 
is completed. Test-generator based MCQs are available 
to students on our Online Resource Center (india.oup.
com/orcs/9780199464739) where they can mark their 
answers and also evaluate their results online. 

Summary
The summary at the end of every chapter briefly 
recapitulates the topics covered in the chapter for a quick 
look-up.

Appendices
A host of appendices  with essential data on Centroids 
and Moments of Inertia, Material Properties, and Beam 
Formulae provide a ready reference for problem solving 
to students and faculty alike.

End-of-chapter Exercises
Exercises at the end of chapters include unsolved 
problems, review questions, and MCQs that assist the 
student in practising and revising the taught theory. Faculty 
can use these for the purpose of classroom teaching. 

the Book
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Preface to the Third Edition 

It was gratifying to note the enthusiastic response received by the second edition of Strength of Materials 
over the years from the academic fraternity of faculty and students. The basic feature of laying emphasis 
on the understanding of fundamental concepts and principles has been widely appreciated. Responding 
to this ever increasing response by the academic fraternity, it gives me great pleasure to present the third 
and enlarged edition of the book.

New to the Third Edition
The third edition of the book has taken into account the feedback received from many users. Two new 
chapters are included in addition to expanding the existing chapters by adding new solved examples. 
To help those students who may appear for many competitive examinations, questions from such 
examinations, both subjective and objective, with solutions are included. 
A brief summary of the key features of the third revision are listed below:
1.	 Two additional chapters are included to take care of the content followed in some universities. Chapter 

13 on ‘Bending of Curved Bars and Beams’ and Chapter 14 on ‘Stresses due to Rotation’ have been 
prepared on the same lines as the other chapters.

2.	Additional solved examples have been added in many chapters to facilitate students’ understanding 
of basic concepts and principles.

3.	Multiple Choice Questions were available with the second edition as well but were put on the 
companion website. To facilitate students’ preparation for future studies, nearly 200 MCQS are now 
included as a part of the end-chapter exercise. The key for the MCQs is provided in the appendix.

4.	 The book has found appreciation for its highly visual nature with more than 1000 illustrations. Keeping this 
in focus, the quality, visibility, and readability of illustrations have been enhanced throughout the book.

5.	Keeping the future requirements of the students in mind, there is a separate section on UPSC 
examinations, both as conventional questions and objective type questions. The solutions to 
conventional questions have been provided and a key for the MCQs has been given. The detailed 
solutions to these MCQs will be available in the companion website for students for reference.

6.	 Some rearrangement of the chapters has been made to rationalize the presentation of the content in a 
logical order. The structure of the book is as follows: 

Chapter 1 is devoted to a recapitulation of the relevant basic concepts of applied mechanics. It also 
deals with properties of sections such as moment of inertia (MOI), product of inertia, polar MOI, etc., 
which constantly find application in structural analysis. A thorough understanding of these topics is 
necessary for further work. 

Chapter 2 deals with elementary concepts of stresses and strains, Hooke’s law, elastic constants, stresses 
in compound sections, temperature stresses and some simple indeterminate problems, and mechanical 
properties of materials. This chapter is important for further studies in stress analysis. 

Chapter 3 deals with an important and common structural element, the beam. The concepts of bending 
moment (BM) and shear force (SF) are introduced along with the differential relationships and methods 
of showing variations in BM and SF diagrams. The analysis of statically determinate rigid frames has 
also been covered. 
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viii    PREFACE TO THE THIRD EDIT ION

Chapter 4 follows the concepts presented in Chapter 3 by introducing the bending equation along with 
methods for calculating bending and shearing stresses followed by their distribution. The concepts of 
shear centre and unsymmetrical bending have also been covered in this chapter. 

Chapter 5 is about the effect of combining direct and bending stresses, and their effects, which are important 
for analysing structures subjected to lateral pressure, such as chimneys, retaining walls, dams, etc. 

Chapter 6 deals with the very important aspect of deformations in beams. The deformations have been 
calculated using different methods such as double integration, area-moment theorems, and conjugate 
beam. A thorough grounding of the concepts in this chapter is important for further analysis. 

Chapter 7 deals with another important structural element shafts. Torsion and torsional shear have been 
dealt with in detail. 

Chapter 8 provides an analysis of plane stress, both analytically and graphically. The calculation of 
principal stresses and maximum shear stress has been explained in detail and illustrated with a number 
of examples. 

Chapter 9 deals with strain energy, which has many applications in later studies. Strain energy due to 
uniaxial, bending, and shear stresses and due to torsion has been explained and illustrated. Suddenly 
applied and impact loads have also been covered. 

Chapter 10 describes another common structural element, the column, which also introduces the concept 
of stability. Euler’s critical load method and the Rankine–Gordon method have been explained in detail. 

Chapter 11 deals with some special structural elements such as springs, thin and thick pressure vessels, 
and elastic theories of failure. 

Chapter 12 deals with the truss or pin-jointed plane frame. The method of joints, method of sections, 
the relevant graphical methods, and the method of tension coefficients have been illustrated. 

Determining deflections in trusses using Castigliano’s theorem and unit load methods and graphically 
using Williot-Mohr diagrams are also covered.

Chapter 13 discusses the bending of curved bars and beams. Stresses developed in bars with large 
curvatures, closed rings and chain links have been dealt with in detail. It also studies various types of 
beams curved in plan case by case.

Chapter 14 deals with stresses due to rotation in various structural elements such as circular rings, solid 
discs, hollow and solid cylinders, etc. 

Chapter 15 is an introduction to indeterminate structural analysis. The basic concepts of flexibility 
and stiffness methods have been covered. Simple indeterminate structures such as fixed and continuous 
beams. It introduces the flexibility method of analysis and illustrates Clapeyron’s theorem of three 
moments in detail. 

Chapter 16 is intended as an introduction to advanced structural analysis. The method of moment 
distribution, credited to Hardy Cross, as applied to continuous beams and frames with no sway as well 
as side sway, has been introduced in this chapter. 

Appendices provide the centroids and moments of inertia of standard structural elements. Characteristic 
properties of a list of different materials have been given as a ready reference along with a table that 
lists the beam formulae. Additionally this edition has a separate appendix that contains solved UPSC 
problems and MCQs from previous 5 years’ UPSC papers.

To reinforce the theoretical concepts, the text is supplemented by a large number of worked-out examples 
with step-by-step solution procedures as well as a large number of review questions and exercise problems. 
The book also provides useful tables both in the text and in the appendices for ready reference. 
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Preface to the Third Edition      ix

I sincerely hope that the users of the book, both faculty and students, will find the third edition very 
useful for a better understanding of the subject for its application in advanced courses. 
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Preface to the First Edition

The subject of strength of materials or mechanics of solids involves analytical methods for determining 
the strength, stiffness, and stability of the various load-carrying structural members. A thorough 
understanding of the underlying principles is useful to civil engineers and architects, and cuts broadly 
across all branches of engineering with several applications.

This book has been specially written for undergraduate students of engineering taking a first course on 
the subject. While there are many books available on this subject, I have written this book with a focus 
on the concepts and their engineering applications. During my tenure as a teacher, I have observed that 
a large number of students find it difficult to grasp the concepts and principles, and often omit several 
topics. I wanted to present the subject matter in an easy-to-comprehend form and explain the concepts 
and principles by applying them to a large number of examples, which, I hope, will help the students to 
internalize them. A strong grasp of these concepts and principles will help them to understand advanced 
topics with ease. 

About the Book
I have attempted to make the presentation as lucid and comprehensible as possible. Going from the 
simple to the complex, the concrete to the abstract, and the known to the unknown are the cardinal tenets 
followed in arriving at the format and detailing of the book. There is lack of uniformity in the curriculum 
followed in different universities and engineering colleges. Therefore, during the preparation of the 
manuscript, I have attempted to give as comprehensive a coverage as possible of the topics, taking the 
various curricula in effect into consideration.

Acknowledgements
I am grateful to the Bureau of Indian Standards for permission to reproduce a part of the steel tables from 
their publication. I am also grateful to the editorial team at Oxford University Press for the excellent job 
done in bringing this book out in a short time with a high degree of accuracy and precision. I am grateful 
as well to a large number of my teachers and students who have directly or indirectly helped me in this 
endeavour.

Despite best efforts by all concerned, it is possible that some errors might have crept into the final 
form in your hand. It will be appreciated if such errors are pointed out to me or to the publishers. In 
addition, suggestions from teachers and students regarding any additions in topics or subtopics required 
to make the book more useful are welcome. Such comments or suggestions will be taken care of in 
subsequent editions of the book.

 R. Subramanian
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R1 Basic Concepts

LEARNING OBJECTIVES
After reading this chapter, you will be able to

	 recall and apply relevant basic concepts from mechanics for solving problems,
	 appreciate the importance of such basic concepts in engineering analysis,
	 define the terms moment of inertia and second moment of area,
	 state and explain the parallel and perpendicular axes theorems,
	 compute the second moment of area of a given section,
	 calculate the radius of gyration of a given section,
	 calculate the product of inertia of a given section,
	 calculate the principal second moment of area of  unsymmetrical sections and 

the directions of principal axes of inertia, and
	 compute the section modulus of a given section.

1.1  INTRODUCTION
The methods and techniques used in the analysis of structures or machine elements are based 
upon the concepts and principles, which the reader would have studied in a first course in 
engineering mechanics. This chapter starts with a recall of relevant concepts and principles 
from that subject. This chapter also deals with some basic concepts such as moment of inertia, 
product of inertia, and section modulus, which find applications in many structural or machine 
elements to be dealt with in later chapters.

1.2  BASIC PRINCIPLES OF MECHANICS
Before taking up the principles, definition of the following terms must be clearly understood:

Matter is any substance that occupies space.
Particle in solid geometry is analogous to a point in plane geometry. A particle has mass but 

has no dimensions.
Body is matter that is bounded by a closed surface. Bodies can be classified as rigid and 

deformable.
A rigid body is a body that does not undergo any deformation, change in shape and size, on 

application of a force. All bodies in nature are deformable on application of a sufficiently large 
force. We would not have been able to fabricate many things that we use in day-to-day life if 
bodies were not deformable. But for the purpose of certain analysis, as in statics detailed in the 
next section, bodies are assumed to be rigid (strictly, we assume that deformations are too small 
that we can consider the body to be rigid).
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2    STRENGTH OF MATERIALS

A deformable body is one that undergoes deformations, change in size and shape, on 
application of a force. Materials have different degrees of deformations on application of 
forces. Rubber, for example, undergoes deformations on application of a small force. Steel, on 
the other hand, requires a very large amount of force to deform it. It is necessary to compute 
the deformations of bodies and it is done in many forms of analysis (see Chapter 3 on Simple 
Stresses and Strains and Chapter 7 on Deformations in Beams).

Inertia is an inherent property of matter by which it resists any change in its state.
Mass is a quantitative measure of inertia. Bodies undergo different degrees of deformations 

under the action of forces. Thus, steel has more inertia (mass) than aluminium as, under the 
action of the same force on two identical bodies of steel and aluminium, the aluminium body 
will undergo more change in motion than steel.

Space is a region that extends in all directions and contains all bodies. Position of a body in 
space is located by arbitrarily fixing reference axes and measuring its coordinates with respect 
to these axes. Rectangular coordinates use three mutually perpendicular axes while cylindrical 
coordinates use distances and angles to locate position in space.

Time is a measure of duration between successive events occurring. This is important in 
mechanics as bodies in motion change their position with time.

Equilibrium is a state of rest of a body. State of rest can be defined as a state in which the 
body does not change its position. Equilibrium equations also cover the case of a body moving 
with uniform velocity along a straight line.

Motion is a change of position of a body with respect to time. When an unbalanced force acts 
on a body, it has motion.

Scalar and vector quantities are physical quantities like mass, time, speed, velocity, force, 
etc. A scalar quantity is one that has only a magnitude as an attribute. Two scalar quantities 
can be added using the conventional method of addition. Mass, time, length, etc. are scalar 
quantities. Vector quantities, on the other hand, have a direction in addition to magnitude. They 
cannot be added like scalar quantities and are manipulated using a different mathematical tool 
known as vector algebra. Force, moment, velocity, etc. are vector quantities.

The following basic principles of mechanics form the foundation on which the entire classical 
mechanics is based. They are in general proved by experience than mathematically.

1.	 Newton’s laws of motion  There are three Newton’s laws of motion, which govern the 
motion of bodies under the action of forces.

	 Newton’s first law states that a particle or rigid body will remain in a state of rest or continue 
to move in a straight line with uniform velocity unless acted upon by an unbalanced force.

	 Newton’s second law states that a particle’s rate of change of momentum is equal to the 
unbalanced force acting on it and takes place in the direction of the force.

	 Newton’s third law states that to every action there is an equal and opposite reaction.
2.	 Parallelogram law  This law states that if two vector quantities are represented by two 

adjacent sides of a parallelogram, their sum is given by the diagonal of the parallelogram 
passing through the point of intersection of the two forces. This is discussed in detail in the 
next section.

3.	 Principle of transmissibility  This principle states that the effect of a force acting on a 
rigid body does not change if the force is moved along its line of action to another point on 
the body.

4.	 Principle of superposition  This principle states that if a number of forces act on a body, 
the total effect of all the forces is the summation of the effects of the individual forces. Thus, 
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Basic Concepts    3

if a body is subjected to a number of forces, F1, F2, F3,…, the motion imparted to the body 
is the summation of the motion imparted to the body by the individual forces F1, F2, F3, … .

	 The principle of superposition also means that the effect of a set of forces acting on a body 
does not change if another system of forces in equilibrium is added to, or subtracted from, it.

5.	 Two forces, acting on a body and keeping it in equilibrium, must be collinear, equal, and 
opposite.

6.	 Newton’s Law of Gravitation  It states that two bodies attract each other by a force given 
by Gm1m2/r

2, where G is the universal constant of gravitation, m1, m2 are the masses of the 
bodies, and r is the distance between them. Based on the law of gravitation, the earth attracts all 
material bodies with mass. The weight of a body is due to this attraction. Earth’s gravity gives 
to a body of mass m, a weight of gm, where g = 9.81 m/s2 and g = GM/R2, where G = Newton’s 
universal gravitational constant, M is the mass of the earth, and R is the radius of the earth.

7.	 Law of conservation of energy  It states that energy can neither be created nor destroyed 
but can change from one body to another or change form. When a force acts on a mass and 
the body moves, it does work and the work is converted to kinetic energy of the body. Work 
and energy are scalar quantities and are easier to work with. Energy principles are used in 
many forms of analysis.

1.3  STATICS
Statics is a branch of mechanics that deals with forces and moments which are in equilibrium. The 
principles of statics are also applicable to bodies which are in motion but without acceleration.

1.3.1  Force
Force is a vector quantity and may be represented as shown in Fig. 1.1(a). The three attributes 
of force are shown here. AB shows the direction of the force, the arrow shows the sense 
(acting from A to B), and B is the point of application. The line ab show the direction of 
the force and the arrow at the end shows the sense of the force as from a tob or ab

���
, and the 

point of application of the force is either at the beginning or at the end of line ab.
Figure 1.1(b) shows a vectorial representation of the force ab

���
. In addition to the three 

attributes discussed above, the vectorial or graphic representation also includes the magnitude 
of the force represented by line ab to some scale. This representation is required for a graphic 
solution to problems.

In the SI (the abbreviation of the French form of The International System of Units) units, the 
unit of force is the newton. One newton is the force required to be applied to a mass of 1 kg to 
give it an acceleration of 1 m s–2. Since force = mass × acceleration, force (newton) = kg m s–2. 
Many multiples of this unit are used, e.g. 1 kilonewton = 1000 N, 1 meganewton (MN) = 1000 kN, 

1 giganewton (GN) = 1000 MN, etc.

Force systems  A number of forces acting on a 
body forms a force system. Force systems may be 
coplanar, in which case the lines of action of all the 
forces of the system lie in a plane. Such systems 
may also be spatial, when the lines of action do 
not lie in a plane (Fig. 1.2). Force systems can 
further be classified as concurrent, parallel and 
non-concurrent, non-parallel, as shown in Fig. 1.2.

200 N

Scale
1 cm = 50 N

A

B

a

(a) (b)

b

Fig. 1.1
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4    STRENGTH OF MATERIALS

Composition of forces  Two given forces acting (concurrently) at a point can be combined 
into a single force, known as their  resultant and having the same effect on the body as the two 
forces, by the parallelogram law or triangle law of forces. This is shown in Fig. 1.3, where F1 
and F2 are the two forces and R is their resultant. Analytically, R2 = F2

1 + F2
2 – 2F1F2 cosq, where 

q is the angle between the lines of action of the forces.

(a) Concurrent, coplanar

(d) Concurrent, space

y

x

z

(e) Parallel, space (f) General, space

(b) Parallel, coplanar (c) General, coplanar

Fig. 1.2  Force systems

Fig. 1.3  Addition of two vectors

F2

F2

F1 F1

R R

F1

q q q

F2

If more than two forces act at a point, the resultant is determined from the polygon of forces 
which is obtained by the repeated application of the triangle law of forces (Fig. 1.4). The 
magnitude, line of action, and sense of the resultant are obtained from the force polygon, and 
the resultant passes through the point of concurrency.

To determine the resultant of more than two forces analytically, we use a combination of 
resolution and composition. In the concurrent force system shown in Fig. 1.5(a), any of the 
forces, say F1, can be resolved into components along perpendicular directions X and Y as 
F1cosq1 along X and F1sinq1 along Y.  These are known as rectangular components as they act 
along mutually perpendicular directions. If all the forces of the system are thus resolved into 
components, then we have two forces SX and SY given by

		  SX =	F1cosq1 + F2cosq2 + F3cosq3 + F4cosq4

		  SY =	F1sinq1 + F2sinq2 + F3 sinq3 + F4 sinq4
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Basic Concepts    5

F2

(a)

(b) (c)

F1
F1

R
F1sinq1

F1cosq1

SY

SX

x

y

F4

F3

q4 q1 q1
q3 q2

q

Fig. 1.5

F2

F1 F1

F5 F4

F4

F3

F2

F3

F5

R

R3 = R2 + F4 

R1 = F1 + F2 

R2 = R1 + F3 

R

Fig. 1.4

These two forces can be combined into a single force, which is the resultant, whose magnitude 
can be obtained from

R2 = (SX)2 + (SY)2

The direction of R is obtained as q = tan–1 (SY/SX), where q is the angle made by R with the 
X-axis. 

Moment of a force  Moment is a vector quantity like force. As in Fig. 1.6, moment = force × 
distance = Fd about moment centre O which means moment about an axis passing through O 

Parallel axis

Moment axis

Vector M

Moment
centre

O
d

F

M
O

Intersecting
axis

Fig. 1.6
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6    STRENGTH OF MATERIALS

and perpendicular to the plane containing the force. Moments are represented in diagrams using 
curved arrows about the moment centre, or by a line with double arrows using the right-hand 
screw notation.

Moment is a measure of the rotating effect of a force. The units of moment are the newton 
metre (Nm), kilonewton metre (kNm), etc. A force has no moment about an axis parallel to its 
line of action or intersecting it, as shown in Fig. 1.6.

Varignon’s theorem or principle of moments states that the algebraic sum of the moments of 
forces is equal to the moment of the resultant of the forces about the same axis. Moments are 
given signs according to their nature or direction of rotation. Thus, the moment due to force F1 
is opposed to that due to F2 about the moment centre O in Fig. 1.7.

F1.d1

F1

F2

F2

F1

M2 = F2.d2 

M1 = F1.d1 
F2.d2 d2

d2

d1

d1

Fig. 1.7

Fig. 1.8

F

F

d

 Couple Fd

F

2 1F

d

F

Couple

(b) Translating a force parallel
to its line of action

Translating along
line of action

(a)

F

F
M = Fd

F
Fd

F

Fig. 1.9

A couple is a special case of a moment due to two equal and opposite 
forces acting at a distance (Fig. 1.8). The couple has the same moment 
Fd about any point in its plane. 

In rigid body mechanics, a force can be moved along its line of action 
without altering its effect. But a force can be translated parallel to its line of 
action only by adding a couple. Let us consider the case of the force F acting 
at point 1 to be translated to point 2 [Fig. 1.9(b)].

We add equal, opposite and collinear forces F at 2. Note that the addition 
of these forces do not affect the system of forces and their effect. Considering 

the given force F at 1 and opposite force F at 2, we have a couple of moment Fd. These two forces 
can be replaced by the couple Fd. The resultant system is shown in Fig. 1.9(b). The force F has been 
translated parallel to its line of action, which needs the addition of a couple Fd at 2.
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Basic Concepts    7

The resultant of non-concurrent force systems    In the case of non-concurrent forces, the 
resultant magnitude, direction, and sense can be obtained by resolution and composition or by 
the method of polygon of forces. But the location of the resultant in space is obtained by the 
principle of moments or by graphical method of the funicular polygon.

For the parallel force system shown in Fig. 1.10(a), resultant R = SF = algebraic sum of 
the forces; the direction of the resultant is the same as that of the given forces and the sense 
is determined by the sign of SF. If the resultant is acting at a distance x from point 1 [Fig. 
1.10(b)], then from the principle of moments, Rx = F2x1 + F3x2 + F4x3 + F5x4, with appropriate 
signs. From this equation, x can be calculated to locate the resultant.

F1 F2

(a) (b)

1 1

F3 F4 F5 F1 F2

x

x1
x2

x3
x4

R

F3 F4 F5

Fig. 1.10

For a general coplanar force system shown in Fig. 1.11(a), the same principles apply: R2 = 
(SFx)2 + (SFy)2 gives the magnitude, q = tan–1 (SFy/SFx) gives the direction (and the sense is 
known from the signs of SFy and SFx), and its location can be determined from the principle 
of moments [Fig. 1.11(b)]. Rd = F1x1 + F2x2 + F3x3 + ..., where x1, x2, x3, ... are perpendicular 
distances of the forces rom the moment centre O.

F1 F2 R

F6

F3

F5 F4

F6

F2

d

O
O

(a) (b)

xx

x1

x3

x5

x
2

x 4

F3

F4
F5

F1

y
y

Fig. 1.11

Graphically, taking the force system shown in Fig. 1.12(a), the force polygon is drawn to a 
force scale in Fig. 1.12(b). Figure 1.12(a) is a space diagram which must be drawn to a linear scale 
for the graphical solution ae is the resultant in magnitude, direction, and sense, in Fig. 1.12(b). In 
the space diagram, forces are marked using Bow’s notation. The letters A, B, etc. are assigned to 
spaces on either side of the force. Thus, AB is the force F1, BC is the force F2, etc.

SOM_Revised_Final_Book.indb   7 4/20/2016   4:53:06 PM

© Oxford University Press. All rights reserved.

Oxfo
rd

 U
niversi

ty
 Pre

ss



8    STRENGTH OF MATERIALS

F2
F1

F3

B

1 2
4

5

3

C

a

b p

e

c

d

(a) (b)

E

D

R = ae

A

O

F4

Fig. 1.12

We select a pole p (arbitrarily) and join pa, pb, etc. Draw lines parallel to pa, pb, etc. in the 
respective spaces A, B, etc. Note that marking of forces by Bow’s notation in the space diagram is 
very important for drawing the funicular polygon. Where lines 01 and 45 of the funicular polygon 
meet is a point in the line of action of the resultant. The resultant R is shown in the space diagram.

It must be noted that while force polygon is the graphical equivalent of the equation R2 = (SFx)2 + 
(SFy)2, the funicular polygon is the equivalent of the principle of moments. In principle, the 
funicular polygon is an ingenious way of resolution of forces such that only to forces (represented 
by 01 and 45) remain. Their intersection gives a point on the line of action of the resultant.

If the first and last lines of funicular polygon are parallel (Fig. 1.13), this means that the 
resultant reduces to a couple. The magnitude of the resultant couple can be obtained as (pa × 
load scale P) × (d × space scale S).

F2F1 F3 F4 F5
a, f

p

b d

e

c

A

O

1

2

3
4

5

6

Space diagram
Scale: 1 cm = S m

Force polygon
Scale: 1 cm = P newton

B C
D

d

Fig. 1.13  Resultant is a couple 
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Basic Concepts    9

If the force polygon closes, the resultant force R = 0. The system may in such a case reduce 
to a couple as given above. The couple will be zero only when the first and last lines of the 
funicular polygon are collinear (Fig. 1.14). Here R = 0 and M =  0.

Fig. 1.14  Resultant force and couple zero

Space diagram
Scale: 1 cm = S m

A B C D E F

p

b

a, f

c

d

e

Force polygon
Scale: 1 cm = P N

1.4  EQUILIBRIUM
Equilibrium means a state of rest or motion without acceleration. Considering our discussions 
of coplanar force systems, a body subjected to a general coplanar force system may undergo 
translation, rotation, or both. As shown in Fig. 1.15, the possible displacements of a body are 
(i) translation Dd in the direction of the resultant force or in terms of its components Dx along 
the X-axis and Dy along Y-axis and (ii) a rotation in the plane due to a resultant couple.

Rotation

x

At time tf

At time t0

yf

y0

x0
xf

D

Dx

Dy

y

Fig. 1.15

In the state of rest, all these displacements are zero. When the body is not in equilibrium, it 
continuously changes its position with reference to the X- and Y-axes.

1.4.1  Conditions of Equilibrium
Depending upon the force system acting on the body and the condition that translation and 
rotation are zero in equilibrium, the following conditions of equilibrium can be derived.
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10    STRENGTH OF MATERIALS

Two-force system  When a body acted upon by only two forces is in 
equilibrium, these forces must be equal, opposite, and collinear (Fig. 1.16).

Three-force system  If a body is in equilibrium under the action of three non-
parallel forces, the condition of equilibrium is that the forces should be coplanar 
and concurrent (Fig. 1.17). This can be easily verified. If S is the resultant of 
any two of the forces, say P and Q, in Fig. 1.17(b), the body is now acted upon 
by only two forces S and R. S and R should be opposite, collinear, and equal. 
Since S passes through the intersection of P and Q, R should pass through the 

same point. P, Q, and R are, therefore, concurrent. S lies in the same plane as P and Q, R should 
lie in the same plane. P, Q, and R, therefore, should be coplanar and concurrent for equilibrium.

P R P

P

Q

R

R

S QQ

(a) (b) (c)

Fig. 1.17

Graphically, the forces P, Q, and R should form a closed triangle as shown in Fig. 1.17(c) 
for equilibrium.

Concurrent, coplanar force system  In the case of a concurrent, coplanar force system, the 
possible resultant is a force passing through the point of concurrency O (Fig. 1.18). The possible 

F1

F1

F2

F2B

A

R
F

E
D

C 1

2

F5

F4

F3

F5

e

b

cd

F4

F1

F2

F3

(d) Force polygon

(a)

(c)

(b)

F3

F4

F5

O

O

f, a

R
O

O

x

y
d

Fig. 1.18

F1

F2

Fig. 1.16
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Basic Concepts    11

displacement is a translation in the direction of the resultant. This translation Dd in time t is 
the vector sum of Dx and Dy, the component displacements parallel to x and 11 y. When such a 
system is in equilibrium, for the displacement to be zero, either R = 0 or SFx = 0 and SFy = 0. 
The equilibrium conditions can also be stated in terms of moments as SM1 = 0 and SM2 = 0, 
where SM1 and SM2 are algebraic sums of moments about points 1 and 2, and points 1 and 2 are 
not collinear with the point of concurrency O [Fig. 1.18(c)]. This can be easily verified. If SM1 = 
0, either R = 0 or R passes through point 1. To eliminate the latter possibility, the moment about 
a second point is taken. If SM2 = 0, then R = 0 provided 1 and 2 are not collinear with O.

Graphical condition of equilibrium  The graphical condition for a concurrent, coplanar force 
system to be in equilibrium is that the force polygon drawn for such a force system closes. The 
first and last points coincide, which means that R = 0 [Fig. 1.18(d)]. 

Coplanar, parallel force system  In the case of the parallel force system shown in Fig. 1.19(a), 
the resultant force, if any, is parallel to the given forces. Even if R = 0, the system may reduce to a 
couple M. The conditions of equilibrium for such a force system are that R = 0 and SM = 0 about 
any point in the plane of the forces. This ensures that the body neither translates nor rotates.

The conditions of equilibrium can also be stated in terms of moments as SM1 = 0 and SM2 = 0, 
where 1 and 2 are moment centres such that the line joining 1 and 2 is not parallel to the lines of 
action of forces. SM1 = 0 ensures that there is no resultant couple and the resultant, if any, passes 
through point 1. SM2 = 0 means that R = 0 since R cannot pass through points 1 and 2 [Fig. 1.19(b)].

F1

A

0 1

1

2

2

3 4

5 6

e

b
d
a, f

c
Load diagram

(d)

Space diagram

(c)

B C D E

F2 F3 F4 F5 F1 F2 F3 F4 F5

(b)(a)

Fig. 1.19

Graphical conditions of equilibrium  R = 0 requires that the force polygon closes. In the case 
of a parallel force system, the force polygon degenerates into a straight line as in Fig. 1.19(d) 
and closing of the polygon means that the first and last points a and f coincide. To ensure that 
there is no resultant couple, i.e., SM = 0, the funicular polygon should close. This means that 
the first and last lines of the funicular polygon are collinear. This is illustrated in Fig. 1.19(c), 
where the first line 0-1 and the last line 5-6 of the funicular polygon are collinear. The graphical 
conditions of equilibrium for a parallel force system are (i) the force polygon should close 
(R = 0) and (ii) the funicular polygon should close (M = 0).
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12    STRENGTH OF MATERIALS

F2

F2

5

1 2

4

3

6

F3

F4

F1

F2

F3

F4

F1

3

(a) (b)

(c)

1

5

B

A

C

D

d

a, e b

c
O

E

4

2

F1

F4 F3

O

Fig. 1.20

General coplanar force system    A general coplanar force system consists of forces which 
are neither concurrent nor parallel, as shown in Fig. 1.20(a). If a body acted upon by such 
a force system is in equilibrium, both linear displacement and rotation of the body are zero. 
The conditions of equilibrium are, therefore, R = 0 and SM = 0. The condition R = 0 can be 
expressed in terms of the rectangular components SFx = 0 and SFy = 0.

The equilibrium conditions can be expressed in terms of moments in many ways, as given below.

		  (i)	� SFx = 0, SM1 = 0, SM2 = 0 with the condition that the line joining 1 and 2 is not parallel 
to the Y-axis, or

		 (ii)	� SFy = 0, SM3 = 0, SM4 = 0 with the condition that the line joining 3 and 4 is not parallel 
to the X-axis, or

		 (iii)	� SM5 = 0, SM6, and SM7 = 0 with the condition that 5, 6, and 7 are not collinear.

These conditions are shown in Fig. 1.20(b), and can be easily proved on arguments similar 
to the ones described for previous cases.

Graphical condition of equilibrium  These conditions can be derived from the above. R = 0 
requires that the forces polygon, abcde, closes (the first and last points coincide). SM  = 0 
requires that the funicular polygon closes, i.e. the first and last lines of the polygon are collinear. 
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Basic Concepts    13

These conditions are shown in Fig. 1.20(c). The first line 0-1 and the last line 4-5 of the funicular 
polygon are collinear.

We have seen the conditions of equilibrium for coplanar force systems. In the case of spatial 
force systems, a third dimension z (in addition to x and y) will be added. Thus, the resultant 
force R = 0 means SFx = 0, SFy = 0, and SFz = 0. The moment conditions will be in terms of 
the moments about the three coordinate axes, as SMx = 0, SMy = 0, SMz = 0, as all the forces do 
not lie in a single plane.

The conditions of equilibrium given above are used to determine unknown forces in a given 
system if it is known that the system is in equilibrium. 

1.5  BODY CONSTRAINTS AND FREE BODY DIAGRAMS
We have seen analytical and graphical solutions to problems involving forces. The problems 
solved were direct, i.e., a mathematical model was presented for solution. In practice, problems 
in structural mechanics are quite complex, and the preparation of the mathematical model itself 
is quite difficult. To visualize a physical problem, to make suitable assumptions to simplify it, 
and then to prepare a mathematical model is the first step in structural analysis. The concepts of 
body constraints and free body diagrams are fundamental to this first step.

1.5.1  Body Constraints
A body constraint is a contrived support or force provided such that the body is in equilibrium. The 
constraints provide either reactive forces, couples, or both, depending upon the type of support.

Figure 1.21 shows the types of constraints generally assumed. While in a given situation, one 
may not exactly find parallel physical supports, one can carefully choose from those given in 
Fig. 1.21 the one that matches the most the physical condition obtaining. Let us briefly discuss 
the types of constraints that we come across.

Smooth surface  It is difficult to find a surface which is perfectly smooth. A smooth surface 
prevents motion perpendicular to its surface but allows a translation parallel to the surface and 
rotation. Such a surface thus provides one reactive force pepnicular to the surface.

Rough surface  Frictional forces tangential to the surface come into play whenever a body 
tends to move relative to a rough surface. Such a surface, thus, prevents motion perpendicular to 
it and also tangential relative motion due to friction. It provides horizontal and vertical reactive 
forces. One can also say that it provides one reactive force in any direction.

A string or cable tied to the body  This is a common type of constraint. A cable provides a 
reactive force along its direction. The limitation of the cable is that it is effective only when 
stretched. Otherwise it remains slack, and does not provide a force in the opposite direction.

Roller support  The roller support has rollers, which can move over a firm surface, and is 
attached to the body with a pin. By its very nature, the body can rotate about the pin, and 
also translate parallel to the surface on which the roller rests. However, it cannot move in a 
direction normal to this surface. The roller, thus, provides one reactive force perpendicular to the 
surface on which the rollers rest.

Hinged or pinned support  This type of support is firmly attached to the ground and connected 
to the body through a pin connection. Thus, the body has the freedom to rotate but cannot 
translate horizontally and vertically or in any direction. The hinged support thus provides one 
reactive force in any direction or two reactive forces horizontally and vertically.
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14    STRENGTH OF MATERIALS

Pin

Symbol

(d) Roller support

R

R

M

H

V

Pin

Symbol

(e) Hinge support

(f) Fixed support

Symbol

R

q

(a) Smooth surface

V V HR

Cable

T
Cable
slack

(c) Cable

(b) Rough surface

Fig. 1.21  (Contd.)
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Basic Concepts    15

Fixed support  This type of support does not allow the body to translate or rotate. The reactive 
forces provided by this support are shown in Fig. 1.21(g). Forces p provide the horizontal reactive 
force, forces q provide the vertical reactive forces, and forces r and r ″ provide a reactive couple. 
Such a support alone completely restrains a body acted upon by a general coplanar force system.

The equilibrium conditions can be used to determine the reactive forces provided by 
the constraints of a body. Depending upon the physical situation and nature of the constraints 
provided, the appropriate number of reactive forces or couples should be applied to the body.

1.5.2  Free Body Diagram
A number of external or active forces generally act upon a body in equilibrium. So do the 
reactive forces, couples, or both, provided by the body constraints. The equilibrium conditions 
are used to evaluate the reactive forces. To determine these conditions, the body is isolated and 
all the active and reactive forces acting on it are determined. When the isolated body is drawn 
with all the forces and reactive forces acting on it, such a diagram is known as a free body 
diagram. Note that in a complex structural system, the free body may be drawn for the whole 
system or a part of it. The free body diagram provides an excellent way of book-keeping in a 
structural problem by ensuring that all the forces and reactive forces are taken into account. The 
following problems illustrate the use of free body diagrams.

Fig. 1.21

H H

H

F

V

VFd = MF
d

r

r¢

V

H

V

q

p

(g) Reactions at �xed support

The drum shown in Fig. 1.22(a) weighs 800 N and is being rolled over a step 4 cm high. Determine 
the value of P required to roll it over the step if it is applied horizontally at the centre of the drum. Also 
determine the minimum value of P required to pull the drum if it can be inclined at any angle a.

Solution	The free body diagram of the drum is shown in Fig. 1.22(b). Assuming the surfaces to be smooth, there 
is a reaction R at the floor, a reaction Q at the point of contact with the step, and the pull P in addition to 
the weight of the drum acting through its CG. Note that when the drum is about to be pulled over the step, 
it leaves contact with the ground and R becomes zero. There are then only three forces acting on the body, 
800 N, P, and Q. The direction of Q will be such that it passes through the centre of the drum. In Fig. 1.22(b),

sinq = 
16

20
 = 0.8,  cosq = 

12

20
 = 0.6

SFx = 0,  
�
+ , P – Q cosq = 0

SFy = 0,   ↑+,  Q sinq – 800 = 0,  Q = 1000 N,  P = 600 N

Example 1.1  Free body diagram
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16    STRENGTH OF MATERIALS

Minimum value when ca is
perpendicular to bc

800 N

W = 800 N

W

800 N

20

P
P

q

a

a

R
Q

Q

Q

a

c

b
P

P2

P

P1

Q

b

a

d

P

R = 0Force diagram
Scale: 1 cm = 200 N

Q

16

16

16
20

20

4 cm

(a)

(e)

(b)

(c)
(d)

c

Fig. 1.22

Graphically, since the body is acted upon by a three-force system, the solution is found by drawing a 
force triangle shown in Fig. 1.22(c). ab

���
 = W = 800 N to scale. Draw a line parallel to P through b and a 

line parallel to Q through a, intersecting at C. bc
���

 = P and ca
���

= Q can be measured to scale.
To determine the minimum value of P inclined at an angle a, from Fig. 1.22(d), P cosa = 0.6 Q; W – P 

sin a = 0.8 Q. To eliminate Q, 4P cos a = 2.4 Q; 3W – 3P sina = 2.4 Q. Subtracting, 
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Basic Concepts    17

4P cosa – 3W + 3P sina = 0

P(4 cosa + 3 sina) = 3W

For P to be minimum, (4 cosa + 3 sina) has to be maximum. Therefore, 

	
d

da
 (4 cosa + 3 sina) = 0

	 –4 sina + 3 cosa = 0 

	 tan a = 0.75,  a = 36.87º

P = 
3 800

4 cos 36.87 3 sin 36.87

×
+  = 480 N is the minimum value of P.

Graphically, as in Fig. 1.22(e), we lay out ab
���

 = 800 N to scale. Draw a line parallel to the line of 
action of Q from b. Any line drawn from a to intersect this line gives a value of P and its corresponding 
direction. The minimum value of P will be obtained when ac is at right angles to bc. Therefore, draw a 
perpendicular to bc from a. ca

���
 gives the minimum value of P and a can be measured from this triangle 

as ca
���

 and angle ad.

Fig. 1.23

8 cm
800 N

1200 N

1200 N

10 cm
8 cm

800 N

PH

SH

SH

RH RV

PV

PH

Q

Q
SV

RH

SV

PV

RV

10 cm

(a) (b)

(c) (d)

Two pipes 20 cm f, weighing 1200 N and 16 cm f, weighing 800 N, lie in a trench as shown in Fig. 1.23(a). 
Draw a free body diagram for the two pipes together and for each individual pipe. Assume the contacting 
surfaces as rough.

Solution	Figures 1.23(b), (c), and (d) show the free body diagram. Note that when the free body diagram of the two 
pipes together is drawn, the forces Q vanish.

Example 1.2  Free body diagram
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18    STRENGTH OF MATERIALS

600 N

600 N

900 N

900 N

2 m

2 m

600 N

(b)

(a)

(c)

900 N

3

a

p

c

b, d

2

1

2 m 3 m 1 m

3 m

1 m

1 m

3 m

A

P

P

A B C

D

Q

RPH

RPV

RQV

B C

Q

Fig. 1.24

The rod PQ shown in Fig. 1.24 is acted upon by two forces, one of 600 N and another of 900 N. It has a 
hinged support at P and a roller support at Q. Find the reactive forces at the supports.

Solution	Selecting the X- and Y-directions as shown, from the free body diagram illustrated in Fig. 1.24(b),

SFx = 0, +
��

,  RPH = 0

	 SFy = 0,  ↑+,  RPV – 600 – 900 + RQV = 0

	 SM = 0 about P + ,   600 × 2 + 900 × 5 – RQV 6 = 0

From the last equation, RQV = 950 N.

	 RPV = 1500 – 950 = 550 N

Graphical Solution  The graphical solution is shown in Fig. 1.24(c). We lay out the rod and the 
positions of the forces to a linear scale, and then draw the force polygon a-b-c to a load scale. Select a 

Example 1.3  Reactive forces in a beam
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Basic Concepts    19

pole p and draw pa, pb, and pc. Then, draw lines parallel to these in the space diagram. Consider RPH and 
RPV as a combined force RA whose direction is unknown but which passes through P. Start the funicular 
polygon from P to get P-1-2-3. The last segment 2-3 ends where it intersects reaction RQV (vertical line 
through Q). Draw P-3. Draw a line parallel to P-3 through p which intersects the vertical line through c 

at d. cd
���

 = RQV and da
���

 = RP. Since RP is vertical, RPH = 0.

3 kN

1 m 2 m 4 m

6 m

(a)

(b)

2 m

60˚

C

A

RAH

RAV

RD

RD

E B F D

6 kN

3 kN 6 kN 6 kN

1 m 2 m 4 m 2 m
60˚

6 
cm

6 kN

Fig. 1.25

Determine the reactions at the supports of the structure carrying load as shown in Fig. 1.25(a).

Solution	The free body diagram for the structure is shown in Fig. 1.25(b). The reactive components at A are RAH  
and RAV, and the reactive component at D is RD, perpendicular to the plane of the roller and inclined at 60º 
to the horizontal.

Example 1.4  Reactive forces in a frame
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20    STRENGTH OF MATERIALS

Applying the conditions of equilibrium,

SFx = 0, +
��

,  RAH – RD cos 60° = 0

SFy = 0, ↑ +,  RAV + RD sin 60° – 3 – 6 – 6 = 0

SM  = 0 at A,  –3 × 1 + 6 × 2 + 6 × 6 – RD cos 60° × 6 – RDsin 60° × 8 = 0

From the last equation, RD = 4.53 kN, RAH = 2.27 kN, and RAV = 11.07 kN.
�

1.6  LOADS ON STRUCTURES
Structures are subjected to different types of loads and due to different causes. Loads on structures 
can be classified into (i) dead loads, which include the self-weight of the structure and other fixed 
loads; (ii) live loads, which do not have a fixed position and can be placed anywhere for maximum 
effect; (iii) wind loads; (iv) snow loads; (v) seismic loads to take into account the loads due to 
earthquakes; (vi) impact loads such as moving vehicles, crane loads, machines, etc.

Depending upon their distribution, loads may be classified in different ways. Let us discuss 
these briefly.

Point load or concentrated load  Any load acts on a finite area and not at a point. However, if 
a large load acts on a small area, it is considered as a point load [Fig. 1.26(a)]. 

Distributed loads  The different types of distributed loads are shown in Fig. 1.26(b). Such loads 
may be uniformly distributed, uniformly varying, and non-uniformly varying. The variation is in the 
intensity of the load at a point and can be mathematically expressed as shown in the figure. The total 
load acts through the CG of the distribution figure. In these figures, l is the length of the load, wx is 
the intensity (load per unit length) at a distance x, and w is the load intensity (known) at a distance l.

Couple load  A couple load is represented as shown in Fig. 1.26(c), giving the location and 
magnitude of the couple M. The couple has the same moment about any point in its plane 
and hence should be included in all moment equations. The couple does not appear in force 
equations as the resultant force in a couple is zero.

Combination of loads  Many structural elements in practice will be subjected to a variety of 
loads. Such structural elements are analysed for loads like self-weight, point loads, varying loads, 
etc. A typical structural element is shown in Fig. 1.26(d) acted upon by a combination of loads.

1.7  CENTROID
The centroid, as you would have learnt in a first course in mechanics, is a point in the area where 
the whole area can be assumed to be concentrated. The concept of the centroid is analogous 
to that of the centre of gravity in the case of a mass. The centre of gravity is a point in a body 
where the whole mass of the body can be assumed to be concentrated. Mathematically,

x  = 
( )M x

M

d

d
∫
∫

y  = z and  z  = 
( )M z

M

d

d
∫
∫

  [see Fig. 1.27(a)]
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Basic Concepts    21

Symbol

Symbol

Symbol

Symbol

Uniformly varying

Resultant

CG

Non-uniformly varying

(b) Distributed loads

Uniformly distributed load

(a) Point load

wl, resultant load

= resultant load

l/2 l/2

w/m

w/m

w/m

w/m

2
wl

l
wx

l/3

wx = kx2
wx = kx2

x

x

w

(c) Couple load

M

l

a

(d)

l

l

x

Fig. 1.26
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22    STRENGTH OF MATERIALS

Y

Y

Centroid

O
X

XO

CG

(a) (b)

z

x
x

y
y

dM (x,y,z)

dA (x,y)

Fig. 1.27

X X

x Y

20
0 

m
m

10 mm

100
Y

Fig. 1.28

Find the centroid of the channel section shown in Fig. 1.28.

Example 1.5  Centroid of channel section

Similarly,

x  = 
( )A x

A

d

d
∫
∫

  and  y  = 
( )A y

A

d

d
∫
∫

for an area A [Fig. 1.27(b)].
Here x , y , and z  are distances to the centre of gravity (CG) of the mass from a set of X-Y-Z 

coordinate axes and x, y, z are the coordinates of an elementary mass. Similarly, x  and y  are 
distances to the centroid of the area from the X-Y coordinate axes and (x, y) are the coordinates 
of an elementary area.

The problem of computing the centroid of an area is frequently encountered in strength of 
materials. Table 1.1 in Appendix 1 gives the centroids of common geometric areas. These are 
useful in locating the centroids of composite areas which are made up of simple geometric 
shapes. In the case of complex shapes, the centroids can be located by integration as given 
above. The following two examples illustrate the procedure.
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Basic Concepts    23

Solution	The channel section is symmetrical about a horizontal axis through the middle of the depth, i.e. the X-X 
axis shown in Fig. 1.28. Therefore, y  = 100 mm, we have to find x . 

From Fig. 1.28,

x  = 2 100 10 50 180 10 5

2 100 10 180 10

× × × + × ×
× × + ×

 

    = 28.68 mm

Fig. 1.29

3p

Y

Y

Y

4R

Centroid

(a) (b)

(c)

Centroid

R

R

dq

q
X

X

X x

y

X¢

X¢

Y¢

Y¢

=

3p
4R

y =

3
2 90º

Find the centroid of a semicircular area and the quarter circle shown in Figs. 1.29(a) and (b), 
respectively.

Solution	Considering an elementary area subtending an angle dq at the centre, the area of the hatched portion,

Elementary area = Rdq 
2

R
 = 

2

2

R dq

Example 1.6  Centroid of semicircle and quarter circle areas

This can be assumed to act at 2R/3 from the centre O. The semicircle is symmetrical about a vertical 
diameter. We have to find y  (the distance from the X-axis).

Moment of elementary area = 
2 2

2 3

R dq
 R sinq

	 = 
3

3

R
 sinq dq

For a semicircle, this expression can be integrated from q = 0 to q = p, and for the quarter circle 
from q = 0 to q = p/2. This will give the moment of the total area, which is equal to (area × y ) for the areas.
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24    STRENGTH OF MATERIALS

Semicircle

2

2

R
y

p
 = 

3

0 3

Rp
∫  sinq dq = 

3

3

R
 [–cosq]p

0

		       = 
3

3

R
 (1 + 1) = 

32

3

R

		  y  = 
3

2

2 2 4

33

R R

R pp
× =

Quarter circle

		
2

4

R
y

p  = 
3/2

0 3

Rp
∫  sinq dq = 

3

3

R
 [–cos q]0

p/2

		              = 
3

3

R
 [–0 + 1] = 

3

3

R

		          y  = 
4

3

R

p

In the case of a quarter circle, from considerations of symmetry, x  = y . The location of the centroid 
of a semicircle is shown in Fig. 1.29(c), and that of a quarter circle in Fig. 1.29(b).

1.8  MOMENT OF INERTIA
The reader would have already come across an expression (in physics or mechanics) ∫ dMy2, 
particularly in connection with the rotation of solids about an axis. In Fig. 1.30, dM is an 
elementary mass and y is the distance of this elementary mass from an axis. This expression 
when evaluated gives a quantity which is called moment of inertia. It is usually denoted by 
the symbol I. Subscripts are used to indicate the axes about which the moments are taken. For 
example, IXX represents the moment of inertia about the X-X axis.

dM
dA

y
y

axis
axis

Fig. 1.30

A similar expression occurs in many structural calculations as ∫dA y2, where dA is an 
elementary area and y is the distance of dA from a given axis. The term moment of inertia does 
not apply to areas. The term used for this quantity is second moment of area. However, through 
long usage, these two terms are used to denote second moment of area.

This is a very important quantity for structural engineers, finding application in the design 
of beams, columns, etc
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BASIC CONCEPTS    25

1.9  COMPUTATION OF SECOND MOMENT OF AREA
The second moment of area is calculated from the integral ∫ dA y2. The summation can be done 
by integration in the case of geometrical shapes like rectangle, triangle, circle, etc. Since the 
area is in L2 units and y is in L units, the unit of moment of inertia will be in L4 units, i.e., mm4, 
m4, etc. The following examples illustrate the basic procedure

Find the moment of inertia of a rectangle of width b and depth d about a horizontal axis through its 
centroid and about a parallel axis through its base (Fig. 1.31)

dy dy

y
d

Centroidal
axis

(a) (b) (c)

Y

X X

X¢ X¢

Y

b bb

d/
2

d/
2

d

Fig. 1.31

Solution	As shown in Fig. 1.31(b), consider an elementary strip of thickness dy at a distance y from the centroid 
axis X-X.

Area of the strip = b dy

MI about axis X-X = b dy y2

y has a range from –d/2 to +d/2. Therefore,

IXX = 
/2

/2

d

d

+

−∫  b dy y2 = 
/23 3

/2
3 12

d

d

y bd
b

+

−

 
= 

  

Similarly, it can be shown that

IYY = 
3

12

db

To determine the MI about a parallel axis through the base, from Fig. 1.31(c),

IX–X = 
0

b

∫ bdy y2 = b 
3 3

0
3 3

d
y bd 

= 
  

1.9.1  Parallel Axis Theorem
In Example 1.7, we found the MI about a parallel axis from the fundamental principles. A 
general theorem to find MI about parallel axes is stated as follows.

If IGG is the MI of an area about an axis through its centroid, then the MI about any axis A-A 
at a distance d from GG and parallel to it is IAA = IGG + A d2, where A is the area of the figure.

Example 1.7  Moment of inertia of a rectangle
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26    STRENGTH OF MATERIALS

Considering Fig. 1.32, the MI of the elementary strip about the axis A-A is dA(y + d)2. The 
MI of the whole area about the axis A-A is

IAA = ∫ dA(y + d)2 = ∫ dA(y2 + d2 + 2yd)

	  = ∫ dA y2 + ∫ dA d2 + ∫ dA × 2yd

	 = IGG + d2 ∫ dA + 2d ∫ dA y

∫ dAy = 0

being the moment of the area about its centroid

∫ dA = A

Therefore,

IAA = IGG + Ad2

This is known as the parallel axis theorem and is very useful in finding the MIs of composite areas.

Find the MI of a triangular area about (i) an axis through its base and (ii) an axis through the CG and 
parallel to the base.

Solution	The triangle is shown in Fig. 1.33(a). Considering a strip of width w at a distance of y from vertex A, w 
=  by/h, area = (by/h)dy, and IXX = (by/h)dy(h – y)2 for the elementary strip. For the whole area,

IXX = 
b

h 0

b

∫ ydy (h – y)2 = 
0

hb

h ∫ y(h2 + y2 – 2hy)dy

	 = 
2 2 4 3 3

0

2
2 4 3 12

h
b h y y y bh

h
h

 
+ − = 

  
Considering Fig. 1.33(b), for the MI about axis G-G, at h/3 from the base,

IGG = 
2

2 2
0 0

2 4 4

3 9 3

h hby b
dy h y y h y hy dy

h h
   − = + −      ∫ ∫

	  = 
2 2 4 3

0

4 4

9 2 4 3 3

h
b h y y y

h
h

 
+ −  

 = 
3

36

bh

G

y

X

(a) (b)

X

dy
dy

w

b
b

h
h

h
3

G

y

Fig. 1.33

Example 1.8  Moment of inertia of a triangle

Fig. 1.32

y
G G

A A

d
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BASIC CONCEPTS    27

Knowing IXX, IGG could have been found by the parallel axis theorem as

IGG = IXX – Ad2 = 
23 1

12 2 3

bh bh
h

 −   
 = 

3 3 3

12 18 36

bh bh bh− =  

1.9.2  Perpendicular Axes Theorem
We have seen how to determine the second moment of area about an axis lying in the plane of the 
area. In some structural calculations, we need to find the second moment of an area about an axis 
passing through the centroid and perpendicular to the plane containing the area. This is required in 
the case of torsion of members (Chapter 7). This is calculated using the perpendicular axes theorem. 

The perpendicular axes theorem states that “the second moment of an area about an axis 
perpendicular to the plane of the area through a point is equal to the sum of the second moment 
of areas about two mutually perpendicular axes through that point.” 

The second moment of area about an axis perpendicular to the plane of the area is known as 
polar moment of inertia.

1.9.3  Polar Moment of Inertia
The polar moment of inertia is defined as the MI about an axis perpendicular to the plane of the 
area. Polar MI is denoted by the symbol J.

Considering Fig. 1.34, JZZ = ∫A dA r2. If X and Y are two axes in the plane of the area, mutually 
perpendicular and passing through O, then

JZZ = 
A∫ dA r2 = 

A∫ dA(x2 + y2) = 
A∫ dA x2 + ∫ dA y2

	 = IXX + IYY

y

Y

Y

O

O

Z
X

X

Z
x

r

Fig. 1.34

Determine the MI of a circular area about one of its diameters.

Solution	Referring to Fig. 1.35, for the elementary strip parallel to the diametrical axis G-G, width b = 2r cosq, 
y = r sinq, dy = r cosq dq,

IGG of elementary strip = dA y2 = b dy y2

	 = 2r cosq r cosq dq r2 sin2q
As y varies from –r to +r, q varies from –p/2 to +p/2. For the whole area,

IGG = 
/2

/2

p

p−∫ 2r4 sin2q cos2q dq

= 4r4 
/2

0

p
∫ sin2q (1 – sin2q) dq

Example 1.9  Moment of inertia of a circle
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28    STRENGTH OF MATERIALS

= 4r4 
/2 /22 4

0 0
sin sind d

p p
q q q q −  ∫ ∫  

= 
4

4

rp

Since r = d/2, 

IGG = 
4 4( / 2)

4 64

d dp p=  

This result can be easily obtained from JZZ = IXX + IYY. In Fig. 1.35(b), taking X- and Y-axes as shown, 
IXX = IYY from considerations of symmetry for the elementary strip in the form of the ring shown, at a 
distance y from O.

JZZ = 2pydy y2

Y y

r

G G

(a)

(b)

b

r
q

y

Y

Y

O

X

X X

Z

Z

Fig. 1.35

For the whole area, 

JZZ = 
4

3
0

2
2

r r
y dy

pp =∫  

IXX = IYY = 
4 41

2 2 4

r rp p=

For the parabolic area shown in Fig. 1.36, find the MI with respect to the X- and Y-axes.

Solution	In Fig. 1.36(b),

Width of elementary strip = a – x = a – ky2

Area = (a – ky2)dy,  IXX = (a – ky2) dy y2

Integrating over the whole area,

IXX = 
0

b

∫ (a – ky2) y2 dy = 
3 5 3 5

0
3 5 3 5

b
ay ky ab kb 

− = −  

Example 1.10  MI of a parabolic area
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BASIC CONCEPTS    29

Fig. 1.36

Y

Y

(a) (b)

(c)

Y

O

O x
a

b

X
x

X

X

x = ky2 x = ky2

x = ky2

a

b

dy

dx

dx

y

a

b

Since a = kb2, b2 = a/k.

IXX = 
3 3

32

3 5 15

ab ab
ab− =

To calculate IYY, consider an elementary strip parallel to the Y-axis. For the elementary strip, area = ydx 
= y×2ky dy,  IYY = 2ky2dy x2. Therefore,

IYY = 2ky2dyk2 y4

Integrating over the whole area,

IYY = 
7 3 7

3 3 3

0

2 2
2 2

7 7 7

b
b

a

y k b
k ybdy k ba

 
= = =  ∫

1.9.4  Moment of Inertia of a Composite Area
The second moment of area composed of a number 
of simple areas can be found as the sum of the second 
moments of area of its parts. As the second moment of 
an area will never be negative, simple summation can 
be done. For example, considering the area shown in 
Fig. 1.37, the second moment of area about the XX-axes 
can be calculated as

IXX = IG1G1
 + A1x

2
1 + IG2G2

 + A2 x
2
2 + IG3G3

 + A3 x
2
3

The following examples illustrate the procedure.
XX

G2

G1
G1

G3 G3

G2

A1

A2

A3

x3

x2

x1

Fig. 1.37
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30    STRENGTH OF MATERIALS

Find the MI about the horizontal and vertical axes passing through the centroid of the unequal angle 
section shown in Fig. 1.39.

Solution	The angle section is unsymmetrical in both directions. Here x  as well as y  have to be determined. 
Taking moments about the left edge of the areas,

(100 × 10 + 110 × 10) x  = 100 × 10 × 5 + 110 × 10 × 65

x  = 36.43 mm

Similarly, taking moments about the bottom edge,

(100 × 10 + 110 × 10) y  = 100 × 10 × 50 + 110 × 10 × 5

y  = 26.43 mm

10

10
0

10
0

10

120120

(a) (b)

36.43 83.57

26.43

73.57

Y

X X

Y

Y

Y

X
X

x

y
10

10

Fig. 1.39

Example 1.12  MI of an unequal angle section

Find the MI through the centroidal axes X-X and Y-Y for the 
T-shaped section shown in Fig. 1.38. (All lengths are in mm.)

Solution  The section is symmetrical about the y-axis. To locate 
the distance x (from the upper edge), take the moment about the 
top edge of the T-section of the areas:

(150 × 10 + 140 × 10) x = 150 × 10 × 5 + 140 × 10 × 80

x = 41.2 mm

IXX = 150 × 
310

12
 + 150 × 10 (41.2 – 5)2 

    + 
310 140

12

×  + 140 × 10 (108.8 – 70)2

     = 6.372 × 106 mm4

IYY = 
3 310 150 140 10

12 12

× ×+  = 2.8242 × 106 mm4 

Example 1.11  MI of a T-section

150

10

10

15
0

x

X X

Y

Fig. 1.38
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BASIC CONCEPTS    31

From the distances shown in Fig. 1.39(b),

IXX = 
310 100

12

×  + 10 × 100 (73.57 – 50)2 + 
3110 10

12

×
 + 110 × 10 (26.43 – 5)2 

	 = 1.9032 × 106 mm4

IYY = 
310 100

12

×  + 100 × 10 (36.43 – 5)2 + 
310 100

12

×  + 10 × 110 (83.57 – 55)2

	 = 3.0032 × 106 mm4 

Find the MI of the channel section shown in Fig. 1.40(a) about the X-X and Y-Y axes passing through its 
centroid. If two such sections are kept back to back as shown in Fig. 1.40(b), find the distance d such that 
IXX = IYY for the compound section.

200

100

10

Y G

G

Y

Y
Y

20
0

X

x

X

x

X
X

100 100

d

(a) (b)

Fig. 1.40

Solution	The channel section is symmetrical about a horizontal axis through its mid-height. To locate the Y-Y axis, 
we have to calculate x . Taking moments about the left vertical edge,

(200 × 10 + 90 × 10 + 90 × 10) x  = 200 × 10 × 5 + 2 × 90 × 10 × 55

x  = 28.68 mm

IXX = 
3 3

210 200 90 10
2 90 10 95

12 12

 × ×+ + × × 
  

 = 22.93 × 106 mm4

IYY = 
3200 10

12

×  + 200 × 10 × (28.68 – 5)2 + 2
3

210 90
10 90 26.32

12

 × + × × 
  

 = 3.6 × 106 mm4 

In Fig. 1.40(b), IXX remains the same for each channel. So, IXX = 2 × 22.93 × 106 = 45.86 × 106 mm4 for 
the whole section.

IYY = 2 × 
2

 for each channel + area of channel 
2GG
d

I x
  × +     

	 = 2
2

63.6 10 3800 28.68
2

d  × + × +     
= 7.2 × 106 + 7600 

2
228.68 28.68

4

d
d

 
+ +  

 

Example 1.13  MI of a double channel section
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32    STRENGTH OF MATERIALS

This is equal to IXX.

7.2 × 106 + 6.2513 × 106 + 7600 
2

4

d
 + 217,968d = 45.86 × 106

1900d2 + 217,968d – 32.41 × 106 = 0

d = 85.3 mm 

From a rectangular plate, 100 mm × 200 mm, a circular portion is 
removed as shown in Fig. 1.41. Find the MI of the plate about an axis 
through its base.

Solution  The circular portion can be taken as a negative area and its MI 
subtracted from that of the full rectangular plate.

IX′X′  =100 × 
3 4 2200 80 80

– –
3 64 4

p p¥ ¥
 × 1502

= 1.5156 × 108 mm4

100

80

X

X¢ X¢ X¢

X

50

20
0

Fig. 1.41

Find the MI of the composite area shown in Fig. 1.42(a) about the X-X and Y-Y axes.

Solution	The distances of the centroids of each part of the area from the respective reference lines are shown in 
Fig. 1.42(b). IXX and IYY can be calculated as

IXX = 
3 4 2

2200 100 50 50
50

3 8 2

p p× × ×+ + ×
23200 50 200 50 350

36 2 3

× ×  + + ×   
 

	 = 1.4768 × 108 mm4

IYY = 
3 4 2

2100 200 50 50
(221.22)

3 8 2

p p× × ×+ + ×
3

50 200 50 200 400

36 2 3

3× ×  + +   
	 = 5.613 × 108 mm4 

Y

X X X X

Y

10
0

10
0

200

(a) (b)

200

200
4 × 50

3p

3

3

5050

50 50

Fig. 1.42

Example 1.14  MI of a rectangular lamina with hole

Example 1.15  MI of a composite area
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BASIC CONCEPTS    33

1.9.5  Radius of Gyration
The radius of gyration is defined as r = I A , where I is the moment of inertia and A is the area 
of the section. This entity is frequently encountered in structural analysis and design.

The radius of gyration can be considered as the distance at which the whole area may be 
considered as concentrated as a strip, as shown in Fig. 1.43(a).

Considering the rectangle shown in 
Fig. 1.43(b), the radius of gyration about 
the axis G-G is

r = 
3

12 12
GGI bd d

A bd
= =

Similarly, for the circular area shown 
in Fig. 1.43(c),

R = 
4

2 24
GGI r r

A r

p
p

= =

In Fig. 1.43(b), IXX = IGG + Ah2, where 
h = d/2. From this, Ar2

XX = Ar2
GG + Ah2 

or r2
XX = r2

GG +  h2. The polar radius of 
gyration, rz

2 = rx
2 + ry

2.

Determine the radius of gyration of (i) a square section and box section and (ii) a hollow circular 
section shown in Fig. 1.44 about axes g-g and x-x.

Example 1.16  Radius of gyration of square and hollow circular sections

The concept of radius of gyration finds application in the analysis and design of long 
columns. The following examples illustrate the procedure to compute the radius of gyration.

A

G

G G

G d

X X X X

r

r

baxis
(a) (b)

(c)

Fig. 1.43

Solution:  (i) Square section: Area = a2; Igg = a4/12; Ixx = a4/3

rgg = √[(a4/12)/a2] = a/√12 = 0.29 a; rxx = √[(a4/3)/a2] = a/√3 = 0.577 a

For the box section given, Area = 2002 – 1902 = 3900 mm2

g

a

(i) (ii)

(a) (b)

200

5 5

50
g

x
x

x

x

x
x

t

g g

g

g

Fig. 1.44
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34    STRENGTH OF MATERIALS

Find the radius of gyration of the T-section about an axis passing through the 
centroid parallel to the flange (Fig 1.45).

Solution:  Area of section = 200 × 10 + 290 × 10 = 4900 mm2

We first locate the centroid of the section from the top,

ÿ = (2000 × 5 + 2900 × 155) / 4900 = 93.78 mm

I = 200 × 103/12 + 2000 × 88.782 + 10 × 2903/12 + 2900 × 61.222 

  = 46.977 × 106 mm4

Radius of gyration = √[46.977 × 106/4900] = 97.91 mm

Example 1.17  Radius of gyration of  T-section

10

10

200

30
0

93
.7

8

gg

Igg = [2004 – 1904]/12 = 24.73 × 106 mm4; Ixx = [2004 – 1904]/3 = 98.93 × 106 mm4

Thus, rgg =  √[24.73 × 106/3900] = 79.63 mm; rxx =  √[98.93 × 106/3900] = 159.27 mm

(ii) In the case of the hollow circular section, inner radius = 50 – 5 = 45 mm

Area = p (502 – 452) = 1492.25 mm2, Igg = (p/4) [504 – 454] = 1.688 × 106 mm4

Ixx = 1.688 × 106 + 1492.25 × 502 = 5.42 × 106 mm4

Thus, rgg = √[1.688 × 106/1492.25] = 33.6 mm; rxx = √[5.42 × 106/1492.25] = 60.3 mm

Find the least radius of gyration of the channel section about axes parallel to the sides 
and passing through its centroid (Fig 1.46).

Solution:  We locate the centroid and second moments of areas about X-X and Y-Y axes.

Area of section = 100 × 5 + 2 × 45 × 5 = 950 mm2

Now, ÿ = [100 × 5 × 2.5 + 2 × 45 × 5 × 27.5]/ 950 = 14.34 mm

Ixx = 5 × 1003/12 + 2[45 × 53/12 + 45 × 5 × 47.52] = 416666.7 + 2[468.75 + 507656] 

     = 1.433 × 106 mm4

Thus, rxx = √[1.433 × 106/950] = 38.8 mm

Iyy = 100 × 53/12 + 2[5 × 453/12 + 5 × 45 × 13.162] = 225 × 103 mm4

Thus ryy = √[225 × 103/950] = 15.4 mm

Least radius of gyration = 15.4 mm
	 Fig. 1.46

1.10  SECTION MODULUS
Consider the beam shown in Fig. 1.47(a). When the beam is subjected to loads, it bends. The 
beam section is shown in Fig. 1.47(b). The centroid of the beam section can be found from the 
principles you might have studied in engineering mechanics. An axis through the centroid of 
the section and parallel to its base is called neutral axis. Note that this axis is perpendicular to 
the plane of the paper in Fig. 1.47(b). When the beam bends, each section of the beam rotates 
about the neutral axis. Because of this rotation, the MI (second moment of area) comes into 
effect in the bending of beams. This has been discussed in detail in the earlier sections. 

Example 1.18  Radius of gyration of channel section

14.34

50

10
0

x x

y

y

Fig. 1.45
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BASIC CONCEPTS    35

G

CG

G

Yb

b y

Yt

d

y

(a)

Bending

(b)

Fig. 1.47

The beam section is symmetrical about the Y-axis but can be unsymmetrical about the 
horizontal axis in the case of simple bending. The centroid, in such a case, will not be at 
the centre of the depth, d, but may be below or above. In the case shown in Fig. 1.47(b), the 
centroid is below the half depth d/2. The distances yt and yb thus are not equal. These distances 
are known as distances to the extreme fibres at top and bottom from the neutral axis (NA). The 
quantities I/yt and I/yb are known as moduli of section or section moduli of the beam section.

Section modulus is thus the MI of the section divided by the distance to the extreme fibre, 
either to the top or to the bottom, from the neutral axis. Section modulus is important because 
the least section modulus governs the design of the beam. Section modulus is usually denoted 
by the symbol Z. The unit of section modulus Z is L3 being (L4/L). The section modulus will 
have the units of mm3, cm3, m3, etc.

We will illustrate the computation of section modulus through a number of examples. This 
will be useful while designing the beams. 

Compute the section modulus of the sections shown in Fig. 1.48.

Solution	For the rectangular section shown in Fig. 1.48(a), the neutral axis will be at half depth as the section 
is symmetrical about that line. The neutral axis will be g-g at d/2 from the top fibre. The MI about the 
neutral axis is given by bd3/12.

MI about neutral axis = 10 × 203/12 = 6666.67 cm4

18

d

d/2

(b)

A

d 
=

 2
0

b =10

B

d
2

N

(a)

gg

Fig. 1.48

Example 1.19  Section  modulus 
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36    STRENGTH OF MATERIALS

In this case, yt and yb are equal, each equal to 10 cm.

Section modulus Z = 6666.67/10 = 666.67 cm3  and is the same with respect to top and bottom fibres. 

General formula in the case of rectangular  section is (bd3/12)/(d/2) = bd2/6.
In the case of circular section shown in Fig. 1.48(b), the neutral axis will be at the centre of depth. 

yt = yb = radius = 18 cm

The neutral will coincide with a horizontal diameter.

MI about NA = pd4/64 or pr4/4 = p(18)4/4 = 82,448 cm4

Section modulus will be the same about top and bottom fibres.

Section modulus = 82,448/18 = 4580.44 cm3

The general formula for section modulus is (pr4/4)/r = pr3/4 =pd3/32

A wooden semicircular log, of 20 cm radius, is used as a beam over a span of 2 m. Find the section moduli 
of the section.

Solution	The section is shown in Fig. 1.49(a).

r = 20

A
– 4r/3pN

b
q

ry

dy

(a) (b)

Fig. 1.49

The centroid of the semicircular section can be found by integration. We can use Table 1.1 of Appendix 1. 
The centroid is at 4r/3p  from the base diameter. We will prove this by integration.

Area of the semi-circular area = pr2/2 = p(20)2/2 = 628.32 cm2

We consider an elementary strip at y from the base. The width of the strip, b = 2r cos q, y = r sin q, and 
dy = r cos q dq   [see Fig. 1.49(b)]

Moment of the elementary strip about the base = (b dy) y

Moment = (2r cos q × r cos q dq) r sin q
	 = 2r3 cos2q sin q dq

Moment of the whole area is obtained by integrating from q varying from  0 to p/2.

Moment of the area = 
/2

0

p

∫ [2r3 cos2q sin q dq]

	 = 2r3 
/23

0
– cos / 3

p
q 

 
	 = 2r3/3

	Area of the section = pr2/2

Example 1.20  Section moduli of a semicircular section
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BASIC CONCEPTS    37

Distance of the centroid from the base y is given by

ŷ  = (2r3/3)/(pr2/2)

	 = 4r/3p 

Distance of the centroid from the base = 4 × 20/3p = 8.49 cm
The neutral axis will be as shown in Fig. 1.49(b).
To find the moment of inertia, we find (b dy)y2 and integrate the same from 0 to p/2.

Second moment of area of the elementary strip = (2r cos q × r cos q dq) (r sin q)2

	 = 2r4 cos2q sin2q dq

MI = 
/2

0

p

∫ (2r4 cos2q sin2q) dq 

	 = 2r4 
/2

0

p

∫ sin2q (1 – sin2q) dq 

	 = 2r4 (q/2 – sin 2q/4) + (1/4) cos q sin3q – (3/4) 2 /2
0sin ]d pq q∫

	 = 0.11 r4

	 = 17,600 cm4

	 Zt = 17,600/11.51 =1529 cm3

	Zb = 17,600/8.49 = 2073 cm3

Find the section moduli of an isosceles triangle. If two such 
triangles were joined base to base, what will be the section 
modulus of the figure? It is given that b = 30 cm and h = 18 cm.

Solution  The isosceles triangle is shown in Fig. 1.50(a). The 
centroid of the triangle is at h/3 from the base. In this case, it is at 
6 cm from the base.

MI of the triangle about the NA = bh3/36 = 30 × 183/36 = 4860 cm4

As the section is unsymmetrical about the NA, there will be two 
section moduli.

(based on top edge) Zt = 4860 /(2 × 18/3) = 405 cm3

(based on bottom edge) Zb = 4860/6 = 810 cm3

If two such triangles were joined together as shown in Fig. 1.50(b),

MI about NA = 2 × bh3/12 = 2 × 30 × 183/12 = 29,160 cm4

Section modulus will be the same about top and bottom edges.

Z = 29,160/18 =1620 cm3

Example 1.21  Section moduli of a triangular section 

N A

NA

b b

h

(a) (b)

h

h

Fig. 1.50

Find the section modulus of the I-sections shown in Fig. 1.51

Solution	The I-section shown in Fig. 1.51(a) is a symmetrical section, symmetrical about the X–X axis. The section 
modulus with respect to top and bottom fibres will be equal.

We first find the second moment of area of the section about the neutral axis (X–X axis).

Example 1.22  Section modulus of I-sections
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38    STRENGTH OF MATERIALS

The second moment of area is the second moment of area of the 
three rectangles marked 1 (100 × 10), 2(180 × 10) and 3(100 × 10). 
As the two flanges are placed symmetrically about NA, their MI 
about X-X will be equal. The MI can be calculated as

IXX – 2 [100 × 103/12 + 100 × 10 × 952] + 10 × 1803/12 

= 2[105/12 + 9.025 × 106] + 4.86 × 106 = 4.868 × 106 mm4. 

Section modulus Zt = Zb = 4.868 × 106/100 = 4.868 × 104 mm4.

The I-section shown in Fig. 1.51 (b) is not symmetrical about the 
horizontal axis.
We locate the centroid of the section.

Area of the section = 100 × 10 + 170 × 10 + 50 × 20 = 3700 mm2.

Ŷ  = [100 × 10 ×  5 + 170 × 10 ×  95 + 50 × 20 × 190] /3700 = 96.35 mm from bottom.

The distance of NA from the top = 103.65 mm.

IXX = [100 × 103/12 + 1000 × 91.352 + 10 × 1703/12 + 1700 × 1.352 + 50 × 203/12 + 1000 × 93.652]

	 = 21.26 × 106 mm4

Section modulus with respect to top Zt = 21.25 × 106/103.65 = 205017 mm3.
Section modulus with respect to bottom Zb = 21.25 × 106/96.35 = 220550 mm3.

X X

1(100 × 10) 50 × 20

20

2(100 × 10)

2(10 × 180)

AN

(a) (b)

10 × 17010
3.

65
96

.3
5

100 × 10

Fig. 1.51

Find the section modulus of the trapezium shown in Fig. 1.52.

Solution  We first find the centroid of the section. Taking moments 
about the bottom edge, considering two triangles as shown,

Area, y  = [20 × (20/2) (2 × 20/3) + 40 × (20/2) (20/3)] = 5333.33 cm3

Area of trapezium = [(40 +20)/2] × 20 = 600 cm2

ŷ  = 5333.33/600 = 8.89 cm

Height of centroid from top = 20 – 8.89 = 11.11 cm

	 MI about NA = 40 × 203/12 + (40 × 20/2) (8.89 – 6.67)2 

	 	  + 20 × 203/12 + 20 × (20/2) (11.11 – 6.67)2

	 = 26,666.67 + 1971.36 + 13,333.33 + 3942.72

	 = 45,914 cm4

	 Zt = 45,914/11.11 = 4132.68 cm3

	 Zb = 45,914/8.89 = 514.68 cm3 

Example 1.23  Section modulus of a trapezoidal section 

Fig. 1.52

20

20
C

A B

D

40

Two unequal angle sections are kept as shown in Fig. 1.53. Find the distance x so that the MI about X-X 
and Y-Y axes are equal. Also find the section modulii.

Solution	We first locate Ŷ , the distance of centroid from the top flange.

Ŷ  = [60 × 10 × 5 + 110 × 10 × 65]/(60 × 10 + 110 × 10) = 43.82 mm

Example 1.24  Section modulii of two angle sections
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BASIC CONCEPTS    39

Distance of centroid from bottom fibre = 120 – 43.82 = 76.18 mm.
MI about X-X axis, IXX, is given by (for one angle section)

	 IXX = 60 × 103/12 + 600 × 38.822 + 10 × 1103/12 + 1100 × 21.182

	 = 2479500 mm4

IXX for the whole section = 2 × 2479500 = 4959000 mm4.

Let 2x be the clear distance between the angles.

	 IYY = 10 × 603/12 + 600 (30 + x)2 + 110 × 103/12 + 1100 (5 + x)2

	 = 1700 x2 + 47000x + 756667 (for one angle)

IYY for two angles will be double of this due to symmetry about Y-Y axis.

As IXX = IYY, we get, 2[1700x2 + 47000x + 756667 = 4959000.

Reducing this expression, x2 + 27.64x – 1013.4 = 0; x = 20.88 mm

Distance between channels = 41.76 mm.

Section modulus Zt = 4959000/43.82 = 113168 mm3.

Section modulus Zb = 4959000/76.18 = 65096 mm3.

Fig 1.53

60

10

10

11
0

43
.8

2
76

.1
8

2x

Find the section modulii of the unequal channel section shown in Fig. 1.54.

Solution  As the flange lengths are unequal, we have to locate centroid.

Area of the section = 100 × 10 + 180 × 10 + 200 × 10 = 4800 mm2.

Ŷ  = [100 × 10 × 5 + 180 × 10 × 100 + 200 × 10 × 195] /4800 = 119.8 mm

Distance to the NA from bottom = 80.20 mm

IXX = �[100 × 103/12 + 1000 × 114.82 + 10 × 1803/12 + 1800 × 19.82 + 200 × 103/12 
+ 2000 × 75.203]

	  = 30.1 × 106 mm4.

Section modulus Zt = 30.1 × 106/119.8 = 251089 mm3.

Section modulus Zb = 30.1 × 106 / 80.2 = 375068.7 mm4.

Example 1.25  Section modulus of unequal channel section

Fig 1.54

100

18
0

80
.2

11
9.

8

200

10

The section shown in Fig. 1.55 consists of a rectangle and a semicircle. The 
height of the rectangle h is so adjusted that the NA of the section falls at the 
junction of the two parts. Find the section modulus of the section.

Solution  Area of semicircle = π × 1002/2 = 15708 mm2; Area of rectangle 
= 200h mm2. Centroid of semicircle = 4x 100/3π = 42.44 mm from base.
Taking moments about the base of the section, we get

	 Ŷ  = [15708 × 42.44 + 200 h2/2] /(15708 + 220 h) = h;
	 from this we get h = 81.65 mm
	 INA = [π (100)4/8 + 200 × 81.653/3] = 48.34 × 106 mm4.

Section modulus at top, Zt = 48.34 × 106/100 = 48.34 × 104 mm3.

Section modulus at bottom = 48.34 × 106/81.65 = 59.2 × 104 mm3.

Example 1.26  Section modulus of a given section

Fig. 1.55

200

100
NA

h
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40    STRENGTH OF MATERIALS

Fig. 1.56

O X
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x

Y
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dA x3
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y3
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X3O

Y2

y2

Y2

x2

X2 X2

dA

O

b b

h

hdA
x1

X1X1

y1

Y1

Y1

O b

h

Fig. 1.57

1.11  PRODUCT OF INERTIA
The product of inertia, usually denoted by the symbol P, is given by the mathematical 
expression ∫A xydA. Though the concept does not find wide application, it is useful in dealing 
with unsymmetrical bending, finding principal axes of inertia, in advanced structural 
analysis, etc.

Consider Fig. 1.56. The product of inertia can be expressed as 
P = ∫A xydA. The unit of P is the same as that of I, i.e., mm4, m4, 
etc. But while I is always positive, P can be positive or negative, 
depending upon the axes chosen. Note that P has to be with 
reference a set of coordinate axes and hence should be expressed 
as PXY = ∫A xydA.

Let us take the case of a rectangle and the set of axes X1 – Y1, 
X2 – Y2, X3 – Y3, etc. as in Fig. 1.57. With respect to the set of 
axes X1,Y1, Px1y1

 = ∫A x1y1dA. Since X1, Y1 are always positive, Px1y1
 

is always positive. With respect to the axes X2, Y2, note that X2 
and Y2 are axes of symmetry. For every elementary area dA with 
positive x-coordinates, there is a corresponding area with negative 
x-coordinates with respect to the Y-axis, and for every elementary 
area with positive y-coordinates, there is a corresponding area with 
negative y-coordinates with respect to the X-axis. Thus, Px2y2

 = ∫A 

x22dA = 0.

With respect to axes x3, y3, the area is so located that the y3-coordinates are positive while the 
x3-coordinates are negative. Therefore, Px3y3 = ∫A x3y3dA is negative.
An important property of product of inertia is that it is zero with respect to a set of axes if one 
or both of the axes are axes of symmetry.

Thus, in Fig. 1.58, PXY = 0 for the T-section because the Y-axis is an axis of symmetry and 
PXY = 0 for a circular area about the axes passing through its centre.
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x1

x1
y1

y1

Y

Y

Y
Y

X X

Circle

X X

Fig. 1.58

Find the product of inertia of the rectangle with reference to the X, Y axes shown in Fig. 1.59.

b

h

X XX

(a)

dy

h y

X
b

Y

Y

Y Y

(b)

Fig. 1.59

Solution	Consider a strip parallel to the X-axis as shown in Fig. 1.59(b). Note that (x, y) are the coordinates of the 
centroid of the strip. From the figure, dA = b dy, x  = b/2, y  = y. Therefore,

PXY = 
A∫  xy dA = 

0 2

h b∫ yb dy = 
2 2

4

b h

Example 1.27  PI of a rectangle

Example 1.28  PI of a right-angled triangle (general formula)

Find the product of inertia of the right-angled triangle shown in Fig. 1.60 with respect to the X, Y axes.

Solution	The whole triangle is in the first quadrant. The x and y coordinates are positive throughout. Consider the 
elementary strip parallel to the base, as shown in Fig. 1.60(b).
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42    STRENGTH OF MATERIALS

Y Y

b
b

X X

h h

O O

(a) (b)

dy

y

Fig. 1.60

Width of the strip = b 
y

h

Area = b 
y

h
 dy

x-coordinate of centroid = 
1

2

y
b b

h
-

	 = 
2

b

h
(2h – y)

y-coordinate = (h – y)

Therefore,

	PXY = 
A∫  xydA = 

0

h

∫ 2

b

h
(2h – y) (h – y)dy b

y

h

	 = 
2

20 2

h b

h∫ (2h2 – 2hy – yh + y)ydy

	 = 
2

20 2

h b

h∫ (2h2y – 3hy2 + y3)dy

	 = 
2 2 2 3 4 2 4 2 2

2 2
0

2 3

2 3 4 4 82 2

h
b h y hy y b h b h

h h

 
− + = = 

  

Transfer of axes for product of inertia  In Fig. 1.61, G 
is the centroid of the area shown and PXY is the product of 
inertia with respect to the axes X, Y through G. The product 
of inertia of this area with reference to axes X′, Y′ through 
point O, such that the coordinates of G (with respect to axes 
X′, Y′) are ( , )x y , is given by

PX¢Y¢ = ∫A (x + x ) (y + y ) dA 

= ∫A xy dA + ∫A x y  dA + ∫A x y dA + ∫A x y dA

Note that ( , )x y  are constants, being the coordinates of G. 

∫A y x dA and ∫A
 x y dA are equal to zero, since they are the 

moments of the area about its centroid. ∫A x y , dA is A x
y  and ∫A xy dA = PXY. Therefore,

PX¢Y¢ = PXY + A x y  

y

Y¢

X

x

Y

X¢O

G

Fig. 1.61
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BASIC CONCEPTS    43

That is, the product of inertia of an area with respect to a parallel set of axes is equal to the sum 
of the product of inertia with respect to parallel axes through the centroid and the product of the area 
and coordinates of the centroid with respect to the new set of axes. This result is useful in finding the 
product of inertia of composite areas.

Find the product of inertia of the equal angle section shown, about the axes passing through its centroid 
and the axes passing through its edges (Fig. 1.62).

100

10
0

10
0

G

Y
Y

10

10

X X

(a) (b)

G

G

28.68

28.68

90

Fig. 1.62

Solution	 We first determine the coordinates of the centroid of the section. x  = y as the section is an equal angle section.

(100 × 10 + 90 × 10) x  = 100 × 10 × 5 + 90 × 10 × 55, x  = 28.68 mm

(100 × 10 + 90 × 10) y = 100 × 10 × 50 + 90 × 10 × 5, y  = 28.68 mm

The section consists of two rectangles, 100 × 10 and 90 × 10. The centroidal axes of both the rectangles 
are symmetrical and the product of inertia about their own centroidal axes is zero.

From Fig. 1.62(b),

	PXY = A1 x y  + A2 x y

	 = 100 × 10 × 5 × 50 + 90 × 10 × 55 × 5

	 = 497.5 × 103 mm4

PGG = 100 × 10 × 23.68 × (– 21.32) + 900 × 23.68 × (– 26.32)

	 = –10657× 103 mm4 

Example 1.29  PI of an angle section

Find the product of inertia of the right-angled triangle shown in Fig. 1.63(a) about the X- and Y-axes 
passing through its centroid, and about the X′- and Y′-axes passing through its sides.

Solution	From Fig. 1.63(b), we find PX′Y′ by integration.

Width of elementary strip = 
90 3

120 4
y y=

Area = 
3

4
ydy

Example 1.30  PI of a right-angled triangle
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44    STRENGTH OF MATERIALS

12
0

12
0

30

40

90O

Y

Y¢

y

Y¢

X¢

X

X¢

CG

(a) (b)

90

dy

Fig. 1.63

Coordinates of it centroid = 
3

, (120 )
8

y y
 −  

PX´Y´ = 
120

0

3 3
(120 )

4 8
y dy y y−∫  

	 = 
120 2 3
0

9
(120 )

32
y y dy−∫

	 = 41 9
(120)

12 32
×  = 4.86 × 106 mm4

PXY (for centroidal axes) can be found from the transfer formula:

PX´Y´ = PXY + A x y

	PX´Y´ = 4.86 × 106,  A = 
120 90

2

¥
 = 5400,  x  = 30,  y  = 40

	 PXY = 4.86 × 106 – 5400 × 30 × 40

	 = –1.62 × 106 mm4 

To derive a general formula for this case, assume the base as ‘b’ and height as ‘h’ for the triangle.
Area of the elementary strip = bydy/h.
Coordinates of the centroid of the strip are [by/2h, (h – y)]

Product of inertia of the strip about axes X’, Y’ is given by

PX¢,Y¢ = A × y = (bydy/h) (by/2h) (h – y).

To get the product of inertia for the whole area, integrate from 0 to h.

PX¢,Y¢ = [ ]
0

( ) ( 2 ) ( )
h

by dy h by h h y−∫

	 = (b2/2h2) 2 3 2 2 3 4 2 2

0 0

( ) ( 2 ) 3 4 24

hh

hy y dy by h hy y b h − = − = ∫
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BASIC CONCEPTS    45

Find the product of inertia of the unequal channel section about axes passing 
through its centroid.

Solution  We first locate the centroid of the section.

Area of the section = 100 × 10 + 180 × 10 + 200 × 10 = 4800 mm2.

	Ŷ  = [100 × 10 × 5 + 180 × 10 × 100 + 200 × 10 × 195] /4800 = 575000/4800 

	 = 119.8 mm 

	 X = [100 × 10 × 50 + 180 × 10 × 5 + 200 × 10 × 100]/4800 = 214000/4800

	 = 44.58 mm

The centroidal axes are as shown in figure.
To find the product of inertia we consider the area as consisting of three rectangles 
marked 1, 2, and 3. The product of inertia of the rectangles about their own centroidal 
axes is zero. The calculations are done in the table below:

Example 1.31  Product of inertia of channel section

To find the product of inertia about the centroidal axes, note that the coordinates of the centroid are 
(b/3, h/3) with respect to X¢ – Y¢ axes.

From the transfer formula, PX¢Y¢ = PXY + Axy, we get

PX,Y = PX¢Y¢ – Axy = (b2h2/24) – (bh/2) (b/3) (h/3)

	 = (b2h2/24) – (b2h2/18) = – (b2h2/72). 

In the present case, b = 90 mm and h = 120 mm

PX¢Y¢ = 902 × 1202/ 24 = 4.86 × 106 mm4.

PX,Y = –(902 × 1202/72) = –1.62 × 106 mm4, as before.

Fig. 1.64

100

80
.2

11
9.

8

200

Example 1.32  Product of inertia of composite section

Fig 1.65

100

y

x x
120

12
0

Determine the product of inertia of the composite section, shown 
in Fig. 1.65 consisting of a rectangle and a right triangle about 
axes X-X and Y-Y.

Solution  We note that the area consists of a rectangle, a 
symmetrical figure, and a triangle which is not symmetrical. 
Thus in the case of triangle the product of inertia about its own 
centroidal axes is not zero.

The product of inertia of the triangle can be found from 
integration. We take the value from Example 1.30.

Product of inertia about centroidal axes = –bh2/72 = –1202 
× 1202/72 = –2.88 × 106 mm4

No. Area X Y A × Y

1. 100 × 10 = 1000 mm2 5.42 114.8 622216 mm4

2. 180 × 10 = 1800 mm2 –39.58 19.8 –1410631 mm4

3. 200 × 10 =  2000 mm2 55.42 –75.20 –8335168 mm4

Product of inertia, Px,y = –9123583 mm4.
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46    STRENGTH OF MATERIALS

The calculations can be done as in the table below:

Area X Y P about centroidal axes Product of inertia

Rectangle 100 × 120
Area = 12000 mm2 50 60 Zero

12000 × 50 × 60
= 36 × 106 mm4

Triangle 120 × 120/2
Area = 7200 mm2 140 40 2.88 × 106 mm4 7200 × 140 × 40

= 40.32 × 106 mm4

Product of inertia Pxy = (– 2.88 + 36 + 40.32) × 106 = 73.44 × 106 mm4.

1.12  PRINCIPAL AXES FOR MI
We have seen that an area has a moment of inertia and a product of inertia about the axes 
passing through any point. Considering the area shown in Fig. 1.65(a), IXX, IYY, and PXY can be 
calculated about the axes X-X and Y-Y passing through any point O.

If we consider any two mutually perpendicular axes U and V which are inclined at an angle 
q to the axes X and Y and passing through O, it is possible to derive a relationship between 
IUU, IVV, and PUV and the quantities IXX, IYY, and PXY. Such a relationship has some important 
applications in structural mechanics.

From Fig. 1.66(b), we observe that point P has coordinates (x, y) with respect to the X, Y 
axes. The coordinates of point P with respect to axes U and V are u and v such that

v = y cosq – x sinq
u = y sinq + x cosq

IUU and IVV can be defined by the integrals Ú u2dA and Ú v2dA. Thus,

	 IVV = Ú v2dA = Ú (y cosq – x sinq)2 dA

	 = Ú y2cos2q dA + Ú x2sin2q dA – Ú 2xy sinq cosq dA

Ú y2cos2q dA = IXX cos2q; Ú  x2 sin2q dA = IYY sin2q 

and

Ú 2xy sinq cosq dA = 2PXY sinq cosq

IVV = IXX cos2q + IYY sin2 q – 2 PXY sinq cosq
Similarly,

IUU = Ú u2 dA = Ú (y sinq + x cosq)2 dA

	 = Ú y2 sin2q dA + Ú x2 cos2q dA + Ú 2xy sinq cosq dA

	 = IXX sin2q + IYY cos2q + 2PXY sinq cosq

Since	 cos2q = 
1 cos2

2

q+ 
   , sin2q = 

1 cos2

2

q− 
   , and 2 sinq cosq = sin 2q

	IVV = IXX 
1 cos2

2

q+ 
    + IYY 

1 cos2

2

q− 
    + PXY sin 2q
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BASIC CONCEPTS    47

	 = 
2

XX YYI I+
 + 

2
XX YYI I−

 cos2q + PXY sin 2q

IUU = IXX 
1 cos2

2

q− 
    + IYY 

1 cos2

2

q+ 
    + PXY sin 2q

= 2
XX YYI I+ 

    – 2
XX YYI I− 

    cos2q + PXY sin2q

Product of inertia PUV = ∫ uvdA

= Ú (y cosq – x sinq) (y sinq + xcosq) dA

= Ú (y2 sinq cosq + xy cos2q – xy sin2q – x2 sinq cosq) dA

= IXX sinq cosq + PXY cos2q – PXY sin2q – IYY sinq cosq

= 
2

XX YYI I-
 sin2q + PXY cos2q  [∵ cos2q – sin2q = cos2q]

As the angle q changes, we get different orientations of the U- and V-axis. IUU, IVV, and 
PUV change with values of q. To get the maximum values of IUU and IVV, we differentiate with 
respect to q and equate the results to zero to find the value of q, and then substitute this value of 
q in the expressions for IUU and IVV. d(IUU)/dq = 0 gives

–

2
XX YYI I

 (–2 sin 2q) + PXY (–2 cos 2q) = 0

Fig. 1.66
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(a)
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x
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48    STRENGTH OF MATERIALS

which gives

sin 2

cos 2

q
q

 = 

2

XY

XX YY

P
I I

-
-Ê ˆ

Á ˜Ë ¯

d(IVV)/dq = 0 gives

–

2
XX YYI I

 × 2sin 2q + PXY  × 2cos 2q = 0

Please note that the differentiation of IUU and IVV with respect to q gives an expression which 
is the value of PXY. This means that when the maximum or minimum value of IUU and IVV is 
obtained, PXY is zero.

For the value of q, we have the expression

tan 2q = 

2

XY

XX YY

P
I I

-
-Ê ˆ

Á ˜Ë ¯
From Fig. 1.66(c), we get

sin 2q = 
2

2

2

XY

XX YY
XY

P

I I P

−

−  +  

cos 2q = 
2

2

2

2

XX YY

XX YY
XY

I I

I I
P

-Ê ˆ
Á ˜Ë ¯

-Ê ˆ +Á ˜Ë ¯

These values can be substituted in the expressions for IVV and IUU. Substituting,

	IVV = 
( )

2 2
2 2

2 2
2

2 2

XX YY XX YY

XY XYXX YY

XX YY XX YY
XY XY

I I I I
P PI I

I I I I
P P

- -Ê ˆ Ê ˆ
Á ˜ Á ˜ -Ë ¯ Ë ¯+

+ -
- -Ê ˆ Ê ˆ+ +Á ˜ Á ˜Ë ¯ Ë ¯

	 = 
2

2

2 2
XX YY XX YY

XY
I I I I

P
+ -Ê ˆ- +Á ˜Ë ¯

	IUU = 
( )

2 2
2 2

2 2
2

2 2

XX YY XX YY

XY XYXX YY

XX YY XX YY
XY XY

I I I I
P PI I

I I I I
P P

- -Ê ˆ Ê ˆ
Á ˜ Á ˜ -Ë ¯ Ë ¯+

- +
- -Ê ˆ Ê ˆ+ +Á ˜ Á ˜Ë ¯ Ë ¯

	 = 
2

2

2 2
XX YY XX YY

XY
I I I I

P
+ -Ê ˆ± +Á ˜Ë ¯

The maximum (or minimum) values of I are known as principal moments of inertia and the axes 
are known as principal axes. Also note that

IUU + IVV = IXX + IYY = J, the polar MI
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BASIC CONCEPTS    49

The principal moment of inertia can be expressed as

I1,2 = 
2

2

2 2
XX YY XX YY

XY
I I I I

P
+ -Ê ˆ± +Á ˜Ë ¯

The orientation of the principal axes is given by

tan 2q = 

2

XY

XX YY

P
I I

-
-Ê ˆ

Á ˜Ë ¯

The product of inertia PXY is zero about the principal axes.
The following points can easily be seen from the equations derived above.

	 (i)	 IUU + IVV = IXX + IYY = constant (this constant is, of course, the polar MI J).
	 (ii)	 There will be a set of axes in any area, through its centroid, which are the principal axes. 

The MI is maximum about one of these and minimum about the other.
	(iii)	 The product of inertia is zero about the principal axes.
	(iv)	 Axes of symmetry of an area are principal axes. (The principal axes need not be the axes 

of symmetry.)

For the right-angled triangle shown in Fig. 1.67(a), determine the principal axes through the centroid and 
the MI about these axes.

Solution	Let X-X and Y-Y be two mutually perpendicular axes through the centroid. From Fig. 1.67(b), considering 
the elementary strip shown,

	IXX = 
120

0

3

4Ú y dy (80 – y)2 = 
120

0

3

4 Ú y (6400 + y2 – 160y)dy

	 = 
1202 4 3

0

3 6400 160

4 2 4 3

y y yÈ ˘
+ -Í ˙

Í ˙Î ˚

	 = 
3

4
 × 120 × 120 

120 120 160 120
3200

4 3

¥ ¥È ˘+ -Í ˙Î ˚
 

	 = 4.32 × 106 mm4

	IYY = 
90

0

4

3Ú xdx (60 – x)2 = 
90

0

4

3 Ú  x (3600 + x2 – 120x)dx

	 = 
904 3

0

4 3600 120

3 2 4 3

x x x2È ˘
+ -Í ˙

Í ˙Î ˚

	 = 
4 90 90

90 90 1800 40 90
3 4

¥È ˘¥ ¥ + - ¥Í ˙Î ˚
 

	 = 2.43 × 106 mm4

PXY = – 1.62 × 106 mm4, as already calculated in Example 1.30.

The MI about principal axes are I1, 2 and are given by

Example 1.33  Principal axes and principal MI of a triangle
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50    STRENGTH OF MATERIALS

Fig. 1.67

120

120

O X X
X

X

Y Y

Y
Y

90

(a) (b)

y

dy

120

90

Y

Y

(c)

90dx
X

23.75°

i

X
O

(d)

Y
Z

Principal axes

X X

	I1,2 = 
2

2

2 2
XX YY XX YY

XY
I I I I

P
+ -Ê ˆ± +Á ˜Ë ¯

	 = 
6 64.32 10 2.43 10

2

¥ + ¥

	 = 
26 6

6 24.32 10 2.43 10
( 1.62 10 )

2

Ê ˆ¥ - ¥± + - ¥Á ˜Ë ¯

	 = 5.25 × 106 mm4  or  1.5 × 106 mm4

The inclination of the principal axes is given by

tan 2a = 
6

6

( 1.62) 10
2.7832 1.0032

10
2 2

XY

X Y

P
I I

- ¥=
- -Ê ˆ Ê ˆ ¥Á ˜ Á ˜Ë ¯ Ë ¯

 = 1.091

2a = 59.74° ⇒ a = 29.87°

The principal axes are shown in Fig. 1.67(d).
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BASIC CONCEPTS    51

Calculate the moment of inertia about the principal axes through the centroid of the angle section shown 
in Fig. 1.68(a).

Solution	We first locate the position of the centroid:

(120 × 10 + 70 × 10) x  = 120 × 10 × 5 + 70 × 10 × 45

x  = 19.73 mm

(120 × 10 + 70 × 10) y  = 120 × 10 × 60 + 70 × 10 × 5

y  = 39.74 mm

IXX, IYY, and PXY can be calculated from Fig. 1.68(b):

IXX = 
310 120

12

¥  + 1200 (60 – 39.74)2 + 
370 10

12

¥
 + 700 × (39.74 – 5)2

	 = 2.7832 × 106 mm4

Example 1.34  Principal axes and principal MI for an angle section

Fig. 1.68

10

80

12
0

(a) (b)

10

Y

Y

120

X X

39.74

19.73
80

23.77°

1

1

2

2

(c)
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52    STRENGTH OF MATERIALS

	IYY = 
3120 10

12

¥  + 1200 × 14.732 + 
310 70

12

¥
 + 700 × 25.272

	 = 1.0032 × 106 mm4

	PXY = 1200 × 14.73 × (– 20.26) + 700 × 34.74 × (–25.27)

	 = – 0.9726 × 106 mm4

If 1 and 2 are the principal axes through the centroid,

I1,2 = 
2

2

2 2
XX YY XX YY

XY
I I I I

P
+ -Ê ˆ± +Á ˜Ë ¯

Therefore,

106 = 

2
22.7832 1.0032 2.7832 1.0032

( 0.9726)
2 2

È ˘+ -Ê ˆÍ ˙± + -Á ˜Ë ¯Í ˙
Î ˚

	 = 3.2125 × 106 mm4  or  0.5759 × 106 mm4

The inclination of the principal axes is given by

tan 2a = 
( ) 6

6

0.9726 10

2.7832 1.0032
10

2 2

XY

X Y

P
I I

- ¥- =
- -Ê ˆ Ê ˆ ¥Á ˜ Á ˜Ë ¯ Ë ¯

 = 1.0928

2a = 47.54º, a = 23.77º. The principal axes are shown in Fig. 1.68(c).

1.13  MOHR’S CIRCLE FOR MI
There is an elegant graphical construction to help determine the principal MIs and the orientation of 
the principal axes. The concept involved is very similar to that of the principal stresses discussed later, 
in Chapter 8. The graphical construction of Mohr’s circle is outlined below. Given IXX, IYY, and PXY 
about the X-X and Y-Y axes, we have to find the principal MI and the orientation of the principal axes.

	 1.	 Draw a horizontal line which is the I-axis and a line perpendicular to it which is the P-axis 
(Fig. 1.69). You have thus an I-P coordinate system. The intersection point O is the origin.

	 2.	 From the origin, mark IXX and IYY to some scale.
	 3.	 If OB represents IYY and OA represents IXX, then AB = (IXX – IYY).
	 4.	 Bisect AB to obtain the point C. OC = (IXX + IYY)/2.
	 5.	 Draw perpendicular lines at B and A and mark D and E such that BD = PXY = AE. The sign 

of PXY is associated with IXX and the opposite sign with IYY.
	 6.	 With CD (or CE) as the radius and the centre at C, draw a circle.
	 7.	 Since AC = (IXX + IYY)/2 and AE = PXY, CE = {[IXX – IYY)/2]2 + P2

XY}1/2, which is the radius 
of the circle. This is known as Mohr’s circle.

	 8.	 Let the circle intersect the I-axis at points 1 and 2.
	 9.	 The coordinates of points 1 and 2 give the principal moment of inertia. Note that PXY = 0 

at points 1 and 2. This statement can be easily proved:
	 O2 = OC – C2

	  = 
2

2

2 2
XX YY XX YY

XY
I I I I

P
+ -Ê ˆ- +Á ˜Ë ¯
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BASIC CONCEPTS    53

as OC = (IXX + IYY)/2 and C2 is the radius of Mohr’s circle

	 = 
2

2

2
XX YY

XY
I I

P
-Ê ˆ +Á ˜Ë ¯

Similarly,

O1 = OC + C1, C1 being the radius of the circle

= 
2

2

2 2
XX YY XX YY

XY
I I I I

P
+ -Ê ˆ+ +Á ˜Ë ¯

Fig. 1.69

O B
C A

E

I

D

P

2
1

For the angle section of Example 1.32, find the principal axes and inertias graphically using Mohr’s circle.

Solution	The scale chosen is 1 cm = 0.25 × 106 mm4.
OI and OP are perpendicular axes.
IXX = 2.7832 × 106 mm4, IYY = 1.0032 × 106 mm4, PXY = –0.9726 × 106 mm4.
In Mohr’s circle, OA = IXX, OB = IYY, AE = BD = PXY.
Join BD intersecting the I-axis at c. With C as the centre and CD as the radius, draw a circle intersecting 

the I-axis at points 1 and 2.
Points 1 and 2 being on the I-axis, PXY = 0 about these axes.
Fig. 1.70 shows Mohr’s circle drawn using the given values. O1 and O2 give the principal MI, and 

∠ACE = 2q.
O1 = 12.85 × 0.25 × 106 = 3.2125 × 106 mm4

Example 1.35  Principal axes and principal MI for an angle section using Mohr’s circle

	 10.	 From the triangle CAE, tan 2q = 
[( )/2]

XY

XX YY

P

I I

-
-

.

	 11.	 It can also be proved that the coordinates of any point in the circle represent the I 
and P about some axis. The diametrically opposite point gives I and P about an axis 
perpendicular to it. We will discuss these concepts in Chapter 9 in greater detail. With 
reference to principal stresses, which are applicable to principal moments of inertia 
as well.

The following example illustrates the procedure.
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54    STRENGTH OF MATERIALS

O2 = 2.3 × 0.25 × 106 = 0.575 × 106 mm4

∠ACE  = 47°,  2q = 47°,  q = 23.5°

P

O B
C A

I

E

D

1
2

Scale: 1 cm = 0.25 × 106 mm4

Fig. 1.70

1.14  GRAPHICAL CONSTRUCTION TO FIND MOMENTS OF INERTIA
A simple graphical procedure is available to find the MIs of irregular areas.

Consider the area shown in Fig. 1.71, whose MI is to be found about axis X-X. Draw a line 
X′-X′ parallel to X-X on the other side as shown in the figure.

A¢

X
X

X¢
X¢

A¢1 B¢1 B¢

d

y

P

A
A1 B1

B dy
B2A2

Fig. 1.71

Take a narrow strip AB of thickness dy in the area and project it on x′-x′ as A′ B′. Take a 
suitable point P on X-X and draw PA′ and PB′ such that they intersect AB at A1 and B1. The area 
of strip A1B1 can be proved to be the first moment of area of strip AB about P. By repeating the 
procedure with other strips, one can obtain the shaded figure. The area of this figure multiplied 
by d is equal to the moment of the area of the given figure about P.
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BASIC CONCEPTS    55

Consider the strip A1B1 and repeat the procedure. Project A1B1 on X′-X′ as A1′B1′ and draw 
PA1′ and PB1′. Repeat the procedure with other strips of the shaded figure and obtain the hatched 
figure. The area of the hatched figure multiplied by d is the MI of the area about axis AB. This 
can be proved as follows.

A B

d

¢ ¢
 = 1 1A B

y

because A¢B¢P and A1B1P are similar triangles.

A′B′y = A1B1d

Since A′B′ = AB,

A1B1d = ABy

Multiplying by dy,

A1B1ddy = ABydy = (ABdy)y

where AB dy is the area of the strip, which multiplied by y gives the moment of this area 
about P. A1B1dy is the area of the shaded strip, and this multiplied by d is thus equal to the 
first moment of area of the strip AB dy. This is true for all the elementary strips. The area of 
the shaded figure multiplied by d, the distance between X-X and X′-X′, therefore, is equal to 
the first moment of area about P. The hatched figure is obtained by a similar procedure from 
the shaded figure. That is, the hatched figure is the first moment of the shaded figure about 
P. If A is the given area, A1 is the area of the shaded figure, and A2 is the area of the hatched 
figure, then

A y  = A1d  as proved earlier

MI = A y y  (A1 y ) y ,  A1 y  = A2d  (on similar arguments)

MI = A2d × d  = A2 d
2

The moment of inertia of the given area is equal to area A2 multiplied by the square of distance 
d between X-X and X′-X′.

1.15  STRUCTURAL ENGINEERING
There are different types of structures built by man—buildings, bridges, culverts, water tanks, 
storage bins, roads, transmission towers, machines, etc. Such structures are built up of a number 
of structural elements joined together suitably.

In the case of any structure, two types of designs are involved—functional or architectural 
and structural. Functional or architectural design deals with aspects other than the strengths of 
the structure, like aesthetics, utility, orientation, general layout, etc. Once this important aspect 
of design is taken care of, structural designers take over. Their work involves analysis of the 
structure and its elements to find the forces and moments that they have to withstand and then 
design the dimensions of the elements and their interconnections. The former is the realm of 
structural analysis while the latter forms what is called structural design.

Structures are designed to withstand loads, i.e., forces and moments due to different causes. 
While some structures, like aircraft structures, machine foundations, etc. necessarily have to be 
designed for forces due to motion, many are designed considering them to be in equilibrium, or 
at rest. A body in uniform motion is also governed by the same laws as for a body at rest. In this 
book, we will deal with structures which are in equilibrium.
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56    STRENGTH OF MATERIALS

1.16  STRUCTURAL ELEMENTS AND STRUCTURAL BEHAVIOUR
When subjected to loads, structures may deform due to the straining action of the loads. There 
are basically three types of straining action—tensile, which tends to elongate the fibres of 
the element; compressive, which tends to shorten the fibres; and shearing, which is an action 
tangential to the cross section of the fibre. These are shown in Fig. 1.72. Note that while tensile 
and compressive strains are along the length of the fibre, shear strain is along the cross section 
of the fibre. These fibres act like springs and resist such straining action by developing stresses. 
The resultant of such resisting action is known as a stress resultant. When an equilibrium is 
reached between the actions and stress resultants, the element stays in equilibrium. There is 
work done by the applied forces in straining the element and this is stored as elastic strain 
energy in the element. Under normal conditions, when the applied forces are removed, the 
strains disappear and the structure comes back to its original dimensions. These concepts are 
explained in detail in later chapters. 

Stress resultant

Tensile Compressive

Shear

Stress resultant

Fig. 1.72

There are different types of structures, consisting of different kinds of elements which exhibit 
different structural actions. Let us discuss them briefly.

Tension member  A tension member can be represented as shown in Fig. 1.73(a). The action 
is equivalent to that of two forces tending to stretch the element, and is normal to the cross 
section, which may have any shape. The member increases in length due to the straining action, 
and develops stress resultants to oppose the applied forces as shown.

Compression member  A compression member can be represented as shown in Fig. 1.73(b). 
The two actions tend to shorten the member, and the stress resultants are directed as shown.

A compression member has such a behaviour only when it is small in length. The behaviour 
changes as the length increases. The applied actions tend to shorten the member and also bend 
it. The bending action becomes more prominent for long members and this phenomenon is 
known as buckling. 

Another difference between tension and compression members may be noted. While tension 
tends to reduce the defect in the case of any slight deviation in the straightness of the member, 
as can happen in fabrication, compressive forces enhance the defect [Fig. 1.73(c)].

Beams  Beams are very common structural elements used to span distances. They carry loads 
predominantly transverse to their longitudinal axis [Fig. 1.73(d)]. Due to the straining action of the 
applied loads, the beam tends to bend, i.e. take up the curved shape shown. Beams are subjected to 
all the three straining actions described above. The top part of the beam is subjected to compression, 
the bottom part to tension, and there is also shearing action parallel to the cross section.
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T T T T

C C C C

Stress resultants(a)

(b)

(c)

(d)

Stress resultants

Deviation

Deviation

Tensile force straightens the member

Compressive force enhances deviation

Curve after bending

Compression

Tension Shear

Top chord (compression)
Diagonals and vertical
resist shearing action

Bottom chord (tension)

Trusses  Trusses are used to span large distances. A truss may have sloping members on top 
as shown in Fig. 1.73(e). In the ideal condition, the members forming the truss framework 
are tension and compression members with loads acting at the joints only. On the whole, they 
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58    STRENGTH OF MATERIALS

behave like beams—in the case of a parallel chorded truss, the top, chord members are in 
compression, the bottom chord members are in tension, and the diagonal or vertical members 
resist the shearing action. In terms of structural action, one can consider that the truss acts like 
a beam from which certain parts have been cut out, but without the bending effect. Also, in 
the case of a truss, the shearing action is resisted by tension and compression in the diagonal 
members.

Arches  Arches are again elements used to span large distances. They basically carry load to 
supports by developing compressive stresses in them. In practice, some bending and shear are 
also developed. The supports for an arch need to be strong because the arch transfers the load 
at an inclination to the supports. Arches may be three-hinged, two-hinged, or fixed (Fig. 1.74). 
The load is transferred to the arch through spandrels or hangers to make them uniform.

If the arch has a funicular shape with reference to the load, the arch is under pure compression. 
For example, for a uniformly distributed load, the funicular shape is a parabola.

Fig. 1.73

Bottom chord (tension)

(e) Truss with sloping members

Top chord (compression)

Fig. 1.74

Hinge

Three-hinged Two-hinged

Fixed

Stress resultants
on cross section

Support to be strong
to resist horizontal force
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BASIC CONCEPTS    59

Plates  A plate is a two-dimensional structure, and is generally subjected to loads perpendicular 
to its plane and supported along the edges or in many other ways. The behaviour of the plate 
element is very complex but can be simplified by assuming beam action of strips of the plate in two 
perpendicular directions (Fig. 1.75). The deflected shape is that of a saucer, with curvature in two 
directions. This is a very common element used as roof and floor slabs, bridge and culvert decks, etc.

Fig. 1.75  Plate action

Fig. 1.76

Cable

Catenary

Shape dictated
by loads

Cable  A cable, as mentioned earlier, is effective only when stretched. It finds use in bridge 
structures as shown in Fig. 1.76, and is basically a tension member. A cable supported at ends 
hangs in a shape known as ‘catenary’ due to its own weight. Subjected to loads, the flexible 
cable takes up a shape dictated by the loads acting on it.

Rigid frames  A rigid frame is a framework of elements, monolithically cast or otherwise 
rigidly jointed (unlike in a truss where the members are assumed to be pin-jointed). Such a 
framework is very common in multi-storeyed, multibay buildings. The top members may be 
inclined as a gabled portal (Fig. 1.77). The vertical members predominantly act as columns 
or compression members but are also subjected to beam action. The horizontal members are 
beams but may also carry axial forces. The behaviour of such a framework is very complex due 
to the connecting members and plates both ways. At any interior joint, there are beams from 
all four directions and vertical members above and below. The slabs (plates) connected to the 
beams also affect the behaviour of these members.
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60    STRENGTH OF MATERIALS

Fig. 1.77

Beams Column

Inched portal

Plates

Rigid space
frame

Grids  A grid structure is shown in Fig. 1.78. The interconnected elements both ways behave like 
beams but the structure is efficient in distributing the effect of loads on an element both ways. They 
have become common in roof structures. The grid structure can also be diagonally made resulting 
in a skew grid. In addition to bending, the elements are also subjected to a twisting action.

Fig. 1.78

Skew grid

Rectangular grid

Twist in grid
elements
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BASIC CONCEPTS    61

Shell structures  Shell structures have become very popular in recent times with a better 
understanding of their behaviour even though massive shells have been made since the early stages 
of civilization. There are innumerable forms of shells. Some of these are shown in Fig. 1.79.

Fig. 1.79

Dome

Hyperbola

Cylinder shell

ConoidStraight line generatrices
of hyperbolic paraboloicd

Shells of revolution
Parabola

Shells of revolution are those generated by the rotation of an arc about a line. Examples are 
different types of domes and conics. They are essentially thin elements, subjected to meridional 
and hoop stresses.

Translational shells are generated by the movement of a line over end arcs, as in a cylindrical 
shell or one curve over another perpendicular curve, as in a hyperbolic paraboloid. A hyperbolic 
paraboloid can also have two sets of straight lines lying on its surface. Many such surfaces, called 
ruled surfaces, can be generated by moving a straight line along two separate curves, as in a conoid.

More complex shell shapes can be obtained by intersecting surfaces, and have been used in 
structures for their aesthetic value. Shells are very thin elements and their thickness is governed 
by the practicality of fabrication rather than structural needs.

1.17  STRUCTURAL DESIGN: STRENGTH, STIFFNESS, AND STABILITY
Structural analysis provides with forces and moments that the elements of the structure have to 
withstand. Using these forces and moments and the material properties, we derive the dimensions 
of the structural elements. This is called structural design. There are three considerations in the 
design of structures or machine components.

Strength design is done to ensure that the stresses at any point in the element do not 
exceed the permissible value for the material. The structural element may be made of a 
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62    STRENGTH OF MATERIALS

single material like steel and timber. The material properties may be different in tension 
and compression as in timber. The element may also be made of two or more materials as 
in a composite element. Strength design ensures that in all cases, the stress in the element 
is within the appropriate permissible values. This is discussed in detail in Chapter 7 on 
Deformations in Beams.

Stiffness design is another aspect of design. Stiffness relates to the deformation of the 
member. In general, stiffness is mathematically defined as the force/moment required to cause 
unit deformation in the member. You have thus different stiffness for a member depending upon 
the forces and moments that it has to carry. You have thus axial stiffness, flexural (bending) 
stiffness, torsional stiffness, etc. 

A member may be strong to carry the forces and moments but may have unacceptable 
deformations. Consider a steel rod, 6 m long, being carried by holding it at the ends [Fig. 1.77(b)]. 
The rod will not break if it is carried like that but will sag considerably in the middle. The rod 
is strong but weak in stiffness in this position.

Stability  is another consideration in structural design. A dam, for example, may be strong enough 
to carry the loads and stiff enough because of its size [Fig. 1.80 (c)]. But because of the horizontal 
forces, it may have rigid body rotation leading to overturning. This is discussed in Chapter 6. Long 
columns subjected to axial forces also have stability considerations in the design (Chapter 11).

Fig. 1.80

Maximum de�ection

(a)

Horizontal
water pressure

wt

(c)

DamSteel rod

(b)

1.18  SYMBOLS AND UNITS
A number of symbols are used in this book. They are explained wherever they are first 
encountered. A collection of such symbols is given at the beginning of the book. SI units will 
be used throughout in this work.

Structures, machine components, and other similar 
elements are designed to withstand forces and moments. 
Such designs, which belong to the realm of structural 
engineering or design theories, are based on the basic 

principles of statics and dynamics. Statics is the branch 
of mechanics dealing with forces and moments when 
the body is in equilibrium. The present discussion is 
limited to structures and components in equilibrium.

Summary
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Force systems can be concurrent, parallel or non-
concurrent. Resultants of force vectors are obtained by 
adding them according to the rules of vector algebra, 
which are different from those of scalar algebra. Two 
vectors are added according to the parallelogram law 
or triangle law. Force systems can also be coplanar or 
space systems. In all cases, forces and moments have 
to be added as vectors.

The resultant of two forces F1 and F2 is given 
by R = (F1

2 + F2
2 – 2F1F2 cosq)1/2, where q is the 

angle between the vectors. More than two forces 
can be added by repeated application of this 
principle. Forces can also be added by resolving 
them into rectangular components in two mutually 
perpendicular directions. The sum of such 

components, SFx and SFy, can then be combined 

into a single force ( ) ( )2 2
.R Fx FyS SÈ ˘= +Í ˙Î ˚

Graphical methods use the force polygon and 
funicular polygon to find the resultant force and its 
location.

Body constraints are supports provided to a body 
to give forces and moments needed to keep the body 
in equilibrium. Free body diagrams are diagrams 
showing the body acted upon by the applied forces 
and moments, and the reactive forces and moments 
given by the body constraints. Once such a diagram 
is drawn, the reactive forces and moments can be 
determined by the equilibrium conditions, such as 
SFx = 0, SFy = 0, and SM = 0. Such conditions are 
used to calculate the reactive forces and moments, 
and analyse structures and machine components for 
design.

The concepts of centre of gravity and centroid 
of bodies and areas is also important in structural 
analysis. These also help us to locate the resultant of 
distributed forces.

The moment of inertia (MI) or second moment 
of area is an important property of a section. It is 
calculated using the integral ∫y2dA. The MIs of standard 
sections are listed in tables. The second moment of 
area is always a positive quantity.

The parallel axis theorem states that if IGG is the 
second moment of area about an axis through the 
centroid, then the second moment of area about a 
parallel axis A-A is given by IAA = IGG + Ad2, where 
d is the distance between the centroidal axis and the 
axis A-A.

The polar moment of inertia exists about an axis 
perpendicular to the area. IZZ = IXX + IYY, where X-X 
and Y-Y are two mutually perpendicular axes in the 
plane of the area and Z-Z is an axis perpendicular to 
the plane and passing through the intersection of the 
axes X-X and Y-Y.

The section modulus of a section is the moment of 
inertia divided by the distances to the extreme fibres 
of the section. Section modulus is useful in the design 
of beams.

The product of inertia PXY = ∫xy dA. It can be 
positive, negative, or zero. PXY = 0 if either of the axes 
X-X or Y-Y is an axis of symmetry.

If X-X and Y-Y are the axes through the centroid of 
the area and X′-X′ and Y′-Y′ are another set of parallel 
axes in the plane of the area, then PX′Y′ = PXY + A x y
where ,x y  are the coordinates of the centroid of 
the area with respect to axes X′, Y′ and A is the area. 
This formula is used for calculating the product of 
inertia (PI) through the axes translated parallel to the 
centroidal axes.

If the axes are rotated by an angle q, then the MI 
and PI about the rotated axes,U-U and V-V, can be 
found from

IUU = 
2 2

XX YY XX YYI I I I+ −+  cos 2q + PXY sin 2q

IVV = 
2 2

XX YY XX YYI I I I+ −+  cos 2q – PXY sin 2q

PUV = 
2

XX YYI I-
 sin 2q + PXY cos 2q

The principal axes of a section are those axes about 
which IUU and IVV are a maximum or minimum.

I(max/min) = 
2

2

2 2
XX YY XX YY

XY

I I I I
P

+ − ± +  

The angle q for such a case is given by

tan 2q = 

2

XY

XX YY

P
I I− 

  

The product of inertia about the principal axis is 
zero. The axis of symmetry of an area is the principal 
axis.  The MI of an area can also be found by the 
graphical method.
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64    STRENGTH OF MATERIALS

EXERCISES

Multiple Choice Questions
	 1.	 When a parallelogram is drawn to represent 

two concurrent force vectors A and B, then one 
diagonal represents the resultant. The other 
diagonal represents 

(a)	
2

A B+
	 (b)	

–

2

A B

(c)	
4

A B+
	 (d)	 |A – B|

	 2.	 Two parallel forces, 10 kN↑ and 20 kN↓ are 1 m 
apart and act on a body. The resultant of these two 
forces will act
(a)	� at a point within the lines of action of these 

forces
(b)	 at a point outside, near the 20 kN force
(c)	 at a point outside, near the 10 kN force
(d)	 at the point where the 20 kN force acts

	 3.	 When two forces keep a body in equilibrium, the 
two forces must be
(a)	 equal
(b)	 equal and collinear
(c)	 equal, collinear and opposite
(d)	 concurrent

	 4.	 The moment of the force of 1 N (refer to 
Fig. 1.81) about axes 1-1, 2-2, 3-3 respectively are 
(in Nm)

3
1

3

1

2 2

1 m
1 N

Fig. 1.81

(a)	 1, 1, 1	 (b)	 1, 1, 0	 (c)	 1, 0, 0	 (d)	 0, 0, 0
	 5.	 Varignon’s theorem or the principle of moments 

states that
(a)	� ΣM = 0 for a coplanar force system in 

equilibrium

(b)	 ΣM = 0 for a parallel force system
(c)	� ΣM ≠ 0 about any point at which two forces 

intersect
(d)	� ΣM of individual forces about a point is equal 

to the moment of their resultant about the 
same point

	 6.	 When the conditions of equilibrium for a general 
coplanar system is taken as ΣM1 = 0, ΣM2 = 0 and 
ΣM3 = 0 about points 1, 2, and 3, then
(a)	� the points 1, 2, 3 lie on the lines of action of 

the forces 
(b)	� the points 1, 2,3 should not lie on the lines of 

action of forces
(c)	 the points 1, 2, 3 should not be collinear
(d)	� the points 1, 2, 3 should lie on the arc of a circle.

	 7.	 For the shaded area of Fig. 1.82, the most probable 
position of centroid is

• 4

• 3

• 1

• 2

Fig. 1.82

(a)	 1	 (b)	 2	 (c)	 3	 (d)	 4
	 8.	 In the figure shown in Fig. 1.83, the most probable 

location of centroid is

1

2

4

3

Fig. 1.83

(a)	 1	 (b)	 2	 (c)	 3	 (d)	 4
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BASIC CONCEPTS    65

	 9.	 The resultant of the distributed load shown in 
Fig. 1.84 is 

kx –  x
2

x
1 m

2
1 N/m

Fig. 1.84

(a)	 1/12	 (b)	 5/12	 (c)	 7/12	 (d)	 9/12
	10.	 The beam carries a distributed load as shown in 

Fig. 1.85 The reactive force at A is
1 N/m

1 m

A B

Fig. 1.85

(a)	 1/8 N	 (b)	 1/6 N	 (c)	 1/4 N	 (d)	 1/3 N
	11.	 The reaction at A in the case shown in Fig. 1.86 is

kx2

1 N/m

x
1 m

A B

Fig. 1.86

(a)	 1/3 N	 (b)	 1/4 N	 (c)	 1/6 N	 (d)	 1/12 N
	12.	 In Fig. 1.87, the tension in the cable is (in N)

60˚

cable

1 m

1 N/m

A
B

Fig. 1.87

(a) 1/4	 (b) 1/2	 (c)	 1/√3	 (d) 1
	13.	 The moment of inertia of a hollow circular section 

of inner radius r and thickness 0.1r will be
(a)	 p [r4 – (0.1r)4]/4	 (b) p [(1.1r)4 – r4]/4
(c) p (1.1r4 – r4)/64	 (d) p (r4 – 0.9 r4)/4

	14.	 The second moment of area of an equilateral 
triangle section of side a about an axis through its 
base will be
(a)	 0.054 a4	 (b)	 0.083 a4

(c)	 0.433 a4	 (d)	 a4

	15.	 The true statement from the following is
(a)	 second moment area is always positive
(b)	 Product of inertia is always positive
(c)	� If second moment of area is positive, product 

of inertia will also be positive
(d)	 Product of inertia is always negative.

	16.	 In an area in the form of a triangle, two mutually 
perpendicular axes are considered through its 
centroid, one of the axes being parallel to the base. 
The true statement about the product of inertia (PI) 
of the area about such axes from the following is
(a)	 PI is zero for an equilateral triangle
(b)	 PI is zero for a right-angled triangle
(c)	 PI is zero for all triangles
(d)	 PI is not zero for any triangle

	17.	 If an equilateral triangle of side ‘a’ and a square 
of side ‘b’ have the same second moment of area 
about an axis through their centroid parallel to the 
side, the ratio a/b is
(a)	 0.732	 (b)	 1	 (c)	 1.466	 (d)	 2.930

	18.	 For a circular area of radius r, the radius of gyration 
with respect to an axis tangent to the area is
(a)	 r/2	 (b)	 r	 (c)	 1.12 r	 (d)	 1.5 r

	19.	 The radii of gyration of i) a circular area of radius 
r about its diameter and ii) a square of side a about 
its centroidal axis parallel to the side are equal. The 
ratio r/a is

(a)	 0.289	 (b)	 0.577
(c)	 1	 (d)	 1.154

	20.	 The radius of gyration of a hollow circular area of 
inner radius r and thickness 0.1r with respect to an 
axis through its centre is
(a)	 0.371 r	 (b)	 0.743 r
(c) r	 (d)	 1.104 r

	21.	 The unit of section modulus is
(a)	 mm	 (b)	 mm2

(c)	 mm3	 (d)	 mm4 
	22.	 The section modulii of an equilateral triangular 

section, about an axis through the centroid and 
parallel to the base is
(a)	 a3/4, a3/8	 (b)	 a3/8, a3/16
(c)	 a3/16, a3/32	 (d)	 a3/32, a3/64
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66    STRENGTH OF MATERIALS

	23.	 A square section of side ‘a’ is (i) kept with 
the base horizontal and (ii) with the diagonal 
horizontal. The ratio of section modulus of 
position (i) to that in (ii) is
(a)	 0.707	 (b)	 1.414	 (c)	 2	 (d)	 2.828

	24.	 An area in the shape of a regular hexagon of 
side ‘a’ is kept with i) one side horizontal and ii) 
with the same side vertical. The ratio of section 
modulus of position (i) to that of position (ii) is
(a)	 1.58	 (b)	 3.15	 (c)	 4.74	 (d)	 6.32

Review Questions
	 1.	 A force is to be resolved into two rectangular 

components. Is there a unique solution? Explain 
your answer. When does the solution become 
unique?

	 2.	 Can the component of a force be larger in 
magnitude than the force? Explain your answer.

	 3.	 A body is acted upon by three forces F1, F2, and 
F3, which act along the sides of a triangle and 
are proportional to these sides. Is the body in 
equilibrium? If it is not, under what conditions 
will it be?

	 4.	 A body is acted by four forces F1, F2, F3, and F4, 
which act along the sides of a rectangle, and whose 
magnitudes are proportional to the respective sides. 
Is the body in equilibrium? If not, under what 
conditions the body will be in equilibrium?

	 5.	 Explain why it is not necessary to use the principle 
of moments to find the resultant of a concurrent 
force system.

	 6.	 If SF = 0, for a parallel force system, what can 
you say about the resultant of this system.

	 7.	 Can the funicular polygon close if the force 
polygon does not close? Explain your answer.

	 8.	 If the first and last lines of a funicular polygon are 
parallel, but not collinear, explain how you would 
calculate the resultant, with a diagram.

	 9.	 If, for a general coplanar force system, SM1 = 0, SM2 
= 0, and SM3 = 0, about three moment centres 1, 2, 
and 3, under what conditions will the force system be 
in equilibrium? Give reasons for your answer.

	10.	 For the load distribution shown in Fig. 1.88, will 
the resultant of the load be at 1, 2, or 3?

l

2 1 3

l/2

Fig. 1.88

	11.	 If a beam is loaded as shown in Fig. 1.89, what 
will be the reaction at A and B?

w/unit length

B

l l

A

Fig. 1.89

	12.	 Can the MIs of an area about any axis in its plane 
be zero? Explain your answer.

	13.	 Of the two equal triangles shown in Fig. 1.90, 
which has a greater MI about the y-axis? Are their 
MIs about the x-axis equal

Y

I

O
X

II

Fig. 1.90

	14.	 The strength of a beam section is directly 
proportional to the MI of the section about its 
centroidal, horizontal axis (Fig. 1.91). Which of 
the two sections, of equal area, is preferable as a 
beam section? Why

Fig. 1.91

	15.	 Can the radius of gyration of any area be zero?
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BASIC CONCEPTS    67

	16.	 For which of the sections shown in Fig. 1.92, the 
product of inertia is not zero about the X-X and Y-Y 
axes

Y

Y

X X

(a)

Centroid 

(b) (c)
Y

YY

Y

X XX X

Centroid 

Y

Y
(d) (e)

X X
X X

Y

Y

Fig. 1.92

	17.	 In each case shown in Fig. 1.93, state, without 
calculation, whether the product of inertia is zero, 
negative, or positive

X X X X

X X X X

Y Y

Y Y

YY

YY

Fig. 1.93

	18.	 In the shapes shown in Fig. 1.94, what are the MIs 
about the X-X axis

XX

b

h

(a)

X X X

h

(b) (c)

b

r

Fig. 1.94

	19.	 In the cases shown in Fig. 1.95, about which axis 
the MI will be more—X-X or Y-Y? Why

b/2

b/2

X X X X

Y

Y

Y

Y

b

(a) (b)

X X

a

a

Y

Y
(c)

Fig. 1.95

	20.	 Product of inertia can be negative, zero, or 
positive. Illustrate each of these with examples.

	21.	 Draw sketches of at least two sections each where 
(i) section modulus is the same and (ii) section 
moduli are different, with respect to top and 
bottom fibres.
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68    STRENGTH OF MATERIALS

	 1.	 A force of 200 N is resolved into rectangular 
components. Find the magnitude and direction of the 
components if their magnitudes are in the ratio 1 : 2.

	 2.	 Resolve the force of 500 N (Fig. 1.96) into parallel 
components through (i) A and B and (ii) A and C.

2.0 m 1.5 1.0

500 N

B CA

Fig. 1.96

	 3.	 A force is resolved into three components. If  

DB  = 100 N, find the magnitudes of AC
����

 and 

CD
����

 for the two cases shown in Fig. 1.97. In  
Fig. 1.97 (a), AB || CD.

A

C

D
B

500 N

500 N

30°

45°

A

C

B

D
30°

45°

(b)

(a)

70°

Fig. 1.97

	 4.	 A load of 1000 N is supported by two cables as 
shown in Fig. 1.98. Find the tension in these cables.

60° 45°

1000 N

Fig. 1.98

	 5.	 Find the resultant of the parallel force system 
shown in Fig. 1.99, analytically and graphically.

100 N 500 N

2 m 3 m 1 m 3 m

200 N 200 N400 N

Fig. 1.99

	 6.	 Find the resultant of the parallel force system 
shown in Fig. 1.100, graphically.

100 N

1 1 1 12 m

200 N 400 N 400 N 100 N200 N

Fig. 1.100

	 7.	 Find the resultant of the three forces shown in 
Fig. 1.101.

30°

1200 N
1.5 m

2 m

O
x

800 N
1000 N

60°

y

Fig. 1.101

	 8.	 Draw the free body diagrams of the bodies shown 
in Fig. 1.102.

Weight 200 N

Rough inclined
plane

30°

(a)
Rough surface

400 N300 N

30°

(b)

45°

Problems
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BASIC CONCEPTS    69

2 m

B

A

C

D

A B

E
1 m

1 m

1.5 m

45° 200 N

400 N
1 m

4 m 2 m

FBD of AB, CE, DE

(d)

(c)

B

A C

D E

4 m

4 m 2 m

w kN/m

FBD of BE, AB, DC,

(e)

Fig. 1.102

	 9.	 Determine the reactions at supports A and B for 
the beams loaded as shown in Fig. 1.103.

60 kN 80 kN
2m 2m

6m 2m

(a)

40 kN

A B

60 kNm

6m2m

(b)

A B

8m
(c)

40 kN/m20 kN/m

A B

(d)

w sin p x
l

A B

l

(e)

y = 18x – 2x2 

 x

A B

6 m

Fig. 1.103

	10.	 For a beam loaded as shown in Fig. 1.104, if 
x = l/2, find the reactions at A and B. What is the 
value of x for which RB = 0? What is the value of 
the reaction RA in such case?

w/m

w/m
l

x
A B

Fig. 1.104

	11.	 Determine the reactions at supports A and B of the 
truss loaded as shown in Fig. 1.105.

A

20 kN

40 40 60
5 at 2 m

10 kN

1.
5 

m

B

Fig. 1.105

	12.	 Determine the reactions at A and B for the 
structures loaded as shown in Fig. 1.106.
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70    STRENGTH OF MATERIALS

30
 k

N

30

A

A

B

B

20 kN 40 kN 20 kN

20 kN/m

30 kN

6 m

2 m

5 
m

2.
5 

m

3 
m

2 m

(a)

(b)

4 at 2 m = 8 m

Fig. 1.106

	13.	 Find the MI of an isoceles triangle of base 200 
mm and height 300 mm about an axis through its 
base and a parallel axis through its centroid.

	14.	 Find the MI of a symmetrical trapezium of height 
200 mm, base 200 mm, and top face 100 mm 
about an axis through its centroid.

	15.	 Find the MI about the centroidal axes of (i) a 
hexagon of side 150 mm and (ii) an octagon of 
side 200 mm.

	16.	 Find the MI of an unequal angle section 200 × 
100 × 8 about horizontal and vertical axes through 
its centroid. What is the minimum radius of 
gyration of this section?

	17.	 Find the MI of a channel section of dimensions 200 × 
80 × 10 about horizontal and vertical axes through 
its centroid. If two such channel sections are placed 
back to back, find the clear distance between the 
channels so that their MI about two perpendicular 
axes (horizontal and vertical) are equal.

	18.	 Find the MIs of the three sections shown in Fig. 1.107 
about a horizontal axis through their centroids.

300

40
0

600

750

(a)

(b)

400

400

600

Hole of radius 200

600

600

300

300

(c)

Fig. 1.107

	19.	 Which of the following sections will have the 
largest radius of gyration, about an axis parallel to 
the base through the centroid or about a diameter, 
if they have the same area?
	 (i)	 A triangle of equal sides,
	 (ii)	 A square,
	(iii)	 A circle, and
	(iv)	� A tube of thickness 0.05 times its outer 

diameter.
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BASIC CONCEPTS    71

	20.	 Find the MI about the X-X and Y-Y axes of the 
areas bound by the curves shown in Fig. 1.108

y = 8.5x − 2x2

Y

O

40

X

Y

O X

y = kx2

40

20

Fig. 1.108

	21.	 Find the product of inertia of a trapezium if one of 
its sides is vertical and 200 mm long and the two 
parallel sides at right angles to it are 100 mm and 
300 mm about the axis passing through the vertical 
side and the 300 mm base.

	22.	 Find the product of inertia of the two triangles 
shown in Fig. 1.109 about the X-X and Y-Y axes

400 mm

Y

Y

O X

400 mm

500 mm
O

X

500 mm

Y

Fig. 1.109

	23.	 Find the PI of a right-angled triangle about 
horizontal and vertical axes through its centroid. 
The base of the triangle is 250 mm long and its 
height is 300 mm.

	24.	 Find the principal axes through the centroid of a 
right-angled triangle, of base 200 mm and height 
300 mm. Find the principal MI about these axes.

	25.	 An unequal angle section 300 × 120 × 10 is placed 
with its longer base horizontal. Find the principal 
axes through the centroid of this angle section, and 
principal MIs.

	26.	 For the Z-section shown in Fig. 1.110, find 
the principal axes through its centroid and the 
principal MIs about these axes. 

X

45

Y

Y

X

45

10 mm

45

Fig. 1.110

	27.	 For the angle section given in Problem 13, find the 
principal axes and inertias using Mohr’s circle method.

	28.	 For the Z-shaped section of Problem 14, find the 
principal axes and principal moment of inertia 
graphically using Mohr’s circle of inertia.

	29.	 Find the section modulus of the section shown in 
Fig. 1.111

10

30

20

(All dimensions are in mm)

40

Fig. 1.111

	30.	 Determine the section modulus with respect to top and 
bottom fibres for the T-section shown in Fig. 1.112.
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72    STRENGTH OF MATERIALS

40
0 

m
m

200 mm

15

10

Fig. 1.112

	31.	 Determine the section modulus of a regular 
hexagon of side 20 cm.

	32.	 Compare the ratio of area to section modulus of a 
circular area of radius R and a hollow circular area 
of outer radius R and thickness 0.05 R.
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