
Detailed Contents

Features of the Book iv

Preface vi

Brief Contents viii

Road Map to the Syllabus xiii

1. Introduction to Computers 1

 1.1 What is a Computer? 1

 1.2 Characteristics of Computers 1

 1.3 Generations of Computers 2

1.3.1

First Generation (1940–1956): Vacuum Tubes 2

1.3.2

Second Generation (1956–1963): Transistors 3

1.3.3

Third Generation (1964–1971): Integrated Circuits 3

1.3.4

Fourth Generation (1971–1989): Microprocessors 4

1.3.5

Fifth Generation (Present and Beyond): Artificial

Intelligence 4

 1.4 Classification of Computers 5
1.4.1

Supercomputers 5

1.4.2

Mainframe Computers 6

1.4.3

Minicomputers 6

1.4.4

Microcomputers 6

 1.5 Basic Computer Organization 8

 1.6 Applications of Computers 9

2. Input and Output Devices 14

 2.1 Input Devices 14

2.1.1

Keyboard 14

2.1.2

Pointing Devices 16

2.1.3

Handheld Devices 17

2.1.4

Optical Devices 18

2.1.5

Audio-Visual Input Devices 21

 2.2 Output Devices 21

 2.3 Soft Copy Devices 22
2.3.1 Monitors 22

2.3.2 Projectors 24

2.3.3

Speakers 24

 2.4 Hard Copy Devices 25

2.4.1

Printers 25

2.4.2

Plotters 27

3. Computer Memory and Processors 30

 3.1 Introduction 30

 3.2 Memory Hierarchy 30

 3.3 Processor Registers 30

 3.4 Cache Memory 31

 3.5 Primary Memory 31
3.5.1

Random Access Memory (RAM) 31

3.5.2

Read Only Memory (ROM) 32

3.5.3

Finding Required Data from Main Memory 33

 3.6 Secondary Storage Devices 33

3.6.1

Offline Storage 33

 3.7 Magnetic Tapes 33

 3.8 Floppy Disks 34

 3.9 Hard Disks 35

3.10 Optical Drives 36

3.10.1

CD-ROM 37

3.10.2

DVD-ROM 37

3.10.3

CD-R 37

3.10.4

CD-RW 38

3.11 USB Flash Drives 38

3.12 Memory Cards 39

3.13 Mass Storage Devices 39

3.13.1 Disk Array 39

3.13.2

Automated Tape Library 39

3.13.3

CD-ROM Jukebox 40

3.14 Basic Processor Architecture 41
3.14.1

Execution Unit 41

3.14.2

Registers 41

3.14.3

Bus Interface Unit 42

3.14.4

Instruction Set 42

3.14.5

System Clock 43

3.14.6

Processor Speed 43

3.14.7

Pipelining and Parallel Processing 43

3.14.8

Types of Processors 44

4. Number Systems and Computer Codes 48

 4.1 Binary Number System 48

 4.2 Working with Binary Numbers 49

4.2.1

Converting a Binary Number into Decimal

Form 49

4.2.2

Converting a Decimal Number into Binary

Form 50

4.2.3

Adding Two Binary Numbers 50

4.2.4

Subtracting Two Binary Numbers 50

4.2.5

Subtracting Two Binary Numbers Using

Two’s Complement 51

4.2.6

Multiplying Two Binary Numbers 51

4.2.7

Dividing Two Binary Numbers 52

 4.3 Octal Number System 52

4.3.1

Converting an Octal Number into Decimal Form 52

4.3.2

Converting a Decimal Number into Octal Form 53

4.3.3

Converting an Octal Number into Binary Form 53

4.3.4

Converting a Binary Number into Octal Form 53

 4.4 Hexadecimal Number System 53
4.4.1

Converting a Hexadecimal Number into

Decimal Form 54

4.4.2

Converting a Decimal Number into

Hexadecimal Form 54

4.4.3

Converting a Hexadecimal Number into

Binary Form 54

4.4.4

Converting a Binary Number into

Hexadecimal Form 54

4.4.5

Converting a Hexadecimal Number into

Octal Form 54

4.4.6

Converting an Octal Number into

Hexadecimal Form 55

 4.5 Working with Fractions 55

 4.6 Signed Number Representation in Binary Form 56
4.6.1

Sign-and-magnitude 56

4.6.2

One’s Complement 57

4.6.3

Two’s Complement 57

 4.7 BCD Code 57

 4.8 Other Codes 58

4.8.1

ASCII Code 58

4.8.2

Extended Binary Coded Decimal Interchange

Code 58

4.8.3

Excess-3 Code 59

4.8.4

Other Weighted Codes 59

4.8.5

Gray Code 59

4.8.6

Unicode 59

5. Boolean Algebra and Logic Gates 62

 5.1 Boolean Algebra 62

 5.2 Venn Diagrams 63

 5.3 Truth Tables 64

 5.4 Basic Laws of Boolean Algebra 64
 5.4.1

Identity Law 64

 5.4.2

Idempotency Law 64

 5.4.3

Complement Law 64

 5.4.4

Involution Law 64

 5.4.5

Commutative Law 65

 5.4.6

Associative Law 65

 5.4.7

Distributive Law 65

 5.4.8

Absorption Law 66

 5.4.9

Consensus Law 66

5.4.10

De Morgan’s Laws 66

 5.5 Representations of Boolean Functions 67

5.5.1

Minterm 67

5.5.2

Maxterm 68

 5.6 Logic Gates 68

 5.7 Logic Diagrams and Boolean Expressions 70

 5.8 Universal Gates 71

5.8.1

NAND Universal Gate 71

5.8.2

NOR Universal Gate 72

 5.9

Simplification of Boolean Expressions Using

Karnaugh Map 73

5.10 Adder Circuits 75
5.10.1

Half Adder 75

5.10.2

Full Adder 76

5.10.3

Ripple Carry Adder 76

5.11 Flip-Flops 77

5.11.1

SR Flip-flop 78

5.11.2

JK Flip-flop 78

5.11.3

T Flip-flop 79

5.11.4

D Flip-flop 79

5.12 Applications of Flip-Flops 80

6. Computer Software 84

 6.1 Introduction to Computer Software 84

 6.2 Classification of Computer Software 85

 6.3 System Software 85
6.3.1

Computer BIOS and Device Drivers 85

6.3.2

Operating System 86

6.3.3

Utility Software 86

6.3.4

Compiler, Interpreter, Linker, and Loader 87

 6.4 Application Software 87

 6.5 Firmware 94

 6.6 Middleware 94

 6.7 Acquiring Computer Software 95

 6.8

Design and Implementation of Correct, Efficient,

and Maintainable Programs 96

7. Operating Systems 100

 7.1 Introduction 100

 7.2 Evolution of Operating Systems 102

 7.3 Process Management 105
7.3.1

Process Control Block 105

7.3.2

Process Operations 106

7.3.3

Processes Scheduling 106

7.3.4

Process Synchronization 107

7.3.5

Interprocess Communication 107

7.3.6

Deadlock 107

 7.4 Memory Management 108

7.4.1

Multiple Partition Allocation 108

7.4.2

Paging 109

7.4.3

Segmentation 109

 7.5 File Management 111

7.5.1

Data Hierarchy 111

7.5.2

File Attributes 111

7.5.3

Basic File Operations 112

7.5.4

File Organization 112

 7.6 Device Management 115

 7.7 Security Management 117

 7.8 Command Interpreter 117

 7.9 Popular Operating Systems 119
7.9.1

Microsoft DOS 119

7.9.2

Microsoft Windows 120

7.9.3

Unix 121

7.9.4

Linux 122

8.

Introduction to Algorithms and
Programming Languages 127

 8.1 Algorithm 127

 8.2 Control Structures Used in Algorithms 127

8.2.1

Sequence 127

8.2.2

Decision 128

8.2.3

Repetition 128

 8.3 Some More Algorithms 128

 8.4 Flowcharts 129

8.4.1

Significance of Flowcharts 129

8.4.2

Advantages 130

8.4.3

Limitations 131

 8.5 Pseudocode 131

8.5.1

Keywords Used while Writing Pseudocodes 131

 8.6 Programming Languages 132

 8.7 Generations of Programming Languages 133

8.7.1

First Generation: Machine Language 133

8.7.2

Second Generation: Assembly Language 134

8.7.3

Third Generation: High-level Language 135

8.7.4

Fourth Generation: Very High-level

Languages 137

8.7.5

Fifth-generation Programming Language 138

 8.8 Categorization of High-level Languages 138

8.8.1

Unstructured Programming 138

8.8.2

Structured Programming Language 138

8.8.3

Logic-oriented Programming Language 139

8.8.4

Object-oriented Programming 140

 8.9 Some Popular High-level Languages 142
8.9.1

BASIC 142

8.9.2

FORTRAN 143

8.9.3

Pascal 143

8.9.4

C 143

8.9.5

C++ 143

8.9.6

Java 144

8.9.7

LISP 144

8.10

Factors Affecting Selection of Programming

Language 144

9. Database Systems 149

 9.1 File-oriented Approach 149

 9.2 Database-oriented Approach 150

9.2.1

Components of Database System 151

9.2.2

Advantages of Database Approach 152

9.2.3

Disadvantages of Database Approach 152

9.2.4

Applications of Database Systems 152

 9.3 Database Views 152

 9.4 Three-schema Architecture 153

 9.5 Database Models 154

9.5.1

Hierarchical Model 154

9.5.2

Network Model 154

9.5.3

Relational Model 155

9.5.4

Object-oriented Data Model 156

 9.6

Components of Database Management

Systems 156

 9.7 Retrieving Data Through Queries 158

10. Computer Networks 161

 10.1 Introduction to Computer Networks 161

 10.2 Connecting Media 162

10.2.1

Twisted-pair Wires 162

10.2.2

Coaxial Cables 162

10.2.3

Fibre Optic Cables 162

10.2.4

Wireless Technologies 163

 10.3 Data Transmission Mode 163
10.3.1

Simplex, Half-duplex, and Full-duplex Connections 163

10.3.2

Serial and Parallel Transmissions 164

10.3.3

Synchronous and Asynchronous Data Transmission Modes 165

 10.4 Data Multiplexing 166

10.4.1

Techniques of Multiplexing 166

 10.5 Data Switching 168

10.5.1

Circuit Switching 168

10.5.2

Message Switching 168

10.5.3

Packet Switching 169

 10.6 Data Routing Techniques 169

 10.7 Network Topologies 170

10.7.1

Bus Topology 170

10.7.2

Star Topology 170

10.7.3

Ring Topology 171

10.7.4

Mesh topology 171

10.7.5

Hybrid Topology 171

 10.8 Types of Network 171

10.8.1

Local Area Network 172

10.8.2

Wide Area Network 172

10.8.3

Metropolitan Area Network 173

10.8.4

Campus/Corporate Area Network 173

10.8.5

Personal Area Network 174

 10.9 Networking Devices 174
10.9.1

Hub 174

10.9.2

Repeater 174

10.9.3

Switch 174

10.9.4

Bridge 174

10.9.5

Router 175

10.9.6

Gateway 175

10.9.7

Network Interface Card 175

10.10 Open System Interconnection Model 176

11. The Internet 182

11.1 Internet 182

11.1.1

History 182

11.2 Internet Services 183
11.2.1

Electronic Mail 183

11.2.2

File Transfer Protocol 183

11.2.3

Chatting 184

11.2.4

Internet Conferencing 184

11.2.5

Electronic Newspaper 184

11.2.6

World Wide Web 185

11.2.7

Online Shopping 185

11.2.8

Search Engine 186

11.3 Internet Glossary 187

11.4 Types of Internet Connections 188
11.4.1

Dial-up Connection 188

11.4.2

Integrated Services Digital Network 188

11.4.3

Leased Connection 188

11.4.4

Digital Subscriber Line Connection 188

11.4.5

Cable Modem Connection 188

11.4.6

Very Small Aperture Terminal 189

11.5 Internet Security 189
11.5.1

Threats to Internet Security 189

11.5.2

Preventive Measures 192

12. Emerging Computer Technologies 195

12.1 Distributed Networking 195

12.2 Peer-to-peer Computing 196
12.2.1

Categorization of Peer-to-peer Systems 196

12.2.2

Applications and Considerations of

Peer-to-peer Networks 197

12.3 Grid Computing 198
12.3.1

Components of Grid Computing 199

12.3.2

Applications of Grid Computing 199

12.4 Cloud Computing 199
12.4.1

Characteristics of Cloud Computing

Systems 200

12.4.2

Cloud Computing Services 200

12.4.3

Cloud Computing Architecture 201

12.4.4

Cloud Computing Applications 202

12.4.5

Cloud Computing Concerns 202

12.5 Utility Computing 202

12.6 On-demand Computing 204

12.7 Wireless Network 204

12.7.1

Wireless Network Operation 205

12.7.2

Types of Wireless Networks 206

12.7.3

Security in Wireless Networks 206

12.7.4

Limitations of Wireless Networks 207

12.8 Bluetooth 207

12.8.1

Bluetooth Piconets 208

12.8.2

Avoiding Interference in Bluetooth

Devices 209

12.8.3

Bluetooth Security 209

12.8.4

Differences between Bluetooth and Wireless

Networks 210

12.9 Artificial Intelligence 210

13. Introduction to Windows and

Office Automation 217

 13.1 Desktop 217

 13.2 Files and Folders 217

 13.3 My Computer and Windows Explorer 219

 13.4 My Documents 220

 13.5 Recycle Bin 220

 13.6 Internet Explorer 222

 13.7 Organization of an Office 222

 13.8 Nature of an Offic Work 223

 13.9 Office Automation System 223

13.10 Need for Office Automation System 223

13.11 Document Preparation 224

13.12 Word Processing 224

13.13 Office Equipment for Document Preparation 224

13.14 Document Storage, Retrieval and Management 224

13.15 Electronic Data Transfer 225

14. Working with Microsoft Office 2007 227

14.1 Microsoft Word 227

14.2 Microsoft Excel 242

14.3 Microsoft PowerPoint 251

14.4 Microsoft Access 252

Lab Activities

1: Understanding Computer Hardware 272

2: Adding Devices to a Computer 278

3: Working with the Internet 282

Appendix: Answers to Objective Questions 287

Index 293

8.1 ALGORITHM

The typical meaning of an algorithm is a formally defined
procedure for performing some calculation. If a procedure
is formally defined, then it must be implemented using some
formal language, and such languages are known as program-
ming languages. The algorithm gives the logic of the pro-
gram, that is, a step-by-step description of how to arrive at a
solution.

In general terms, an algorithm provides a blueprint for
writing a program to solve a particular problem. It is con-
sidered to be an effective procedure for solving a prob-
lem in a finite number of steps. Thus, a well-defined
algorithm always provides an answer, and is guaranteed to
terminate.

Algorithms are mainly used to achieve software re-use.
Once we have an idea or a blueprint of a solution, we
can implement it in any high-level language, such as C,
C++, Java, and so on. In order to qualify as an algorithm,

a sequence of instructions must possess the following
characteristics:

 Be precise
 Be unambiguous
 Not even a single instruction must be repeated infinitely
 After the algorithm gets terminated, the desired result must

be obtained

8.2
 CONTROL STRUCTURES USED IN

ALGORITHMS

An algorithm has a finite number of steps and some steps may
involve decision-making and repetition. Broadly speaking,
an algorithm uses three control structures, namely sequence,
decision, and repetition.

8.2.1 Sequence
Sequence means that each step of the algorithm is executed in
the specified order. An algorithm to add two numbers is given

Introduction to Algorithms
and Programming
Languages

8

In this chapter, we will learn the technique of writing algorithms and pseudocodes, and drawing a

schematic flow of logic in the form of flowcharts. Algorithms, pseudocodes, and flowcharts are used in

the design phase of the software/program development process to help the programmers and users to

clearly understand the solution to the problem at hand.

This chapter gives a detailed note on several generations of programming languages. The reader

will also learn the fundamentals of structured programming languages and the key to designing and

implementing correct, accurate, efficient, and maintainable programs.

Learning Objectives

128 Fundamentals of Computers

in Figure 8.1. This algorithm performs the steps in a purely
sequential order.

Fig. 8.1 Algorithm to add two numbers

8.2.2 Decision
Decision statements are used when the execution of a process
depends on the outcome of some condition. For example, if
x = y, then print “EQUAL”. Hence, the general form of the
if construct can be given as:

if condition then process

A condition in this context is any statement that may evalu-
ate either to a true value or a false value. In the preceding
example, the variable x can either be equal or not equal to y.
However, it cannot be both true and false. If the condition is
true then the process is executed.

A decision statement can also be stated in the following
manner:

if condition

 then process1

else process2

This form is commonly known as the if-else construct. Here,
if the condition is true then process1 is executed, else pro-
cess2 is executed. An algorithm to check the equality of two
numbers is shown in Figure 8.2.

Fig. 8.2 Algorithm to test the equality of two
numbers

8.2.3 Repetition
Repetition, which involves executing one or more steps
for a number of times, can be implemented using con-
structs such as the while, do-while, and for loops. These
loops execute one or more steps until some condition is
true. Figure 8.3 shows an algorithm that prints the first 10
natural numbers.

Fig. 8.3 Algorithm to print the first 10 natural numbers

8.3 SOME MORE ALGORITHMS

Let us write some more algorithms.

Example 8.1 Write an algorithm for interchanging/swapping
two values.

�������
���7�'8�9:7;��/����:;-<���"���
���7�+8�9:7;������:��:;-<���"��!
���7�>8�������-7� ��
���7�?8������� �!
���7�*8�����!� ���-7
���7�@8�7��:���B�!
Step 7: End

Example 8.2 J����� ��� �������!�� ��� +��� �!�� ������� �*� �$��
numbers.

�������
���7�'8�9:7;��/����:;-<���"���
���7�+8�9:7;������:��:;-<���"��!
���7�>8��������!
 then print A
� � �0��������H�!
� � � ���:�7��:��!
 else
� � � 7��:��I����:;-<����"����J;"0K
Step 4: End

Example 8.3 J���������������!�����+���$!��!��������������
�"���������%

�������
���7�'8�9:7;������:;-<���"���
���7�+8������O�+� ��
 then print “Even”
 else
 print “Odd”
Step 3: End

Example 8.4 J���������������!�����'������!�����������������
������������������!��*����$��������L

Marks N����
Above 75 O
60-75 A
50-60 B

Introduction to Algorithms and Programming Languages 129

40-50 C
Less than 40 D

�������
���7�'8��:��������-"�V���<�"�:���"���
���7�+8��������W*
� � � � ���:�7��:��I�K
���7�>8������� �@��":����H�W*
 then print “A”
���7�?8������� �*��":����H�@�
� � � � ���:�7��:��I!K
���7�*8������� �?��":����H�*�
 then print “C”
 else
 print “D”
Step 6: End

Example 8.5 J����� ��� �������!�� ��� +��� �!�� ��� �*� +��� ;�
natural numbers.

�������
Step 1: Input N
���7�+8�����9� �'B��;-� ��
Step 3: Repeat Step 4 while I <= N
���7�?8������;-� ��;-�$�9
� � � ����9� �9�$�'
���7�*8�7��:���;-
Step 6: End

8.4 FLOWCHARTS

A flowchart is a graphical or symbolic representation of a
process. It is basically used to design and document virtually
complex processes to help the viewers to visualize the logic
of the process, so that they can gain a better understanding of
the process and find flaws, bottlenecks, and other less obvious
features within it.

When designing a flowchart, each step in the process is
depicted by a different symbol and is associated with a short
description. The symbols in the flowchart (refer Figure 8.4)
are linked together with arrows to show the flow of logic in
the process.

The symbols of a flowchart include:

 Start and end symbols are also known as the terminal
symbols and are represented as circles, ovals, or rounded
rectangles. Terminal symbols are always the first and the
last symbols in a flowchart.

 Arrows depict the flow of control of the program. They
illustrate the exact sequence in which the instructions are
executed.

 Generic processing step, also called as activity, is repre sented
using a rectangle. Activities include instructions such as add
"����<B��"\���������;0�. Therefore, a processing symbol
represents arithmetic and data movement instructions. When
more than one process has to be executed simultaneously,
they can be placed in the same processing box. However, their
execution will be carried out in the order of their appearance.

 Input/output symbols are represented using a parallelogram
and are used to get inputs from the users or display the
results to them.

 A conditional or decision symbol is represented using a
diamond. It is basically used to depict a Yes/No question
or a True/False test. The two symbols coming out of it, one
from the bottom point and the other from the right point,
corresponds to Yes or True, and No or False, respectively.
The arrows should always be labelled. A decision symbol
in a flowchart can have more than two arrows, which
indicate that a complex decision is being taken.

 Labelled connectors are represented by an identifying
label inside a circle and are used in complex or multi-
sheet diagrams to substitute for arrows. For each label,
the ‘outflow’ connector must have one or more ‘inflow’
connectors. A pair of identically labelled connectors is
used to indicate a continued flow when the use of lines
becomes confusing.

8.4.1 Significance of Flowcharts
A flowchart is a diagrammatic representation that illustrates
the sequence of steps that must be performed to solve a prob-
lem. It is usually drawn in the early stages of formulating
computer solutions. It facilitates communication between pro-
grammers and users. Once a flowchart is drawn, programmers
can make users understand the solution easily and clearly.

Flowcharts are very important in the programming of a
problem as they help the programmers to understand the
logic of complicated and lengthy problems. Once a flowchart
is drawn, it becomes easy for the programmers to write the
program in any high-level language. Hence, the flowchart
has become a necessity for better documentation of complex
 programs.

A flowchart follows the top-down approach in solving
problems.

Example 8.6 ���$�����$�!���� ������������� �!������*� �!��
+��������������������%Fig. 8.4 Symbols of flowchart

Start or end
symbol

Arrows

Processing step

Input/Output
symbol

Decision symbol

Connector

130 Fundamentals of Computers

�������

Example 8.7 ���$�����$�!������������$��������%

�������

Example 8.8 ���$� �� ��$�!���� ��� ���������� �!�� ������ �*� ��
������$����%

�������

Example 8.9 ���$� �� ��$�!���� ��� ���������� �!�� ������� �*�
three numbers.

�������

8.4.2 Advantages
 Flowcharts are very good communication tools to explain

the logic of a system to all concerned. They help to analyse
the problem in a more effective manner.

 They are also used for program documentation. They are
even more helpful in the case of complex programs.

Introduction to Algorithms and Programming Languages 131

 They act as a guide or blueprint for the programmers to code
the solution in any programming language. They direct the
programmers to go from the starting point of the program
to the ending point without missing any step in between.
This results in error-free programs.

 They can be used to debug programs that have error(s).
They help the programmers to easily detect, locate, and
remove mistakes in the program in a systematic manner.

8.4.3 Limitations
 Drawing flowcharts is a laborious and time-consuming

activity. Just imagine the effort required to draw a flowchart
of a program having 50,000 statements in it!

 Often, the flowchart of a complex program becomes
complex and clumsy.

 At times, a little bit of alteration in the solution may require
complete re-drawing of the flowchart.

 The essentials of what is done may get lost in the technical
details of how it is done.

 There are no well-defined standards that limit the details
that must be incorporated into a flowchart.

8.5 PSEUDOCODE

Pseudocode is a form of structured English that describes
algorithms. It facilitates designers to focus on the logic of
the algorithm without getting bogged down by the details of
language syntax. An ideal pseudocode must be complete,
describing the entire logic of the algorithm, so that it can be
translated straightaway into a programming language.

Pseudocode is a compact and informal high-level
description of an algorithm that uses the structural conven-
tions of a programming language. It is basically meant for
human reading rather than machine reading, so it omits
the details that are not essential for humans. Such details
include variable declarations, system-specific code, and
subroutines.

Pseudocodes are an outline of a program that can easily
be converted into programming statements. They consist of
short English phrases that explain specific tasks within a pro-
gram’s algorithm. They should not include keywords in any
specific computer language.

The sole purpose of pseudocodes is to enhance human
understandability of the solution. They are commonly used in
textbooks and scientific publications for documenting algo-
rithms, and for sketching out the program structure before
the actual coding is done. This helps even non-programmers
to understand the logic of the designed solution. There are no
standards defined for writing a pseudocode, because a pseu-
docode is not an executable program. Flowcharts can be con-
sidered as graphical alternatives to pseudocodes, but require
more space on paper.

8.5.1 Keywords Used while Writing Pseudocodes
For looping and selection, the designer must include the key-
words Do While ... EndDo; Do Until ... EndDo; Case ...
�:��"��`�9��bbb��:�9�`��"00�bbb�j����%7"�"-�����(`��"00`�
Return ...; Return; When, and so on.

Parts of Pseudocodes

 Consider the following part of a pseudocode:

 IF condition THEN
� � ��J;�:���'
 ELSE
� � ��J;�:���+
 ENDIF

Here, the ELSE keyword and ��J;�:��� + are optional. If
the condition is true, ��J;�:��� ' is performed, otherwise
��J;�:���+ is performed. The following is an example of this
construct:

 IF age >= 18 THEN
� � ���70".��0�|�<0�����\���
 ELSE
� � ���70".������0�|�<0�
 ENDIF

 The WHILE construct specifies a loop that tests a condition
at the top. The loop is entered only if the condition is true.
After each iteration, the condition will be tested, and the
loop will continue as long as the condition is true. The
beginning and end of the loop are indicated by the keywords
WHILE and ENDWHILE. The general form is

 WHILE condition

� � ��J;�:��
 ENDWHILE

An example of this construct is as follows:

� � ��9�����H�'�
 Print i
� � 9:���-�:���
 ENDWHILE

 A CASE construct indicates a multi-way branch based on
conditions that are mutually exclusive. The pseudocode
must include keywords such as CASE, OF, OTHERS, and
ENDCASE. The general form is

 CASE expression OF
� � ��:�����:�'�8���J;�:���'
� � ��:�����:�+�8���J;�:���+
 ...
� � ��:�����:�:�8���J;�:���:
 OTHERS:
� � ���";0����J;�:��
 ENDCASE

132 Fundamentals of Computers

Here, the keyword OTHERS is optional and specifies the
default sequence. The following is an example of the CASE
construct

CASE day OF
� � ��8�7��:���;:�".
� � '�8�7��:����:�".
 2 : print Tuesday
 3 : print Wednesday
 4 : print Thursday
 5 : print Friday
 6 : print Saturday
ENDCASE

 The REPEAT construct is similar to the WHILE loop, except
that the test is performed at the end of the loop. The
keywords used are REPEAT and UNTIL. The general form is

 REPEAT
� � ��J;�:��
 UNTIL condition

Here, ��J;�:�� will be performed at least once as the test is
performed after it is executed. After each iteration, the con-
dition is evaluated, and the loop repeats if the condition is
false.

 The FOR loop is used for iterating a sequence for a specific
number of times. The keywords used are FOR and ENDFOR.
The general form is

� � 	�
�����"���:�<�;:��
� � � ��J;�:��
 ENDFOR

The following code illustrates a FOR loop:

 FOR each student in the class
� � ����'��"��<�:;��-"�V�
 ENDFOR

Example 8.10 J�������'���������*����������
����!��'�����
�*���'�������������������������<����������������'����%

�������
1. Read the price of the product
2. Read the sales tax rate
>b��"0�;0"����"0����"�� �7���������������-����"0���

tax rate
?b��"0�;0"������"0�7����� �7������������7���;���$�

sales tax
5. Print total price
6. End
�"��"<0��8�7������������7���;��B��"0����"���"��B��"0���

tax, total price

Example 8.11 J����� �� '��������� ��� ���������� �!�� $��/���
$�����*������'�����%�C!��'�����'�������$����'���!��������
�!����������*�!����$��/��%�V����"��@� �*� �!����'������!��

$��/���*���������!���X��!���@��!���!�����!�������$�����!��
$����'���!���@�*����"�����<����!�����!���!�����!��!��$��/��%

�������
'b�
�"����;���j��V��
2. Read wages per hour
>b������\����-����"�|�������
?b������\����-����������
*b�9	���;���j��V�����>�����:
� � "b� ��"0�;0"����\����-������ ���;���j��V�����>�
� � <b� ��"0�;0"����\����-����"�|��� ��\����-�������

%+���j"|���7�����;�(
� � �b� �������;���j��V��� ���;���j��V������\����-��

hrs
 ENDIF
@b��"0�;0"����"0"�.� �%��;���j��V�����j"|���7�����;�(�

$��\����-����"�|��
7. Display salary
8. End
�"��"<0��8���;���j��V��B�j"|���7�����;�B��\����-��

��"�|��B��\����-�����B��"0"�.

Example 8.12 J����� �� '��������� ��� ����� �!�� ���/� �*�
���������%�:*����/������������!���Y�@��!���������'��@�����
�!���������*���%�Z������!����������*��������$!��'������
the number who fail.

�������
'b�����7"�������
+b������"�0�����
>b�����:�������;��:�������
?b���9���:�������;��:���H�'�
� � "b��:7;������-"�V�
� � <b�9	�-"�V��� �*�����:
� � � � ����7"��� �7"���$�'
 ELSE
� � � � �����"�0� ��"�0�$�'
 ENDIF
 ENDWHILE
5. End
�"��"<0��8�7"��B��"�0B�:�������;��:��B�-"�V�

8.6 PROGRAMMING LANGUAGES

A programming language is a language specifically designed
to express computations that can be performed by a com-
puter. Programming languages are used to create programs
that control the behaviour of a system, to express algorithms,
or as a mode of human communication.

Usually, programming languages have a vocabulary of
syntax and semantics for instructing a computer to perform
specific tasks. The term programming language refers to high-
level languages such as BASIC (Beginners’ All-purpose Sym-
bolic Instruction Code), C, C++, COBOL (COmmon Business
Oriented Language), FORTRAN (FORmula TRANslator),

Introduction to Algorithms and Programming Languages 133

Ada, and Pascal, to name a few. Each of these languages has
a unique set of keywords (words that it understands) and a
special syntax for organizing program instructions.

Though high-level programming languages are easy for
humans to read and understand, the computer can under-
stand only machine language, which consists of only num-
bers. Each type of central processing unit (CPU) has its own
unique machine language.

In between machine languages and high-level languages,
there is another type of language known as assembly lan-
guage. Assembly languages are similar to machine languages,
but they are much easier to program because they allow a
programmer to substitute names for numbers.

However, irrespective of the language that a programmer
uses, a program written using any programming language has
to be converted into machine language so that the computer
can understand it. There are two ways to do this: compile the
program or interpret the program.

The language chosen to write a program depends on the
following factors:

 The type of computer on which the program is to be
executed

 The type of program
 The expertise of the programmer

For example, FORTRAN is a particularly good language for
processing numerical data, but it does not lend itself very well
to organizing large programs. Pascal can be used for writing
well-structured and readable programs, but it is not as flexible
as the C programming language. C++ goes one step ahead of
C by incorporating powerful object-oriented features, but it is
complex and difficult to learn.

8.7
 GENERATIONS OF PROGRAMMING

LANGUAGES

We now know that programming languages are the primary
tools for creating software. As of now, hundreds of program-
ming languages exist in the market, some more used than oth-
ers and each claiming to be the best. However, in the 1940s
when computers were being developed, there was just one
language—machine language.

The concept of generations of programming languages (also
known as levels) is closely connected to the advances in tech-
nology. The five generations of programming languages include
machine language, assembly language, high-level language
(also known as the third generation language or 3GL), very high-
level language (also known as the fourth generation language
or 4GL), and fifth generation language that includes artificial
intelligence.

8.7.1 First Generation: Machine Language
Machine language was used to program the first stored-
program computer systems. This is the lowest level of

programming language and is the only language that a com-
puter understands. All the commands and data values are
expressed using 0s and 1s, corresponding to the off and on
electrical states in a computer.

In the 1950s, each computer had its own native language,
and programmers had primitive systems for combining
numbers to represent instructions such as add and subtract.
Although there were similarities between each of the machine
languages, a computer could not understand programs writ-
ten in another machine language.

MACHINE LANGUAGE

000 0000A

000 0000F

000 0000B

0000

0008

0008

0008

0058

00Θ0

00A9

00CC

00E4

010D

013D

FF55 FF54 FF53

FF24 FF27

CF CF

CF

CF C1

C7D2CF

This is an example of a machine language program that will
add two numbers and find their average. It is in hexadecimal
notation instead of binary notation because that is how the
computer presented the code to the programmer. The
program was run on a VAX/VMS computer, a product of the
Digital Equipment Corporation.

In machine language, all instructions, memory locations,
numbers, and characters are represented in strings of 0s and
1s. Although machine language programs are typically dis-
played with the binary numbers represented in octal (base 8)
or hexadecimal (base 16) number systems, these programs
are not easy for humans to read, write, or debug.

The main advantage of machine language is that the execu-
tion of the code is very fast and efficient since it is directly
executed by the CPU. However, on the downside, machine
language is difficult to learn and is far more difficult to edit
if errors occur. Moreover, if we want to store some instruc-
tions in the memory at some location, then all the instruc-
tions after the insertion point would have to be moved down
to make room in the memory to accommodate the new
instructions. In addition, the code written in machine lan-
guage is not portable, and to transfer the code to a differ-
ent computer, it needs to be completely rewritten since the
machine language for one computer could be significantly

134 Fundamentals of Computers

different from that for another computer. Architectural
considerations make portability a tough issue to resolve.
Table 8.1 lists the advantages and disadvantages of machine
language.

Advantages Disadvantages
@ Z��������������������

�<�����������!�����'����%
D<���
�����*�������
�`�����%
E��������������$���������
�`���������
��-��������%

Z��������`��������
write.
Z��������`��������
���������������!���
people.
Z��������`��������
maintain.
There is more
possibility for errors to
creep in.
:������`���������������
�����������������%
Z���������!����
��'������������!��
non-portable.

Table 8.1
Advantages and disadvantages of machine
language

8.7.2 Second Generation: Assembly Language
Second-generation programming languages (2GLs) com-
prise the assembly languages. Assembly languages are sym-
bolic programming languages that use symbolic notations to
represent machine language instructions. These languages
are closely connected to machine language and the internal
architecture of the computer system on which they are used.
Since it is close to machine language, assembly language is
also a low-level language. Nearly all computer systems have
an assembly language available for use.

Assembly language developed in the mid-1950s was a
great leap forward. It used symbolic codes, also known as
mnemonic codes, which are easy-to-remember abbreviations,
rather than numbers. Examples of these codes include ADD
for add, CMP for compare, and MUL for multiply.

Assembly language programs consist of a series of indi-
vidual statements or instructions to instruct the computer
what to do. Basically, an assembly language statement con-
sists of a label, an operation code, and one or more operands.

Labels are used to identify and refer instructions in the
program. The operation code (opcode) is a mnemonic that
specifies the operation to be performed, such as move, add,
subtract, or compare. The operand specifies the register or the
location in the main memory where the data to be processed
is located.

However, like machine language, the statement or
instruction in assembly language will vary from machine to
machine, because the language is directly related to the inter-
nal architecture of the computer and is not designed to be

machine independent. This makes the code written in assem-
bly language less portable, as the code written to be executed
on one machine will not run on machines from a different, or
sometimes even the same manufacturer.

Nevertheless, the code written in assembly language will
be very efficient in terms of execution time and main memory
usage, as the language is similar to computer language.

Programs written in assembly language need a translator,
often known as the assembler, to convert them into machine
language. This is because the computer will understand only
the language of 0s and 1s. It will not understand mnemonics
such as ADD and SUB.

The following instructions are part of an assembly lan-
guage code to illustrate addition of two numbers:

Vj���z@{� ��������!��"�����{�����!���z����������*��!��ZEG
Vj��|z@}� ��������!��"�����}�����!��|z����������*��!��ZEG
�����z@|z� ������!�����������*��!���z�����|z�������������

stores the result in the AX register

Although it is much easier to work with assembly language
than with machine language, it still requires the programmer
to think on the machine’s level. Even today, some program-
mers use assembly language to write those parts of applica-
tions where speed of execution is critical; for example, video
games, but most programmers have switched to 3GL or 4GL
even to write such codes.

Table 8.2 lists the advantages and disadvantages of using
assembly language.

Table 8.2
Advantages and disadvantages of assembly
language

Advantages Disadvantages
@��:��������������������%�
@��:�������������$�����'�������

in assembly language than in
machine language.

@��:����������������������
correct errors.

@�:���������������*�%
@�:�������'�������������%

Z���������!����
��'������������!��
non-portable.

@��Programmers must
!�"���������/��$������
�*��!��!���$��������
internal architecture of
�!��ZEG%

@��C!�����������������
����������<����������
the computer.

Assembler
Since computers can execute only codes written in machine
language, a special program, called the assembler, is required
to convert the code written in assembly language into an
equivalent code in machine language, which contains only 0s
and 1s. The working of an assembler is shown in Figure 8.5;
it can be seen that the assembler takes an assembly language

Introduction to Algorithms and Programming Languages 135

program as input and gives a code in machine language (also
called object program) as output. There is a one-to-one cor-
respondence between the assembly language code and the
machine language code. However, if there is an error, the
assembler gives a list of errors. The object file is created only
when the assembly language code is free from errors. The
object file can be executed as and when required.

An assembler only translates an assembly program
��������!������������@��!���������*�$!��!������

��~����+����!�����������<������%���$�"��@��!����������
����*����������<�������!����~����+��%�

Note

8.7.3 Third Generation: High-level Language
Third-generation programming languages are a refinement
of 2GLs. The second generation brought logical structure to
software. The third generation was introduced to make the
languages more programmer friendly.

The 3GLs spurred the great increase in data processing
that occurred in the 1960s and 1970s. In these languages,
the program statements are not closely related to the internal
characteristics of the computer. Hence, these languages are
often referred to as high-level languages.

In general, a statement written in a high-level programming
language will expand into several machine language instruc-
tions. This is in contrast to assembly languages, where one
statement would generate one machine language instruction.
3GLs made programming easier, efficient, and less prone to
errors.

High-level languages fall somewhere between natural lan-
guages and machine languages. 3GLs include FORTRAN
and COBOL, which made it possible for scientists and entre-
preneurs to write programs using familiar terms instead of
obscure machine instructions.

The widespread use of high-level languages in the early
1960s changed programming into something quite different
from what it had been. Programs were written in languages
that were more English-like, making them more convenient
to use and giving the programmer more time to address a
client’s problems.

Although 3GLs relieve the programmer of demanding
details, they do not provide the flexibility available in low-
level languages. However, a few high-level languages such as
C and FORTH combine some of the flexibility of assembly
languages with the power of high-level languages, but these
languages are not well suited to programmers at the beginner
level.

Some high-level languages were specifically designed to
serve a specific purpose (such as controlling industrial robots
or creating graphics), whereas other languages were flexible
and considered to be general purpose. Most programmers
preferred to use general-purpose high-level languages such
as BASIC, FORTRAN, Pascal, COBOL, C++, or Java to
write the code for their applications.

Again, a translator is needed to translate the instructions
written in a high-level language into the computer-executable
machine language. Such translators are commonly known
as interpreters and compilers. Each high-level language has
many compilers, and there is one for each type of computer.

For example, the machine language generated by one com-
puter’s C compiler is not the same as the machine language of
some other computer. Therefore, it is necessary to have a C
compiler for each type of computer on which the C programs
are to be executed.

The 3GLs make it easy to write and debug a program and
give a programmer more time to think about its overall logic.
Programs written in such languages are portable between
machines. For example, a program written in standard C can
be compiled and executed on any computer that has a stand-
ard C compiler.

Table 8.3 provides the advantages and disadvantages of
3GLs.

Advantages Disadvantages
C!������������!����
����'������%
:�������������������������!��
language.
There are few errors.
:������������������������
�����������!������%
:���������������������!������%
:����������������������
correct errors.

Z���������������
�'
��-��%
C!������������
�`�����%�
:������`��������$�����
��������!�����������
�!��ZEG@�������@�����
registers.

Table 8.3 Advantages and disadvantages of 3GLs

Compiler
A compiler is a special type of program that transforms the
source code written in a programming language (the source
language) into machine language, which uses only two
digits—0 and 1 (the target language). The resultant code in
0s and 1s is known as the object code. The object code is used
to create an executable program.

Fig. 8.5 Assembler

136 Fundamentals of Computers

Therefore, a compiler (Figure 8.6) is used to translate the
source code from a high-level programming language to a
lower-level language (e.g., assembly language or machine
code). There is a one-to-one correspondence between the
high-level language code and machine language code gener-
ated by the compiler.

Fig. 8.6 Compiler

If the source code contains errors, then the compiler will
not be able to do its intended task. Errors that limit the com-
piler in understanding a program are called syntax errors.
Examples of syntax errors are spelling mistakes, typing
mistakes, illegal characters, and use of undefined variables.
The other type of error is the logical error, which occurs
when the program does not function accurately. Logical
errors are much harder to locate and correct than syntax
errors. Whenever errors are detected in the source code, the
compiler generates a list of error messages indicating the
type of error and the line in which the error has occurred.
The programmer makes use of this error list to correct the
source code.

The work of a compiler is only to translate the human-
readable source code into a computer-executable machine
code. It can locate syntax errors in the program (if any) but
cannot fix it. Unless the syntactical error is rectified, the
source code cannot be converted into the object code.

Each high-level language has a separate compiler. A com-
piler can translate a program in one particular high-level lan-
guage into machine language. For a program written in some
other programming language, a compiler for that specific lan-
guage is needed.

Interpreter
Like the compiler, the interpreter executes instructions writ-
ten in a high-level language. Basically, a program written in a

high-level language can be executed in any of the two ways—
by compiling the program or by passing the program through
an interpreter.

The compiler translates instructions written in a high-level
programming language directly into machine language; the
interpreter, on the other hand, translates the instructions into
an intermediate form, which it then executes. The interpreter
takes one statement of high-level code, translates it into
the machine level code, executes it, and then takes the next
statement and repeats the process until the entire program is
 translated.

��������'�������������������������!������������
���!����������������������<��������%

Note

Figure 8.7 shows an interpreter that takes a source program
as its input and gives the output. This is in contrast with the
compiler, which produces an object file as the output of the
compilation process. Usually, a compiled program executes
faster than an interpreted program. Moreover, since there is
no object file saved for future use, users will have to reinter-
pret the entire program each time they want to execute the
code.

Fig. 8.7 Interpreter

Overall, compilers and interpreters both achieve similar pur-
poses, but they are inherently different as to how they achieve
that purpose. The differences between compilers and inter-
preters are given in Table 8.4.

Linker
Software development in the real world usually follows a mod-
ular approach (discussed in Section 8.8.2). In this approach,
a program is divided into various (smaller) modules as it is
easy to code, edit, debug, test, document, and maintain them.
Moreover, a module written for one program can also be used
for another program. When a module is compiled, an object
file of that module is generated.

HOW COMPILERS WORK

Compilers, like other programs, reside on the second-
ary storage. To translate a source code into its equivalent
machine language code, the computer first loads the com-
piler and the source program from the secondary memory
into the main memory. It then executes the compiler along
with the source program as its input. The output of this

execution is the object file, which is also stored in the sec-
ondary storage. Whenever the program is to be executed,
the computer loads the object file into the memory and
executes it. Thus, it is not necessary to compile the pro-
gram every time it needs to be executed. Compilation will
be needed again only if the source code is modified.

Introduction to Algorithms and Programming Languages 137

Table 8.4 ��A����������$�������'��������������'�����

Compiler Interpreter
@ :������������!����
���

program in one go.
@ :������������������������

������
����!����
���
program.

@ D<���
����*��������*����%
@ �����~����+��������������%
@ Z����������������

�����'������"����
��������
�<������%

@ :�������������������!������%
@ :����&�����������������

'���������"���!����~����
+���%

@ :�������'��������
�<����������
��������������
��%

@ :����'�������
���
������������!��+���
error.

@ D<���
����*��������
��$������"����
���
�������'����
����*�
statements has to be
����%

@ ;����~����+�����
���������%

@ Z����!��������
�������'�������"����

���������<������%

@ :�������������$������
�<�������!������%

@ :����&���������������
'����������~����+���%

Once the modules are coded and tested, the object files of all
the modules are combined together to form the final executa-
ble file. Therefore, a linker, also called a link editor or binder,
is a program that combines the object modules to form an
executable program (see Figure 8.8). Usually, the compiler
automatically invokes the linker as the last step in compiling
a program.

Fig. 8.8 Linker

Loader
A loader is a special type of program that copies programs
from a storage device to the main memory, where they can be
executed. Most loaders are transparent to the users.

�������@����/��@����'����@�������@�����
�����'���������������������$���%

Note

8.7.4 Fourth Generation: Very High-level Languages
With each generation, programming languages started becom-
ing easier to use and more similar to natural languages. 4GLs
are a little different from their prior generation because
they are non-procedural. While writing a code using a pro-
cedural language, the programmer has to tell the computer
how a task is done—add this, compare that, do this if the
condition is true, and so on—in a very specific step-by-step
manner. In striking contrast, while using a non-procedural
language, programmers define what they want the computer
to do but they do not supply all the details of how it has to
be done.

Although there is no standard rule that defines a 4GL, cer-
tain characteristics of such languages include the following:

 The instructions of the code are written in English-like
sentences.

 They are non-procedural, so users concentrate on the
‘what’ instead of the ‘how’ aspect of the task.

 The code written in a 4GL is easy to maintain.
 The code written in a 4GL enhances the productivity of

programmers, as they have to type fewer lines of code to
get something done. A programmer supposedly becomes
10 times more productive when he/she writes the code
using a 4GL than using a 3GL.

A typical example of a 4GL is the query language, which
allows a user to request information from a database with
precisely worded English-like sentences. A query language
is used as a database user interface and hides the specific
details of the database from the user. For example, when
working with Structured Query Language (SQL), the pro-
grammer just needs to remember a few rules of syntax
and logic, and therefore, it is easier to learn than COBOL
or C.

Let us take an example in which a report needs to be
generated. The report displays the total number of students
enrolled in each class and in each semester. Using a 4GL, the
request would look similar to the following:

��!���	9�����
������

�����������!���������
�!�������

Thus, we see that a 4GL is very simple to learn and work
with. The same task if written in C or any other 3GL would
require multiple lines of code.

The 4GLs are still evolving, which makes it difficult to
define or standardize them. The only downside of a 4GL is
that it does not make efficient use of a machine’s resources.
However, the benefit of executing a program quickly and
easily far outweighs the extra costs of running it.

138 Fundamentals of Computers

8.7.5 Fifth-generation Programming Language
Fifth-generation programming languages (5GLs) are centred
on solving problems using the constraints given to a program
rather than using an algorithm written by a programmer.
Most constraint-based and logic programming languages and
some declarative languages form a part of the 5GLS. These
languages are widely used in artificial intelligence research.
Another aspect of a 5GL is that it contains visual tools to
help develop a program. Typical examples of 5GLs include
Prolog, OPS5, Mercury, and Visual Basic.

Thus, taking a forward leap, 5GLs are designed to make
the computer solve a given problem without the program-
mer. While working with a 4GL, programmers have to write
a specific code to do a work, but with a 5GL, they only have
to worry about what problems need to be solved and what
conditions need to be met, without worrying about how to
implement a routine or an algorithm to solve them.

In general, 5GLs were generally built upon LISP, many
originating on the LISP machine, such as ICAD. There are
also many frame languages, such as KL-ONE.

In the 1990s, 5GLs were considered the wave of the
future, and some predicted that they would replace all other
languages for system development (except the low-level lan-
guages). During the period ranging from 1982 to 1993, Japan
carried out extensive research on and invested a large amount
of money into their fifth-generation computer systems project,
hoping to design a massive computer network of machines
using these tools. However, when large programs were built,
the flaws of the approach became more apparent. Research-
ers began to observe that given a set of constraints defining
a particular problem, deriving an efficient algorithm to solve
it is itself a very difficult problem. All factors could not be
automated and some still require the insight of a programmer.

However, today the fifth-generation languages are pursued
as a possible level of computer language. Software vendors
across the globe currently claim that their software meets the
visual ‘programming’ requirements of the 5GL concept.

8.8
 CATEGORIZATION OF HIGH-LEVEL

LANGUAGES

High-level languages can be easily categorized into four
groups based on the programming paradigm supported by
them (refer Figure 8.9). A programming paradigm refers to
the approach the programming language has employed for
solving different types of problems.

Fig. 8.9 Categorization of high-level languages

8.8.1 Unstructured Programming
In unstructured programming,
programmers write small and
simple programs consisting
only of one main program.
Here, -"�:%(consists of state-
ments that modify the data that
is global throughout the whole
program (Figure 8.10). Though
this technique is simple, it is
not good for writing large pro-
grams. For example, if we need
to perform a particular task mul-
tiple times in the program, then we need to copy the same
sequence of statements at different locations within the pro-
gram. This led to the idea of writing functions or procedures.
The new technique of using procedures came to be known as
procedural programming.

8.8.2 Structured Programming Language
The concept of structured programming, also referred to as
modular programming, was first suggested by the mathema-
ticians Corrado Böhm and Giuseppe Jacopini. It is basically
a subset of procedural programming that enforces a logical
structure on the program to make it efficient and easy to
understand and modify.

Structured programming employs a top-down approach in
which the overall program structure is broken down into sep-
arate modules. This allows the code to be efficiently loaded
into the memory and to be reused in other programs. Modules
are coded separately, and once a module is written and tested
individually, it is then integrated with the other modules to
form the overall program structure.

Structured programming is therefore based on modu-
larization, which groups related statements together (mod-
ules). Modularization makes it easy to write, debug, and
understand a program. Ideally, modules should not be longer
than a page. It is always easy to understand a series of
10 single-page modules than a single 10-page program.

For some large and complex programs, the overall pro-
gram structure may further require the modules to be broken
into subsidiary modules. This process continues until an indi-
vidual pieces of code can be written easily.

Almost any language can use structured programming tech-
niques to avoid the common pitfalls of unstructured languages.
Unstructured programs depend on the programmer’s skills to
avoid structural problems and are therefore poorly organized.
Most modern procedural languages support the concept of
structured programming. Even object-oriented programming
can be considered a type of structured programming because
it uses the techniques of structured programming for program
flow and adds more structure for data to the model.

In structured programming, the program flow follows a
simple sequence and usually avoids the use of goto statements.

Fig. 8.10 Unstructured
programming

Introduction to Algorithms and Programming Languages 139

Besides sequential flow, structured programming also sup-
ports selection and repetition. Selection allows for choosing
any one of a number of statements to execute based on the
current status of the program. Selection statements contain
keywords such as if, then, endif, and switch to help iden-
tify the order as a logical executable. In repetition, a selected
statement remains active until the program reaches a point
where there is a need for some other action to take place.
It includes keywords such as repeat, for, and do until.
Essentially, repetition instructs the program how long it
needs to continue the function before requesting further
instructions.

Advantages
The following are the advantages of structured programming:

 The goal of structured programming is to write correct
programs that are easy to understand and modify.

 Modules enhance the programmers’ productivity by
allowing them to look at the big picture first and then focus
on details later.

 With modules, many programmers can work on a single
large program, with each working on a different module.

 A structured program can be written in less time than an
unstructured program. Modules or procedures written for
one program can be reused in other programs as well.

 A structured program is easy to debug. This is because
each procedure in a structured program is specialized to
perform just one task, and therefore, every procedure can
be checked individually for the presence of any error. In
contrast, unstructured programs consist of a sequence of
instructions that are not grouped for specific tasks. Their
logic is cluttered with details and is therefore difficult to
follow.

 Individual procedures are easy to change as well as
understand. In a structured program, every procedure has
meaningful names and has clear documentation to identify
the task performed by it. Moreover, a correctly written
structured program is self-documenting and can be easily
understood by another programmer.

Example 8.13 Z������ �� '������� ��� ������� �� ����� ����
�����������*���������*��������
����%

�������
C�� '��*���� �!�� ��/@� ���� $���� !�"�� ��� +��� ����/� ��$�� �!��
'��������������������!���'��*�����!��*����$����*���
��L

 Enter new names and addresses.
 Modify existing entries.
 Sort entries.
 Print the list.

Now, each of these modules can be further broken down
into smaller modules. For example, ‘Enter new names and
addresses’ module can be subdivided into modules that per-
form the following tasks:

 Prompt the user to enter new data.
 Read the existing list from the disk.
 Add the name and address to the existing list.
 Save the updated list to the disk.

Similarly, ‘Modify existing entries’ module can be further
divided into modules that perform the following tasks:

 Read the existing list from the disk.
 Modify one or more entries.
 Save the updated list to the disk.

Observe that two submodules—‘Read the existing list from
the disk’ and ‘Save the updated list to the disk’—are com-
mon to both the modules. Hence, once these submodules are
written, they can be used by all the modules that require the
same task to be performed. Structured programming method
results in a hierarchical or layered program structure, which
is depicted in Figure 8.11.

8.8.3 Logic-oriented Programming Language
Logic-oriented programming languages employ a program-
ming paradigm that is based on formal predicate logic. The
logic paradigm is remarkably different from other program-
ming paradigms. The predicate logic describes the nature of
a problem by defining the relationships between rules and
facts. These rules together with an inference algorithm form
a program. Prolog, LISP, and Datalog are few examples of
logic-oriented programming languages.

A logical sentence in a logic program is given in the form of

7%�B��(����J%�(�":���%�(

Fig. 8.11 Layered program structure

140 Fundamentals of Computers

For example, the sister relation, which can be defined using
other simpler relations and properties such as father, -�����,
��-"0�, is shown in Figure 8.12. According to the figure, A
can be a sister of B if both A and B have the same father and
mother and A is a female.

Fig. 8.12 Predicate logic that defines a sister relationship

We have already seen that mathematical (or Boolean) logic
plays a vital role in the design of logic circuits, which form
the basis of computer systems. Therefore, in logic- oriented
programming languages, a more advanced construct called
predicate logic is used. In these languages, different logical
assertions about a situation are made, establishing all known
facts. Then, queries are made and any deducible solution to
the query is returned as output. The role of a computer in this
paradigm is thus to maintain data and make logical deductions.

There are two main advantages of using logic-oriented
programming. First, the computer solves the problem so that
the programs are of minimum statements and complexity.
 Second, the validity of the solution can be easily proved.

8.8.4 Object-oriented Programming
We have seen that unstructured and structured programming
paradigms are task-based paradigms as they focus on the
actions the software should accomplish. However, the object-
oriented paradigm is both task-based and data-based. In this
paradigm, all relevant data and tasks are grouped together in
entities known as objects (Figure 8.13).

For example, consider a list of numbers stored in an array.
The procedural or modular programming paradigm consid-
ers this list as merely a collection of data. Any program that
accesses this list must have some procedures or functions to
process this list. If we want to find the largest number or to
sort the numbers in the list, we need specific procedures or
functions to do the task. Thus, the list is a passive entity as it
is maintained by a controlling program rather than having the
responsibility of maintaining itself.

However, in the object-oriented paradigm, the list and the
associated operations are treated as one entity, known as an
object. Therefore, in this approach, the list is considered an
object consisting of the list together with a collection of rou-
tines for manipulating the list. In the list object, there may be
routines for adding a number to the list, deleting a number
from the list, sorting the list, and so on.

The marked difference between this approach and the tra-
ditional approaches is that the program accessing this list does
not contain procedures for performing tasks but rather uses
the routines provided in the object. In other words, instead of
sorting the list as in the procedural paradigm, the program
asks the list to sort itself.

Thus, we can conclude that the object-oriented paradigm is
task-based (as it considers operations) as well as data-based
(as these operations are grouped with the relevant data).

Figure 8.14 represents a generic object in the object-
oriented paradigm. Every object contains some data as well
as the operations, methods, and functions that operate on that
data. Some objects contain only basic data types such as char-
acters, integers, and floating types, whereas others incorpo-
rate complex data types such as trees or graphs.

Programs that need an object will access the object’s meth-
ods through a specific interface. The interface specifies how
to send a message to the object, that is, a request for a certain
operation to be performed.

For example, the interface for a list object may require
that any message for adding a new number to the list should
include the number to be added. Similarly, the interface might
also require that any message for sorting specifies whether
the sort should be in ascending or descending order. Hence,
an interface specifies how messages can be sent to the object.

j�~���	���������'�����������������*��������
���
����	$�����'�������������'�������������!�������

$�������������*���~���%�

Note

Fig. 8.13 Object-oriented
paradigm

Fig. 8.14 Object

Introduction to Algorithms and Programming Languages 141

Concepts of Object-oriented Programming
An object-oriented language must support mechanisms to
define, create, store, and manipulate objects and allow com-
munication between the objects. In this section, we will read
about the underlying concepts of object-oriented programming
that support the objects. These concepts include the following:

 Class
 Object
 Inheritance
 Polymorphism
 Abstraction
 Encapsulation

Class A class is used to describe real-world things, such as
occurrences, things, and external entities. It provides a tem-
plate or a blueprint that describes the structure and behaviour
of a set of similar objects. Once a class is defined, a spe-
cific instance of the class can be easily created. For example,
consider a class student. A student has attributes such as roll
number, name, course, and aggregate marks. The operations
that can be performed on the student data may include get_
details, set_details, and edit_details. Thus, we can say that a
class describes one or more similar objects.

Note that this data and the set of operations that we have
mentioned can be applied to all students in the class. When
we create an instance of student, we are actually creating an
object of the student class.

Z������+����!��'��'��
��������!�"������*�
objects.

Note

Object In the previous paragraph, we have taken an exam-
ple of the student class and said that a class is used to create
instances, which are known as objects. Therefore, if student
is a class, then all the 60 students in a course (assuming there
are maximum 60 students in a particular course) are objects
of the student class. Therefore, all students are objects of the
class. Thus, a class can have multiple instances.

Every object contains some data and procedures (also
called methods). It stores data in variables and responds to
messages that it receives from other objects by executing its
methods (procedures).

Every object of a class has its own set of values. Therefore,
two distinct objects can have the same set of values. In gen-
eral, the set of values that an object takes at a particular time
is known as the state of the object.

As mentioned earlier, a class is a combination of proper-
ties (data) and methods (functions). The state of an object
can be changed by applying a particular method. The possible
sequence of state changes of an object is known as the behav-
iour of the object. In other words, the behaviour of an object
is defined by the set of methods that can be applied to it.

It is important to understand the difference between
classes and objects. Simply put, a class is merely a category of

similar objects. All objects of the same class have the same
range of potential states and behaviour.

An object���������������*��������!�������������&�����
����
+����������
��. Every object has a �
��@�$!��!�

����"�������!��"������*������������������'��
������
��%

Note

Method and messages A method is a function associ-
ated with a class. It defines the operations that an object
of the class can execute when it receives a message. In an
object-oriented language, only the methods of a class can
access and manipulate the data stored in an instance of the
class (or object). Objects can communicate with each other
through messages. An object asks another object to invoke
one of its methods by sending it a message. Consider Fig-
ure 8.15 in which the sender object sends a message to the
receiver object to get the details of a student. In reply to the
message, the receiver sends the results of the execution to the
sender.

Fig. 8.15 Objects sending messages

In Figure 8.15, the sender has asked the receiver to send the
details of the student having roll number 1. Thus, the sender
passes some specific information to the receiver so that
the receiver can provide precise information to the sender.
The data that is transferred with the message is called the
parameter. Here, roll number 1 is the parameter. Therefore,
messages sent to other objects consist of three parts—the
receiver object, the name of the method that the receiver
should invoke, and the parameters that must be used with the
method.
Inheritance This is a concept of object-oriented program-
ming in which a new class is created from an existing class.
The new class, known as the subclass or derived class, inherits
the attributes and behaviour of the pre-existing class, which is
referred to as the superclass or parent class. The inheritance
relationship of sub- and superclasses generates a hierarchy. A
subclass not only has all the states and behaviour associated
with the superclass but also has other more specialized traits.

Fig. 8.16 Inheritance

142 Fundamentals of Computers

The main advantage of inheritance is the ability to reuse
the code. When we want a specialized class, we do not have
to write the entire code for that class from scratch. We can
inherit a class from a general class and then add the special-
ized code for the subclass. For example, assume that we have
a class student with the following members:
Properties: roll_number, name, course, aggregate_marks
Methods: get_details, set_details

We can inherit two classes from the student class, namely
under graduate student and postgraduate student (Figure 8.16).
These two classes will have all the properties and methods of
the student class, and in addition, they will have even more
specialized members.

When a derived class re ceives a message to execute a
method, it first searches for the method in its own class. If it
finds that method, then it executes it. If the method is not pre-
sent, then it searches for it in its superclass. If the method is
found, it is executed; otherwise, an error message is reported.

��������������!�����'��'��
���������!���
*�������
'���'����������%�C!��������������
'���

inheritance.

Note

Polymorphism Polymorphism means having several dif-
ferent forms. It is one of the essential concepts of object-
oriented programming. Inheritance is related to classes and
their hierarchy, whereas polymorphism is related to methods.

Polymorphism is a concept that enables the programmers
to assign a different meaning or usage to a variable, a func-
tion, or an object in different contexts. When polymorphism
is applied on a variable, the variable with a given name may
be allowed to have different forms. The program will then
decide which form is to be used at the time of execution. For
example, the variable roll_no of the class student may be
numeric (numbers alone) or alphanumeric (combination of
numbers and letters). The program can be coded to distin-
guish between the two forms of the variable so that it can be
handled in its own way.

Polymorphism can also be applied to a function in such a
way that the particular form of function selected for execu-
tion varies depending on the parameters given to the function.
For example, if the roll number of the student is an integer,
then its corresponding function will be executed. In case it
consists of alphanumeric characters, then another function
with the same name will be executed. This type of polymor-
phism is called function overloading.

Polymorphism can also be applied to operators. For exam-
ple, we know that operators can be applied only to basic data
types that the programming language supports. So, a + b will
give the result of adding a and b. If a = 2 and b = 3, then
a + b = 5. If we overload the + operator to be used with strings,
then str1 + str2 gives the result str2 concatenated with str1.
Therefore, if str1= ‘Oxford’ and str2 = ‘University’, then str1 +
str2 = ‘Oxford University’.

Data abstraction and encapsulation Data abstraction refers
to the process of defining data and functions in such a way that
only the essential details are provided to the outside world and
the implementation details are hidden. The main focus of data
abstraction is to separate the interface and the implementation
of a program. For example, we as users of television sets can
switch them on or off, change the channel, set the volume, or
add external devices such as speakers, CD players, or DVD
players without knowing the details about how its functional-
ity is implemented. Thus, the internal implementation is com-
pletely hidden from the external world.

Similarly, in object-oriented programming languages, classes
provide data abstraction through public methods to the outside
world to provide the functionality of the object or to manipulate
the object’s data. An entity in the outside world will not know
about the implementation details of the class or that method.

Data encapsulation, also called data hiding, is the tech-
nique of hiding the implementation details of a class from the
users. The users are allowed to execute only a restricted set of
operations (class methods) on the data members of the class.
Therefore, encapsulation organizes the data and methods
into a structure that prevents data access by any function (or
method) not specified in the class. This ensures the integrity
of the data contained in the object.

Encapsulation defines three access levels for data vari-
ables and member functions of the class. These access levels
specify the access rights.

 Any data or function with access level public can be
accessed by any function belonging to any class. This is
the lowest level of data protection.

 Any data or function with access level protected can be
accessed only by the class in which it is declared or by any
class that is inherited from it.

 Any data or function with access level private can be
accessed only by the class in which it is declared. This is
the highest level of data protection.

8.9 SOME POPULAR HIGH-LEVEL LANGUAGES

In this section, we will discuss the features of some popular
high-level languages.

8.9.1 BASIC
BASIC (Beginner’s All-purpose Symbolic Instruction Code)
is a general-purpose, high-level programming language devel-
oped by John G. Kemeny and Thomas E. Kurtz in 1964. In the
1960s, programming was done only by scientists and math-
ematicians; hence, BASIC was specifically designed to enable
students in fields other than science and mathematics to use
computers. It was easy to learn and use and was a very power-
ful language that was used for a wide range of applications.

BASIC was not only widely used on microcomputers in
the 1970s and 1980s but was also shipped with them in the
machine’s firmware. As it was an easy-to-learn language, it

Introduction to Algorithms and Programming Languages 143

motivated small business owners, professionals, hobbyists,
and consultants to develop custom software on the comput-
ers they could afford. BASIC was also used in teaching the
introductory concepts of programming.

Even today, BASIC is widely being used as Microsoft’s
Visual Basic, which has added object-oriented programming
features and a graphical user interface (GUI) to the standard
BASIC. Moreover, these days many variations of BASIC are
being used within applications such as Microsoft Word and
Microsoft Excel to enable users to write programs to custom-
ize and automate these applications.

8.9.2 FORTRAN
FORTRAN (Formulas Translation) is one of the oldest general-
purpose programming languages. It was developed in 1957 at
IBM by a team of programmers led by John Backus. The devel-
opment of FORTRAN was a remarkable development in the
field of programming languages. Previously, programs were
written either in machine language or in assembly language.
Since software development using low-level programming was
cumbersome, Backus wanted to create a machine independent,
simple language suitable for a wide variety of applications that
combined a form of English shorthand with algebraic equa-
tions. The feature of enabling the creation of natural-language
programs that ran as efficiently as machine level codes made
FORTRAN a popular language in the late 1950s. It was so easy
to develop a code in FORTRAN that programmers were able to
write programs 500 per cent faster than before with a compro-
mise of execution efficiency of just 20 per cent. It enabled soft-
ware developers to focus more on the problem-solving aspects
of a problem than on the coding aspect.

:�����X@���!��|��/��$���$�������!��;�
�����
���������*�D������������Z!���������/����'���E��-�@�

$!��!����!��!��!�����
�����'��-���$��������������������@�
*����!����"��
����*�?j�C��;%

Note

FORTRAN is especially suited to high-performance numeric,
scientific, statistical, and engineering computing and is exten-
sively used in areas such as weather prediction, finite element
analysis, computational physics, computational chemistry,
and computational fluid dynamics. It is also used in program-
ming video games, air traffic control systems, payroll calcu-
lations, military applications, factory automation, parallel
computer research, storm drainage systems, and design of
bridges and airplane structures.

The new versions of FORTRAN have built-in support for
features such as structured programming, generic program-
ming, object-oriented programming, concurrent program-
ming, and array programming.

?j�C��;���������������������$��'���+������
���������������$�����������
����*����!���
����

*����������������%

Note

8.9.3 Pascal
Pascal, which was named after the mathematician Blaise Pas-
cal, is a procedural programming language developed in the
late 1960s by Niklaus Wirth. It is a small and efficient lan-
guage specifically designed to encourage good programming
practices using structured programming and data structuring.
Although Pascal can be used for technical problems, it was
widely used as a teaching language to help people understand
the basics of programming.

The structure and syntax of Pascal is similar to that of
C. Pascal provided many features that were lacking in other
languages then. It enabled programmers to develop well-
structured and well-organized programs that were efficient
to implement and run. Pascal contains built-in data types
(e.g., integers and characters), user-defined data types, and a
defined set of data structures (e.g., arrays and files).

With the growing popularity of object-orient programming,
a derivative known as Object Pascal was designed and released
in 1985. However, despite its success in academia, Pascal
found very little success in the business world because of its
inflexibility and lack of tools for developing large applications.

8.9.4 C
C is a high-level general-purpose programming language that
was developed in the 1970s by Dennis Ritchie at Bell Labs.
Although it was originally designed for system programming,
today C is considered a powerful and flexible language that
can be used for a wide range of applications varying from
business programs to engineering. The following are some
of the reasons that led to the popularity of C even in personal
computers:

 It is relatively small and thus requires comparatively less
memory than other languages.

 It is easy to understand.
 Codes written in C are easy to maintain.
 Programs written in C are easily portable.
 It is considered closer to assembly language than other

high-level languages. Since C supports some low-level
features, it is extensively used for writing efficient codes
for operating systems, compilers, and so on.

 It supports procedures and modularization of programs.

C!��+�����~���'�������$���������Z�$���!��G��<�
�'���
�������%

Note

8.9.5 C++
C++ is a general-purpose programming language developed
by Bjarne Stroustrup starting in 1979 at Bell Labs. Like C,
C++ is considered an intermediate-level language because it
comprises both high-level and low-level language features.

C++ is a very popular programming language and can be
implemented on a wide variety of hardware and operating sys-
tem platforms. It is a powerful language for high- performance

144 Fundamentals of Computers

 applications, including operating systems, system software,
application software, device drivers, embedded software, high-
performance client and server applications, software engineer-
ing, graphics, and games and animation software.

C++ is a superset of the C language. Hence, C++ supports
all features of C and also includes other new features such
as classes, objects, polymorphism, inheritance, data abstrac-
tion, encapsulation, single-line comments using two forward
slashes, and strong type checking. C++ is an object-oriented
programming language and facilitates design, reuse, and
maintenance for complex software. It has an extensive library
to enable programmers to reuse existing code. In general, the
number of instructions required to perform a task in C++ is com-
paratively less than that required in other high-level languages.
It is easy to write, debug, and modify a code in C++. How-
ever, the main drawback of this language is that the C++ com-
piler does not issue warning or error messages for mistakes
such as when an array index is out of range and when an
uninitialized variable is used.

8.9.6 Java
Java is a general-purpose, object-oriented programming lan-
guage released by Sun Microsystems in 1995. Though the
syntax and semantics of Java is similar to that of C++, it is
more powerful than not only C++ but also many other high-
level languages. However, unlike C and C++, Java has less
support for low-level features.

Programs written in Java are robust, secure, and reliable.
Java was the first language to bring animation and interactiv-
ity to Internet-based applications. Today, a number of appli-
cations and websites will not work unless Java is installed on
the computer. Java has marked its presence on a variety of
computer systems ranging from laptops to data centres, game
consoles to scientific supercomputers, and cell phones to the
Internet.

Java is used in the following areas:

 Internet applications such as playing online games and
chatting with friends and relatives across the world

 Desktop applications such as viewing images in three
dimensions

 Embedded systems applications to be used in devices such
as set-top boxes, hand-held devices, and phones

 Intranet applications and other e-business solutions, which
have now become an integral part of corporate computing

��������"���''����
�����������''�������������$�	
�������*�����!��:��������������������!�����'�����

�������"�	���'�
����J������$�����!���;����'��
;�"����������V�������:��������D<'�����%

Note

Java programs follow the write once, run anywhere (WORA)
concept. According to this concept, programmers have to write
a code only once and the same code can be executed on any

platform without any modification (and thus re-compilation).
Basically, Java source code files (having a .java extension)
are compiled into a bytecode (file having a .class extension),
which can then be executed by a Java interpreter. The already-
compiled Java code can run on most computers because Java
interpreters and runtime environments, called Java virtual
machines (JVMs), are available for almost all popular operat-
ing systems such as Unix, Mac OS X, and Windows.

��"��!���������'��+����������������*��������!���
cause common programming errors.

Note

8.9.7 LISP
LISP, an acronym for list processing, is one of the oldest
programming languages still widely used by programmers
all over the world. It was developed by John McCarthy in
1959. The main idea behind developing LISP was the need
to have a language that could easily manipulate non-numeric
data such as symbols and strings of text. LISP’s ability to
manipulate symbolic expressions rather than numbers makes
it convenient for artificial intelligence applications and for
simulation of games.

LISP is a functional programming language in which
all computations are accomplished by applying functions
to arguments. All programs are written as function calls or
parenthesized lists or as a list with the function’s name fol-
lowed by arguments. For example, a function f taking three
arguments can be written as (f arg1 arg2 arg3).

Although LISP is not a general-purpose programming lan-
guage, it has still pioneered many ideas in the field of com-
puter science, including conditionals, tree data structures,
higher-order functions, recursion, automatic storage manage-
ment, dynamic typing, and self-hosting compiler.

The main advantage of using LISP is that even complex
functions can be easily written and understood by others.
However, the disadvantage of LISP is that it supports nei-
ther low-level features nor any object-oriented programming
concept. LISP is often used as a scripting language for other
applications such as AutoLisp for AutoCAD or for teaching
abstract concepts in computer science.

�:�E�$�����������"���'����'��<��''����
�����!�
��D����������%

Note

8.10
 FACTORS AFFECTING SELECTION OF

PROGRAMMING LANGUAGE

When planning a software solution, the software development
team often faces a common question—which programming
language to use? Many programming languages are available
today and each one has its own strengths and weaknesses.

Introduction to Algorithms and Programming Languages 145

C can be used to write an efficient code, whereas a code in
BASIC is easy to write and understand; some languages are
compiled, whereas others are interpreted; some languages
are well known to the programmers, whereas others are com-
pletely new. Selecting the perfect language for a particular
application at hand is a daunting task. In this section, we will
discuss some parameters that influence the selection of a pro-
gramming language for a project.
Organizational policies In the computing industry, most
organizations have policies that dictate which computer hard-
ware and software they should use. For example, many organ-
izations have Java as the default programming language.
Suitability The programming language must be able to
work on the platform being used. In addition, it must have
the features to write the application. For example, if Internet
applications have to be developed, then Java would be a good
choice. If device drivers have to be made, then C would be a
better choice.
Availability of programmers The choice of programming
language also depends on the programmer’s experience and
expertise. If a language that is new to the programmer is cho-
sen, then it would demand more investment in terms of time
and money because either the programmer will have to be
trained in the language or some new programmer having a
sound knowledge of that language would be hired. In both
cases, extra time and money will be required.
Reliability Some programming languages have built-in fea-
tures that support the development of software that is reliable
and less prone to crash. A reliable code can withstand even
stress conditions. For example, Ada is an object-oriented
high-level programming language that had been extended
from Pascal and various other languages. It ensures reliability
in mission critical applications, for example, in safety critical
systems such as the fly-by-wire control system of the Boeing
777 aircraft.
Development and maintenance costs Development cost
should be considered while choosing a programming lan-
guage. Some languages support reusable components or an
extensive set of standard libraries that makes the code quick
and easy to develop and maintain, which results in reduced
development cost. Maintaining a program also incurs costs,
especially when bugs and errors have to be fixed or the code
must be updated to meet the current requirements. A language
that is easy to understand generally costs less. Moreover, cod-
ing with open-source languages (which are free) is more eco-
nomical than coding with languages for which licences have
to be purchased. This is why PHP applications are more eco-
nomical than ASP.NET applications.
Expandability Software applications that are designed for
interactive websites are expected to support a large number of
users at the same time without crashing. Hence, the program-
ming language chosen for such applications must be stable
and capable enough to support even more than the expected

simultaneous users. For example, PHP is a programming lan-
guage that supports expandability.
Speed of development Speed of development is a factor that
not only includes the time it takes to write a code but also
considers the time taken to find a solution to the problem at
hand, time taken to find the bugs, availability of development
tools, experience and skill of the programmers, and testing
regime.
Object orientation In some situations, using object- oriented
programming to code a solution is far more beneficial than
coding with a traditional language. This is because it not
only speeds up the development process because of the exist-
ing code that can be reused but also entails the development
of classes that can in future be reused while writing other
codes.
Portability Most of the programming languages are depend-
ent on some hardware constraints. Portability is therefore a
serious issue that depends on the underlying platform. Java
is an example of a popular language that has good port-
ability. This is because the bytecode generated can run the
program on any machine in which a JVM is installed. In
contrast, a C or C++ code would run on with two different
types of compilers and would thus produce two different
types of executable files when run on Linux and Windows
platforms.
Elasticity The elasticity of a language implies the ease with
which new features (or functions) can be added to the exist-
ing program.
Performance The performance of a language is a serious
consideration, especially when the target environment does
not offer much scope for scaling (e.g., in hand-held devices).
Support and community A programming language should
have a strong community support behind it. A language with
an active forum, additional libraries, and extensive tutorials is
likely to be more popular than a better language that does not
have any user support. Perl is a good example that indicates
the importance of community.
Speed requirements Different languages take different
times to execute. The time to execute a code also depends
on whether the language in which it is written is compiled,
assembled, or interpreted. For example, a code written in an
assembly language will execute faster than a code written in a
high-level language such as Visual Basic. Therefore, if execu-
tion speed is the main concern of program development, then
a low-level language is a good choice.
GUI requirements Some languages have an in-built support
for GUI, whereas others either do not have or have very little
support for GUI. If a program that needs GUI is written using
a language that has little support for GUI, then the code will
be very lengthy and complex. For example, creating a GUI in
C will be more complex than creating a GUI in Visual Basic.
Therefore, if an application supporting GUI is required, then
the language should be appropriately chosen.

146 Fundamentals of Computers
G

LO
SS

A
RY

Algorithm� �����������
�0��
�����
���������������-
��������������	������
������
�������������	�	��!��	��
����������	��	�������������	��������������
Assembler� ���	��� ���	!���� 	��	� 	������	��� �� �
��
!��		��������������������������	�������������������
Assembly language� �������� ������������ ���-
������� 	��	� ���� �������� ��	�	���� 	�� ��������	�
�������������������	��	�����
Compiler/Interpreter� ���	��� ���	!���� 	��	� 	����-
��	���	����������
��������������������������������
���������	������!������������������
Flowchart� ���������������������� ��������	�	�������
���������
Loader� ���	������	!���� 	��	� ��������������� �����
���	������
�����	��	��������������'�!�����	�������
����(��	�
�

Machine language� &�����!��	����������������������
	��	� !��� ���
� 	�� �������� 	��� 0��	� �	���
���������
����	������	������
� ��� 	�������� ��������� 	��	� 	���
����	�����
���	��
��
Pseudocode� ������	���
���������������������
���
���	����������������	��� 	��	������ 	����	��	����� ��-
���	�������������������������������
Programming language� ���������������0�����
�����
���
�	���(����������	�	�����	��	���������������
�
���	�������	���
Structured programming� ����������������������
	��	� �������� �� 	���
�!�� �������� ��� ���� �� !���
	��	�	��������������������	��	���������� ���
�!����	��
������	����
����'���
�	�����������!��	����
��	�����
���
�
� ��	�� ������� ����� ��0���	��� ��
� ����� 	�� ���
�����
�����	�������������

�� ������	��� ������ 	��� ����� ��� �� �������'� 	��	� ��'�
�� �	�������	���
�����	���� ��� ��!� 	�� ������� �	� ��
����	����� ������	���� ���� ��������	�
� ������ ��
���������������������

�� �� ��!���	� ��� ��
��������	�� ��������	�	���� 	��	�
�����	��	��� 	��� ��~����� ��� �	���� 	��	� ���	� ���
��������
� 	�� ������ �� ��������� q��!���	�� ����
��������
��!�� ��� 	��� ������ �	����� ��� �������	����
����	��� ����	������ &���� �����	�	�� �������	����
��	!������������������
�������

�� .���
��
�� ��� �� ����� ��� �	��	���
� D������� 	��	�

��������������	������	������	�	���
���������	�������
���	�����������	���������	���!�	���	���		���������
�

�!�����	���
�	��������������������	�(��.���
��
���
�����
���	�����
�� ��!��
�������������0�����	���
���������

�� .����������� ���������� ���� ���
� 	�� ���	��
��������� 	��	� ��	���� 	��� ���������� ��� �� ���	��'�
	�� �(������ ������	���'� ��� ��� �� ��
�� ��� ������
��������	����� D����� ������������ ���������
���� �� ���������� ��� ���	�(� ��
� �����	���
���� ���	��	���� �� ����	��� 	�� �������� ����0�
	�� ��

�� &������ ����������� ������������ ���������� ����
����� ���� ������� 	�� ���
� ��
� ��
���	��
'� 	���
����	��� �����
���	��
������������� ��������'�
!���������	������������������

�� ����
�������	���� ������������ ���������� ���
������	��
���� �������� ������������ ���������� 	��	� ����
�������� ��	�	���� 	�� ��������	� ������� ���������
���	��	�����

�� ��� ��������� ��������� �	�	����	� �����	�� ��� ��
�����'���������	�����
�'���
�������������������
���
5�������������
�	���
��	������
����������	��	��������
	��� ��������� &��� �����	���� �
�� ,���
�-� ��� ��
��������	��	�����0���	��������	����	��	�����	�����
��������
'��������move'�add'�subtract'����compare��
&���������
�����0���	��������	������	������	�������
	���������������!�����	���
�	��	������������
����
���	�
��

�� V���	�����
����������
�
���
�	��	�
'�	�����/�	�
0�����������	�����
���������������
�	���	�������	���
��� ���	�������	���0�����(��	�����0���

�� &���
�������	���� ������������ ���������� �����
��	!������	�����������������
�������������������
&��������
��qVB&B�K���
�"V�V5'�!������
���	�
�����������������	��	����
�����������������	��!��	��
��������� ������ ��������� 	����� ���	��
� ��� �������
����������	��	�����

�� X�����!�� ����!�	��`+5�'�������������
�0��������
!��	�	����!��	�	�������	���	��
�'�!�	���	�����������
����	���
�	����������!��	�����	�����
����

�� q��	��������	���� ������������ ���������� ����
��	��
� ��� �������� ��������� ������ 	��� ���	����	��
������	��	�������������	����	�������������������	���
!��		��������������������&��������!�
�������
� ���
��	�0������	�����������������

�� ��� ���	��	���
� �����������'� ������������ !��	��
������ ��
� ������� ��������������	���� ��� ����� ����
�������������

�� �	��	���
� ������������ �������� �� 	���
�!��
�������� ���!����	��������������������	��	���� ���
��� ���
�!����	��������	����
�����

SU
M

M
A

RY

Introduction to Algorithms and Programming Languages 147

Fill in the Blanks
� ?�� ^^^^^^^^���������������
�0��
�����
�����������-

������������������	����
� 7�� ^^^^^^^^��	�	����	���������
�!����	�����	����

���	����������
����
������������
�	����
� 8�� B���	�	���� ��� ��� ��������	�
� ������ ���	��	��

�������^^^^^^^^'�^^^^^^^^'���
�^^^^^^^^�
� `�� ^^^^^^^^�������� �����!���� 	���0��	���
� 	��� ���	�

��������������!���	�
� E�� ^^^^^^^^� ��� �� ����� ��� �	��	���
� D������� 	��	�

��������������	����
� Z�� ^^^^^^^^�������
�	���(������������	������
������

��
������������������	����
� \�� ^^^^^^^^� ��� �� ���
� ��������� ���� ����������

���������
�	��
� =�� ��� ��������� ��������� �	�	����	� �����	�� ��� ��

^^^^^^^^'�̂ ^^^^^^^'���
�������������̂ ^^^^^^^�
�]�� ^^^^^^^^� ��� ���
� 	�� �����	� ��� ��������� ������

����������	������������������
�?@��^^^^^^^^���
�^^^^^^^^��������
�	��	������	��	���

���	��	����� !��		��� ��� �� ����������� ��������� ��	��
����	����(��	���������������������

�??�� q��	���������� ������������ ���������� ���� !�
����
���
����^^^^^^^^�

�?7��&�����/�	�0���������	�
�!����^^^^^^^^�
�?8��"�������
�0���̂ ^^^^^^^���
�̂ ^^^^^^^������/�	��
�?`�� �����/�	����������~������
��	�0�
�����	��̂ ^^^^^^^�
�?E��%�������� �����	� ��� ^^^^^^^^'� ^^^^^^^^'� ��
�

^^^^^^^^�
�?Z��^^^^^^^^� ����(������������
� ����!��	������0���	�

�
������������	�������	������
����������
�?\��.��������!��		������^^^^^^^^����������	'������'�

��
����������
�?=�������������������	�������������
�^^^^^^^^�

Multiple Choice Questions
� ?�� �� ��������� ��� �������� ��������	�	���� ��� �� ���-

������U
� ,�-� ������	��� ,�-� q��!���	
� ,-� .���
��
�� ,
-� .������
� 7�� &����������	��	������������	�
�����������	������

�������!���	���U
� ,�-� &�������� ,�-� #������
� ,-� �	���	�� ,
-� ����	$��	��	
� 8�� &���
�	�����	��	��������		�
��������
��
������U�
� ,�-� *��������
�����	���
� ,�-� ���	�������0��
�
� ,-� ������	����
� ,
-� �������	����
� `�� &��� ��������� 	��	� ��� ���
� 	�� �������� 	��� 0��	�

�	���
�������������	������	������U
� ,�-� %��������������� ,�-� �����������������
� ,-� .����� ,
-� q��	���

� E�� &��� �����	��� ��� ���	���� ��� ����� ������� �����
!�����	���
�	��	������������
�������	�
��������-
0�
���U

� ,�-� 5����� ,�-� V��
�
� ,-� V�����
,�-� ,
-� K�������	����
� Z�� &���������	����	��!����"V�V5�����������U
� ,�-� q���	�������	���
� ,�-� ����
�������	���
� ,-� &���
�������	���
� ,
-� q���	��������	���
� \�� &��� ��������� 	��	� ����	��	��� ��� 	��� �!��	��

���	��
����	������!������	����	���	�� ���U
� ,�-� q���	�������	���
� ,�-� ����
�������	���
� ,-� &���
�������	���
� ,
-� q���	��������	���
� =�� V��	��������!���'���E+5���U
� ,�-� .������ ,�-� V.��
� ,-� %������ ,
-� 5��.
�]�� &����
���	����������
�����)�	�������U
� ,�-� B��������	�
� ,�-� D�����
����
�	���	�
� ,-� 5����	����	��
������
� ,
-� �������	����
?@��&����
�����@����
�?����U
� ,�-� �������
�� ,�-� V�/�	��
�
� ,-� D(��	������
�� ,
-� K�������	����
??�� &������	������	!����	��	����	���	���0�����(��	-

�����0�����U
� ,�-� ���������� ,�-� "�������
� ,-� 5��
��� ,
-� 5�� ��
?7��&��� 	������� ����������� ��������� 	��	� ��������
�-

�	���������U
� ,�-� ���	��	���

� ,�-� .���
���������	�

� ,-� 5���������	�

� ,
-� V�/�	������	�

?8��&���	�������
�	��	��	������������
���������	���

��������!�����	����
�����
����������������	��	����
������	�
�������	���U

� ,�-� .����� ,�-� .����	�
� ,-� .��	�	�
�� ,
-� �������	����
?`��&�����������������������	��	�������
�����������'�

����	�0'� �	�	��	���'� ��
� ������������ ����	�-
	�������U

� ,�-� "� ,�-� ����
� ,-� ����� ,
-� qVB&B�K

EX
ER

CI
SE

S

148 Fundamentals of Computers

?E��&������	����	����������������U
� ,�-� "� ,�-� ����
� ,-� ����� ,
-� qVB&B�K
?Z��&������������	��	������
���	�������
����������-

�)���������������������U
� ,�-� "� ,�-� "��
� ,-� "V�V5� ,
-� qVB&B�K

State True or False
� ?�� ������	�������������������� �����0��	������������

�	����
� 7�� B���	�	����������	��	������	������	���������	������

�(��	�
����������0�
���
���
� 8�� &���������������
���	��	�����!������	�������	���

��������
� `�� 5������
�����	���������~��������������
� E�� q��!���	������
��!�����	����������	�������������-

��	��������	�������	�����
� Z�� &��������������������
��
���������	���
�	��������

	���������������	�(�
� \�� ��������� ��������� ��� �� ��!������� ������������

���������
� =�� "� ��
� .����� ��� ��� ���
� ���� !��	���� !�����

�	��	���
���
����
��������������
�]�� �� �
�� !��		��� ��� ������� ��������� ��� �������

���	�����
�?@�����������������������
���	�������	�
�	��	�����	��-

��������	�	�������	�������	���
�??�� q���	��������	���� ������������ ���������� ����

�������
���������������
�?7�� �	� 	� ��� ����� 	���� 	�� !��	�� �� �	��	���
� ��������

	�����	�������������
�?8��������	����������������	�
���������������������

���������
�?`��5����������������������
���	�����	����
�����	�

	�������	�(��������
�?E����� ��	�����	��� 	������	��� 	��� �
�� ��
� ����� �(�-

�	����	�
�?Z���� �������� ��� ������	� ������	���� ��
� ��	��
��

��������	����������	��������
�?\����.����	��
�	�������������
���������	��������

���!�����	����
�����
����������������	��	���������-
�	�
�������	�

�?=��*������ ����� ��� ��� ��/�	������	�
� ������������
���������

�?]���
����������/�	������	�
������������������������
���������

Review Questions
� ?�� #�0������������	����|�!�����	�����������	�����	�(�

������	!����
���������	}
� 7� D(��������~����'� ����	�	���'���
�
��������	�	�-

���	�������������	��� ��!��
�����
��������	����
����	�	����	�

� 8�� X�	��	���������������(�����'��(������	������������
��!���	�

� `�� |�!��������!���	�
�������	���������������	��}�#��
!�� ���
� 	�� ����� ��	�� ��� 	���� ���� ��������

���������	}

� E�� X��	�
��������
���	��
����	���	����pseudocode}
� Z�� #�������	��	����	!����������	�����
�����
��
���
� \�� #�0��� 	��� 	���� programming language�� +����

�(������������������������
� =�� �	�	�� 	��� ��	���� 	��	� �� ����� �����
� ����
��� 	��

�����������	���������������������������
�]�� X��	�������������������}�#��!���	���������	}
�?@��X��	��������	���	�����������������������
�??�� X��	����������������}
�?7��#�������	��	�� ��	!���� ��� ���������� ��
� ���

��	�����	���
�?8�����
��!��		���������������������������0���	���
�

���	�	���(��	���"�����	�
�?`��|�!������	���
�������	�������������������������

��		���	�����	�����
�������}
�?E��D(������ 	��������0�����������������'� ��	�����	-

���'���
����������
�?Z����`+5��
����������	������
�	���	�����	������-

�������������	����
�?\��X��	��������	���	������	��	���
�������������
�?=��X��	������
�����)�	���}�+�����	���
���	�����
�?]��|�!���������	�����)����������������������}
�7@��#�������	��	����	!����������
����� �����������
�

�����/�	������	�
����������
�7?��#�������	��	����	!�������������
������/�	�
�77��D(������ 	��� ����� ���	����� ��� ��� ��/�	������	�
�

���������������������
�78��X��	�� �� ����	� ��	�� ��� ����� ���������� ���
� ���-

�������������������
�7`�� �������������������	��!��	�'���!�!������������	�	���

���������������������	��!��	��	����
�}

EX
ER

CI
SE

S

	9780199465866_FoC_AP
	Sample Chapter

