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Preface to the Third Edition

The motivation to develop the third edition of our immensely popular textbook Basic Electrical Engineering comes 
from (i) an in-depth review by faculty from various institutions, undertaken by Oxford University Press (India), 
(ii) inputs from colleagues and students, and (iii) our own re-visits to stay abreast with the curricula of various 
universities/institutions.

New to the Third Edition
Based on the various inputs and in an effort to provide an all-in-one resource as a first course at the graduate level, 
the following additions are incorporated.
∑  More number of solved examples (Additional Examples) has been added to further strengthen the understanding 

and applications of various laws and principles.
∑  Short theoretical questions are included to help the readers to prepare for testing and evaluation.
∑  Chapter on Network Analysis and Network Theorems has been expanded by including (i) conversion of Thevenin 

and Norton equivalent networks, (ii) Compensation theorem, and (iii) Millman’s theorem.  
∑  New and special topics, such as Swinburne’s test for testing dc machines, universal motors, tachometer generators, 

and synchros have been included.
∑  Electronic instruments have been added and Chapter 11 is renamed as Basic Analogue and Electronic Instruments. 
∑  Solar power systems have been described to update the chapter on power systems.
∑  A new chapter on Illumination is added.

While incorporating the various inputs and evolving a textbook which has universal acceptance, the authors 
wish to state that the lucid style of writing and maintaining a smooth flow of the language has not been lost sight of.

Contents and Coverage
Chapter 1 - Introduction to Electrical Engineering - the fundamental laws of electrostatics, electromagnetism, 

and their applications in electrical engineering are explained. The principles and applications of various laws are 
further strengthened through solved examples.

Chapter 2 - Network Analysis and Network Theorems - after conceptualizing independent and dependent 
sources, the chapter defines and explains the application of various network theorems. Node voltage and mesh current 
methods for solving networks along with applications of super nodes and super meshes have also been explained.

Chapter 3 - Magnetic Circuits - beginning with the definition of the Biot-Savart law, the chapter explains 
the magnetic behaviour of materials, their properties and classification based on the dipole moment of electrons. 
It demonstrates the use of mesh analysis for solving a magnetic circuit. The dot convention to obtain the correct 
direction of the statically induced emf in a coupled circuit  is also explained in detail.

Chapter 4 - Alternating Quantities - discusses the generation of ac quantities, their representation, manipulation, 
and application for analysing alternating networks.

Chapter 5 - Three-phase Systems - deals with the generation of three-phase voltages, current and power along 
with an analyses of three-phase circuits. Measurement of power and importance of power factor are also included.
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Preface to the Third Edition v

Chapter 6 - Transformer Principles - proceeding with a description of the constructional features, the chapter 
details out the principle of operation and development of an equivalent circuit of a transformer. Application of oc 
and sc test results for computing efficiency, regulation, etc. of a transformer have also been demonstrated.

Chapter 7 - Synchronous Machines - describes the constructional features of a synchronous machine stator 
and rotor. The setting up of a synchronously rotating magnetic field has been conceptualized graphically and with 
the help of phasor diagrams. The concept of infinite bus and the advantages of operating generators in parallel have 
also been outlined.

Chapter 8 - Induction Motors - includes a detailed description of the construction and principle of operation 
of three-phase induction motors. Additional solved examples have been added to support the understanding of the 
operating principles.

Chapter 9 - Direct Current Machines - explains how voltage is induced and derives expressions for induced 
voltage and electromagnetic torque and discusses commutator action. It also elucidates armature reaction leading 
to cross and demagnetization mmf. Additionally, field applications of dc machines have also been included.

Chapter 10 - Single-phase Induction Motors and Special Machines - qualitatively discusses the working of 
fractional kilowatt motors such as single-phase induction motors, ac and dc servo motors, different types of stepper 
and hysteresis motors. The chapter also explains the working principle of universal motors, synchro systems, and 
tachometer generators.

Chapter 11 - Basic Analogue and Electronic Instruments - includes the principles of measurement of electri-
cal quantities such as resistance, voltage, current, power and the working principles and calibration of measuring 
instruments. 

Chapter 12 - Power Systems - describes the generation, transmission, and distribution systems and subsystems. 
Various types of domestic wiring, including staircase lighting and earthing systems are also included.

Chapter13 - Illumination - defines the different terminologies related to illumination such as luminous flux, 
candela, and luminous intensity and introduces the laws of illumination such as Proportionality law, Inverse Square 
law, and Lambert’s Cosine law of incidence. The chapter also explains the application of the laws for computing 
luminosity through solved examples.    

Acknowledgements
The authors would like to express their gratitude to the readers of their textbook, Basic Electrical Engineering, for 
being an uninterrupted source of inspiration. Also, no amount of appreciation would be enough for the editorial 
staff of OUP who always keep us on our toes by their feedback from the users and their constructive approach.

T.K. Nagsarkar
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Preface to the First Edition

‘Why another book on basic electrical engineering’ was our initial thought when the idea of writing this book first 
came to mind. Basic electrical engineering is a core course offered to engineering students of all streams. It is ex-
tremely  important to ensure that the fundamentals of the course are well understood by  all engineering students 
since these have applications in all streams. In spite of a number of textbooks available in the subject, we felt that 
there was still a need for a book that would make the learning and understanding of the principles of electrical engi-
neering an enjoyable experience. 

The book is the outcome of our experience of over three decades of teaching both undergraduate and postgrad-
uate courses. The initial draft of the chapters was written by one of us and then read thoroughly by the other. The 
content was also peer reviewed and suggestions of the reviewers incorporated. In this book, we have tried to ensure 
that students would easily grasp the basics of electrical engineering. We hope that students will discover that their 
learning and understanding of the subject progressively increases while using the book.

About the Book
The contents of this book have been designed, modelled, and written as per the AICTE’s model curriculum and the 
syllabi of several universities. The book provides a comprehensive coverage of the different topics prescribed by 
various universities, thereby providing it with wide acceptability.

It is firmly believed that this book will help students to overcome their initial apprehensions and initiate a life-
long affair with electrical engineering. Written in a simple, yet lucid style, the book presents a clear and concise 
exposition of the principles and applications of electrical engineering. Students will find the smooth flow of language 
an asset to quickly grasp the basic concepts and build a strong foundation in the subject.

Key Features
∑  Provides a chapter overview and recapitulation of important formulae in every chapter 
∑  Includes a large number of illustrations to supplement the text 
∑  Enhances the understanding of concepts with several worked examples 
∑  Provides numerous chapter-end exercises with answers and multiple choice questions to stimulate student interest 

Content and Coverage
The book introduces the fundamentals of electricity and electrical elements. It provides an exhaustive coverage of 
network theory and analysis, electromagnetic theory and energy conversion, alternating quantities, alternating and  
direct current machines, basic analog instruments, and power systems. 

Finally, we hope that we have been able to make the subject of electrical engineering appealing not only for the 
students but also for the faculty. On the other hand, if you find that it falls short of expectations, please share your 
feedback with us to enable us to make improvements.

T.K. Nagsarkar
M.S. Sukhija
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Learning Objectives

 This chapter will enable the reader to
 ∑	 Understand	the	nature	of	structure	of	an	atom	and	significance	of	free	electrons	
 ∑ Differentiate between conductors, semiconductors, and insulators based upon the energy levels of electrons
 ∑ Compute the resistance of a conductor from its physical dimensions at different temperatures 
 ∑	 Familiarize	with	 electrostatic	 phenomena	associated	with	 electric	 charges	 and	define	electric	 field	 intensity,	

electric	potential	and	potential	difference,	electric	flux,	and	electric	flux	density
 ∑ Get familiar with basic electrical quantities: current, voltage, emf, and electric power
 ∑	 Define	Ohm’s	law	for	a	resistor	and	compute	the	resistance	of	a	conductor	from	its	physical	dimensions	at	different	

temperatures 
 ∑ Compute the induced voltage due to varying current, power, and energy stored in an inductor
 ∑ Based upon an understanding of the charge storing nature of a capacitor, compute its capacitance, current, 

power, and energy stored
 ∑	 Define	Ampere’s	law	and	use	it	to	estimate	the	force	on	a	current	carrying	conductor	when	placed	in	a	magnetic	

field,	and	use	Fleming’s	left	hand	rule	to	determine	direction	of	the	force
 ∑	 Use	Faraday’s	laws	of	electromagnetic	induction	to	compute	the	magnitude	of	dynamic	or	static	induced	voltage	

and	apply	Fleming’s	right	hand	rule	or	Lenz’s	law		to	determine	the	direction	of	the	induced	voltage
 ∑	 Define	Kirchhoff’s	voltage	and	current	laws	and	apply	these	to	compute	currents	and	voltages	in	a	circuit	made	

up of resistors, inductors, and capacitors 

1.1 ESSENCE OF ELECTRICITY
It is believed that electricity is present in nature. It is amazing how humankind has been able to put electricity 
to myriad uses for its own progress and comfort without having an exact knowledge of the nature of electricity. 
In fact, based on experimentation and observations, theories have been developed to explain the behaviour of 
electricity.

Electrical energy has been accepted as a form of energy that is most suited for transformation into other 
forms of energy, such as heat, light, mechanical energy, etc. Electricity can be converted into many different 
forms to bring about new and enabling technologies of high value. Conversion of electrical energy into pulses 
and electromagnetic waves has given rise to computers and communication  systems. Its conversion into 
microwaves finds use in microwave ovens, industrial processes, and radars. Electricity in the arc form serves 
in arc furnaces and welding. Efficient lighting, lasers, visuals, sound, robots, medical tools are among many 
other examples of the use of electricity.

Electrical engineering deals with the generation, transmission, utilization, and control of electric energy. 
Electric energy is generated at electric power generating stations such as hydroelectric, thermal, and nuclear power 
stations. In a hydroelectric power station, the potential energy of the head of water stored in dams is converted 

Introduction to  
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2 Basic Electrical Engineering 

into kinetic energy by regulating the flow of the stored water through turbines. This kinetic energy, in turn, gets 
transformed into electric energy by the process of electro-mechanical energy conversion. In a thermal station, the 
chemical energy of coal, oil, natural gas, and synthetic derivatives is converted by combustion into heat energy. 
Heat energy is also produced by nuclear fission of nuclear fuels in a nuclear reactor. It is then converted into 
mechanical energy, which in turn is transformed by electro-mechanical energy conversion to electric energy, 
through thermodynamic processes. Conversion of limitless energy from the sun into usable electric energy through 
photovoltaic energy conversion is achieved by using solar cells. Commercially, electricity is also being generated 
from renewable energy sources such as wind, biomass, and geothermal sources. Wind energy is converted into 
electrical form through a wind turbine coupled to an electrical generator. Geothermal power generation converts 
energy contained in hot rocks into electricity by using water to absorb heat from rocks and transport it to the 
earth’s surface, where it is converted into electric energy through turbine generators. The majority of biomass 
electricity is generated using a steam cycle where biomass material is first converted into steam in a boiler; the 
resultant steam is then used to turn a turbine connected to a generator. 

Electricity permits the source of generation to be remote from the point of application. Electric energy 
transmission systems are varied, such as power transmission systems and electronic communication systems. 
Electric energy for conversion into light energy, heat energy, and mechanical energy for use in industries, 
commercial establishments, and households would require bulk transmission of electric power from the source, 
which produces energy, to the load centre, where the electric energy is utilized. Electrical power transmission 
systems consist of chains of transmission towers on the earth’s surface, from which the line conductors carrying 
current are suspended by porcelain insulators.

An electric system may be viewed as consisting of generating devices, transformers, and transmission systems 
which interconnect terminal equipment for converting electrical energy into light, heat, or mechanical energy 
and vice versa. All devices and equipment can be represented by idealized elements called circuit elements. 
These elements can be interconnected to form networks, which can be used for modelling and analysing the 
system behaviour. Conversely, networks may be designed to achieve the required performance from a system.

Electrical engineering is concerned with the study of all aspects of electric power, i.e., its generation, 
transmission, and utilization. Therefore, it is necessary to become familiar with the basic concepts and terms 
associated with electricity. 

1.2 ATOMIC STRUCTURE AND ELECTRIC CHARGE 
Atom is the smallest particle of an element. As per Bohr–Rutherford’s planetary model of atom, the mass of 
an atom and all its positive charge is concentrated in a tiny nucleus, while negatively charged electrons revolve 
around the nucleus in elliptical orbits like planets around the sun (see Fig. 1.1). The nucleus contains protons 
and neutrons. A neutron carries no charge and its mass is 
1.675 ¥ 10-27 kg, while a proton carries a positive charge 
+e and its mass is 1.672 ¥ 10-27 kg. The electron carries a 
negative charge -e = 1.602 ¥ 10-19 C and its mass is 9.109 
¥ 10-31 kg. Thus an electron is lighter than a proton by a 
factor of about 1840. There are exactly as many protons 
in the nucleus of an atom as planetary electrons. Thus, 
the nucleus of an atom can be viewed as a core carrying a 
positive charge, and the negative charge of the encircling 
electrons is equal to the positive charge of protons.

An atom as a whole is electrically neutral. The orbits for 
the planetary electrons are called shells or energy levels. 
The electrons in successive shells named K, L, M, N, O, P, 

NucleusElectron

Fig. 1.1 Structure of an atom
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Introduction to Electrical Engineering 3

and Q are at increasing distance outwards from the nucleus. Each shell has a maximum number of electrons 
for stability. For most elements, the maximum number of electrons in a filled inner shell equals 2n2, where n 
is the shell number in sequential order outward from the nucleus. Thus the maximum number of electrons in 
the first shell is 2, for the second shell is 8, for the third shell is 18, and so on. These values apply only to an 
inner shell that is filled with its maximum number of electrons. To illustrate this rule, a copper atom with  29 
electrons is chosen. In this case, the number of electrons in the K, L, M, and N is 2, 8, 18, and 1, respectively. 

1.3 CONDUCTORS, SEMICONDUCTORS, AND INSULATORS
As stated in the preceding section, electrons revolve in orbits around the nucleus. The electrons closer to the 
nucleus possess lower energies than those further from it, which is very much similar to a mass m possessing 
increasing potential energy as its distance above the earth’s surface increases. Thus the position occupied 
by an electron in an orbit signifies a certain potential energy. Due to the opposite charge, there is a force of 
attraction between the electron and the nucleus. The closer an electron is to the nucleus, more strongly it is 
bound to the nucleus. Conversely, further away an electron is from the nucleus, lesser is the force of attraction 
between the electron and the nucleus. Since the bond between the outer electrons and the nucleus is weak, it 
is easy to detach such an electron from the nucleus.

When many atoms are brought close together, the electrons of an atom are subjected to electric forces of 
other atoms. This effect is more pronounced in the case of electrons in the outermost orbits. Due to these 
electric forces, the energy levels of all electrons are changed. Some electrons gain energy while others lose 
it. The outermost electrons suffer the greatest change in their energy levels. Thus the energy levels, which 
were sharply defined in an isolated atom, are now broadened into energy bands. Each band consists of a large 
number of closely packed energy levels. In general, two bands result, namely, the conduction band associat-
ed with the higher energy level and the valence band. A region called forbidden energy gap separates these 
two bands. Each material has its own band structure. Band structure differences may be used to explain the 
behaviour of conductors, semiconductors, and insulators.

In metals, atoms are tightly packed together such that the electrons in the outer orbits experience small, but 
significant, force of attraction from the neighbouring nuclei. The valence band and the conduction band are 
very close together or may even overlap. Consequently, by receiving a small amount of energy from external 
heat or electric sources the electrons readily ascend to higher levels in the  conduction band and are available 
as electrons that can move freely within the metal. Such electrons are called free electrons and can be made 
to move in a particular direction by applying an external energy source. This movement of electrons is really 
one of negative electric charge and constitutes the flow of  electric current. In metals the density of electrons 
in the conduction band is quite high. Such metals are categorized as conductors. In general metals are good 
conductors, with silver being the best and copper being the next best.

In semiconductors the valence and conduction bands are separated by a forbidden gap of sufficient width. 
At low temperatures, no electron possesses sufficient energy to occupy the conduction band and thus no move-
ment of charge is possible. At room temperatures it is possible for some electrons to gain  sufficient energy 
and make the transition to the conduction band. The density of electrons is not as high as in metals and thus 
cannot conduct electric current as readily as in conductors. Carbon, germanium, and silicon are semiconductors 
conducting less than the conductor but more than the insulators.

A material with atoms that are electrically stable, that is, with the outermost shell complete, is an insulator. 
In such materials the forbidden gap is very large, and as a result the energy required by the electron to cross 
over to the conduction band is impractically large. Insulators do not conduct electricity easily, but are able to 
hold or store electricity better than conductors. Insulating materials such as glass, rubber, plastic, paper, air, 
and mica are also called dielectric materials. 
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4 Basic Electrical Engineering 

1.4 ELECTROSTATICS
Electrostatics is associated with materials in which electrical charge moves only slowly (insulating materials) 
and with electrically isolated conductors. Charges are static as insulation and isolation prevent easy migration 
of charge. Electrostatic phenomena arise from the forces that electric charges exert on each other. There are 
many examples as simple as the attraction of the plastic wrap to one’s hand after it is removed from a package, 
to the operation of photocopiers. 

Electrostatics involves the buildup of charge on the surface of objects due to contact with other surfaces. 
Although exchange of charge happens whenever any two surfaces contact and separate, the effects of charge 
exchange are usually  noticed only when at least one of the surfaces has a high resistance to electrical flow. 
This is because the charges that transfer to or from the highly resistive  surface are more or less trapped there 
for a long enough time for their effects to be observed. These charges then remain on the object until they 
either bleed off  the ground or are quickly neutralized by a discharge. 

The space surrounding a charged object is affected by the presence of the charge and an electric field is 
established in that space. A charged object creates an  electric field—an alteration of the space or field in the 
region that surrounds it. Electric field is a vector quantity whose direction is defined as the direction in which 
a positive test charge would be pushed when placed in the field. Thus, the electric field direction about a pos-
itive source charge is always directed away from the positive source. And the electric field direction about a 
negative source charge is always directed toward the negative source.

1.4.1 Coulomb’s Law 
Coulomb’s law states that the force of attraction or repulsion F, between two charges q1 and q2 coulombs, 
concentrated at two different points in a medium, is directly proportional to the product of their magnitudes and 
inversely proportional to the square of the distance r between them. Mathematically, it may be expressed as

 F
q q
r

=
1

4

1 2

2pe
   newton (or N)  (1.1)

where e is the absolute permittivity of the surrounding medium and is given by
	 e = e0er (1.2)
where e0 is the permittivity of free space and is equal to 8.84 ¥ 10-12 F/m; er is the relative permittivity of the medium.

If the charges are of like polarity, the force between them is repulsive, and if the charges are of opposite 
polarity, the force is attractive.

1.4.2 Electric Field Intensity 
When a stationary electric charge is placed within an electrostatic field, it experiences a force of attraction 
or repulsion depending on the nature of the charge and its position in the field. The ratio of the force exerted 
on the charge to the magnitude of the charge is defined as the electric field intensity. Thus, if a charge of 
magnitude q coulomb, when placed within an electric field, experiences a force of F newton, then the electric 
field intensity E will be given by

 E F
q

= N/C or V/m  (1.3)

The force F experienced by charge q2 due to the presence of charge q1 is given by Eq. (1.1). Hence, the 
field strength at the point where change q2 is located will be [from Eq. (1.3)] 

 
E =

F
q2

N m/C or V/

Substituting for F from Eq. (1.1) in the above equation yields

 E
q q

r q r
= ¥ =1 2

2
2

24

1

4p e p e
q1    N/C  or V/m  (1.4)

© Oxford University Press. All rights reserved.

Oxfo
rd

 U
niversi

ty
 Pre

ss



Introduction to Electrical Engineering 5

Example 1.1  Find the force in free space between two like point charges of 0.1 C each and placed 1 m apart.
Solution Using Eq. (1.1), the force may be obtained as

 F = 0 1 0 1

4 8 84 10 112

. .

.

¥
¥ ¥ ¥-p

 = 9 ¥ 107 N

It may be noted that the magnitude of the force is gigantic. This calculation shows that 0.1 C of electric charge is a 
very high value and is normally not encountered in engineering computations.

1.4.3 Electric Potential and Potential Difference  
Moving a positive test charge against the direction of an electric field would  require work by an external force. 
This work would in turn increase the potential energy of the charge. On the other hand, the movement of a 
positive test charge in the direction of an electric field would occur without the need for work by an external 
force. This motion would result in the loss of potential energy of the charge. Potential energy is the stored 
energy of position of a charge and it is related to the location of the charge within a field.

The above situation finds an analogy in mechanics where work has to be done against the gravitational 
force in raising a mass to some height above sea level. The greater the mass, the greater is the potential energy 
possessed by the mass.

While electric potential energy has a dependency upon the charge experiencing the electric field, electric 
potential is purely location dependent. It is the potential energy per charge.

The electric potential at any point within an electric field is defined as the amount of work done against the 
electric field (or the energy required) to bring a unit positive charge from infinity to that point, or alternatively, 
from a place of zero potential to the point. The unit of potential is volt, and 1 volt is equal to 1 joule/coulomb. 
An alternate name of this quantity, voltage, is named after the Italian physicist Alessandro Volta. 

The potential difference between two points within an electric field is the work done by the field in shifting 
a unit positive charge from one point to the other. It is to be noted that positive charge always flows from 
higher potential point to lower potential point, whereas a negative charge flows from a lower potential point 
to higher potential point. 

Both potential and potential difference are scalar quantities as these are position dependent in a field but 
are not dependent on the path by which the position is reached.

The total work per unit charge associated with the motion of charge between two points is called voltage. 
If v is the voltage in volts, w is the energy in joules, and q is the charge in coulombs, then

v dw
dq

=    J/C (1.5)

Example 1.2  Two charges Q1 = 2 ¥ 10-9 C and Q2 = 3 ¥ 10-9 C are spaced 6 m apart in air as shown in  
Fig. 1.2(a). Derive an expression for the net force on a unit positive charge Q at point A, located at x m from Q1. If 
A and B are respectively located 1 m and 4 m away from the charge Q1 as shown in Fig. 1.2(b), compute the voltage 
VAB between the points A and B.

4 m
1 m

6 m 6 m

Q = 1C

x m

B

(a) (b)

A
A

(6 – ) mx

Q2 = 3 10 C¥ –9Q1 = 2 10¥ C
–9 C

–9
Q1 = 2 10¥ Q2 = 3 10 C¥ –9

 Fig. 1.2

© Oxford University Press. All rights reserved.

Oxfo
rd

 U
niversi

ty
 Pre

ss



6 Basic Electrical Engineering 

Solution The force of repulsion between Q and Q1 at point A, directed away from Q1, is
1

4 8 84 10

2 10 18
12

9

2 2p ¥ ¥
¥ ¥ =-

-

. x x
  N

Similarly, the force of repulsion between Q and Q2 at point A, directed away from Q2, is 
1

4 8 84 10

3 10

6

27

6
12

9

2 2p ¥ ¥
¥ ¥

-( )
=

-( )-

-

. x x
  N

The net force on Q, directed away from Q2, is given by

F
x x x x

=
-( )

- =
-( ) -

È

Î

Í
Í

˘

˚

˙
˙

27

6

18
9

3

6

2
2 2 2 2

   N

The work done in moving Q from point A to point B is given by

W Fdx
x x

dx
x xBA

a

b

= =
-( )

-
È

Î
Í
Í

˘

˚
˙
˙

=
-( ) +

È

Î
Í

˘

˚
˙ = -Ú Ú9

3

6

2
9

3

6

2
5

2 2

1

4

1

4

..4  J

Since voltage is defined as work done per unit charge, the voltage between points A and B is given by

V W
QBA
BA= = -5 4.   J/C  or V

Then,  VAB = - VBA = 5.4 V

1.4.4 Electric Flux 
An electric field exists in space between a positively and a negatively 
charged body. The presence of an electric field is shown by certain imagi-
nary lines through space. They are called flux lines. Conventionally, they 
radiate from a positive charge and converge on equal quantity of negative 
charge. The electric flux lines are not closed on themselves as a positive 
and negative charge cannot exist simultaneously. Electric flux lines of 
an isolated charged conductor are shown in Fig. 1.3.

Both electric charge q and flux y are measured in coulomb, and one 
coulomb of positive charge radiates one coulomb of flux.

1.4.5 Electric Flux Density 
Electric flux density D at any point in a medium is defined as the flux y 
(in  coulomb) per unit area a (in m2), at right angles to the direction of the flux. Thus,

D
a

q
a

 = =
y

 C/m2 (1.6)

From Eq. (1.4), electric field intensity E at a distance r from the centre of a charged body of charge q is

E q
r

=
4 2p e

or e
p

E q
r

=
4 2

(1.7)

Now, the electric flux radiating from the charged body is also q coulombs, and 4pr2 is the total surface 
area of the sphere, with the centre at the centre of the charged body and a radius of r. The electric flux density 
is given by

D q
r

=
4 2p

(1.8)

+q

Fig. 1.3  Electric flux lines of an 
isolated charged conductor
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Introduction to Electrical Engineering 7

From Eqs. (1.7) and (1.8), we get the following relation:
 D = e	E (1.9)

1.4.6 Gauss’ Law 
Gauss’ law states that the surface integral of the electric flux density over a closed surface enclosing a specific 
volume is equal to the algebraic sum of all the charges enclosed within the surface, i.e.,

D ds q = ÂÚ (1.10)

1.4.7 Electric Field Due to a Long Straight Charged Conductor 
A long conductor, having uniform charge q coulombs per metre, is 
shown in Fig. 1.4. The electric flux will be radial in all directions 
perpendicular to the conductor. 

Let a point be chosen at a perpendicular distance r from the 
conductor. The total charge enclosed by an elementary cylindrical  
surface of length dl will be q ¥ dl, and the total flux y coming out of 
the cylindrical surface will be 
	 y = q ¥ dl
and the flux density D on the  cylindrical surface is 

D
r dl

q dl
r dl

q
r

= = =
y

p p p2 2 2

 

Then, the field intensity E is given by

E D q
r

= =
e p e2

  V/m (1.11)

1.4.8 Electric Field Between Two Charged Parallel Plates 
Two parallel plates, with charge +q on one plate and charge -q on the other 
plate, are shown in Fig. 1.5. The cross-sectional area of each plate is a me-
tre2. The flux lines in this case will be perpendicular to the charged plates. 

The total flux y = qC and the flux density  inside the medium is 

D
a

q
a

= =
y

 
and the field intensity is

E D q
a

= =
e e

  V/m (1.12)

1.4.9 Electric Field of a Uniformly Charged Sphere 
A hollow metallic sphere with total charge q coulombs is shown in Fig. 1.6. 
Electric field intensity inside the hollow sphere is zero because of the fact that 
the electrical charge resides at the surface of the sphere only. Therefore, the 
electric field  intensity outside the charged sphere is to be determined. 

The total electric flux y going out of the charged sphere is y = q. The flux 
density D at a distance r from the centre of the sphere can be determined by 
considering a spherical shell of radius r with the same centre as the centre of the 
sphere. The surface area of this spherical shell is 4pr2 and the flux density will be

D
r

q
r

= =
y
p p4 42 2

+ coulombq
per metre

dl

r

Fig. 1.4  Electric field around a long 
charged conductor

+q q-

Fig. 1.5  Electric field of parallel 
charged conductors

+
+

+

+

+

+

+

+

+

+

q

Fig. 1.6  A hollow metallic 
charged sphere
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8 Basic Electrical Engineering 

Also, the electric field intensity is

E D q
r

= =
e p e4 2

  V/m (1.13)

1.5 ELECTRIC CURRENT
In an isolated metallic conductor, such as a length of copper wire, numerous free electrons exist in the conduction 
band and yet no current flows. Due to interactive forces between the free electrons themselves and with the 
positive ions the  electrons are in motion which is essentially random in nature, and at any cross section of 
the copper wire the net movement of electrons is zero. In conductors, an orderly movement of electrons in a 
given direction can be achieved by  applying an external energy source across the ends of the conductor. This 
makes  current to flow across the wire/conductor.

Figure 1.7 shows an arrangement in which an 
electrochemical cell, commonly called a battery, is 
connected externally by a conducting wire. Initially, 
when the energy source is not connected externally, 
due to the chemical reaction in the battery a large 
number of electrons gather around one electrode, 
called cathode, giving it an excess of negative charge. 
The other electrode, called anode, has an excess 
of positively charged nuclei, thereby, charging it 
positively. The anode is at a higher potential than 
the cathode. When a conducting wire is connected 
externally to the battery terminals, electrons in the 
conduction band are set in motion by the electric force due to accumulated charges at the battery terminals. The 
motion of these electrons is periodically interrupted by collisions with static  atoms and ions.  However, at any 
instant of time the flow of charge at the conductor cross section is constant. There is no accumulation of charge 
in the conductor; as many charges enter the cross section as leave it. The constant flow of charges constitutes 
electric current. As long as the chemical reactions in the battery maintain the anode terminal at a higher potential 
with respect to the cathode terminal, the flow of current continues. Further, the greater the potential difference 
across the battery terminals, the greater is the accumulated charge, the rate of flow of charge, and the current. If 
the metallic wire is disconnected from the battery terminals, its electrical neutrality is preserved.

Thus it may be said that the flow of electric current is associated with the movement of electric charge. 
Flow of electric current in a conductor is possible only when it is connected to the terminals of an electric 
energy source, such as a battery, and there exists a potential difference across its terminals.

Electric current is defined as the time rate change of charge passing through a cross-sectional area of a 
conductor. If Dq coulomb is the amount of charge flow in Dt seconds, then the average current iav over a period 
of time, the instantaneous current i, and the charge q transferred from time t0 to t1 are given by

iav = D
D

q
t

 C/sec (or amperes) (1.14)

 i = dq
dt

 C/sec (1.15)

or q = i dt
t

0Ú  C (1.16)

The unit of current is called ampere, named after the French scientist Andre Marie Ampere. A current of 1 A 
means that the electric charge is flowing at the rate of 1 C/sec.

Current

Energy source

Fig. 1.7 Flow of electrons and current
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 Introduction to Electrical Engineering 9

Currents have direction. In conductors the current consists of the movement of electrons. Conventionally, 
a positive current is taken to be a flow of positive charge in the direction of a reference arrow used to mark 
the direction of  the current flow, as shown in Fig. 1.7. Thus, the positive direction of the flow of current is 
taken as opposite to that of the direction of the movement of electrons.

Example 1.3  In a metallic wire, 1019 electrons drift across a cross section per second. What is the average current 
flow in the wire?
Solution Charge on one electron = 1.6 ¥ 10-19 C
From Eq. (1.14),

 Iav = Total charge movement per second = 1.6 ¥ 10-19 ¥ 1019 
  = 1.6 C/sec = 1.6 A  

1.6 ELECTROMOTIVE FORCE
In an isolated metallic conductor, free electrons, which are loosely bonded with their nuclei, can be made to 
flow in a given direction by applying an electric pressure across the ends of the conductor. Such a pressure is 
provided by an external energy source, for example, a battery.  

Due to the chemical reactions inside an electrochemical cell, commonly called a battery, separation of 
electric charges takes place. Negative charges accumulate at one terminal, the cathode, and positive charges 
accumulate at the other terminal, the anode. As the charges of unlike polarity attract each other, work has to be 
done by an external agency against these attractive forces to separate them. In the case of a battery, the work 
is done chemically. The greater the number of charges that are separated, the greater is the work that has to 
be done to achieve this separation and the greater is the potential energy of the separated charges. 

The work done per unit charge is a measure of the amount of accumulated charge or a measure of the po-
tential energy that has been established. The work done per unit charge in a battery is the potential difference 
(pd) between the terminals of the battery.

The pd between the battery terminals is known as the electromotive force, or emf. The emf represents the 
driving influence that causes a current to flow, and may be interpreted to represent the energy that is used 
during passing of a unit charge through the source. The term emf is always associated with energy conversion. 
The emf is usually represented by the symbol E and has the unit volt. When the battery is connected externally 
through a conductor to a load, energy transfer to the load commences through the conductor. The energy transfer 
due to the flow of unit charge between the two points in the circuit is termed as potential difference. When all 
the energy is transferred to the load unit, the pd across the load unit becomes equal to that of the battery emf.

In view of this discussion, it may be stated that both emf and pd are similar entities and have the same 
units. Thus emf is associated with energy while pd causes the passage of charge, or current. Both potential 
and potential difference are scalar quantities.

The emf and pd are represented in a diagram following 
certain conventions. Each is indicated by an arrow, as shown 
in Fig. 1.8. The arrowhead in each case points to a higher 
potential. It may be noted that the current leaves the source 
of emf at the positive terminal and therefore the direction of 
current flow is the same as that of the emf arrow. The current 
enters the load at the positive terminal, and thus the direction 
of current is opposite with respect to the pd arrow of the load.

The unit of pd is volt and the symbol V is used to represent the pd. A volt is defined as the potential difference 
between two points of a conductor carrying a current of 1 A, when the power dissipated between the points 
is 1 W. As the pd is measured in volts, it is also termed as voltage drop.

+ Source emf
E V

Load pd

Load
unit

Source

Current flow

Fig. 1.8 Conventions of representing emf and pd
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10 Basic Electrical Engineering 

1.7 ELECTRIC POWER
Power is defined as work done or energy per unit time. If force F newton acts for t seconds through a distance 
d metre along a straight line, then the work done is  F ¥ d joules. Then the power p either generated or dissi-
pated by a circuit element can be represented by the following relationship:

 p F d
t

F u=
¥

= ¥  (1.17)

where u is the velocity in m/sec.
In the case of rotating machines,

 p
N Tr=

2

60

p  (1.18)

where Nr is the speed of rotation of the machine in rpm (revolutions per minute) and T is the torque in N m.

 Power = work

time

work

 charge

 charge

 time
voltage current= ¥ = ¥   (1.19)

The unit of power is J/sec or watt (after the Scottish engineer, James Watt). The unit of energy is joule or 
watt-second. Commercially, the unit of energy is  kilowatt-hour (kWh). It represents the work done at the rate 
of 1 kW for a  period of 1 h. The electric supply authorities refer 1 kWh as one ‘unit’ for billing  purposes.

Alternatively, if the current flowing between two points in a conductor is i and the voltage is v, then from 
the definitions of current and voltage given in Eqs (1.15) and (1.16), it is apparent that the product of current 
and voltage is power p dissipated between two points in the conductor carrying the current. Thus,
 p = v ¥ i (1.20)

   = dw
dq

dq
dt

¥ ¥,   
joules

coulomb

coulombs

seconds 

     =
dw
dt

,    
joules

second
  or  watts (1.20a)

Just like voltage, power is a signed quantity. Usually the electrical engineering community adopts the pas-
sive sign convention. As per this convention, if positive current flows into the positive terminal of an element, 
the power dissipated is positive, that is, the element absorbs power; while if the current leaves the positive 
terminal of an element, the power dissipated is negative, that is, the element delivers power.

Example 1.4  A circuit delivers energy at the rate of 30 W and the current is 10 A. Determine the energy of each 
coulomb of charge in the circuit.
Solution From Eq. (1.20)

 v = 
p
i

= 30

10
 = 3 V

Also, v = 
p
i

dw
dt

dt
dq

dw
dq

= ¥ =

\ dw = v ¥ dq
If i = 10 A, dq = i ¥ dt = 10 ¥ 1 = 10 C, then
 dw = 3 ¥ 10 = 30 J
Therefore, the energy of each coulomb of charge is 30/10 = 3 J.

Example 1.5  An electric motor is developing 15 kW at a speed of 1500 rpm. Calculate the torque available at 
the shaft.
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Introduction to Electrical Engineering 11

Solution Substituting into Eq. (1.18), 15,000 W = T ¥ 2p ¥ 1500

60

\ T = 95.45 Nm

1.8 OHM’S LAW
This law is named after the German mathematician Georg Simon Ohm who first enunciated it in 1827. It 
states that at constant temperature, potential difference V across the ends of a conductor is proportional to 
the current I flowing through the conductor. Mathematically, Ohm’s law can be stated as
 V µ I or V = R ¥ I

or R = V
I

(1.21)

In Eq. (1.21), R is the proportionality constant and is the resistance of the conductor. Its unit is ohm (W):
 1 W = 1 V/A (1.22)

It may be noted that subsequently it was established that Ohm’s law could not be applied to networks 
containing unilateral elements (such as diodes), or non-linear elements (such as thyrite, electric arc, etc.). A 
unilateral element is the one that does not exhibit the same V-I characteristic when the direction of the flow of 
current through it is reversed. Similarly, in non-linear elements the V-I characteristic is not linear.

Using a dc source, voltaic cell, Ohm achieved the experimental verification of his law. Later experiments 
with time-varying sources showed that this law is also valid when the potential difference applied across a 
linear resistance is time-varying. In this case, Eq. (1.21) is written as
 v = R ¥ i (1.23)
where v and i are instantaneous values of the potential difference and current, respectively.

1.9 BASIC CIRCUIT COMPONENTS
Resistor, inductor and capacitor are the three basic components of a network. A resistor is an element that 
dissipates energy as heat when current passes through it. An inductor stores energy by virtue of a current 
through it. A capacitor stores energy by virtue of a voltage existing across it. The behavior of an electrical  
device may be approximated to any desired degree of accuracy by a circuit formed by interconnection of these 
basic and idealized circuit elements. 

1.9.1 Resistors
A resistor is a device that provides resistance in an electric circuit. As already stated in Section 1.5, ordinarily 
the free electrons in a conductor undergo random movement but the net movement of electrons is zero and 
hence this does not result in a net current flow. The free electrons in a conductor can be made to flow in a 
particular direction by applying an external voltage source. The application of the voltage source produces an 
electric field within the conductor, which produces a directed motion of free electrons. The motion of these 
free electrons is directed opposite to the electric field. During their motion these electrons collide with the 
fixed atoms in the lattice structure of the material of the conductor. Such collisions result in the production of 
irreversible heat loss. Thus resistance is the property of a circuit element which offers hindrance or opposi-
tion to the flow of current and in the process electric energy is converted into heat energy. Electric resistance 
is analogous to pipe friction in a hydraulic system and friction in a mechanical system. The resistance of a 
conductor opposes the current, pipe friction opposes the water flow through the pipe, and friction opposes 
the motion of a mechanical system, and the energy dissipated in overcoming this opposition appears as heat.

A physical device whose principal electrical characteristic is resistance is called resistor. A resistor is said 
to be linear if it satisfies Ohm’s law, that is, the current through the resistor is proportional to the pd across it. 
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12 Basic Electrical Engineering 

If the magnitude of resistance varies with the voltage or current, the resistor is said to be non-linear. Resistors 
made of semiconductor materials are non-linear resistors.

The resistance of a resistor depends on the material of which the conductor is made and the geometrical 
shape of the conductor. The resistance of a conductor is proportional to its length l and inversely proportional 
to its cross-sectional area a. Therefore, the resistance of a conductor can be written as

 R R l
µ =

¥l
a a

   or    
r  (1.24)

The proportionality constant r is called the specific resistance or resistivity of the conductor and its value 
depends on the material of which the conductor is made. Equation (1.24) is valid only if the current is uniformly 
distributed throughout the cross section of the conductor. In Eq. (1.24), if l = 1 m, a = 1 m2, then 	r = R. Thus 
specific resistance is defined as the resistance of a conductor having a length of 1 m and a cross section of  
1 m2. The unit of resistivity can be obtained as under:

 r =
¥ ¥R a
l

, 
ohm metre

metre

2

 = ohm-metre (W m)

The inverse of resistance is called conductance and the inverse of resistivity is called specific conductance 
or conductivity. The symbol used to represent conductance is G and conductivity is s. Thus, from Eq. (1.24), 
conductivity s = 1/r, and its units are siemens per metre or mho.

 G
R

a
l

a
l

a
l

= = = ¥ = ¥
1 1

r r
s

 
 mho (1.25)

Example 1.6  Find the resistance of stranded annealed copper wire 200 m long and 25 mm2 in cross section. 
Resistivity of copper is 1.72 ¥ 10-8 W m.
Solution

 
R l

a
= = ¥ ¥

¥
=

-

-
r 1 72 10 200

25 10
0 1376

8

6

.
. W

Example 1.7  Find the resistance of the semicircular copper section, shown in Fig. 1.9, between the equipotential 
faces A and B. The inner radius is 6 cm, radial thickness 4 cm, and axial thickness 4 cm.

Solution The mean radius of the semicircular section is
 6 + 2 = 8 cm = 0.08 m

Then, the mean length is l = p ¥ r = p ¥ 0.08
Area of the cross section a = 0.04 ¥ 0.04 = 0.0016 m2

Resistivity of copper r = 1.72 ¥ 10-8 W m

Therefore, the resistance R l
a

= ¥ = ¥ ¥ ¥ = ¥ =
-

-r 1 72 10 0 08

0 0016
270 286 10 2 703

8
8. .

.
. .

p mW W

Example 1.8  A coil consists of 4000 turns of copper wire having a cross-sectional area of 0.8 mm2. The mean 
length per turn is 80 cm. The resistivity of copper at normal working temperature is 0.02 m Wm. Calculate the 
resistance of the coil and the power dissipated when it is connected across a 230-V dc supply.
Solution

 
R l

a
= ¥ = ¥ ¥ ¥ ¥

¥
=

- -

-
r 0 02 10 4000 80 10

0 8 10
80

6 2

6

. ( )

.
W

 
Now, power dissipated = V ¥ I = 230 ¥ 230/80 = 661.25 W

A B

Fig. 1.9
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 Introduction to Electrical Engineering 13

Example 1.9  An aluminium wire 7.5 m long is connected in parallel with a copper wire 6 m long. When a current 
of 5 A is passed through the combination, it is found that the current in the aluminium wire is 3 A. The diameter of 
the aluminium wire is 1 mm. Determine the diameter of the copper wire. Resistivity of copper is 0.017 mW m and 
that of aluminium is 0.028 mW m.
Solution The resistance of aluminium wire is

 RAl = r
p

Al Al

Al

 ¥ = ¥ ¥ =
-

-

l
a

0 028 10 7 5

4
10

0 2675
6

3 2

. .

( )

. W

The potential drop across aluminium wire is 0.2675 ¥ 3 = 0.8025 V. Then the potential drop across the copper wire 
is also 0.8025 V. Therefore,

Resistance of copper wire = 0 8025

2

.  = 0.40125 W

The cross section of copper wire is

 rCu Cu

Cu

2 
m

l
R

= ¥ ¥ = ¥
-

-0 017 10 6

0 40125
0 2542 10

6
6.

.
.

Then p
4

2( )dCu
6 0.2542 10= ¥ -

\ dCu = 0.569 ¥ 10-3 m = 0.569 mm

Example 1.10  A porcelain cylinder 5 cm in diameter is wound with a bare high resistance wire having a resistance 
of 1 W m length and 1 mm2 cross section. The distance between consecutive turns equals the diameter of the wire. 
If the external surface of the cylinder (excluding the ends) can dissipate 0.32 W/cm2 at the permitted temperature 
rise, find the length of the cylinder and the diameter and length of wire for a loading of 100 W and a current of 1 A.
Solution The area required to dissipate 100 W = 100/0.32 = 312.5 cm2

Let the length of the cylinder be L cm, length of the wire be l cm, and the diameter of the wire be d cm. Then

 L =
¥

=
¥

= ª312.5

(diameter of cylinder)
 cm  cm

p p
312 5

5
19 846 20

.
.

Resistance of the wire, R = Load, watts

current( )2
 = 100

12
 = 100 W

Spacing between two consecutive turns = d cm
Distance along the axis of the cylinder between consecutive turns = 2d cm

Therefore, Number of turns = L
d d d2

20

2

10
= =

 Length of 1 turn of wire = p ¥ 5 cm

 Length of wire l = 
10 5 50¥ ¥ =p p

d d
 cm

Now, the resistance of wire of length 1 m and area of cross section 1 mm2  is 1 W. Then,

	 r = 1 1 mm

1m

1 10 cm

100 cm
10  cm

2 2 2
4W W W¥ = ¥ =

-
-

\ R
d d d

= = ¥ ¥
¥

= ¥- -
 100 

10 4 50 4 2 10
2

2

3

p
p
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14 Basic Electrical Engineering 

Then, d 3 = 2 ¥ 10-4   or  d = 0.058 cm

and l = 50p
d

 = 50

0 058

p
.

 = 2700 cm = 27 m

1.9.1.1  Temperature Coefficient of Resistance
All current-carrying conductors and resistors dissipate heat when carrying  current. When V volts applied across 
a resistor of R ohm causes a current of  I ampere to flow, the electrical energy absorbed by the resistor is at 
the rate of  V ¥ I or I2R which is converted into heat, thereby causing a temperature rise in the resistor. When 
the resistor becomes warmer than its surrounding medium, it  dissipates heat into the surrounding medium. 
Finally, when the release of heat energy is at the same rate as it receives electric energy, the temperature of 
the resistor no longer rises. All resistors have a power rating, which is the maximum power that can be dis-
sipated without the temperature rise being damaging to the resistor. Thus a 4 W resistor of 100 W can pass a 
current of 20 mA, whereas a 1/4 W resistor of 100 W can allow only 50 mA. If the current level exceeds, the 
resistances are overheated and might burn.

The resistance of most conductors and all metals increases with increase in temperature. However, the 
resistance of carbon and insulating materials decreases with increase in temperature. Certain alloys such 
as constantan (60% copper and 40% nickel) and manganin (84% copper, 12% manganese, and 4% nickel) 
show no change in resistance for a considerable variation in temperature. This makes these alloys ideal for 
the construction of accurate resistances used in resistance boxes. Investigations reveal that a linear variation 
of resistance with temperature for copper prevails over a temperature range -50∞C  to 200∞C. The change in 
resistance is usually proportional to the change in temperature. The temperature coefficient of resistance is the 
ratio of the change in resistance per degree change in temperature to the resistance at some definite (reference) 
temperature and is denoted by the Greek letter a.

Figure 1.10 shows the linear variation of the resistance of copper with the change in temperature. It may 
be seen from the graph that at -234.5∞C its resistance  becomes theoretically zero. If R0 = 1 W is the resistance 
of copper at 0∞C, then  R- 234.5 = 0 W at -234.5∞C, and by definition the temperature coefficient of copper at 
0∞C, a0 is given by

	 a0 = 

R R

R

0 234 5

0

0 234 5

1

234 5

1

-
- - ∞ =

- .

( . ) . C

W

W
 = 0.004264/°C (1.26)

In general, resistance R2 at any temperature t2 can be expressed in terms of resistance R1 at temperature t1 as
 R2 = R1 [1 + a1 (t2 - t1) (1.27)

R
e
s
is

ta
n
c
e
,
R

Temp. in °C0°234.5°

R0

R1

t1 t2

R2

Fig. 1.10 Variation of resistance of copper with temperature

where a1 is the temperature coefficient at temperature t1. Suppose the reference temperature is taken as 0∞C. Then
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Introduction to Electrical Engineering 15

R1 = R0 (1 + a0t1)
R2 = R0 (1 + a0t2)

\ R2 = R1
( )

( )

1

1

0 2

0 1

+
+

a
a

t
t

(1.28)

Equating Eqs (1.27) and (1.28) and simplifying, the value of a1 is given as

	 a1 = 
a
a
0

0 11+ t
(1.29)

Similarly, the specific resistance r varies linearly with temperature. The  expression for r1, the resistivity 
at temperature t1, in terms of r0, the resistivity at 0∞C, will be
	 r1 = r0 (1 + a0t1) (1.30)
Typical values of resistivity and temperature coefficients of resistances at 20°C are given in Table 1.1.

Table 1.1 Resistivity and temperature coefficient

Material Resistivity at 20°C, W m Temperature coefficient, a20
Copper, annealed 1.69 ¥ 10-8 to 1.74 ¥ 10-8 0.00393
Aluminium, hard drawn 2.80 ¥ 10-8 0.0039
Carbon 6500 ¥ 10-8 -0.000476
Tungsten 5.6 ¥ 10-8 0.0045
Manganin 48 ¥ 10-8 0
Constantan (Eureka) 48 ¥ 10-8            0

Example 1.11  A potential difference of 250 V is applied to a copper field coil at a temperature of 15∞C and the 
current is 5 A. What will be the mean temperature of the coil when the current has fallen to 3.91 A, the applied 
voltage being the same as before? The temperature coefficient of copper at 0∞C is 0.00426.

Solution At 15∞C,  R15 = 
250

5
 = 50 W

At t∞C,  Rt = 250

3 91.
 = 63.94 W

Then R
R

t

15

 = 1

1 15

0

0

+ ¥
+ ¥

a
a

t

or 63 94

50

.  = 1 0 00426

1 0 00426 15

+ ¥
+ ¥

.

.

t

Hence t = 84.63∞C.

Example 1.12  If the resistance temperature coefficient of a conductor is a1 at t1°C, derive an expression for the 
temperature coefficient a2 at t2°C in terms of a1 and the temperatures.
Solution From Eq. (1.29), it is seen that

a a
a1

0 11
=

+
0

t
  or  a a

a0
1 11

=
-

1

t

Similarly, a a
a2

0 21
=

+
0

t
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16 Basic Electrical Engineering 

Substitution of a0 in the expression for a2 results in

 
a

a
a
a
a

a
a

a

2

1

1 1

1

1 1
2

1

1 2 1

1

1

1
 

=
-

Ê
ËÁ

ˆ
¯̃

+
-

Ê
ËÁ

ˆ
¯̃

=
+ -

=
+

t

t
t

t t t1
1

1

1( )
( 22 1- t )

1.9.2 Inductors
The electrical element that stores energy in association with a flow 
of current is called inductor. The idealized circuit model for the 
inductor is called an inductance. Practical inductors are made of 
many turns of thin wire wound on a magnetic core or an air core. 
A unique feature of the inductance is that its presence in a circuit is felt only when there is a changing current. 
Figure 1.11 shows a schematic representation of an inductor.

For the ideal circuit model of an inductor, the voltage across it is proportional to the rate of change of 
current in it. Thus if the rate of change of current is di/dt and v is the induced voltage, then

 v µ di
dt

or v = L di
dt

 V (1.31)

In Eq. (1.31) the proportionality constant L is called inductance. The unit of inductance is henry, named after 
the American physicist Joseph Henry. Equation (1.31) may be rewritten as

 L = v
di
dt

 = 
volt second

ampere

-

 or henrys (H) (1.32)

Equation (1.32) can be used to define inductance. If an inductor induces a voltage of 1 V when the current is 
uniformly varying at the rate of 1 A/sec, it is said to have an inductance of 1 H. Integrating Eq. (1.31) with 
respect to time t,

 i = 1
0

0L
v dt i

t
+Ú ( )  (1.33)

where i(0) is the current at t = 0. From Eq. (1.33) it may be inferred that the current in an inductor cannot 
change suddenly in zero time.

Instantaneous power p entering the inductor at any instant is given by

 p = vi = Li di
dt

 (1.34)

When the current is constant, the derivative is zero and no additional energy is stored in the inductor. When 
the current increases, the derivative is positive and hence the power is positive; and, in turn, an additional 
energy is stored in the inductor. The energy stored in the inductor, WL, is given by

 WL =  vidt Li di
dt

dt L idi Li
t tt

= ¥ = =Ú ÚÚ0

2

00

1

2
joule (1.35)

Equation (1.35) assumes that the inductor has no previous history, that is, at t = 0, i = 0. The energy is stored 
in the inductor in a magnetic field. When the current increases, the stored energy in the magnetic field also 
increases. When the current reduces to zero, the energy stored in the inductor is returned to the source from 
which it receives the energy.

Fig. 1.11  Schematic representation of an 
inductor
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 Introduction to Electrical Engineering 17

Example 1.13  A current having a variation shown in Fig. 1.12 
is applied to a pure inductor having a value of 2 H. Calculate 
the voltage across the inductor at time t = 1 and t = 3 sec.
Solution For the period 0 £ t £ 1 sec

Current, i = 10t A

Rate of change of current di
dt

= 10 A/sec

Therefore, at t = 1 sec, voltage across the inductor is

 L di
dt

 = 2 ¥ 10 = 20 V

For the period 1 £ t £ 3 sec

Rate of change of current di
dt

 = -5 A/sec

Therefore, at t = 3 sec, voltage across the inductor is

 L di
dt

 = 2 ¥ -5 = -10 V

Example 1.14  A voltage wave having the time variation 
shown in Fig. 1.13 is applied to a pure inductor having a 
value of 0.5 H. Calculate the current through the inductor 
at times t = 1, 2, 3, 4, 5 sec. Sketch the variation of current 
through the inductor over 5 sec.
Solution For the period 0 £ t £ 1 sec, v = 10 V; i(0) = 0. 
The current i may be expressed using Eq. (1.33) as

 i = 1
0

1

0 5
1 20 20

0 0 0L
v dt i dt dt t

t t t
        0    Ú Ú Ú+ = = =( )

.

Then at  t = 1 sec,  i = 20 ¥ 1 = 20 A
For the period 1 £ t £ 3 sec, v = -10 V; i(1) = 20 A, then current

 i = 1
1

1

0 5
1 20 20 20 20 1 20

1 1 1L
vdt i dt dt t

t t t

Ú Ú Ú+ = - + = - + = - - + 0 (( )
.

)

Then at t = 2 sec,  i = - 20 ¥ (2 - 1) + 20 = - 20 + 20 = 0 A
And at t = 3 sec,  i = - 20 ¥ (3 - 1) + 20 = - 40 + 20 = - 20 A

For the period 3 £ t £ 5 sec, v = 10 V; i(3) = - 20 A,

 i = 
1

3
1

0 5
1 20

3 3L
vdt i dt

t t

Ú Ú+ = -( )
.

0

 = 20 20 20 3 20
3

dt t
t

Ú - = - - ( )

Then at  t = 4 sec,  i = 20 ¥ (4 - 3) - 20 
  = 20 - 20 = 0 A
And at   t = 5 sec,  i = 20 ¥ (5 - 3) - 20 
  = 40 - 20 = 20 A

20

0
1 2 3 4 5

t (sec)

– 20

i (A)

Fig. 1.14 Variation of current through the inductor

v

(V)

10

0 1 2 3 4 5
t

(sec)
–10

Fig. 1.13

(A)
i

10

0 1 2 3 t, sec

Fig. 1.12
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18 Basic Electrical Engineering 

Example 1.15  The voltage waveform shown in Fig. 1.15 is applied 
across an inductor of 5 H. Derive an expression for current in the 
circuit and sketch the current and energy waveforms against time. 
Assume zero initial condition in the circuit.
Solution Using Eq. (1.31), the generalized relation for current 

through the inductor is written as i vdt
t

= Ú1

5 0

For the period 0 £ t £ 1 sec, v = 12 V. Therefore, the current through 
the inductor is given by

i dt t i
t

= = + ( )Ú1

5
12 2 4 0

0

.

At t = 0, i(0) = 0. 
Thus, i = 2.4t
For the period 1 £ t £ 3 sec, v = 18 V. Therefore, the current through the inductor is given by

i dt t i
t

= = + ( )Ú1

5
18 3 6 1 0

0

. .

At t =1.0 sec, i = 2.4 A. Hence,
 2.4 = 3.6 ¥ 1.0 + i(1.0) or i(1.0) = - 1.2 A
The expression for the inductor current during the period 1 £ t £ 3 sec is

i = 3.6t - 1.2
For the period 3 £ t £ 4 sec, v = 12 V. Hence, the current through the inductor is expressed as

i dt t i
t

= = + ( )Ú1

5
12 2 4 3 0

0

. .

At t = 3.0 sec, i = 9.6 A. Hence,
 9.6 = 2.4 ¥ 3.0 + i(3.0) or i(3.0) = 2.4 A

\ i = 24t + 2.4
Energy stored in the various periods is as follows.

12
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Fig. 1.16 Fig. 1.17
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Fig. 1.15
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 Introduction to Electrical Engineering 19

For the period 0 £ t £ 1 sec,  W t tL = ¥ ¥ ( ) =1

2
5 2 4 14 4

2 2. .   J

For the period 1 £ t £ 3 sec, W t t tL = ¥ ¥ -( ) = - +1

2
5 3 6 1 2 32 4 21 6 3 6

2 2. . . . .   J 

For the period 3 £ t £ 4 sec, W t t tL = ¥ ¥ +( ) = + +1

2
5 2 4 2 4 14 4 28 8 14 4

2 2. . . . .   J  

The variation of inductor current and energy with time is sketched in Figs 1.16 and 1.17.

1.9.3 Capacitors
A capacitor is a device that can store energy in the form of a charge separation when it is suitably polarized 
by an electric field by applying a voltage across it. In the simplest form, a capacitor consists of two parallel 
conducting plates separated by air or any insulating material, such as mica. It has the characteristic of storing 
electric energy (charge), which can be fully retrieved, in an electric field. A significant feature of the capacitor 
is that its presence is felt in an electric circuit when a changing 
potential difference exists across the capacitor. The presence of an 
insulating material between the conducting plates does not allow 
the flow of dc current; thus a capacitor acts as an open circuit in 
the presence of dc current. Figure 1.18 shows the schematic rep-
resentation of a capacitor.

The ability of the capacitor to store charge is measured in terms 
of capacitance C. Capacitance of a capacitor is defined as charge 
stored per volt applied and its unit is farad (F). However, for 
practical purposes the unit of farad is too large. Hence, microfarad 
(mF) is used to specify the capacitance of the components and 
circuits.

In Fig. 1.18(b), it is assumed that the charge on the capacitor 
at any time t after the switch S is closed is q coulombs and the 
voltage across it is v volts. Then by definition

 C =  q
v

 coulomb (1.36)

Current i flowing through the capacitor can be obtained as

 i = dq
dt

 = C dv
dt

  ampere (1.37)

Equation (1.37) is integrated with respect to time to get the voltage across the capacitor as

 v = 1
0

0C
i dt v

t
+Ú ( )  (1.38)

where v(0) is an integration constant which defines the initial voltage across the capacitor at t = 0. It may be 
noted from Eq. (1.38) that the voltage across a capacitor cannot change instantaneously, that is, in zero time.

Power p in the capacitor is given as

 p = vi Cv dv
dt

=   watt (1.39)

Energy stored in the capacitor, WC, is given by

 WC = p dt C v dv Cv  Ú Ú= =
1

2

2   joule (1.40)

S

V

(a)

(b)

I C

C

+

+

Fig. 1.18  (a) Schematic representation 
of a capacitor and (b) capacitor 
across a dc source
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20 Basic Electrical Engineering 

From Eq. (1.40) it is evident that the energy stored in the capacitor is dependent on the instantaneous voltage 
and is returned to the network when the voltage is reduced to zero.

As stated earlier, a capacitor consists of two electrodes (plates) separated by an insulating material (dielec-
tric). If the area of the plates is A m2 and the distance between them is d m, it is observed that

 C µ A and C µ 1
d

\ C = e A
d

 (1.41)

where e is the absolute permittivity constant. The absolute permittivity constant depends on the type of dielectric 
employed in the capacitor. The ratio of the absolute permittivity constant of the dielectric e  to the permittivity 
constant of vacuum e0 is called relative permittivity er, that is,

 er = 
e
e0

Hence, e = e0er.
The units for absolute permittivity e can be established from Eq. (1.41) as  under:

	 e = 
C d

A
C d

A
 farads  metres

 metres
farads /metre (F /m)

( ) ( )

( )

¥
=

¥
2

Based on experimental results, the value of the permittivity constant of vacuum has been found to be equal 
to 8.84 ¥ 10-12 F/m. Therefore, the value of er for vacuum is 1.0 and for air is 1.0006. For practical purposes, 
the value of er for air is also taken as 1.

Example 1.16  A voltage wave having a time variation of 20 V/sec is applied to a pure capacitor having a val-
ue of 25 mF. Find (a) the current during the period 0 £ t £ 1 sec,  (b) charge accumulated across the capacitor at  
t = 1 sec, (c) power in the capacitor at  t = 1 sec, and (d) energy stored in the capacitor at t = 1 sec.
Solution (a) Current through the capacitor i may be obtained using Eq. (1.37) as

 i = C
dv
dt

 = 25 ¥ 10-6 ¥ 20 = 500 mA

(b) At t = 1sec, v = 20V. Charge q at t = 1 sec may be obtained using Eq. (1.36) as
 q = C v = 25 ¥ 10-6 ¥ 20 = 500 mC
(c) At t = 1sec, power p = v ¥ i = 20 ¥ 500 ¥ 106= 1 ¥ 10-2  W
(d) At t = 1sec, energy stored in the capacitor, WC, can be obtained using Eq. (1.40) as

 WC = 1

2

1

2
25 10 20 5 102 6 2 3Cv = ¥ ¥ ¥ = ¥- -( ) J

Example 1.17  A current having variation shown in Fig. 1.19 is applied to a pure capacitor having a value of 5 mF. 
Calculate the charge, voltage, power, and energy at time t = 2 sec.
Solution For the period 0 £ t £ 1sec, i = 100 ¥ 10-3 t = 0.1t A

At t = 1sec,  q = i dt t dt t t
t t

t

t

t
t

   
0 0

2

0

1

2
0
1

0 1 0 1
2

0 05 0Ú Ú= = ¥
È

Î
Í
Í

˘

˚
˙
˙

= =
=

=

=
=

. . . [ ] .. [ ] .05 1 0 0 05- = C

 v = q
C C

t dt tt
= =

¥Ú -
1

0 1
0 05

500 100

2

6
.

.
  

 

  = 100 t2 = 100 V

where  t = 1 sec,

i(A)
100 mA

1 2 3 4 t
(sec)

Fig. 1.19
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Introduction to Electrical Engineering 21

 p = v ¥ i = 100 ¥ 0.1 = 10 W

 WC = vi dt t t dt t dt tt t

t

t

0

2

0

3

0

1 4

0

1

4

1

4
1 0Ú Ú Ú= ¥ = =

È

Î
Í
Í

˘

˚
˙
˙

= -
=

=

100 0.01  [ ]] .= 0 25 J

For the period 0 £ t £ 1 sec, i = 0.2 - 0.1t A

At t = 2 sec,  Charge q = qt =1 + idt t dt t tt

t

t

1 1

2 2

1

2

0 05 0 1 0 05 0 2 0 1
2Ú Ú= + - = + - ¥

È
ÎÍ

˘
˚̇ =

=

. ( . ) . . .0.2

  = 0.05 + [0.2(2 - 1) - 0.05(22- 12) ] = 0.05 + 0.05 = 0.1 C

Voltage v = 
q
C C

t dt= + -( )È
Î
Í

˘
˚
˙Ú1

0 05 0 1
1

2

. .0.2

  = 1

500 10
0 05 0 2 0 05

6

2
1
2

¥
+ -- =

=[ . . . ]t t t
t

  = 10

500

10

500
 V

6 6

[ . . ( ) . ( )] .0 05 0 2 2 1 0 05 2 1 0 1 2002 2+ - - - = ¥ =

Power  p = v ¥ i = 200 ¥ 0 = 0 W

Energy   WC = WC.t=1 +  vi dt
1

2

Ú
  = 0.25 + 1

500 10
0 05 0 2 0 05 0 2 0 1

6

2

1

2

¥
+ - ¥ -È

ÎÍ
˘
˚̇-Ú [ . . . ] ( . . )t t t dt 

 = 0.25 + 10

500

6

[ . . . . ]0 01 0 035 0 03 0 0052 3

1

2

+ - +Ú t t t dt

Energy   WC = 0.25 + 10

500
0 01 0 035

2
0 03

3
0 005

4

6 2 3 4

1

2

. . . .t t t t

t

t

+ ¥ - ¥ + ¥
È

Î
Í
Í

˘

˚
˙
˙ =

=

 = 0.25 + 
10

500
0 01125 0 25 22 50 22 75

6

¥ = + =. . . . J

1.10 ELECTROMAGNETISM RELATED LAWS
Some laws related to electromagnetism are discussed in this section.

1.10.1 Magnetic Field Due to Electric Current Flow
Hans Christian Oersted, a Danish physicist, in 1831 discovered that current 
flowing in a conductor generates a magnetic field all around it. He proved 
that the magnetic lines of force due to the current flow in a conductor were 
concentric circles closed on themselves as shown in Fig. 1.20. The direction 
of the magnetic lines of force depends upon the direction of current. The 
convention adopted to show the direction of the current flow is that current 
flowing into the plane of the paper is indicated by a cross sign and current 
flowing out of the plane of the paper is shown by a dot.

Maxwell’s corkscrew rule is a convenient method of determining the direc-
tion of the magnetic field set up by a current-carrying conductor. It states that 
if a right-handed corkscrew is placed along the direction of the current flow, 

¥

Fig. 1.20  Magnetic field due to 
current in a straight  
conductor
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22 Basic Electrical Engineering 

the direction of motion of the hand, which would advance the screw in the direction of the current, gives the 
direction of magnetic field as shown in Fig. 1.21(a).

Another method of determining the direction of the field is to employ the right hand rule. Imagine the cur-
rent-carrying conductor to be held in the right hand with the thumb pointing in the direction of the current with 
the fingers wrapped around it. Then the direction of the fingers points in the direction of the magnetic field.

Magnetic field of a solenoid When a current-carrying conductor is given the shape of circular coils of the 
conductor placed side by side and insulated from one another, it is called a solenoid [see Fig. 1.21(b)]. The 
magnetic field is represented by the dotted lines. If the fingers of the right hand are wrapped around the cur-
rent-carrying conductor with the fingers pointing in the direction of the  current, then the thumb outstretched 
parallel to the axis of the solenoid points in the direction of the magnetic field inside the solenoid.

If an iron rod is placed inside the solenoid coil, as shown in Fig. 1.21(b), and the coil is connected to a 
voltage source, the iron rod is magnetized and behaves like a magnet. The magnetic field becomes hundreds 
of times stronger.

I

(a)

l

S N

+
(b)

Fig. 1.21 (a) Maxwell’s corkscrew rule and (b) solenoid with a magnetic core

1.10.2 Force on a Current-carrying Conductor Placed in a Magnetic Field
If a current-carrying conductor is placed at right angles to the lines of force of a magnetic field, a mechanical 
force will be exerted on the conductor. The magnitude of the mechanical force can be calculated by using 
Ampere’s law. 

1.10.2.1 Ampere’s  Law
When a straight elemental conductor of length l metres and carrying current I2 amperes is placed in the same 
horizontal plane at a distance of r metres from a straight, long conductor carrying current I1 amperes in the 
opposite direction to I2, the small conductor experiences a force of repulsion, F, given by

 F  = 
m
p
I
r

I l1
2

2
  newton (1.42)

  = B I2l  newton (1.43)

where B = m
p
I
r
1

2
  tesla (T) (1.44)

In Eq. (1.44) m is a scalar constant of the medium (called permeability of the medium) and B is the magnetic 
flux density. From Eq. (1.43) it may be noted that the unit of flux density is taken as the density of the magnetic 
field such that a conductor carrying 1 A at right angles to that field experiences a force of 1 Nm. The unit is 
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Introduction to Electrical Engineering 23

named tesla (T) after the famous electrical inventor Nikola Tesla. The units of B may also be found as follows:

 B = newton

ampere metre
=

joule

metre ampere metre¥ ¥ ¥

= watt second

ampere metre
=

volt second

metre
=

weber

metre
or Wb

2 2 2

¥
¥

¥
//m2

From Faraday’s law, it is shown later in Section 1.10.3 that weber = volt ¥ second.
For a magnetic field having a cross-sectional area A m2 and a uniform flux density B tesla, the total flux 

f is given by
	 f = B ¥ A (1.45)

and B = f
A

 Wb/m2 (1.46)

Then, for f = 1 Wb,
 A = 1 m2,  B = 1,  T = 1 Wb/m2

Figure 1.22(a) shows a part of a magnetic field with lines of 
force in the plane of the paper. Figure 1.22(b) shows a conductor 
arranged at right angles to the paper and carrying a current whose 
direction is inwards and produces a magnetic field around the 
conductor in the plane of the paper.  Figure 1.22(c) shows the 
combined effect where the conductor is situated in the magnetic 
field of Fig. 1.22(a). On the right hand side of the conductor, the 
two fields, both due to the permanent magnet and the current-car-
rying conductor, are in the same direction, whereas on the left 
hand side they are in opposition. Thus the effect of the current 
is to transfer some of the lines of force from the left hand side 
to the right hand side of the conductor, resulting in bending of 
some of them, as shown. Since the flux lines behave like lastic 
cords and tend to return to the shortest path, the conductor 
experiences a mechanical force towards the left.

The magnitude of the force on the conductor, F, in the case 
of a conductor of length l metres arranged at right angles to the 
magnetic field B tesla or, Wb/m2, and carrying current I is giv-
en by Eq. (1.43) as
 F = BIl  newton (1.47)

The direction of the force can be determined by Fleming’s left hand rule, which is illustrated in Fig. 1.23. 
The rule states that if the thumb, forefinger, and the 
middle finger of the left hand are stretched and held at 
right angles to each other, with the middle finger pointing 
in the direction of current flow and the forefinger in the 
direction of the magnetic field, then the thumb will point 
in the direction of force on the conductor. As an aid to 
apply Fleming’s left hand rule it may be remembered 
that the forefinger and field associate with each other, the 
middle finger has an i in middle, i also represents current, 
and finally thumb contains an m that is associated with 
motion.

Force

Field

C
urrent

Force

Field

C
urrent

Fig. 1.23 Left-hand rule

(b)(a)

B

Force

( )c

Fig. 1.22  Force on a current-carrying conductor 
placed in a magnetic field
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24 Basic Electrical Engineering 

1.10.3 Faraday’s Laws of Electromagnetic Induction
Michael Faraday in 1831 experimentally demonstrated that a variable magnetic field could produce an electric 
field. He showed that when a conductor is moved in a stationary magnetic field, an emf is produced between 
the ends of the conductor; and if the ends of the conductor are joined by a wire, an induced current flows 
through the conductor. Alternatively, a stationary conductor when placed in a magnetic field that changes with 
time develops an emf across it. This phenomenon is called electromagnetic induction. Based on this, Faraday 
developed the following laws.

Faraday’s first law This law states that whenever the magnetic flux changes with respect to an electrical 
conductor or a coil, an emf is induced in the conductor.

Faraday’s second law This law states that the magnitude of the emf induced in the conductor or the coil by 
electromagnetic induction is directly proportional to the time rate of change of the flux linkages.

The term flux linkages merely means the product of flux in webers and the number of turns with which the 
flux is linked. Let the magnetic flux through a coil of N turns be increased by Df webers in Dt seconds, then 
according to Faraday’s second law the magnitude of the induced emf, e, in the coil will be given by

e µ N
t

d
dt

D
D

f y
µ (1.48)

In the SI system of units, e is given in volts and the constant of proportionality is unity. Hence, 

e = d
dt

N d
dt

y f
= volt (1.49)

It may be noted from Eq. (1.49)

volt = weber

second
or volt second = weber¥

The direction of the induced emf can be determined in two ways, namely, (i) Fleming’s right hand rule and 
(ii) Lenz’s law.

Fleming’s right hand rule To apply the right hand rule, hold the thumb, 
forefinger, and second (or middle) finger at right angles to each other as 
shown in Fig. 1.24. If the thumb points in the direction of motion of the 
conductor and forefinger in the direction of the magnetic field, then the 
second finger gives the direction of the induced emf (voltage).
Lenz’s law German physicist Heinrich Lenz in 1834 enunciated a simple 
rule, presently known as Lenz’s law. The law states that the direction of 
the induced emf is always such that it tends to establish a current which 
opposes the change of flux responsible for inducing that emf. In accordance 
with Lenz’s law, a negative sign is assigned to the expression for emf and 
Eq. (1.49) get modified as

 e = - N 
d
dt
f

(1.50)

1.10.3.1 Types of Induced emf
There are two different ways of producing emf in accordance with Faraday’s laws. First, emf  may be produced by a rela-
tive movement of a conductor or a coil with respect to the magnetic field. Such an emf is called dynamically induced emf  
(motional emf). Second, if the strength of the magnetic field is varied without changing its orientation and a 

Field

Volta
ge

Motion

Fig. 1.24 Right-hand rule
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Introduction to Electrical Engineering 25

conductor or a coil is placed in this field, an emf is induced in 
the conductor or the coil. This emf is called statically induced 
emf (transformer emf).

Dynamically induced emf in a conductor Figure 1.25 
shows an isometric view of a pair of NS poles and the plan 
of a conductor AA placed in the air gap between the pair 
of poles. If the conductor length be l metres and current I 
amperes flows axially into the plane of the paper and B is the 
flux density in tesla, the conductor experiences a force BIl 
newtons tending to move the conductor to the left (Lenz’s law). 
Thus a force of this magnitude is to be applied in the opposite 
direction to move the conductor from position A to position 
B through distance d metres. Work done, W, in moving the 
conductor is given by
 W = BIl ¥ d N m or J

If the movement of conductor A from position A to B takes 
place at a uniform velocity in t seconds, so as to cut at right 
angles the lines of force of the uniform magnetic field of the air gap, then a constant emf, say E volts, is induced 
in it. Electrical power generated due to the movement of the conductor is E ¥ I watts and the corresponding 
energy produced is E ¥ I ¥ t W/sec or joules. As the mechanical energy required for moving the conductor 
horizontally in the air gap is converted into electrical energy, the following equation results:

E ¥ I ¥ t = BIl ¥ d

or E = Bl ¥ d
t

 = Blu (1.51)
where u is the velocity in m/sec.

If the conductor velocity u makes an angle q with the direction of the magnetic field then the emf induced 
is given by
 E = Blu sin q (1.52)

In Eq. (1.51), Bld is the total magnetic flux, f webers, in the area shown shaded in Fig. 1.25.  The conductor 
cuts this flux f when it moves from AA to BB in t seconds. Thus

E volts = f
t

 Wb/sec (1.53)

In general if a conductor cuts a flux of df webers in dt seconds, then the generated emf e volts is given as

e =  d
dt
f V (1.54)

The sign of the emf induced can be determined from the physical considerations. Therefore, the negative sign 
in Eq. (1.54) is left out.

Magnitude of induced emf in a coil Assume a coil of N turns. The flux in it is increased by df webers in 
dt seconds by moving a permanent magnet towards the coil. Since there are N turns in the coil, all the turns 
link this flux. From Eq. (1.49) the emf developed, e, may be written

e = N d
dt

d
dt

f y
= (1.55)

y is called the flux linkage and is equal to Nf.

N

B

S

d
Al

l

d BA

BA

II

Fig. 1.25 Current-carrying conductor moving
across a magnetic field
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26 Basic Electrical Engineering 

Example 1.18  A straight conductor 100 cm long and carrying a direct current of 50 A lies perpendicular to a 
uniform magnetic field of 1.5 Wb/m2 (tesla). Find (a) the mechanical force on the conductor, (b) the mechanical 
power in watts to move the conductor against the force at a uniform speed of 5 m/sec, and (c) the electromotive 
force generated in the conductor.
Solution From Eq. (1.47), F = BIl

(a) Force on the conductor is 1.5 [T] ¥ 50 [A] ¥ 1 [m] = 75 N
(b) The mechanical power to move the conductor against the force is F ¥ u = 75 [N] ¥ 5 [m/sec] = 375 W
(c) From Eq. (1.51) E = B ¥ l ¥ u
The emf generated is 1.5 [T] ¥ 1 [m] ¥ 5 [m/sec] = 7.5 V

Example 1.19  A wire of length 50 cm moves in a direction at right angles to its length at 40 m/s in a uniform 
magnetic field of density 1.5 Wb/m2. Calculate the electromotive force induced in the conductor when the direction 
of motion is (a) perpendicular to the field, (b) inclined at 30° to the direction of the field.
Solution From Eq. (1.52), E = B ¥ l ¥ u ¥ sin q 
When q = 90∞, force on the conductor is 1.5 [T] ¥ 0.5 [m] ¥ 40 [m/sec] ¥ sin 90∞ = 30 V
When q = 30∞, force on the conductor is 1.5 [T] ¥ 0.5 [m] ¥ 40 [m/sec] ¥ sin 30∞ = 15 V

1.11 KIRCHHOFF’S LAWS
Gustav Robert Kirchhoff (1824-1887), a German physicist, published the first systematic description of the 
laws of circuit analysis. These laws are known as Kirchhoff’s current law (KCL) and Kirchhoff’s voltage law 
(KVL). His contribution forms the basis of all circuit analyses problems.

Kirchhoff’s current law states that the algebraic sum of the currents at a node (junction) in a network at 
any instant of time is zero. KCL may be expressed mathematically as

 i j
j

n

=
Â

1
 = 0 (1.56)

where ij represents current in the jth element and n is the number of elements connected to the node k. This 
means that the algebraic sum of the currents meeting at a junction is zero. If the currents entering the node 
are taken as positive, then the currents leaving the node are negative, or vice versa. The KCL may be thought 
of to be a consequence of the conservation of electric charge––charge cannot be created nor destroyed but 
must be conserved.

As an example of KCL, consider the node k in Fig. 1.26 where currents i1, i2, 
i3, i4, and i5 flowing in the five branches meet. For node k, KCL may written 
in the form
 - i1 +  i2  -  i3  +  i4  -  i5 = 0 (1.57)
or i2  +  i4 =  i1 +  i3 +  i5 (1.58)

In Eq. (1.58) currents i2 and i4 are flowing towards node k and hence a pos-
itive sign is assigned to these currents while the currents i1, i3, and i5, which 
leave node k, are negative.

Example 1.20  For the circuit shown in Fig. 1.27 determine the value of i5 for the following values of voltages: 
 v1 = 3 sin t, v2 = 10 sin t, v3 = 10 cos t, i4 = cos t. 
Solution From Eq. (1.37)

i1 = 
1

3

d
dt

 (3 sin t) = cos t

i4

i3
i2

i5

ki1

Fig. 1.26  Applications of 
KCL
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Introduction to Electrical Engineering 27

Applying Ohm’s law,

i2 = 10

5

sin t = 2 sin t

From Eq. (1.31)
10 cos t = 2 di

dt
3

\ i3 = 5 cost dtÚ  = 5 sin t

Applying KCL to the node
- i1 +  i2 - i3 - i4 + i5 = 0

\ i5 = i1 - i2 + i3 + i4
= cos t - 2 sin t + 5 sin t + cos t

 = 3 sin t + 2 cos t
If 3 = K cos j and 2 = K sin j, then K = 5 and j = tan-1(2/3). 
Thus, i5 = 5 sin [t + tan-1(2/3)].

Kirchhoff’s voltage law states that at any instant of time the sum of voltages in a closed circuit is zero. KVL 
may be expressed mathematically as

v j
j

n

=
Â

1
 = 0 (1.59)

where vj represents the individual voltage in the jth element around the closed circuit having n elements.
If the voltage drop from the positive polarity to the negative polarity is assigned a positive sign, then the 

voltage rise from the negative polarity to the positive polarity is assumed negative, or vice versa. KVL is a 
consequence of the fact that no energy is lost or created in an electric circuit. In other words, KVL states that 
in a closed loop, at any instant of time, the algebraic sum of the emfs acting around the loop is equal to the 
algebraic sum of the pds around the loop. 

+

++

+

a

d

b

c

V1

(a) (b)

E
e

i

a

d

b

c

R

iR

+

+ +

+

L

C

1
c

L
di

dt

R1

R3

V3

R2
V2

Úidt

Fig. 1.28 Application of KVL

For the closed loop shown in Fig. 1.28(a) the dc source (battery) causes a constant current flow in the loop. 
Applying KVL, using the sign convention for the positive direction of voltage drop and emf, the following 
expression can be written:

E = V1 + V2 + V3

or V1 + V2 + V3 - E = 0 (1.60)

1
3

F

n1

n2

+

+

+

–
–

–

i4

2 H

i5

i1

i2

i3

n3

5 W

Fig. 1.27
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28 Basic Electrical Engineering 

KVL applies equally well when the source voltage is time-varying, causing a time-varying current flow. 
For the closed loop shown in Fig. 1.28(b) a time-varying voltage source e produces a time-varying current i 
in the closed loop. Then, by KVL the following expression can be written:

e = iR L di
dt C

i dt+ + Ú  
1

(1.61)

Example 1.21  For the closed circuit shown in Fig. 1.29 
determine i3 for the following data: v1= 5 sin t, i2 = 2 cos t,  
v4 = 4 cos t, and i5 = sin t.
Solution The voltage across the capacitor is

v2 =
1

2 2 42C
i dt t dt t    Ú Ú= =cos sin ,

and v5 = R ¥ i5 = 4 sin t
Applying KVL around the closed circuit shown in 
Fig. 1.29,

- v1 + v2 - v3 - v4 + v5 = 0
or v3 = - v1 + v2 - v4 + v5  = - 5 sin t + 4 sin t - 4cos t + 4 sin t = 3 sin t - 4 cos t

Now, v3 = L di
dt

di
dt

3 31

3
=

i3  = 3 3 4 9 12 9 12sin cos cos sin ( cos sin )t t dt t t t t-( ) = - - = - +Ú
Suppose 12 = K cos j and 9 = K sin j. Then K = 15 and j = tan-1(3/4). Therefore,

i3 = - 15(sin j cos t + cos j sin t) = -15 sin (t + j)

Example 1.22  For the circuit shown in Fig. 1.30 determine the values of I2  and VS.
Solution Let the node C be taken as the reference node in Fig. 1.30. Applying KCL to node B,

I3 + I4 = 6 - 4 = 2A
Now, I3 = I4 = 1 A, being current through two 2 W resistances in parallel across nodes A and B. Then the potential 
of node B with respect to node C is

VB = 2 ¥ 4 = 8 V
The voltage drop across nodes B and A, 

VBA = I4 ¥ 2 = 1 ¥ 2 = 2 V
Then the potential of node A with respect to node C is

VA = VB - VBA = 8 - 2 = 6 V

Therefore, I2 =  VA

2

6

2
=  = 3A

Applying KCL to node A,
 IS + I3 + I4 -  I2 = 0

\ IS = 3 - 1 - 1 = 1 A

Then, VS = VA + 2 ¥ IS = 6 + 2 ¥ 1 = 8 V.

2 W 2 W

2 W

2 W 2 WVS

IS I2 I4

I3

6 A

BA

C

4 A

Fig. 1.30
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Introduction to Electrical Engineering 29

Recapitulation
Charge on an electron, e  = -1.602 ¥ 10-19 C
Mass of an electron = 9.11 ¥ 10-31 kg
Charge on a proton = 1.602 ¥ 10-19 C
Mass of a proton = 1.673 ¥ 10-27 kg

Coulomb's law:    newton (or N)F q q
r

= 1

4

1 2
2pe

Electric field intensity,     N/C or V/mE F
q

=

Voltage,    J/Cv dw
dq

=

Electric flux density,  D q
r

E= =
4 2p

e

Gauss' law:  D ds q= ÂÚ
Current, I  = Q

t
 C/sec or A

Quantity of electricity, Q = I ¥ t C

Potential difference V = P
I

W
Q

=

Ohm’s law: I  =
V
R

Resistance of a conductor, R = 
rl
a

  W

 Resistivity r = R a
l
¥ W m

 Resistance of a conductor at (t1)°C, R1 = R0 (1 +  a0 t1)

Temperature coefficient of resistance at t1, a1 = a
a
0

0 11+ t
Temperature coefficient of resistivity, r1 = r0 (1 + a0 t1)

Conductance of a conductor, G = 
s ¥ a

l
Capacitance C =  

q
V

farad

Energy stored in a capacitor, WC  = 1

2

2CV

Voltage induced in an inductor, v = L di
dt

V

Inductance of an inductor, L = v
di dt/

H

Energy stored in an inductor, WL = 1

2

2Li J

Flux density, B = 
f
A

 tesla or Wb/m2

Instantaneous value of induced voltage, 

e = - = - = -d N
dt

d
dt

N d
dt

( )f f f 
V

Assessment Questions

1. Write a short essay on the fundamental nature of electricity.
2. Describe the atomic structure and therefrom distinguish between (a) conductors, (b) semi-conductors, and

(c) insulators.
3. Define Coulomb’s law and electric field intensity.
4. Distinguish between (a) electric potential and potential difference and (b) electric flux and electric flux density.
5. Define Gauss’ law and describe the electric field set up due to a long straight charged conductor.
6. Derive expressions for electric fields set up between (a) two charged parallel plates and (b) a uniformly charged

sphere.
7. Describe the nature of current and express the co-relation between charge and current.
8. Explain (a) emf and (b) electric power. What is passive sign convention?
9. State and explain Ohm’s law.

10. Enumerate the basic circuit elements and briefly describe their properties.
11. Specify the parameters that govern the resistance of a conductor. Distinguish between linear and non-linear

resistors.
12. Explain what is meant by the temperature coefficient of resistance of a material.
13. State how the physical parameters of a capacitor are related to its capacitance and discuss the significance of

the permittivity of the dielectric.
14. State and explain Ampere’s law.
15. Define inductance and derive an expression for the energy stored in the inductor. State how the direction of

induced emf is determined.
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30 Basic Electrical Engineering 

 16. Define Kirchhoff’s laws. What is the basis of these laws?
 17. Apply Kirchhoff’s laws and develop voltage and current equations for a hypothetical resistive circuit.

Problems

 1.1 Plot the variation of charge when the electric current 
varies as shown in Fig. 1.31.

 1.2 A pd of 1.5 V causes a current of 270 mA to flow in a 
conductor. Calculate the resistance of the conductor.

 [5.56 k W]
 1.3 What is the voltage across an electric heater of resis-

tance 5 W through which passes a current of 46 A?  
 [230 V] 

 1.4 Calculate the current in a circuit due to a pd of 20 V 
applied to a 20 kW resistor. If the supply voltage is 
doubled while the circuit resistance is trebled, what 
is the new current in the circuit? [1 mA, 0.67 mA]

 1.5 A pd of 12 V is applied to a 4.7 kW resistor. Calculate the circuit current.   [2.55   mA]
 1.6 A current in a circuit is due to a pd of 20 V applied to a resistor of resistance 200 W. What resistance would 

permit the same current to flow if the supply voltage were 200 V? [2 kW]
 1.7 A pd of 12 V is applied to a 7.5 W resistor for a period of 10 sec. Calculate the electric charge transferred 

during this time. [16 C]
 1.8 What is the charge transferred in a period of 8 sec by current 

flowing at the rate of 3.5 A? 
[28 C]

 1.9 For the assumed directions of current flows and voltages of 
the elements shown in Fig. 1.32. State whether the element 
is absorbing or dissipating power.

 1.10 A dc motor connected to a 230 V supply, developing 20 kW 
at a speed of 1000 rpm, has an efficiency of 0.85. Calculate 
(a) the current and (b) cost of energy absorbed if the load is 
maintained constant for 12 h. Assume the cost of electrical 
energy to be Rs 2.50 per  kWh. [(a) 102.3 A, (b) Rs 705.90]

 1.11 An electric motor runs at 600 rpm when driving a load requiring 
a torque of 400 N m. If the motor input is 30 kW, calculate the efficiency of the motor and the heat lost per 
minute by the motor. Assume its temperature to remain constant. [83.8%, 292.8 kJ]

 1.12 A conductor of length l and radius r has a resistance of RW. If the volume of the conductor is  V, show that 

  ( )i r V
R

l VR
     and  (ii)   = =r

p r2
4

  Assume that the resistivity of the conductor is r.
 1.13 A voltage of 440 V is applied across a parallel plate liquid resistor. If the resistor absorbs 50 kW, calculate 

the distance between the plates. Assume a resistivity of 25 W-cm for the liquid and a current density of  
0.30 A/cm2.      [58.67 cm]

 1.14 A conductor has a resistance of Rl ohms at t1°C and is made of copper with a resistance-temperature coefficient 
a referred to 0°C. Find an expression for the resistance R2 of the conductor at temperature t2°C.

 1.15 The resistance temperature coefficients of two conductors A and B, at a temperature of t °C are aA and aB 
respectively. The resistors are connected in series such that their resistances are in the ratio of (RA/RB) = a. 

v t( )
+

v t( )

v t( ) v t( )

i t( ) i t( )

i t( ) i t( )

(a) (b)

(d)c( )

+

+ +

Fig. 1.32

0
1 2 3.5 5

t, sec

1

–2

A,

amp

Fig. 1.31
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Introduction to Electrical Engineering 31

(a) Derive an expression for the resistance temperature coefficient a and the temperature t for the circuit. (b) 
If a = 4, aA = 0.003/°C, and aB = 0.0003/°C, determine the value of a and the temperature t. (c) What is the 
ratio of the resistors when a = 0.005/°C, aA = 0.0004/°C, and aB = 0.0025/°C ?

(a) , , (b) 1666.7°C, (c) 1.84
a

a
A B

A B

a a
a a a

-
-( ) - +( )

È

Î
Í
Í

˘

˚
˙

1

1

˙̇

 1.16 The field coil of a motor has a resistance of 500 W at 15°C. By how much will the resistance increase if the 
motor attains an average temperature of 45°C when it is running? Take a = 0.00428 per °C referred to 0°C. 

[60.33 W]
 1.17 A copper rod, 0.6 m long and 4 mm in diameter, has a resistance of 825 mW at 20°C. Calculate the resistivity 

of copper at that temperature. If the rod is drawn out into a wire having a uniform diameter of 0.8 mm, cal-
culate the resistance of the wire when its temperature is 60°C. Assume the resistivity to be unchanged and 
the temperature coefficient of resistance of copper to be 0.00426 per °C. [0.01727 mW m, 0.6035 W]

 1.18 A coil of insulated copper wire has a resistance of 160 W at 20°C. When the coil is connected to a 240 V supply, 
the current after several hours is 1.35 A. Calculate the average temperature throughout the coil, assuming the 
temperature coefficient of resistance of copper at 20°C to be 0.0039 per °C. [48.5°C]

 1.19 The voltage waveform shown in Fig. 1.33 is applied across 
a parallel combination of a capacitor of 0.4 F and a resistor 
of 4 W. Plot the waveforms of the currents through the 
capacitor, resistor, and the total current and determine the 
(a) energy dissipated in the resistor, (b) maximum energy 
stored in the capacitor, (c) energy supplied by the source, 
(d) total charge flow through the resistor, and (e) average 
resistor voltage.

 [(a) 66.67 J, (b) 80 J, (c) 66.67 J, (d) 5 C, (e) 13.33 V]
 1.20 The distance between the plates of a capacitor is 6 mm and its dielectric material has a rela-

tive permittivity of 3. Another sheet of dielectric material of relative permittivity er and thickness  
9 mm is inserted by moving the plates apart. If the capacitance of the composite capacitor is half of the original 
capacitor, determine the value of er. [4.5]

 1.21 A voltage of 25 kV is applied to a parallel plate capacitor whose capacitance is 2.5×10-4 µF. If the area of 
each plate is 110 cm2 and the plates are separated by a dielectric material of thickness 3 mm, calculate the 
(a) total charge in coulombs, (b) per sq m charge density, (c) relative permeability of the dielectric, and  (d) 
potential gradient. [(a) 6.25 µC, (b) 568.18 µC/m2, (c) 7.7, (d) 83.33 kV/cm]

 1.22 A parallel plate condenser has an area of A cm2 and the distance between the plates is d mm. If the relative 
permittivity of the dielectric material is er, determine how the energy stored in the capacitor will vary with 

each factor, when a voltage of V  volts is applied across it. W AV
dC µ

È

Î
Í
Í

˘

˚
˙
˙

2

 1.23 A conductor of l m is carrying a current of I A (whose direction is perpendicular to and coming out of the 
plane of the paper) and is placed at right angles to a magnetic field of magnitude B T. If the magnetic lines 
of force are in the plane of the paper and have a direction from top to bottom, determine the magnitude and 
direction of the force experienced by the conductor. How does the direction of the force change if (i) the 
direction of the conductor current is reversed, (ii) the direction of the magnetic field only is reversed, and 
(iii) the direction of the current flow and that of the magnetic field both are reversed? State the law used to 
determine the direction of the force.     

 1.24 A current-carrying conductor is situated at right  angles to a uniform magnetic field having a density of 0.4 T. 
(a) Calculate the force (in N m length) on the conductor when the current is 100 A. (b) Calculate the current 
in the conductor when the force per metre length of the conductor is 25 N. [(a) 40 Nm, (b) 62.5 A]

Volts

0 2 t, sec

20

Fig. 1.33
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32 Basic Electrical Engineering 

 1.25 The voltage across an inductor of 5 H varies 
as shown in Fig. 1.34. Determine the inductor 
current and energy at t = 1, 2, 3, and 5 sec. 
Sketch the plot illustrating variation of current 
with time.

 1.26 The coil of a moving-coil loudspeaker has 
a mean diameter of 40 mm and is wound 
with 1000 turns. It is situated in a radial 
magnetic field of 0.4 T. Calculate the force 
on the coil, in newtons, when the current is  
10 mA. [0.5024 N]

 1.27 A square coil of side l cm and T number of turns 
revolves about its axis at right angles inside a 
magnetic field of density B Wb/m2. If the speed of the coil is N rpm, derive an expression for the instantaneous 
value of the induced emf. If l = 15 cm, B = 0.5 Wb/m2, and N = 1200 rpm, determine (a) maximum and (b) 
minimum values of the induced emf. (c) What are the respective angles made by the plane of the coil with 
the magnetic field? (d) Calculate the angle made by the plane of the coil with the magnetic field when the 
instantaneous value of the induced emf is 185 V. [(a) 212.06 V, 90°, (b) 0 V, 0°, (c) 60.74]

 1.28 A conductor, 750 mm long, is moved at a uniform speed at right angles to its length and in a uniform magnetic 
field having a density of 0.4 T. If the generated emf in the conductor is 3 V and the conductor forms part of a 
closed circuit having a resistance of 0.5 W, calculate: (a) the velocity of the conductor in m/sec, (b) the force 
acting on the conductor in newtons, (c) the work done in joules when the conductor has moved 500 mm.  
 [(a) 10 m/sec, (b) 1.8 N, (c) 0.9 J]

 1.29 In a coil of 120 turns, the flux is varying with 
time as shown in Fig. 1.35. If  fm = 0.025 Wb and  
T = 0.04 sec, determine the value of the statically 
induced emf. Sketch to scale the waveform of the 
induced voltage.

 1.30 The axle of a certain motorcar is 1.6 m long. Calcu-
late the generated emf in the car when it is travelling 
at 120 km /h. Assume the vertical component of the 
earth’s magnetic field to be 40 mT. [2.13mV]

 1.31 A coil of 2500 turns gives rise to a magnetic flux of 5 
mWb when carrying a certain current. If this current 
is reversed in 0.2 sec, what is the average value of the emf induced in coil? [125 V]

 1.32 A short coil of 500 turns surrounds the middle of a bar magnet. If the magnet sets up a flux of 60 mWb, 
calculate the average value of the emf induced in the coil when the latter is removed completely from the 
influence of the magnet in 0.04 sec. [0.75 V]

 1.33 For the circuit shown in Fig. 1.36 determine the value of the 
source current IS for the following operating conditions:

 (a) the source voltage VS = 12 V, and IAB = 0
 (b) the source voltage VS = 15 V, and IAB = 3 A  

   [(a) 4 A, (b) -2 A]
 1.34 In the circuit shown in Fig. 1.37, v (t) = 3 e-t. Use Kirchhoff’s 

laws and the volt–ampere relations for te elements to deter-
mine the source current iS(t). [ 4.8 e-t]

 1.35 Repeat Problem 1.34 for v(t) = 4 sin t. [3.2 sin t + 9.6 cos t]

T/2
t (sec)

0

fm

f

fm

Fig.  1.35

Volts
20

15
12

0
1 2 4 5 t, sec

10

Fig. 1.34

1 W 2 W

2 W 2 WVS IS

BA

C

IAB

Fig. 1.36
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Introduction to Electrical Engineering 33

 1.36 In the circuit shown in Fig. 1.37, i(t) = -15e-2t. Use Kirchhoff’s laws and the volt–ampere relations for the 
elements to determine the source voltage vS (t). [22e-t]

 1.37 Repeat Problem 1.36 for i(t) = 20 sin t.                           [40.67 sin t + 43.33 cos t]

i
S

( )t

A B

n ( ) = 3e tt

0.4 H

2 F 2 F 1
4

W

2 W

v tS( )

i t( )

H
1

6

W1

5

Fig. 1.37 Fig. 1.38

Objective Type Questions
1. In Bohr’s model of atomic structure, the nucleus

consists of
(i) electrons 

(ii) electrons and protons
(iii) protons 
(iv) protons and neutrons 

2. If 1 A current flows in a circuit, the number of
electrons flowing in a circuit is

(i) 0.625 ¥ 1019 (ii) 1.6 ¥ 1019

(iii) 1.6 ¥ 10-19 (iv) 0.625 ¥ 10-19

3. The resistivity of a conductor depends on the
(i) area of the conductor 

(ii) length of the conductor
(iii) type of material 
(iv) none of these 

4. Current flowing in a series circuit having four equal
resistances is I amperes. What is the magnitude of 
the current if the four resistances are connected in 
parallel?

(i) 0.25I (ii) I
(iii) 4I (iv) 8I  

5. How many coulombs of charge flow through a
circuit carrying a current of 10 A in 1 min?

(i) 10 (ii) 60
(iii) 600 (iv) 1200

6. Two parallel plates separated by a distance d are
charged to V volts. The field intensity E is given by

 (i) V ¥ d (ii) V/d
 (iii) V ¥ d2 (iv) V2/d

7. A capacitor carries a charge of 0.15 C at 10 V. Its
capacitance is

(i) 0.015 F (ii) 1.5 F
(iii) 1.5 mF (iv) none of  these

8. Four capacitors each of 20 µF are connected in
parallel, the total capacitance is

(i) 80 mF (ii) 5 mF
(iii) 16 mF (iv) none of these

9. One farad is equal to
(i) 1 W (ii) 1 V/C

(iii) 1 C/V (iv) none of these
10. Point A has an absolute potential of 20 V and point 

B is at an absolute potential of - 5 V. VBA has a 
value of 

 (i) - 25 V (ii) 15 V
(iii) 25 V (iv) none of these

11. The unit of resistivity is
 (i) W (ii) W /m
 (iii) W /m2 (iv) W m

12. Two resistors connected in parallel across a battery
of 1 V draw a current of 1 A. When one of the re-
sistors is disconnected, the current drawn is 0.2 A. 
The resistance of the disconnected resistor is

(i) 1 W (ii) 1.25 W
(iii) 5 W (iv) none of these

13. The effect of temperature on metals and insulating
materials is that the

(i) resistance of both increases
(ii) resistance of both decreases 

(iii) resistance of metals decreases and that of 
insulating material increases

(iv) resistance of metals increases and that of 
insulating materials decreases

14. Two resistors each of 100 W are rated at 100 W
and 0.25 W. Which has a higher current rating?

(i) 100 W (ii) 0.25 W
(iii) both have the same rating 
(iv) none of these

15. The unit of inductance is henry. It is represented
by

(i) V/A (ii) V sec/A
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 (iii) V s (iv) V/sec
 16. Instantaneous power in an inductor is proportional 

to the
 (i) product of instantaneous current and rate of 

change of current
 (ii) square of instantaneous current
 (iii) the induced voltage
 (iv) none of these
 17. The voltage induced in an inductor of L henry is 

represented by

 (i) Li (ii) 
L
i

 (iii) L di
dt

 (iv) none of these

 18. Absolute permittivity of a dielectric medium is 
represented by

 (i) e
e

0

r
 (ii) e

e
r

0
 (iii) e0e r (iv) none of these
 19. A parallel plate capacitor has a capacitance of C 

farads. If one of the sides of the plates is doubled 
and the distance between them is halved, the ca-
pacitance of the capacitor is

 (i) 0.5C F (ii) C F
 (iii) 2C F (iv) 4C F
 20. Which of these is not an expression for the energy 

stored in a capacitor?

 (i) 1

2

2CV     (ii) C vdvÚ

 (iii) pdtÚ  (iv) QV2

 21. Magnetic flux has the unit of
 (i) newton (ii) ampere turns
 (iii) coulomb (iv) weber
 22. A 1-m-long conductor carries a current of 50 A at 

right angles to a magnetic field of 100 ¥ 10-3 T. 
The force on the conductor is

 (i) 5000 N (ii) 500 N
 (iii) 50 N (iv) 5N
 23. Whenever the magnetic flux changes with respect 

to an electrical conductor or a coil, an emf is 
induced in the conductor is Faraday’s

 (i) first law (ii) second law 
 (iii) third law (iv) none of these
 24. A conductor of length l m is moving at right angles 

to a magnetic field of constant magnitude at a 
velocity of v m/sec. The magnitude of the induced 
emf is proportional to

 (i) l ¥ v (ii) l/v 
 (iii) v/l (iv) none of these
 25. A coil wound around a magnetic ring is required 

to produce a flux of 800 ¥ 10-6 Wb. What is the 
magnitude of the mmf required to set up the 
flux if the reluctance of the ring is 1.675 ¥ 10-6  
AT / Wb?

 (i) 13.4 AT (ii) 134 AT
 (iii) 1340 AT (iv) 1.34 ¥ 106

Answers

 1. (iv) 2. (i) 3. (iii) 4. (iii) 5. (iii) 6. (ii) 7. (i)
 8. (i) 9. (iii) 10. (i) 11. (iv) 12. (ii) 13. (iv) 14. (i) 
 15. (ii) 16. (i) 17. (iv) 18. (iii) 19. (iv) 20. (iv) 21. (iv)  
 22. (iv) 23. (i) 24. (i) 25. (iii) 
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