
Assistant Professor
Department of Computer Science

Shyama Prasad Mukherji College for Women
University of Delhi.

Reema Thareja

PYTHON
PROGRAMMING

USING PROBLEM SOLVING APPROACH

Python_new.indb 1 7/11/2017 7:06:21 PM

© Oxford University Press. All rights reserved.

Oxfo
rd

 U
niversi

ty
 Pre

ss

3
Oxford University Press is a department of the University of Oxford.

It furthers the University’s objective of excellence in research, scholarship,
and education by publishing worldwide. Oxford is a registered trademark of

Oxford University Press in the UK and in certain other countries.

Published in India by
Oxford University Press

Ground Floor, 2/11, Ansari Road, Daryaganj, New Delhi 110002, India

© Oxford University Press 2017

The moral rights of the author/s have been asserted.

First published in 2017

All rights reserved. No part of this publication may be reproduced, stored in
a retrieval system, or transmitted, in any form or by any means, without the

prior permission in writing of Oxford University Press, or as expressly permitted
by law, by licence, or under terms agreed with the appropriate reprographics

rights organization. Enquiries concerning reproduction outside the scope of the
above should be sent to the Rights Department, Oxford University Press, at the

address above.

You must not circulate this work in any other form
and you must impose this same condition on any acquirer.

ISBN-13: 978-0-19-948017-3
ISBN-10: 0-19-948017-6

Typeset in Times New Roman
by Ideal Publishing Solutions, Delhi

Printed in India by Magic International (P) Ltd., Greater Noida

Cover image: Keo / Shutterstock

Third-party website addresses mentioned in this book are provided
by Oxford University Press in good faith and for information only.

Oxford University Press disclaims any responsibility for the material contained therein.

Python_new.indb 2 7/11/2017 7:06:22 PM

© Oxford University Press. All rights reserved.

Oxfo
rd

 U
niversi

ty
 Pre

ss

Computers are so widely used in our day-to-day lives that imagining a life without them has become almost
impossible. They are not only used by professionals but also by children for interactively learning lessons,
playing games, and doing their homework. Applications of the computer and its users are increasing by
the day. Learning computer and programming basics is a stepping stone to having an insight into how the
machines work. Once the reader is aware of the basic terminologies and problem solving strategies that
are commonly used in computer science, he/she can then go on to develop efficient and effective computer
programs that may help solve a user’s problems.

Since computers cannot understand human languages, special programming languages are designed for
this purpose. Python is one such language. It is an open-source, easy, high-level, interpreted, interactive,
object-oriented and reliable language that uses English-like words. It can run on almost all platforms
including Windows, Mac OS X, and Linux. Python is also a versatile language that supports development of
a wide range of applications ranging from simple text processing to WWW browsers to games. Moreover,
programmers can embed Python within their C, C++, COM, ActiveX, CORBA, and Java programs to give
'scripting' capabilities to the users.

Python uses easy syntax and short codes as well as supports multiple programming paradigms, including
object oriented programming, functional Python programming, and parallel programming models. Hence, it
has become an ideal choice for the programmers and even the novices in computer programming field find it
easy to learn and implement. It has encompassed a huge user base that is constantly growing and this strength
of Python can be understood from the fact that it is the most preferred programming language in companies
such as Nokia, Google, YouTube, and even NASA for its easy syntax and short codes.

 About the Book
This book is designed as a textbook to cater to the requirements of the first course in Python programming. It
is suited for undergraduate degree students of computer science engineering and information technology as
well as postgraduate students of computer applications. The objective of this book is to introduce the students
to the fundamentals of computers and the concepts of Python programming language, and enable them to
apply these concepts for solving real-world problems.

The book is organized into 12 chapters that provide comprehensive coverage of all the relevant topics using
simple language. It also contains useful annexures to various chapters including for additional information.
Case studies and appendices are also provided to supplement the text.

Programming skill is best developed by rigorous practice. Keeping this in mind, the book provides a
number of programming examples that would help the reader learn how to write efficient programs. These
programming examples have already been complied and tested using Python 3.4.1 version and can be also
executed on Python 3.5 and 3.6 versions. To further enhance the understanding of the subject, there are
numerous chapter-end exercises provided in the form of objective-type questions, review questions, and
programming problems.

 Key Features of the Book
The following are the important features of the book:

• Offers simple and lucid treatment of concepts supported with illustrations for easy understanding.
• Contains separate chapters on Strings, Files, Exception Handling, and Operator Overloading

Preface

Python_new.indb 4 7/11/2017 7:06:22 PM

© Oxford University Press. All rights reserved.

Oxfo
rd

 U
niversi

ty
 Pre

ss

vPreface

• Provides numerous programming examples along with their outputs to help students master the art of
writing efficient Python programs.

• Includes notes and programming tips to highlight the important concepts and help readers avoid common
programming errors.

• Offers rich chapter-end pedagogy including plenty of objective-type questions (with answers), review
questions, programming and debugging exercises to facilitate revision and practice of concepts learnt.

• Includes 7 Annexures and 5 appendices covering types of operating systems, differences between Python
2.x and 3.x, installing Python, debugging and testing, iterators, generators, getters, setters, @property,
@deleter, Turtle graphics, plotting graphs, multi-threading, GUI and Web Programming provided to
supplement the text. Exercises are also added at the end of several annexures and appendices.

• Provides case studies on creating calculator, calendar, hash files, compressing strings and files, tower of
Hanoi, image processing, shuffling a deck of cards, and mail merge that are linked to various chapters to
demonstrate the application of concepts.

• Point-wise summary and glossary of keyterms to aid quick recapitulation to concepts.

 Organization of the Book
The book contains 12 chapters, 7 annexures, 8 case studies, and 5 appendices. The details of the book are
presented as follows.

Chapter 1 provides an introduction to computer hardware and software. It covers the concept of memory
and its storage units, application software, and system software. The chapter provides an insight into the
different stages of software development life cycle and discusses the various strategies used for problem
solving. Topics such as algorithms, flowcharts, and pseudocodes are discussed in this chapter.

Annexure 1 given after Chapter 1 discusses the classification of operating systems.
Chapter 2 discusses about programming languages and their evolution through generations. It describes

different programming paradigms, features of OOP, and merits and demerits of object oriented programming
languages. The chapter also gives a comparative study Python and other OOP languages, and highlights the
applications of OOP paradigm.

Chapter 3 details the history, important features and applications of Python. It also presents the various
building blocks (such as keywords, identifiers, constants variables, operators, expressions, statements and
naming conventions) supported by the language.

The chapter is followed 3 annexures – Annexure 2 provides instructions for installing Python. Annexure
3 provides the comparison between Python 2.x and Python 3.x versions. Annexure 4 discusses testing and
debugging of Python programs using IDLE.

Chapter 4 deals with the different types of decision control statements such as selection/ conditional
branching, iterative, break, continue, pass, and else statements.

Case studies 1 and 2 on simple calculator and generating a calendar show the implementation of concepts
discussed in Chapters 3 and 4.

Chapter 5 provides a detailed explanation of defining and calling functions. It also explains the important
concepts such as variable length arguments, recursive functions, modules, and packages in Python.

Annexure 5 explains how functions are objects in Python. Case studies 3 and 4 on tower of Hanoi and
shuffling a deck of cards demonstrates the concepts of functions as well as recursion.

Chapter 6 unleashes the concept of strings. The chapter lays special focus on the operators used with
strings, slicing operation, built-in string methods and functions, comparing and iterating through strings, and
the string module.

Chapter 7 discusses how data can be stored in files. The chapter deals with opening, processing (like
reading, writing, appending, etc.), and closing of files though a Python program. These files are handled in
text mode as well as binary mode for better clarity of the concepts. The chapter also explains the concept of
file, directory, and the os module.

Python_new.indb 5 7/11/2017 7:06:23 PM

© Oxford University Press. All rights reserved.

Oxfo
rd

 U
niversi

ty
 Pre

ss

vi Python Programming

Case studies 5, 6, and 7 on creating a hash file, mail merge, and finding the resolution of an image
demonstrate the applications of concepts related strings and file handling.

Chapter 8 details the different data structures (such as list, tuple, dictionary, sets, etc.) that are extensively
used in Python. It deals with creating, accessing, cloning, ad updating of lists as well as list methods and
functions. It also describes functional programming and creating, accessing, and updating tuples. It also
includes the concepts related to sets, dictionaries, nested lists, nested tuples, nested sets, nested dictionaries,
list comprehensions, and dictionary comprehensions.

Annexure 6 discusses the concepts of iterator and generator.
Chapter 9 introduces the concept of classes, objects, public and private classes, and instance variables. It

also talks about special methods, built-in attributes, built-in methods, garbage collection, class method, and
static method.

Annexure 7 discusses the getter and setter methods as well as @property and @deleter decorators
facilitate data encapsulation in Python.

Chapter 10 introduces inheritance and its various forms. It gives a detail explanation on method overriding,
containership, abstract class, interface, and metaclass.

Chapter 11 is all about overloading arithmetic and logical operators. It also discusses reverse adding
and overriding __getitem__(), __setitem__(), and __call__() methods, in operator, as well as other
miscellaneous functions.

Chapter 12 elucidates the concepts of exception handling that can be used to make your programs robust.
Concepts such as try, except, and finally blocks, raising and re-raising exceptions, built-in and user-defined
exceptions, assertions, and handling invoked functions, used for handling exceptions are demonstrated in
this chapter.

Case study 8 shows how to compress strings and files using exception handling concepts.
The 5 appendices included in the book discuss about multi-threading, GUI programming, usage of Turtle

graphics, plotting graphs and web programming in Python.

 Online Resources
For the benefit of faculty and students reading this book, additional resources are available online at india.
oup.com/orcs//9780199480173

For Faculty
• Solutions manual (for programming exercises)
• Chapter-wise PPTs

For Students
• Lab exercises
• Test generator
• Projects
• Solutions to find the output and error exercises
• Model question papers
• Extra reading material on number systems, unit testing in Python, sorting and searching methods, network

programming, event-driven programming and accessing databases using Python

 Acknowledgements
The writing of this textbook was a mammoth task for which a lot of help was required from many people.
Fortunately, I have had wholehearted support of my family, friends, and fellow members of the teaching staff
and students at Shyama Prasad Mukherji College, New Delhi.

Python_new.indb 6 7/11/2017 7:06:23 PM

© Oxford University Press. All rights reserved.

Oxfo
rd

 U
niversi

ty
 Pre

ss

viiPreface

My special thanks would always go to my parents, Mr Janak Raj Thareja and Mrs Usha Thareja, and my
siblings, Pallav, Kimi, and Rashi, who were a source of abiding inspiration and divine blessings for me. I
am especially thankful to my son, Goransh, who has been very patient and cooperative in letting me realize
my dreams. My sincere thanks go to my uncle, Mr B.L. Theraja, for his inspiration and guidance in writing
this book.

I would like to acknowledge the technical assistance provided to me by Mr Mitul Kapoor. I would like to
thank him for sparing out his precious time to help me to design and test the programs.

I would like to express my gratitude to the reviewers for their valuable suggestions and constructive
feedback that helped in improving the book.

Prof. M V S V Kiranmai
University College of Engineering, JNTU Kakinada
Dr Nagender Kumar Suryadevara
Geethanjali College of Engineering and Technology, Hyderabad
Dr Vipul Kumar Mishra
School of Engineering, Bennett University, Greater Noida, U.P.
Dr G Shobha
R V College of Engineering, Bengaluru
Prof. Priyang P Bhatt
GH Patel College of Engineering and Technology, Vallabh Vidyanagar, Gujarat
Prof. Karthick Nanmaran
School of Computing, SRM University, Chennai

Last but not the least, I would like to thank the editorial team at Oxford University Press, India for their
help and support over the past few years.

Comments and suggestions for the improvement of the book are welcome. Please send them to me at
reemathareja@gmail.com.

Reema Thareja

Python_new.indb 7 7/11/2017 7:06:23 PM

© Oxford University Press. All rights reserved.

Oxfo
rd

 U
niversi

ty
 Pre

ss

Brief Contents

Preface iv
Detailed Contents ix

 1 Introduction to Computers and Problem Solving Strategies 1
Annexure 1 — Types of Operating Systems 52

 2 Introduction to Object Oriented Programming (OOP) 63

 3 Basics of Python Programming 83
Annexure 2 — Installing Python 125
Annexure 3 — Comparison between Python 2.x and Python 3.x Versions 127
Annexure 4 — Testing and Debugging 130

 4 Decision Control Statements 137
Case Study 1 — Simple Calculator 180
Case Study 2 — Generating a Calendar 183

 5 Functions and Modules 185
Annexure 5 — Functions as Objects 237
Case Study 3 — Tower of Hanoi 239
Case Study 4 — Shuffling a Deck of Cards 241

 6 Python Strings Revisited 242

 7 File Handling 289
Case Study 5 — Creating a Hash File (or a message digest of a file) 317
Case Study 6 — Mail Merge Program 319
Case Study 7 — Finding Resolution of an Image 321

 8 Data Structures 322
Annexure 6 — Iterator and Generator 392

 9 Classes and Objects 400
Annexure 7 — Getters, Setters, @property, and @deleter 432

 10 Inheritance 436

 11 Operator Overloading 460

 12 Error and Exception Handling 480
Case Study 8 — Compressing String and Files 505

Appendix A — Multi-threading 508
Appendix B — GUI Programming With tkinter Package 514
Appendix C — Simple Graphics Using Turtle 524
Appendix D — Plotting Graphs in Python 530
Appendix E — CGI/Web Programming Using Python 536

Python_new.indb 8 7/11/2017 7:06:23 PM

© Oxford University Press. All rights reserved.

Oxfo
rd

 U
niversi

ty
 Pre

ss

 2 Introduction to Object Oriented
Programming (OOP) 63

 2.1 Computer Programming and
Programming Languages 63

 2.2 Generations of Programming
Languages 64
 2.2.1 First Generation: Machine

Language 64
 2.2.2 Second Generation: Assembly

Language 65
 2.2.3 Third Generation: High-level

Language 66
 2.2.4 Fourth Generation: Very High-

level Languages 67
 2.2.5 Fifth Generation Programming

Language 68
 2.3 Programming Paradigms 69

 2.3.1 Monolithic Programming 69
 2.3.2 Procedural Programming 69
 2.3.3 Structured Programming 70
 2.3.4 Object Oriented Programming

(OOP) 71
 2.4 Features of Object Oriented

Programming 72
 2.4.1 Classes 72
 2.4.2 Objects 73
 2.4.3 Method and Message Passing 73
 2.4.4 Inheritance 74
 2.4.5 Polymorphism 75
 2.4.6 Containership 75
 2.4.7 Reusability 75
 2.4.8 Delegation 76
 2.4.9 Data Abstraction and

Encapsulation 76
 2.5 Merits and Demerits of Object

Oriented Programming Language 77
2.6 Applications of Object Oriented

Programming 77
2.7 Differences Between Popular

Programming Languages 78

 1 Introduction to Computers and
Problem Solving Strategies 1

 1.1 Introduction 1
 1.2 What is a Computer? 1
 1.3 History of Computers 2
 1.4 Characteristics of Computers 4
 1.5 Classification of Computers 5
 1.6 Basic Applications of Computers 9
 1.7 Stored Program Concept 11

 1.7.1 Types of Stored Program
Computers 12

 1.8 Components and Functions of a
Computer System 12

 1.9 Concept of Hardware and
Software 14
 1.9.1 Hardware 14
 1.9.2 Software 14

 1.10 Central Processing Unit (CPU): Basic
Architecture 14

 1.11 Input and Output devices 16
 1.12 Computer Memory 17

 1.12.1 Memory Hierarchy 18
 1.12.2 Primary Memory 18
 1.12.3 Secondary Storage Devices 20

 1.13 Classification of Computer
Software 20
 1.13.1 System Software 22
 1.13.2 Application Software 27

 1.14 Representation of Data: Bits and
Bytes 29

1.15 Problem Solving Strategies 31
 1.16 Program Design Tools: Algorithms,

Flowcharts, Pseudocodes 32
 1.16.1 Algorithms 32
 1.16.2 Flowcharts 37
 1.16.3 Pseudocodes 39

 1.17 Types of Errors 41
 1.18 Testing and Debugging

Approaches 42
Annexure 1 — Types of Operating Systems 52

Detailed Contents

Preface iv
Brief Contents viii

Python_new.indb 9 7/11/2017 7:06:24 PM

© Oxford University Press. All rights reserved.

Oxfo
rd

 U
niversi

ty
 Pre

ss

x Python Programming

Annexure 3 — Comparison between
Python 2.x and Python 3.x
Versions 127

Annexure 4 — Testing and Debugging 130

 4 Decision Control Statements 137

 4.1 Introduction to Decision Control
Statements 137

 4.2 Selection/Conditional Branching
Statements 138
 4.2.1 if Statement 138
 4.2.2 if-else Statement 139
 4.2.3 Nested if Statements 142
 4.2.4 if-elif-else Statement 142

 4.3 Basic Loop Structures/ Iterative
Statements 147
 4.3.1 while loop 147
 4.3.2 for Loop 155
 4.3.3 Selecting an appropriate

loop 156
 4.4 Nested Loops 164
 4.5 The break Statement 167
 4.6 The continue Statement 168
 4.7 The pass Statement 171
 4.8 The else Statement used with

Loops 172
Case Study 1 — Simple Calculator 180
Case Study 2 — Generating a

Calendar 183

 5 Functions and Modules 185

 5.1 Introduction 185
 5.1.1 Need for Functions 186

	 5.2	 	Function	Definition 187
 5.3 Function Call 189

 5.3.1 Function Parameters 189
 5.4 Variable Scope and Lifetime 191

 5.4.1 Local and Global Variables 192
 5.4.2 Using the Global Statement 193
 5.4.3 Resolution of Names 195

 5.5 The return statement 196
	 5.6	 More	on	Defining	Functions 198

 5.6.1 Required Arguments 198
 5.6.2 Keyword Arguments 198
 5.6.3 Default Arguments 199

 3 Basics of Python Programming 83

 3.1 Features of Python 83
 3.2 History of Python 85
 3.3 The Future of Python 87
 3.4 Writing and Executing First Python

Program 87
 3.5 Literal Constants 88

 3.5.1 Numbers 88
 3.5.2 Strings 90

	 3.6	 Variables	and	Identifiers 94
 3.7 Data Types 94

 3.7.1 Assigning or Initializing Values to
Variables 94

 3.7.2 Multiple Assignment 96
 3.7.3 Multiple Statements on a Single

Line 97
 3.7.4 Boolean 97

 3.8 Input Operation 97
 3.9 Comments 98
 3.10 Reserved Words 98
 3.11 Indentation 98
 3.12 Operators and Expressions 99

 3.12.1 Arithmetic Operators 99
 3.13.2 Comparison Operators 100
 3.12.3 Assignment and In-place or

Shortcut Operators 101
 3.12.4 Unary Operators 102
 3.12.5 Bitwise Operators 102
 3.12.6 Shift Operators 103
 3.12.7 Logical Operators 103
 3.12.8 Membership Operators 104
 3.12.9 Identity Operators 104
 3.12.10 Operators Precedence and

Associativity 105
 3.13 Expressions in Python 106
 3.14 Operations on Strings 106

 3.14.1 Concatenation 107
 3.14.2 Multiplication (or String

Repetition) 107
 3.14.3 Slice a String 108

 3.15 Other Data Types 109
 3.15.1 Tuples 109
 3.15.2 Lists 109
 3.15.3 Dictionary 110

 3.16 Type Conversion 110
Annexure 2 — Installing Python 125

01_Python_Prelim.indd 10 8/22/2017 6:13:53 PM

© Oxford University Press. All rights reserved.

Oxfo
rd

 U
niversi

ty
 Pre

ss

xiDetailed Contents

 6.11.4 The findall() and finditer()
Functions 270

 6.11.5 Flag Options 271
 6.12 Metacharacters in Regular

Expression 272
 6.12.1 Character Classes 273
 6.12.2 Groups 276
 6.12.3 Application of Regular Expression

to Extract Email 277

 7 File Handling 289

 7.1 Introduction 289
 7.2 File Path 289
 7.3 Types of Files 290

 7.3.1 ASCII Text Files 291
 7.3.2 Binary Files 291

 7.4 Opening and Closing Files 292
 7.4.1 The open() Function 292
 7.4.2 The File Object Attributes 293
 7.4.3 The close() Method 294

 7.5 Reading and Writing Files 295
 7.5.1 write() and writelines()

Methods 295
 7.5.2 append() Method 295
 7.5.3 The read() and readline()

Methods 296
 7.5.4 Opening Files using with

Keyword 298
 7.5.5 Splitting Words 299
 7.5.6 Some Other Useful File

Methods 300
 7.6 File Positions 300
 7.7. Renaming and Deleting Files 303
 7.8 Directory Methods 304

 7.8.1 Methods from the os
Module 307

Case Study 5 — Creating a Hash File (or a
message digest of a file) 317

Case Study 6 — Mail Merge Program 319
Case Study 7 — Finding Resolution of an

Image 321

 8 Data Structures 322

 8.1 Sequence 322
 8.2 Lists 322

 8.2.1 Access Values in Lists 323

 5.6.4 Variable-length Arguments 201
 5.7 Lambda Functions or

Anonymous Functions 201
 5.8 Documentation Strings 205
 5.9 Good Programming Practices 206
 5.10 Recursive Functions 211

 5.10.1 Greatest Common Divisor 213
 5.10.2 Finding Exponents 214
 5.10.3 The Fibonacci Series 214
 5.10.4 Recursion vs Iteration 216

 5.11 Modules 217
 5.11.1 The from…import statement 218
 5.11.2 Name of Module 220
 5.11.3 Making your own Modules 220
 5.11.4 The dir() function 221
 5.11.5 The Python Module 223
 5.11.6 Modules and Namespaces 223

 5.12 Packages in Python 225
 5.13 Standard Library modules 226
 5.14 Globals(), Locals(), and

Reload() 227
	5.15	 Function	Redefinition 228
Annexure 5 — Functions as Objects 237
Case Study 3 — Tower of Hanoi 239
Case Study 4 — Shuffling a Deck of

Cards 241

 6 Python Strings Revisited 242

Introduction 242
 6.1 Concatenating, Appending, and

Multiplying Strings 243
 6.2 Strings are Immutable 245
 6.3 String Formatting Operator 246
 6.4 Built-in String Methods and

Functions 249
 6.5 Slice Operation 254

 6.5.1 Specifying Stride While Slicing
Strings 256

 6.6 ord() and chr() Functions 257
 6.7 in and not in operators 257
 6.8 Comparing Strings 258
 6.9 Iterating String 259
 6.10 The String Module 265
 6.11 Regular Expressions 268

 6.11.1 The match() Function 268
 6.11.2 The search() Function 269
 6.11.3 The sub() Function 270

01_Python_Prelim.indd 11 8/3/2017 4:13:47 PM

© Oxford University Press. All rights reserved.

Oxfo
rd

 U
niversi

ty
 Pre

ss

xii Python Programming

 8.6.8 Built-in Dictionary Functions and
Methods 374

 8.6.9 Difference between a List and a
Dictionary 376

 8.6.10 String Formatting with
Dictionaries 377

 8.6.11 When to use which Data
Structure? 377

 8.6.12 List vs Tuple vs Dictionary vs
Set 377

Annexure 6 — Iterator and Generator 392

 9 Classes and Objects 400

 9.1 Introduction 400
 9.2 Classes and Objects 400

 9.2.1 Defining Classes 400
 9.2.2 Creating Objects 401
 9.2.3 Data Abstraction and Hiding

through Classes 401
 9.3 Class Method and self Argument 402
 9.4 The __init__() Method (The Class

Constructor) 403
 9.5 Class Variables and Object

Variables 403
 9.6 The __del__() Method 406
 9.7 Other Special Methods 407
 9.8 Public and Private Data

Members 408
 9.9 Private Methods 409
 9.10 Calling a Class Method from Another

Class Method 410
 9.11 Built-in Functions to Check, Get, Set,

and Delete Class Attributes 412
 9.12 Built-in Class Attributes 413
 9.13 Garbage Collection (Destroying

Objects) 414
 9.14 Class Methods 425
 9.15 Static Methods 426
Annexure 7 — Getters, Setters, @property,

and @deleter 432

 10 Inheritance 436

 10.1 Introduction 436
 10.2 Inheriting Classes in Python 437

 10.2.1 Polymorphism and Method
Overriding 438

 8.2.2 Updating Values in Lists 323
 8.2.3 Nested Lists 325
 8.2.4 Cloning Lists 326
 8.2.5 Basic List Operations 326
 8.2.6 List Methods 327
 8.2.7 Using Lists as Stack 330
 8.2.8 Using Lists as Queues 331
 8.2.9 List Comprehensions 332
 8.2.10 Looping in Lists 334

 8.3 Functional Programming 335
 8.3.1 filter() Function 335
 8.3.2 map() Function 336
 8.3.3 reduce() Function 337

 8.4 Tuple 346
 8.4.1 Creating Tuple 346
 8.4.2 Utility of Tuples 347
 8.4.3 Accessing Values in a Tuple 347
 8.3.4 Updating Tuple 348
 8.4.5 Deleting Elements in Tuple 348
 8.4.6 Basic Tuple Operations 349
 8.4.7 Tuple Assignment 349
 8.4.8 Tuples for Returning Multiple

Values 350
 8.3.9 Nested Tuples 351
 8.4.10 Checking the Index: index()

method 351
 8.4.11 Counting the Elements: count()

Method 352
 8.4.12 List Comprehension and

Tuples 352
 8.4.13 Variable-length Argument

Tuples 353
 8.4.14 The zip() Function 354
 8.4.16 Advantages of Tuple over

List 356
 8.5 Sets 359

 8.5.1 Creating a Set 359
 8.6 Dictionaries 366

 8.6.1 Creating a Dictionary 367
 8.6.2 Accessing Values 368
 8.6.2 Adding and Modifying an Item in

a Dictionary 369
 8.6.3 Modifying an Entry 369
 8.6.4 Deleting Items 370
 8.6.5 Sorting Items in a Dictionary 373
 8.6.6 Looping over a Dictionary 373
 8.6.7 Nested Dictionaries 373

Python_new.indb 12 7/11/2017 7:06:25 PM

© Oxford University Press. All rights reserved.

Oxfo
rd

 U
niversi

ty
 Pre

ss

xiiiDetailed Contents

 12 Error and Exception Handling 480

 12.1 Introduction to Errors and
Exceptions 480
 12.1.1 Syntax Errors 480
 12.1.2 Logic Error 481
 12.1.3 Exceptions 481

 12.2 Handling Exceptions 482
 12.3 Multiple Except Blocks 483
 12.4 Multiple Exceptions in a Single

Block 484
 12.5 Except Block Without Exception 484
 12.6 The else Clause 485
 12.7 Raising Exceptions 486
 12.8 Instantiating Exceptions 486
 12.9 Handling Exceptions in Invoked

Functions 487
 12.10 Built-in and User-defined

Exceptions 489
 12.11 The finally Block 491
 12.12 Pre-defined Clean–up Action 493
 12.13 Re-raising Exception 494
 12.14 Assertions in Python 494

Case Study 8 — Compressing String and
Files 505

 10.3 Types of Inheritance 441
 10.3.1 Multiple Inheritance 441
 10.3.2 Multi-level Inheritance 442
 10.3.3 Multi-path Inheritance 443

 10.4 Composition or Containership or
Complex Objects 444

 10.5 Abstract Classes and Interfaces 446
 10.6 Metaclass 447

 11 Operator Overloading 460

 11.1 Introduction 460
 11.1.1 Concept Of Operator

Overloading 460
 11.1.2 Advantage of Operator

Overloading 461
 11.2 Implementing Operator

Overloading 461
 11.3 Reverse Adding 470
 11.4 Overriding __getitem__() and __

setitem__() Methods 471
 11.5 Overriding the in Operator 472
 11.6 Overloading Miscellaneous

Functions 473
 11.7 Overriding the __call__()

Method 474

Appendix A — Multi-threading 508
Appendix B — GUI Programming with tkinter Package 514
Appendix C — Simple Graphics Using Turtle 524
Appendix D — Plotting Graphs in Python 530
Appendix E — CGI/Web Programming Using Python 536

Python_new.indb 13 7/11/2017 7:06:25 PM

© Oxford University Press. All rights reserved.

Oxfo
rd

 U
niversi

ty
 Pre

ss

CHAPTER

11

11.1 INTRODUCTION
Till now, we have seen that Python is an interesting and easy language. You can build classes with desired
attributes and methods. But just think, if you want to add two Time values, where Time is a user-defined
class, then how good it would be if we write T3 = T1 + T2, where T1, T2, and T3 are all objects of the class
Time. As of now, we need to write the same statement as T3 = T1.add(T2).

Basically, the meaning of operators like +, =, *, /, >, <, etc. are pre-defined in any programming
language. Programmers can use them directly on built-in data types to write their programs. But, for user-
defined types like objects, these operators do not work. Therefore, Python allows programmers to redefine
the meaning of operators when they operate on class objects. This feature is called operator overloading.
Operator overloading allows programmers to extend the meaning of existing operators so that in addition to
the basic data types, they can be also applied to user-defined data types.

You already have a clue of operator overloading. Just give a thought, if you write 5 + 2, then the integers
are added, when you write str1 + str2, two strings are concatenated, when you write List1 + List2,
the two lists are merged, so on and so forth. Thus, we see that the same operator behaves differently with
different types.

11.1.1 Concept Of Operator Overloading
With operator overloading, a programmer is allowed to provide his own definition for an operator to a class
by overloading the built-in operator. This enables the programmer to perform some specific computation
when the operator is applied on class objects and to apply a standard definition when the same operator is
applied on a built-in data type.

This means that while evaluating an expression with operators, Python looks at the operands around
the operator. If the operands are of built-in types, Python calls a built-in routine. In case, the operator
is being applied on user-defined operand(s), the Python compiler checks to see if the programmer has
an overloaded operator function that it can call. If such a function whose parameters match the type(s)
and number of the operands exists in the program, the function is called, otherwise a compiler error is
generated.

Basic Concepts of Operator Overloading • Advantages • Overloading
Arithmetic and Logical Operators • Reverse Adding • Overriding
__getitem__(), __setitem__(), in operator, and __call__()
• Overloading Miscellaneous Functions

Operator
Overloading

Python_new.indb 460 7/11/2017 7:09:52 PM

© Oxford University Press. All rights reserved.

Oxfo
rd

 U
niversi

ty
 Pre

ss

461Operator Overloading

Another form of Polymorphism
Like function overloading, operator overloading is also a form of compile-time polymorphism. Operator
overloading, is therefore less commonly known as operator ad hoc polymorphism since different operators
have different implementations depending on their arguments. Operator overloading is generally defined by
the language, the programmer, or both.

Note Ad hoc polymorphism is a specific case of polymorphism where different operators have differ-
ent implementations depending on their arguments.

11.1.2 Advantage of Operator Overloading
We can easily write our Python programs without the knowledge of operator overloading, but the knowledge
and use of this feature can help us in many ways. Some of them are:

• With operator overloading, programmers can use the same notations for user-defined objects and built-in
objects. For example, to add two complex numbers, we can simply write C1 + C2.

• With operator overloading, a similar level of syntactic support is provided to user-defined types as provided
to the built-in types.

• In scientific computing where computational representation of mathematical objects is required, operator
overloading provides great ease to understand the concept.

• Operator overloading makes the program clearer. For example, the statement

(C1.mul(C2).div(C1.add(C2)) can be better written as C1 * C2 / C1 + C2

11.2 IMPLEMENTING OPERATOR OVERLOADING
Just consider the code given below which is trying to add two complex numbers and observe the result.

class Complex:
 def __init__(self):
 self.real = 0
 self.imag = 0
 def setValue(self, real, imag):
 self.real = real
 self.imag = imag
 def display(self):
 print("(", self.real, " + ", self.imag, "i)")
C1 = Complex()
C1.setValue(1,2)
C2 = Complex()
C2.setValue(3,4)
C3 = Complex()
C3 = C1 + C2
C3.display()

OUTPUT
Traceback (most recent call last):

Example 11.1 Program to add two complex numbers without overloading the + operator

Python_new.indb 461 7/11/2017 7:09:52 PM

© Oxford University Press. All rights reserved.

Oxfo
rd

 U
niversi

ty
 Pre

ss

462 Python Programming

So, the reason for this error is simple. + operator does not work on user-defined objects. Now, to do the same
concept, we will add an operator overloading function in our code. For example, look at the code given below
which has the overloaded add function specified as __add__().

 File "C:\Python34\Try.py", line 15, in <module>
 C3 = C1 + C2
TypeError: unsupported operand type(s) for +: 'instance' and 'instance'

class Complex:
 def __init__(self):
 self.real = 0
 self.imag = 0
 def setValue(self, real, imag):
 self.real = real
 self.imag = imag
 def __add__(self, C):
 Temp = Complex()
 Temp.real = self.real + C.real
 Temp.imag = self.imag + C.imag
 return Temp
 def display(self):
 print("(", self.real, " + ", self.imag, "i)")
C1 = Complex()
C1.setValue(1,2)
C2 = Complex()
C2.setValue(3,4)
C3 = Complex()
C3 = C1 + C2
Print("RESULT = ")
C3.display()

OUTPUT
RESULT = (4 + 6 i)

Example 11.2 Program to overload the + operator on a complex object

In the program, when we write C1 + C2, the __add__() function is called on C1 and C2 is passed as an
argument. Remember that, user-defined classes have no + operator defined by default. The only exception is
when you inherit from an existing class that already has the + operator defined.

Note The __add__() method returns the new combined object to the caller.

We can also overload the comparison operators to work with class objects. But before we write further
programs, let us first have a look at Table 11.1 to know the name of the function for each operator.

Python_new.indb 462 7/11/2017 7:09:52 PM

© Oxford University Press. All rights reserved.

Oxfo
rd

 U
niversi

ty
 Pre

ss

463Operator Overloading

class Book:
 def __init__(self):
 title = ""
 publisher = ""
 price = 0
 def set(self, title, publisher, price):
 self.title = title
 self.publisher = publisher
 self.price = price
 def display(self):
 print("TITLE : ", self.title)
 print("PUBLISHER : ", self.publisher)
 print("PRICE : ", self.price)
 def __gt__(self, B):
 if self.price > B.price:
 return True
 else:
 return False
B1 = Book()

Example 11.3 Program to compare two objects of user-defined class type

Table 11.1 Operators and their corresponding function names

Operator Function Name Operator Function Name
+ __add__ += __iadd__

- __sub__ -= __isub__

* __mul__ *= __imul__

/ __truediv__ /= __idiv__

** __pow__ **= __ipow__

% __mod__ %= __imod__

>> __rshift__ >>= __irshift__

& __and__ &= __iand__

| __or__ |= __ior__

^ __xor__ ^= __ixor__

~ __invert__ ~= __iinvert__

<< __lshift__ <<= __ilshift__

> __gt__ <= __le__

< __lt__ == __eq__

>= __ge__ != __ne__

The program given below compares two Book objects. Although the class Book has three, attributes,
comparison is done based on its price. However, this is not mandatory. You can compare two objects based
on any of the attributes.

Python_new.indb 463 7/11/2017 7:09:52 PM

© Oxford University Press. All rights reserved.

Oxfo
rd

 U
niversi

ty
 Pre

ss

464 Python Programming

B1.set("OOP with C++", "Oxford University Press", 525)
B2 = Book()
B2.set("Let us C++", "BPB", 300)
if B1>B2:
 print("This book has more knowledge so I will buy")
 B1.display()

OUTPUT
This book has more knowledge so I will buy
TITLE : OOP with C++ PUBLISHER : Oxford University Press PRICE : 525

Program 11.1 Write a program that overloads the + operator on a class Student that has
attributes name and marks.

class Student:
 def __init__(self, name, marks):
 self.name = name
 self.marks = marks
 def display(self):
 print(self.name, self.marks)
 def __add__(self, S):
 Temp = Student(S.name, [])
 for i in range(len(self.marks)):
 Temp.marks.append(self.marks[i] + S.marks[i])
 return Temp
S1 = Student("Nikhil", [87, 90, 85])
S2 = Student("Nikhil", [83, 86, 88])
S1.display()
S2.display()
S3 = Student("",[])
S3 = S1 + S2
S3.display()

OUTPUT
Nikhil [87, 90, 85]
Nikhil [83, 86, 88]
Nikhil [170, 176, 173]

Program 11.2 Write a program that overloads the + operator to add two objects of class
Matrix.

class Matrix:
 def __init__(self, List):

PROGRAMMING EXAMPLES

Python_new.indb 464 7/11/2017 7:09:52 PM

© Oxford University Press. All rights reserved.

Oxfo
rd

 U
niversi

ty
 Pre

ss

465Operator Overloading

 self.List = List
 def display(self):
 print(self.List)
 def __add__(self, M):
 Temp = Matrix([])
 for i in range(len(self.List)):
 for j in range(len(self.List[0])):
 Temp.List.append(self.List[i][j] + M.List[i][j])
 return Temp
M1 = Matrix([[1,2],[3,4]])
M2 = Matrix([[3,4],[5,1]])
M3 = Matrix([])
M3 = M1 + M2
print("RESULTANT MATRIX IS : ")
M3.display()

OUTPUT
RESULTANT MATRIX IS : [4, 6, 8, 5]

Program 11.3 Write a program that overloads the + operator so that it can add two objects
of class Fraction.

def GCD(num, deno):
 if(deno == 0):
 return num
 else:
 return GCD(deno, num%deno)
class Fraction:
 def __init__(self):
 self.num = 0
 self.deno = 1
 def get(self):
 self.num = int(input("Enter the numerator : "))
 self.deno = int(input("Enter the denominator : "))
 def simplify(self):
 common_divisor = GCD(self.num, self.deno)
 self.num //= common_divisor
 self.deno //= common_divisor
 def __add__(self, F):
 Temp = Fraction()
 Temp.num = (self.num * F.deno) + (F.num * self.deno)
 Temp.deno = self.deno * F.deno
 return Temp
 def display(self):
 self.simplify()
 print(self.num, "/", self.deno)
F1 = Fraction()

Python_new.indb 465 7/11/2017 7:09:52 PM

© Oxford University Press. All rights reserved.

Oxfo
rd

 U
niversi

ty
 Pre

ss

466 Python Programming

F1.get()
F2 = Fraction()
F2.get()
F3 = Fraction()
F3 = F1 + F2
print("RESULTANT FRACTION IS : ")
F3.display()

OUTPUT
Enter the numerator : 4
Enter the denominator : 10
Enter the numerator : 2
Enter the denominator : 5
RESULTANT FRACTION IS : 4 / 5

Program 11.4 Write a program that overloads the + operator so that it can add a specified
number of days to a given date.

Dict = {1:31, 3:31, 4:30, 5:31, 6:30, 7:31, 8:31, 9:30, 10:31, 11:30, 12:31}
def chk_Leap_Year(year):
 if (year%4 == 0 and year%100 != 0) or (year%400 == 0):
 return 1
 else:
 return 0
class Date:
 def __init__(self):
 d = m = y = 0
 def get(self):
 self.d = int(input("Enter the day : "))
 self.m = int(input("Enter the month : "))
 self.y = int(input("Enter the year : "))
 def __add__(self, num):
 self.d += num
 if self.m !=2:
 max_days = Dict[self.m]
 elif self.m == 2:
 isLeap = chk_Leap_Year(self.y)
 if isLeap == 1:
 max_days = 29
 else:
 max_days = 28
 while self.d > max_days:
 self.d -= max_days
 self.m += 1
 while self.m > 12:
 self.m -= 12
 self.y += 1

Python_new.indb 466 7/11/2017 7:09:52 PM

© Oxford University Press. All rights reserved.

Oxfo
rd

 U
niversi

ty
 Pre

ss

467Operator Overloading

 def display(self):
 print(self.d, "-", self.m,"-", self.y)
D = Date()
D.get()
num = int(input("How many days to add : "))
D + num
D.display()

OUTPUT
Enter the day : 25
Enter the month : 2
Enter the year : 2016
How many days to add : 10
6 - 3 - 2016

Program 11.5 Write a program that has an overloads the *, /, and > operators so that it can
multiply, divide, and compare two objects of class Fraction.

Dict = {1:31, 3:31, 4:30, 5:31, 6:30, 7:31, 8:31, 9:30, 10:31, 11:30, 12:31}
def chk_Leap_Year(year):
 if (year%4 == 0 and year%100 != 0) or (year%400 == 0):
 return 1
 else:
 return 0
class Date:
 def __init__(self):
 d = m = y = 0
 def get(self):
 self.d = int(input("Enter the day : "))
 self.m = int(input("Enter the month : "))
 self.y = int(input("Enter the year : "))
 def __add__(self, num):
 self.d += num
 if self.m !=2:
 max_days = Dict[self.m]
 elif self.m == 2:
 isLeap = chk_Leap_Year(self.y)
 if isLeap == 1:
 max_days = 29
 else:
 max_days = 28
 while self.d > max_days:
 self.d -= max_days
 self.m += 1
 while self.m > 12:
 self.m -= 12
 self.y += 1

Python_new.indb 467 7/11/2017 7:09:53 PM

© Oxford University Press. All rights reserved.

Oxfo
rd

 U
niversi

ty
 Pre

ss

468 Python Programming

 def display(self):
 print(self.d, "-", self.m,"-", self.y)
D = Date()
D.get()
num = int(input("How many days to add : "))
D + num
D.display()

OUTPUT
Enter the numerator : 2
Enter the denominator : 3
Enter the numerator : 4
Enter the denominator : 9
F1 > F2 True
F1 * F2 IS : 8 / 27
F1 / F2 IS : 3 / 2

Program 11.6 Write a program that overloads the + operator so that it can add two objects
of class Binary.

class Binary:
 number = []
 def set(self, bnum):
 self.number = bnum
 def display(self):
 print(self. Number)
 def __add__(self, B):
 Temp = Binary()
 index = len(self.number)
 carry = []
 while len(Temp.number) != index:
 Temp.number.append(-1)
 carry.append(0)
 index -= 1
 while (index)>=0:
 if self.number[index] == 0 and B.number[index] == 0:
 Temp.number[index] = 0 + int(carry[index])
 if self.number[index] == 0 and B.number[index] == 1:
 Temp.number[index] = 1 + int(carry[index])
 if self.number[index] == 1 and B.number[index] == 0:
 Temp.number[index] = 1 + int(carry[index])
 if self.number[index] == 1 and B.number[index] == 1:
 Temp.number[index] = 0 + int(carry[index])
 carry[index-1] = 1
 if Temp.number[index] == 2:
 Temp.number[index] = 0
 if (index-1)>=0:

Python_new.indb 468 7/11/2017 7:09:53 PM

© Oxford University Press. All rights reserved.

Oxfo
rd

 U
niversi

ty
 Pre

ss

469Operator Overloading

 carry[index-1] = 1
 index -= 1
 return Temp
B1 = Binary()
B1.set([1,1,0,1,1])
B2 = Binary()
B2.set([0,1,1,0,1])
B3 = B1 + B2
B3.display()

OUTPUT
[0, 1, 0, 0, 0]

Program 11.7 Write a program to compare two Date objects.

class Date:
 def __init__(self):
 d = m = y = 0
 def get(self):
 self.d = int(input("Enter the day : "))
 self.m = int(input("Enter the month : "))
 self.y = int(input("Enter the year : "))
 def __eq__(self, D):
 Flag = False
 if self.d == D.d:
 if self.m == D.m:
 if self.y == D.y:
 Flag = True
 return Flag
 def __lt__(self, D):
 Flag = False
 if self.y < D.y:
 if self.m < D.m:
 if self.d < D.d:
 Flag = True
 return Flag
D1 = Date()
D1.get()
D2 = Date()
D2.get()
print("D1 == D2", D1 == D2)
print("D1 < D2", D1 < D2)

OUTPUT
Enter the day : 21
Enter the month : 3

Programming Tip: The
__eq__ function gives
NotImplemented as result
when left hand argument does
not know how to test for
equality with given right hand
argument.

Python_new.indb 469 7/11/2017 7:09:53 PM

© Oxford University Press. All rights reserved.

Oxfo
rd

 U
niversi

ty
 Pre

ss

470 Python Programming

Enter the year : 2017
Enter the day : 21
Enter the month : 3
Enter the year : 2017
D1 == D2 True
D1 < D2 False

Program 11.8 Write a program to overload the -= operator to subtract two Distance
objects.

class Distance:
 def __init__(self):
 self.km = 0
 self.m = 0
 def set(self, km, m):
 self.km = km
 self.m = m
 def __isub__(self, D):
 self.m = self.m - D.m
 if self.m < 0:
 self.m += 1000
 self.km -= 1
 self.km = self.km - D.km
 return self
 def convert_to_meters(self):
 return (self.km*1000 + self.m)
 def display(self):
 print(self.km, "kms", self.m, "mtrs")
D1 = Distance()
D1.set(21, 70)
D2 = Distance()
D2.set(18, 123)
D1 -= D2
print("D1 - D2 = ")
D1.display(),
print("that is", D1.convert_to_meters(), "meters")

OUTPUT
D1 - D2 = 2 kms 947 mtrs that is 2947 meters

11.3 REVERSE ADDING
In a program, we have added a certain number of days to our Date object by writing d + num. In this case, it
is compulsory that the class object will invoke the __add__(). But, to provide greater flexibility, we should
also be able to perform the addition in reverse order, that is, adding a non-class object to the class object. For
this, Python provides the concept of reverse adding. The function to do normal addition on Date object is
discussed in the following example.

Python_new.indb 470 7/11/2017 7:09:53 PM

© Oxford University Press. All rights reserved.

Oxfo
rd

 U
niversi

ty
 Pre

ss

471Operator Overloading

But, had we written the same statement as num + d, then the desired task would not have been performed.
The simple reason for this is that the __add__() takes self as the first argument, so the + operator has to
be invoked using the Date object. But this is not the case when you work with numbers. You can either
write 10 + 20 or 20 + 10, it means the same and the correct result is produced. So, we should also have
the same result when we write d + num or num + d. Python has a solution to this. It has the feature of
reverse adding. As you write the __add__() function, just write the __radd__() function which will do
the same task.

Note To overload the + = or – = operators, use the __iadd__() or __isub__() functions.

11.4 OVERRIDING __getitem__() AND __setitem__() METHODS
Python allows you to override __getitem__() and __setitem__() methods. We have already seen in
Chapter 9 that __getitem__() is used to retrieve an item at a particular index. Similarly, __setitem__()
is used to set value for a particular item at the specified index. Although they are well defined for built-in
types like list, tuple, string, etc. but for user-defined classes we need to explicitly write their codes. Consider
the program given below which has a list defined in a class. By default, Python does not allow you to apply
indexes on class objects but if you have defined the __getitem__() and __setitem__() methods in the class,
then you can simply work with indices as with any other built-in type as shown in the following example.

def __add__(self, num):
 self.d += num
 if self.m !=2:
 max_days = Dict[self.m]
 elif self.m == 2:
 isLeap = chk_Leap_Year(self.y)
 if isLeap == 1:
 max_days = 29
 else:
 max_days = 28
 while self.d > max_days:
 self.d -= max_days
 self.m += 1
 while self.m > 12:
 self.m -= 12
 self.y += 1

Example 11.4 Program to illustrate adding on Date object

Programming Tip: Special
methods are used for
performing operator
overloading.

class myList:
 def __init__(self, List):
 self.List = List
 def __getitem__(self,index):
 return self.List[index]

Example 11.5 Program that overrides __getitem__() and __setitem__() methods in a class

Python_new.indb 471 7/11/2017 7:09:53 PM

© Oxford University Press. All rights reserved.

Oxfo
rd

 U
niversi

ty
 Pre

ss

472 Python Programming

11.5 OVERRIDING THE in OPERATOR
We have seen that in is a membership operator that checks whether the specified item is in the variable
of built-in type or not (like string, list, dictionary, tuple, etc.). We can overload the same operator to check
whether the given value is a member of a class variable or not. To overload the in operator we have to use the
function __contains__(). In the program given in the following example, we have created a dictionary that
has name of the subjects as key and their maximum weightage as value. In the main module, we are asking the
user to input a subject. If the subject is specified in our dictionary, then its maximum weightage is displayed.

 def __setitem__(self, index, num):
 self.List[index] = num
 def __len__(self):
 return len(self.List)
 def display(self):
 print(self.List)
L = myList([1,2,3,4,5,6,7])
print("LIST IS : ")
L.display()
index = int(input("Enter the index of List you want to access : "))
print(L[index])
index = int(input("Enter the index at which you want to modify : "))
num = int(input("Enter the correct number : "))
L[index] = num
L.display()
print("The length of my list is : ", len(L))

OUTPUT
LIST IS : [1, 2, 3, 4, 5, 6, 7]
Enter the index of List you want to access : 3
4
Enter the index at which you want to modify : 3
Enter the correct number : 40
[1, 2, 3, 40, 5, 6, 7]
The length of my list is : 7

class Marks:
 def __init__(self):
 self.max_marks = {"Maths":100, "Computers":50, "SST":100, "Science":75}
 def __contains__(self, sub):
 if sub in self.max_marks:
 return True
 else:
 return False
 def __getitem__(self, sub):

Example 11.6 Program to override the in operator

Python_new.indb 472 7/11/2017 7:09:53 PM

© Oxford University Press. All rights reserved.

Oxfo
rd

 U
niversi

ty
 Pre

ss

473Operator Overloading

11.6 OVERLOADING MISCELLANEOUS FUNCTIONS
Python allows you to overload functions like long(), float(), abs(), and hex(). Remember that we have
used these functions on built-in type variables to convert them from one type to another. We can use these
functions to convert a value of one user-defined type (object) to a value of another type.

class Number:
 def __init__(self, num):
 self.num = num
 def display(self):
 return self.num
 def __abs__(self):
 return abs(self.num)
 def __float__(self):
 return float(self.num)
 def __oct__(self):
 return oct(self.num)
 def __hex__(self):
 return hex(self.num)
 def __setitem__(self, num):
 self.num = num
N = Number(-14)
print("N IS : ", N.display())
print("ABS(N) IS : ", abs(N))
N = abs(N)
print("Converting to float....., N IS : ", float(N))
print("Hexadecimal equivalent of N IS : ", hex(N))
print("Octal equivalent of N IS : ", oct(N))

Example 11.7 Program to overload hex(), oct(), and float() functions

 return self.max_marks[sub]
 def __str__(self):
 return "The Dictionary has name of subjects and maximum marks allotted to them"
M = Marks()
print(str(M))
sub = input("Enter the subject for which you want to know extra marks : ")
if sub in M:
 print("Social Studies paper has maximum marks alloted = ", M[sub])

OUTPUT
The Dictionary has name of subjects and maximum marks allotted to them
Enter the subject for which you want to know extra marks : Computers
Social Studies paper has maximum marks alloted = 50

Python_new.indb 473 7/11/2017 7:09:53 PM

© Oxford University Press. All rights reserved.

Oxfo
rd

 U
niversi

ty
 Pre

ss

474 Python Programming

Let us take another example in which we have two classes for calculating the distance. One has distance
specified in meters and the other has distance in kilometers. There are two functions–km() and mts(), which
takes the argument of class Distance and then converts the distance into kilometers and meters respectively.

class Distance_m:
 def __init__(self, m):
 self.m = m
 def display(self):
 print("Distance in meters is : ", self.m)
def mts(D):
 return D.km*1000
class Distance_km:
 def __init__(self, km):
 self.km = km
 def display(self):
 print("Distance in kilometers is : ", self.km)
def km(D):
 return D.m/1000
Dm = Distance_m(12345)
Dm.display()
print("Distance in kilo metres = ", km(Dm))
Dkm = Distance_km(12.345)
Dkm.display()
print("Distance in metres = ", mts(Dkm))

OUTPUT
Distance in meters is : 12345
Distance in kilo metres = 12
Distance in kilometers is : 12.345
Distance in metres = 12345.0

Example 11.8 Program to illustrate conversion of class objects

OUTPUT
N IS : -14
ABS(N) IS : 14
Converting to float....., N IS : 14.0
Hexadecimal equivalent of N IS : 0xe
Octal equivalent of N IS : 016

11.7 OVERRIDING THE __call__() METHOD
The __call__() method is used to overload call expressions. The __call__() method is called automatically
when an instance of the class is called. It can be passed to any positional or keyword arguments. Like
other functions, the __call__() method also supports all of the argument-passing modes. The __call__()
method can be declared as, def __call__(self, [args...])

Find the Output
 1. class Point:
 def __init__(self, x, y):
 self.x = x
 self.y = y
 def __abs__(self):
 return (self.x**2 + self.y**2)**0.5
 def __add__(self, P):
 return Point(self.x + P.x, self.y + P.y)
 def display(self):
 print(self.x, self.y)
 P1 = Point(12, 25)
 P2 = Point(21, 45)
 Print(abs(P2))
 P1 = P1+ P2
 P1.display()
 2. class A(object):
 def __init__(self, num):
 self.num = num
 def __eq__(self, other):
 return self.num == other.num
 class B(object):
 def __init__(self, num):
 self.num = num
 print(A(5) == B(5))
 3. class Circle:
 def __init__(self, radius):
 self.__radius = radius
 def getRadius(self):
 return self.__radius
 def area(self):
 return 3.14 * self.__radius ** 2
 def __add__(self, C):
 return Circle(self.__radius + C.__radius)
 C1 = Circle(5)
 C2 = Circle(9)
 C3 = C1 + C2
 print("RADIUS : ",C3.getRadius())
 print("AREA : ", C3.area())
 4. class Circle:
 def __init__(self, radius):
 self.__radius = radius
 def __gt__(self, another_circle):
 return self.__radius > another_circle.__radius
 def __lt__(self, C):
 return self.__radius < C.__radius
 def __str__(self):
 return "Circle has radius " + str(self.__radius)
 C1 = Circle(5)
 C2 = Circle(9)
 print(C1)
 print(C2)
 print("C1 < C2 : ", C1 < C2)
 print("C2 > C1 : ", C1 > C2)
 5. class One:
 def __init__(self):
 num = 10
 def __eq__(self, T):
 if isinstance(T, One):
 return True
 else:

Python_new.indb 474 7/11/2017 7:09:53 PM

© Oxford University Press. All rights reserved.

Oxfo
rd

 U
niversi

ty
 Pre

ss

475Operator Overloading

class Mult:
 def __init__(self, num):
 self.num = num
 def __call__(self, O):
 return self.num * O
x = Mult(10)
print(x(5))

OUTPUT
50

Example 11.9 Program to overload the __call__() method

Summary
• The meaning of operators like +, =, *, /, >, <,

etc. are pre- defined in any programming language.
So, programmers can use them directly on built in data
types to write their programs.

• Operator overloading allows programmers to extend the
meaning of existing operators so that in addition to the
basic data types, they can also be applied to user-defined
data types.

• With operator overloading, a programmer is allowed to
provide his own definition for an operator to a class by
overloading the built-in operator.

• Operator overloading is also known as operator ad hoc
polymorphism since different operators have different
implementations depending on their arguments.

• The __add__() method returns the new combined
object to the caller.

• By default, Python does not allow you to apply
indexes on class objects but if you have defined the
__getitem__() and __setitem__() in the class, then
you can simply work with indices as with any other
built-in type.

Glossary
Ad hoc polymorphism A specific case of polymorphism
where different operators have different implementations
depending on their arguments.
Membership operator An operator that checks whether the
specified item is present in the instance of an object or not.

Operator Overloading Redefining the meaning of operators
when they operate on class objects.

 Exercises
Fill In The Blanks
 1. _____ allows programmers to redefine the meaning

of existing operators.
 2. Operator overloading is also known as _____

polymorphism.
 3. _____ is a specific case of polymorphism where

different operators have different implementations
depending on their arguments.

 4. The name of the function to overload ** operator is
_____.

 5. The __add__() method returns _____.
 6. To overload the *= operator you will use _____

function.

Python_new.indb 475 7/11/2017 7:09:53 PM

© Oxford University Press. All rights reserved.

Oxfo
rd

 U
niversi

ty
 Pre

ss

476 Python Programming

 7. The __eq__ function gives _____ as result when left
hand argument does not know how to test for equality
with given right hand argument.

 8. The _____ method is used to overload call
expressions.

 9. The __call__() method supports all of the _____
modes.

 10. _____ method is written to perform longObj – Number,
where Number is a user-defined class.

State True Or False
 1. You can have overload only one operator per class.
 2. Operator overloading allows you to create new

operators.
 3. With operator overloading, a programmer is allowed

to provide his own definition for an operator to a
class.

 4. Operator overloading makes the program simple to
understand.

 5. To overload the <<= operator, you will write the code
for __lshift__ function.

 6. All the operators can be overloaded.
 7. Writing intObj + classObj is same as writing

classObj + intObj.
 8. Special methods are used for performing operator

overloading.
 9. The __getitem__() and __setitem__() methods

are defined for lists, tuples, and strings but not for
class objects.

 10. The __call__() method can be passed any positional
or keyword arguments.

Multiple Choice Questions

 1. Which function will be written to overload the in
operator?
(a) __call__() (b) __contains__()
(c) __member__() (d) __add__()

 2. Which of the following function will help you to
retrieve an item at a particular index?
(a) slice (b) __getitem__()
(c) __setitem__() (d) in

 3. Which of the following function is used to set value
for a particular item at the specified index?
(a) slice (b) __getitem__()
(c) __setitem__() (d) in

 4. Membership operator when overloaded is invoked on
_____.
(a) object (b) class
(c) method (d) attribute

 5. Which conversion function cannot be overloaded in a
class?
(a) long() (b) hex()
(c) str() (d) None of these

 6. Which function is called when the following code is
executed?

 C = Complex()
 format(C)

(a) format() (b) __format__()
(c) str() (d) None of these

 7. If we write the following lines of code, then which
function will be invoked and what will it return?

 N1 = Number(10)
 N2 = Number(20)
 print(N1<N2)

(a) __lt__, False (b) __gt__, False
(c) __lt__, True (d) __gt__, True

 8. When we add two objects of class Complex, which
functions are called when we write print(C1 + C2)?
(a) __add__(), __str__()
(b) __str__(), __add__()
(c) __sum__(), __str__()
(d) __str__(), __sum__()

Review Questions
 1. Define the term operator overloading.
 2. Assume that you have overloaded the + operator

in your program. Illustrate the cases in which the
operator overloaded function will be called and the
cases in which the default function will be called.

 3. Define the term ad hoc polymorphism.
 4. Give the advantages of operator overloading.

 5. Differentiate between __add__, __radd__, and
__iadd__ functions.

 6. Which functions will you use to index a class object?
Explain with the help of an example.

 7. Which operator is used to check whether a value is
present in the object or not? Can you overload this
object on user-defined types? If yes, how?

Python_new.indb 476 7/11/2017 7:09:53 PM

© Oxford University Press. All rights reserved.

Oxfo
rd

 U
niversi

ty
 Pre

ss

477Operator Overloading

 8. Is it possible to convert a class object in to a floating
type value? If yes, how?

 9. With the help of an example explain how you can
convert a value of one class type into a value of another
class type.

 10. When is the __call__() method invoked?

Programming Problems
 1. Write a class Money with attributes Rupees and Paise.

Overload operators +=, -=, and >= so that they may
be used on two objects. Also write functions so that
a desired amount of money can be either added or
subtracted from Money.

 2. Use the class defined in the previous functions to
calculate the amount of money to be paid by multiplying
it with a specified quantity.

 3. Again, using class Money, find the price of one item
given the total amount paid and number of units of
item bought.

 4. Write a class INR with attributes Rupees and Paise.
Write another class USD with attributes dollars and
cents. Write a function to convert USD into INR and
vice versa.

 5. Write a program that overloads the + operator to add
two objects of class Time.

 6. Write a menu driven program to overload +=, -=,
and *= operators on the Matrix class.

 7. Write a menu driven program to overload +=, -=,
==, >=, and <= operators on the Distance class.

 8. Write a menu driven program to overload +=, -=,
==, >=, and <= operators on the Time class.

 9. Write a menu driven program to overload +=, -=,
==, >=, and <= operators on the Height class.

 10. Write a menu driven program to overload +=, -=,
==, >=, and <= operators on the Binary class.

 11. Write a menu driven program to overload +=, -=, *=,
/=, ==, >=, and <= operators on the Complex class.

 12. Write a menu driven program to overload +=, -=,
*=, /=, ==, and >=, and <= operators on the
Polynomial class.

 13. Write a menu driven program to overload +=, -=,
*=, /=, ==, >=, and <= operators on the Fraction
class.

 14. Write a menu driven program to overload +=, -=,
==, >=, and <= operators on the String class.

 15. Write a program to convert minutes into class Time
with data members—hrs and mins.

 16. Write a program to convert class Time with data
members—hrs and mins into minutes.

 17. Write a menu driven program that performs conversion
to and from Array class.

 18. Write a menu driven program that performs conversion
to and from String class.

 19. Write a menu driven program that performs conversion
from a Square to Rectangle class.

 20. Write a program to convert data of class Student
having members—roll no and marks in three
subjects to another class Student that stores just the
roll number and the average.

 21. Write a program to convert Polar co-ordinates specified
in one class into Rectangular co-ordinates.

 22. Write a program to convert temperature specified in
Celsius in one class into Fahrenheit in another
class.

 23. Write a program to implement a timer using increment
operator overloading.

Find the Output
 1. class Point:
 def __init__(self, x, y):
 self.x = x
 self.y = y
 def __abs__(self):
 return (self.x**2 + self.y**2)**0.5
 def __add__(self, P):
 return Point(self.x + P.x, self.y + P.y)
 def display(self):
 print(self.x, self.y)

 P1 = Point(12, 25)
 P2 = Point(21, 45)
 print(abs(P2))
 P1 = P1+ P2
 P1.display()
 2. class A(object):
 def __init__(self, num):
 self.num = num
 def __eq__(self, other):
 return self.num == other.num

Python_new.indb 477 7/11/2017 7:09:53 PM

© Oxford University Press. All rights reserved.

Oxfo
rd

 U
niversi

ty
 Pre

ss

478 Python Programming

 class B(object):
 def __init__(self, num):
 self.num = num
 print(A(5) == B(5))
 3. class Circle:
 def __init__(self, radius):
 self.__radius = radius
 def getRadius(self):
 return self.__radius
 def area(self):
 return 3.14 * self.__radius ** 2
 def __add__(self, C):
 return Circle(self.__radius + C.__

radius)
 C1 = Circle(5)
 C2 = Circle(9)
 C3 = C1 + C2
 print("RADIUS : ",C3.getRadius())
 print("AREA : ", C3.area())
 4. class Circle:
 def __init__(self, radius):
 self.__radius = radius
 def __gt__(self, another_circle):
 return self.__radius >

another_circle.__radius
 def __lt__(self, C):
 return self.__radius < C.__radius
 def __str__(self):
 return "Circle has radius " +

str(self.__radius)
 C1 = Circle(5)
 C2 = Circle(9)
 print(C1)
 print(C2)
 print("C1 < C2 : ", C1 < C2)
 print("C2 > C1 : ", C1 > C2)
 5. class One:
 def __init__(self):
 num = 10
 def __eq__(self, T):
 if isinstance(T, One):
 return True
 else:
 return NotImplemented
 class Two:
 def __init__(self):
 num = 100
 print(One() == Two())
 6. class A:
 def __bool__(self):
 return True

 X = A()
 if X:
 print('yes')
 7. class String(object):
 def __init__(self, val):
 self.val = val
 def __add__(self, other):
 return self.val + '....' + other.val
 def __sub__(self, other):
 return "Not Implemented"
 S1 = String("Hello")
 S2 = String("World")
 print(S1 + S2)
 print(S1 - S2)
 8. class String(object):
 def __init__(self, val):
 self.val = val
 def __str__(self):
 return self.val
 def __repr__(self):
 return "This is String representation

of " + self.val
 S = String("Hi")
 print(str(S))
 9. class A:
 def __len__(self):
 return 0
 X = A()
 if not X:
 print('no')
 else:
 print('yes')
 10. class A:
 def __init__(self):
 self.str = "abcdef"
 def __getitem__(self, i):
 return self.str[i]
 x = A()
 for i in x:
 print(i,end=" ")
 11. class A:
 str = "Hi"
 def __gt__(self, str):
 return self.str > str
 X = A()
 print(X > 'hi')

Python_new.indb 478 7/11/2017 7:09:53 PM

© Oxford University Press. All rights reserved.

Oxfo
rd

 U
niversi

ty
 Pre

ss

479Operator Overloading

Find the Error
 1. class Matrix:
 def __init__(self):
 Mat = []
 def setValue(self, number):
 self.number = number
 def display(self):
 print(self.number)
 M1 = Matrix()
 M1.setValue(([1,2],[3,4]))
 M2 = Matrix()
 M2.setValue(([5,6],[2,3]))
 M3 = Matrix()
 M3 = M1 + M2
 M3.display()
 2. class A(object):
 def __init__(self, num):
 self.num = num
 def __eq__(self, other):
 return self.num == other.num
 class B(object):
 def __init__(self, val):
 self.val = val
 print(A(5) == B(5))
 3. class Point:
 def __init__(self, x, y):
 self.x = x

 self.y = y
 def __mul__(self, num):
 return self.x * num + self.y * num
 P1 = Point(3, 4)
 print(2*P1)
 4. class String(object):
 def __init__(self, val):
 self.val = val
 S1 = String("Hello")
 print(S1[5])
 5. class Number:
 def __init__(self, num):
 self.num = num
 def __sub__(self, N):
 return Number(self.num - N)
 def __sub__(N, self):
 return Number(N - self.num)
 x = Number(4)
 y = x-4
 6. class A:
 def __init__(self):
 self.str = "abcdef"
 def __setitem__(self, i, val):
 self.str[i] = val
 x = A()
 x[2] = 'X'

Answers

Fill in the Blanks
1. operator overloading
2. compile time or ad hoc
3. ad hoc polymorphism

4. __pow__
5. the new combined

object to the caller

6. __imul__
7. NotImplemented
8. __call___()

 9. argument-passing
10. __rsub__()

State True or False
1. False 2. False 3. True 4. True 5. False 6. False 7. False 8. True 9. True 10. True

Multiple Choice Questions
1. (b) 2. (b) 3. (c) 4. (a) 5. (d) 6. (c) 7. (c) 8. (a)

Python_new.indb 479 7/11/2017 7:09:53 PM

© Oxford University Press. All rights reserved.

Oxfo
rd

 U
niversi

ty
 Pre

ss

