
Associate Professor
IMS Ghaziabad

IT Consultant and Corporate Trainer

Former Head, IT Department
IMS Ghaziabad

Sachin Malhotra

Saurabh Choudhary

Programming inJava

Programming in JAVA.indb 1 19/12/17 4:02 PM

© Oxford University Press. All rights reserved.

Oxfo
rd

 U
niversi

ty
 Pre

ss

3
Oxford University Press is a department of the University of Oxford.

It furthers the University’s objective of excellence in research, scholarship,
and education by publishing worldwide. Oxford is a registered trade mark of

Oxford University Press in the UK and in certain other countries.

Published in India by
Oxford University Press

Ground Floor, 2/11, Ansari Road, Daryaganj, New Delhi 110002, India

© Oxford University Press 2010, 2014, 2018

The moral rights of the author/s have been asserted.

First Edition published in 2010
Second Edition published in 2014

Revised Second Edition published in 2018

All rights reserved. No part of this publication may be reproduced, stored in
a retrieval system, or transmitted, in any form or by any means, without the

prior permission in writing of Oxford University Press, or as expressly permitted
by law, by licence, or under terms agreed with the appropriate reprographics

rights organization. Enquiries concerning reproduction outside the scope of the
above should be sent to the Rights Department, Oxford University Press, at the

address above.

You must not circulate this work in any other form
and you must impose this same condition on any acquirer.

ISBN-13: 978-0-19-948414-0
ISBN-10: 0-19-948414-7

Typeset in Times New Roman
by Ideal Publishing Solutions, Delhi

Printed in India by Magic International (P) Ltd., Greater Noida

Third-party website addresses mentioned in this book are provided
by Oxford University Press in good faith and for information only.

Oxford University Press disclaims any responsibility for the material contained therein.

Programming in JAVA.indb 2 19/12/17 4:02 PM

© Oxford University Press. All rights reserved.

Oxfo
rd

 U
niversi

ty
 Pre

ss

588 Programming in Java

	 	 	 <filter>
	 	 	 	 <filter-name>checkLoginFilter</filter-name>
	 	 	 	 <filter-class>AlreadyLogingFilter</filter-class>
	 	 	 </filter>

	 	 	 <filter-mapping>
	 	 	 	 <filter-name>checkLoginFilter</filter-name>
	 	 	 	 <url-pattern>/auth/showmessage</url-pattern>
	 	 	 	 <url-pattern>/auth/showAuthenticate</url-pattern>

	 	 	 </filter-mapping>
	 	 	 </web-app>

16.5 INTRODUCTION TO JAVA SERVER PAGES
Java server pages(JSP), in contrast to servlets, is basically a page that contains Java code
embedded within html tags. Servlet is a Java program where html tags are embedded in Java
code or html responses are generated through Java. JSP files have an extension. jsp	and they
execute within a JSP container present in the webserver. This container actually translates the
.jsp	into an equivalent servlet. In other words, JSP is a servlet in the background. The basic
purpose of using JSP is also same as that of servlet, i.e., to process the request and generate
dynamic web content for the client. The obvious question that arises is why is JSP required?
Does it offer an advantage over a servlet?
 JSP offers a significant advantage over a servlet. JSP is embedded in html with some special
delimiters which look like tags. So it is easy to learn. To work with a servlet you need to learn Java
and its programming styles which is not the case in JSP. Moreover JSP pages are automatically
recompiled when required, which is not the case with servlets. Servlets have to be recompiled in
case they are changed. So as soon as you refresh your JSP page, changes made to it are reflected.
The URL mapping required in web.xmlfile for servlets is not required in the case of JSP.

16.5.1 JSP Life Cycle
JSP life cycle has three methods: jspInit(),_jspService(), and
jspDestroy()similar to a servlet lifecycle. These methods are
automatically called when a JSP page is requested and it terminates
normally.
	 jspInit() method is similar to the init()	method of a servlet
or an applet. It is called only once during the entire lifecycle and is
used to initialize variables and objects that can be used throughout
the JSP.
	 _jspService() method is automatically called and is used to
generate response for the request. This method delegates request
to doGet()	or doPost()	method of a generated servlet.
	 jspDestroy() method is automatically called when the JSP page
terminates normally. It is used for cleaning the resources held by
the JSP.

jspInit()

–jspService()

jspDestroy()

Fig. 16.19 JSP Life cycle.

Introduction to Advanced Java 597

em Similar to italics

< Used for displaying less than sign in html (i.e.,<)

> Used for displaying greater than sign in html (i.e.,>)

h1, h2, h3, h4, h5, h6
Used for headings. h1 is the biggest and h6 is the
smallest

<%@include file = "includedirective.html" %>
JSP include directive is used to include the contents
of includedirective.html file within the
JspElements.jsp page

<%@ page import = "java.util.*" %> JSP page directive is used to import util package

<%= (2+2-2) %>

JSP expression is used to evaluate the expression
and send the result to the client embedded in the
generated html

<%= "Introduction to JSP Elements" %>
JSP expression is used to send the string to the client
embedded in the generated html

<%
out.println("This following text is visible
through a Scriptlet
");
d=new Date();
out.println("
 The Current Date is:
"+d+"
");
out.println("
 A Sample for Loop</
b>
 ");
 for (int i=0;i<5;i++)
 out.println("Iteration No :" +i+"
");
%>

JSP scriptlet is used to depict a number of statement
can be embedded in html. Predefined object out is
used in this scriptlet to write strings to the client.
The output of all these statement is embedded in the
generated html sent to client

16.6 JAVA BEANS

Java beans provides a standard format for writing Java classes. Java bean is a reusable software
component. Once it is designed and created, it can be used over and over again in many different
applications as per their requirements. Java Beans can be used by IDE and other Java API’s to
create new applications. The information of these beans is automatically discovered and then
manipulated without explicitly coding them again. A Java bean may be as simple as an ordinary
Java class which follows certain guidelines like:

 l A bean class must have a no-argument constructor.
 l A bean class should have no public properties.
 l Properties should be modified and accessed through setter (setXXX) and getter

(getXXX) methods, respectively.

(Table 16.11 Contd.)

Introduction to Advanced Java 563

The transaction should not be roll backed just because the SMS/ email alert could not be sent at
the time of the transaction. In such a case, Savepoint is used to roll back a transaction to a set
point in a transaction. It is actually an interface in the java.sql package and was introduced in
JDBC 3.0 API. All changes made up to the save point are committed and after the savepoint
are rolled back.

 try {
 con.setAutoCommit(false); //
 Statement stmt1 = con.createStatement();
 Statement stmt2 = con.createStatement();
 stmt1.executeUpdate("Query 1");
 Savepoint sp1 = con.setSavepoint("SavePoint1");
 stmt1.executeUpdate("Query 2");
 con.commit(); /* commit the changes to the database and make them
 permanent. */
 ...

 } catch(SQLException se)
 {
 try{
 con.rollback(sp1); // roll back the changes up to the savepoint
 }catch(SQLException){}
 }

16.3 SERVLETS
Servlets are Java server-side programs that accept client’s request (usually http request), process
them and generate (usually http response) responses. The requests originate from client’s web
browser and are routed to a servlet located inside an appropriate webserver. Servlets execute
within a servlet container which resides in a webserver like Apache Tomcat. The newer release
of Tomcat has a JSP (Java server pages) container also in it. Normally HTTP (hypertext transfer
protocol) is used between web client and servlets, but other protocols like FTP (file transfer
protocol) can also be used.

16.3.1 Lifecycle of Servlets
Servlets have their own execution lifecycle. The lifecycle
includes three methods as shown in Fig. 16.5.
 Whenever a client request is received by the servlet
container (part of a webserver), it

	 l Locates the servlet responsible for handling the
request and loads it.

	 l Instantiates it.
	 l Initializes the servlet by calling init()method,

followed by service and destroy.
 The init() method is called only once during the lifetime
of an applet. One time initializations are done in this method.
 The service method is used for processing the client’s request and generating responses.
The request may be forwarded by service method to doGet() or doPost() depending upon the

public void init()

public void service()

public void destroy()

public void doPost()

public void doGet()

Fig. 16.5 Lifecycle of Servlets.

Introduction to Advanced Java 609

 Main-Class: classname

classname is the name of the class which contains the main method (public static void
main(Stringargs[])) as the execution of any java applications begin from main method. Once
this manifest is added to the JAR, the application bundled in JAR can be executed as
 java -jar JAR-name

Note The ‘e’ option (e stands for entry point) can also be used to create or override the mani-
fest’s Main-Class header. It is used to specify the applications starting point without editing or
creating the manifest file. For example, this command creates x.jar where the Main-Class at-
tribute value in the manifest is set to MyMain:

 jar cfe x.jar MyMain MyMain.class

 If the starting point or main class is in a package, the following command may be invoked.
For example App is the package which contains MyMain.class.
 jar cfe x.jar App.MyMain App/MyMain.class

16.8 REMOTE METHOD INVOCATION

Distributed computing allows parts of the system to be residing in separate machines located in
different places. It allows business logic and data to be accessed from remote locations anytime
anywhere by any one. RMI helps in accomplishing this by allowing objects running on one
machine to be accessed by the clients running in different machines.
 Remote method invocation (RMI) is Java’s implementation of remote procedure call (RPC)
for distributed computing. It is based on client/server concept. RPC is, as the name suggests,
a client invoking a procedure on the remote server by passing arguments and expecting some
return. RMI is a Java client (running in one JVM) invoking a procedure on a remote Java server
(running in same/different JVM). RMI is not language-independent, whereas CORBA (common
object request broker architecture) is.
 Language-independency means a Java program can communicate with a program written
in any language like Cor C++. The low level details of communication are hidden from the
programmer. Actually, a protocol named JRMP (Java remote method protocol) that works over
TCP/IP takes care of the communication between client and server. Sockets are also used for
communication, as they are used for transferring and receiving data, whereas RMI transfers
control by invoking procedure on the server.

16.8.1 RMI Networking Model
RMI client/server applications are used over TCP/IP networking model. In TCP/IP, it is the
application layer’s responsibility to deal with presentation as well as session layer issues. So
the RMI provides the functionality for these layers, as shown in Fig. 16.31. The presentation
layer’s functionality at client and server is handled by stub and skeleton, respectively. RRL
(remote reference layer) handles the session layer functionality by managing the session among
client and server.

AQ.2

Features of the Book

Programming in JAVA.indb 4 19/12/17 4:02 PM

© Oxford University Press. All rights reserved.

Oxfo
rd

 U
niversi

ty
 Pre

ss

624 Programming in Java

 (b) Java to C
 (c) Java to any language
 (d) Java to C++
 7. What Servlet class is used for handling HTTP

requests?
 (a) ServletResponse
 (b) ServletRequest
 (c) HttpServlet
 (d) GenericServlet
 8. Which Servlet class is used for handling FTP

requests?
 (a) ServletResponse
 (b) ServletRequest

 (c) HttpServlet
 (d) GenericServlet
 9. Which method is used to extract cookies from a

request?
 (a) getCookies() (b) getData()
 (c) getHeaders() (d) getParameter()
 10. Which methods are used to extract all names/

value pairs from an http request?
 (a) getParameter() and getParameterValues()
 (b) getParameter() and getParameterNames()
 (c) getParameterNames() and getParameter-

Values()
 (d) getParameter() and getParameterValues()

Review Questions
 1. What is the difference between Statement,

PreparedStatement, and CallableStatement?
 2. Explain the different types of JDBC drivers.
 3. Explain the lifecycle of a Servlet.
 4. Differentiate get and post requests.
 5. Explain the role of registry services in RMI.

 6. Explain the following:
 (a) Http Redirects
 (b) Cookie
 (c) Stubs and skeletons
 (d) ResultSet
 (e) ResultSet metadata
 7. Explain all the steps used for establishing a

connection to a database.

Programming Exercises
 1. Write a program to connect to a database and

retrieve all the data. The database type (Access
or Oracle), driver name, database name, DSN,
etc. have to be fed by the user.

 2. Write a servlet program that fetches all the
data from client and stores it in a database
successfully.

 3. Write a remote calculator program that adds,
subtracts, multiplies, divides, and gives the
remainder as well. These operations should be
invoked remotely by a client method.

 4. Write a servlet that automatically redirects the
client to another page.

 5. Write a servlet that ensures authenticated users
have access to important pages. The user name
and password should be stored in a database
and whenever a user tries to access the servlet,
first he/she is authenticated.

 6. Write a servlet to store the user’s browsing
preferences like color in a cookie and should be
displayed in that color.

Answers to Objective Questions
 1. (b), (d) 2. (b) 3. (b) 4. (c)
 5. (b) 6. (a) 7. (c) 8. (d)
 9. (a) 10. (c)

Abstract Window Toolkit 487

drawn using the drawOval method of the Graphics
object. The first two coordinates in the oval are fixed.
The width and height are variables and they depend
upon the scrollbar movements. The signature of

drawOval method is shown below:
g.draw Oval (int x, int y, int width, int
height)
L36–37 In the main method, the frame is
instantiated.

14.14 Practical Problem: city maP aPPlet

CityMap applet shows map of a city (top view) with five buttons namely hospitals, shopping
malls, police station, post office, and stadium. If a user presses the hospital button, all hospitals
are shown on the map with a specific color and likewise for malls, police station, post office
and stadium.

example 14.18 CityMap.java

import java.applet.*;
import java.awt.*;
import java.awt.event.*;

/*<applet code = "CityMap2.class" width=650 height=600></applet>*/

public class CityMap2 extends Applet
 {
 Button b1,b2,b3,b4,b5;

624 Programming in Java

 (b) Java to C
 (c) Java to any language
 (d) Java to C++
 7. What Servlet class is used for handling HTTP

requests?
 (a) ServletResponse
 (b) ServletRequest
 (c) HttpServlet
 (d) GenericServlet
 8. Which Servlet class is used for handling FTP

requests?
 (a) ServletResponse
 (b) ServletRequest

 (c) HttpServlet
 (d) GenericServlet
 9. Which method is used to extract cookies from a

request?
 (a) getCookies() (b) getData()
 (c) getHeaders() (d) getParameter()
 10. Which methods are used to extract all names/

value pairs from an http request?
 (a) getParameter() and getParameterValues()
 (b) getParameter() and getParameterNames()
 (c) getParameterNames() and getParameter-

Values()
 (d) getParameter() and getParameterValues()

Review Questions
 1. What is the difference between Statement,

PreparedStatement, and CallableStatement?
 2. Explain the different types of JDBC drivers.
 3. Explain the lifecycle of a Servlet.
 4. Differentiate get and post requests.
 5. Explain the role of registry services in RMI.

 6. Explain the following:
 (a) Http Redirects
 (b) Cookie
 (c) Stubs and skeletons
 (d) ResultSet
 (e) ResultSet metadata
 7. Explain all the steps used for establishing a

connection to a database.

Programming Exercises
 1. Write a program to connect to a database and

retrieve all the data. The database type (Access
or Oracle), driver name, database name, DSN,
etc. have to be fed by the user.

 2. Write a servlet program that fetches all the
data from client and stores it in a database
successfully.

 3. Write a remote calculator program that adds,
subtracts, multiplies, divides, and gives the
remainder as well. These operations should be
invoked remotely by a client method.

 4. Write a servlet that automatically redirects the
client to another page.

 5. Write a servlet that ensures authenticated users
have access to important pages. The user name
and password should be stored in a database
and whenever a user tries to access the servlet,
first he/she is authenticated.

 6. Write a servlet to store the user’s browsing
preferences like color in a cookie and should be
displayed in that color.

Answers to Objective Questions
 1. (b), (d) 2. (b) 3. (b) 4. (c)
 5. (b) 6. (a) 7. (c) 8. (d)
 9. (a) 10. (c)

Practical program-
ming examples to
showcase how the
concepts discussed
in a particular chapter
are implemented in
practice

A variety of chapter-end
exercises that include
both subjective as well
as objective questions

Key notes in the text
highlight important
concepts

Introduction to Advanced Java 623

Fig. 16.44 Output.

SUMMARY
Core Java deals with basic programming constructs
and the classes needed for creating a standalone
application. Advance Java deals with classes that
are used for creating Internet-based server-side
applications. In this chapter, we have learnt about some
of the concepts of advanced Java such as servlets,
JSP, JDBC, RMI, Java beans, and enterprise Java
beans. Servlets are used for generating responses
for clients, based on the requests received. JDBC
API deals with a variety of databases for storing and

manipulating data within them. Java RMI is the solution
for RPC, where a Java program on a remote machine
can be called from a Java client program. Basically,
RMI helps in distributed computing. A Java server page
is an easy solution to generate dynamic contents for
the client. Java beans helps in creation of reusable
software components which can be used by server
side technologies. EJB is a server side distributed
component architecture which is used for creating
enterprise wide server side applications.

EXERCISES

Objective Questions
 1. Which packages contain the JDBC API?
 (a) java.jdbc (b) java.sql
 (c) javax.jdbc (d) javax.sql
 2. Which class is used to establish a database

connection?
 (a) Class (b) DriverManager
 (c) Statement (d) ResultSet
 3. Which of the following is a precompiled

statement?
 (a) Statement
 (b) PreparedStatement
 (c) CallableStatement
 (d) Connection

 4. Which of the following is used for calling stored
procedures?

 (a) Statement
 (b) PreparedStatement
 (c) CallableStatement
 (d) Connection
 5. Which of the following methods return a Connec-

tion object?
 (a) getConnection();
 (b) getConnection(String databaseURL)
 (c) getConnect()
 (d) execute()
 6. RMI is communication between
 (a) Java program to Java program

240 Programming in Java

 There was one more method, stop(), which has now been deprecated, used to terminate a
thread. The reason for this deprecation is that it throws a ThreadDeath object at the thread to kill
it. Apart from this, calling stop() method results in sudden termination of thread’s run() method,
which might lead to the results achieved by the thread program in inconsistent or undesirable
state.

8.7 THREAD PRIORITY
Each thread has a set priority, which helps the scheduler to decide the order of sequence of thread
execution, i.e., when should which thread run? By default the threads created, carry the same
priority, due to which the Java scheduler schedules them for the processor on first-come-first-
serve basis. It is to be noted that Java follows preemptive scheduling policy, just like an operating
system. When a high priority thread becomes ready for execution, the currently executing low
priority will be stopped. On the contrary, a low priority thread cannot preempt a currently running
high priority thread. It has to wait until the high priority thread is dead or blocked because of
some reason or the other. The reasons for this can be any of the following:

 Thread stops as soon as it exits run()
 It sleeps (by using sleep())
 It waits (by using wait() or join())

Once it resumes from the blocked state, it will again preempt the low priority thread to which
it had relinquished its control earlier, thus forcing the low priority to move to the runnable state
from the running state.

Note Higher priority threads will always preempt the lower priority threads. Actually it depends on
how the priorities of threads set by the JVM are mapped to the operating system. It might
happen that a higher priority might not be considered higher by the operating system. So this
actually depends on the operating system and it varies from OS to another.

 As shown in Table 8.3, the Thread class has a method setPriority(), responsible for setting
the priority of the thread by programmer. The signature of the method is
 nal void setPriority(int x)

where x speci es the value used to signify the thread’s priority. Thread class de nes several
prede ned priority constants (as static nal variables) as shown in Table 8.3.

Table 8.3 Priority Constants and their Corresponding Value for Threads

Constant Value Meaning
MIN_PRIORITY 1 Max priority a thread can have
NORM_PRIORITY 5 Default priority a thread can have
MAX_PRIORITY 10 Min priority a thread can have

 From the above table, it is clear that priority can be set in the form of values between 1 and
10. If this priority is not externally assigned, by default it is set to NORM_PRIORITY, i.e., 5.
 A thread’s current priority can be obtained by the getPriority() of the thread class, which
returns an integer value.

Programming in JAVA.indb 5 19/12/17 4:02 PM

© Oxford University Press. All rights reserved.

Oxfo
rd

 U
niversi

ty
 Pre

ss

Java is an easy-to-learn, versatile, robust, portable, and secure language with rich user interfaces.
It has set up new benchmarks in the software development world ranging from desktop to web-
based enterprise applications to mobile and embedded applications. Since its inception in 1995,
it has come a long way by continuously evolving itself and, in the process, changing the style of
programming the world over. Java is not only found in laptops or data centres, it is also widely
used in cell phones, SIM cards, smart cards, printers, routers and switches, set-top boxes, ATMs,
navigation systems, to name a few, and remains one of the top choices for most popular Cloud
platforms. According to the latest and most popular programming indexes and ranking, Java
continues to be the preferred choice of developers.
 This revised second edition of Programming in Java conforms to Java Standard Edition 8. It
is significant in the sense that this major release comes bundled with plenty of enhancements
which were long overdue. To list a few noticeable enhancements, Java 8 includes support for
functional programming, lambdas, enhancements to interfaces – default and static methods, and
much more. These new topics are appropriately explained in separate appendices with suitable
examples.

New to the Revised Second Edition
This edition has been updated to provide greater topical coverage as well as to incorporate Java 8
enhancements. The most noticeable changes are as follows:

 l Appendices on major Java 8 enhancements – functional programming with lambdas and
static and default methods in interfaces.

 l Appendices on regular expressions, stack and heap usage in Java, and differences between
pointers and references

 l This edition is supplemented with a rich online resource centre that provides a “Prelude to
Java 9”

Key Features
The most prominent feature of this book has been the line-by-line explanation section under
each program. They facilitate in-depth understanding of the whole program. We have retained
this feature in the revised second edition as well. It has been well appreciated by the users. Other
noticeable features include the following:

 l A recap of object-oriented programming concepts before introducing the concepts of Java
 l Plenty of user-friendly programs and key notes at appropriate places to highlight important

concepts
 l A variety of chapter-end exercises that include subjective as well as objective questions

Preface to the Revised Second Edition

Programming in JAVA.indb 6 19/12/17 4:02 PM

© Oxford University Press. All rights reserved.

Oxfo
rd

 U
niversi

ty
 Pre

ss

Preface to the Revised Second Edition vii

Content and Structure
This book comprises 16 chapters and seven appendices. A brief outline of each chapter is as
follows.
 Chapter 1 focuses on the object-oriented concepts and principles. It provides real-life mapping
of concepts and principles besides depicting them pictorially. In addition to this, the chapter also
provides an introduction to Unified Modeling Language (UML), which is a modeling language
to show classes, objects, and their relationship with other objects.
 Chapter 2 introduces Java and its evolution from its inception to its current state. Besides
introducing the features of Java, it also tells you about the structure of JDK (Java Development
Kit) and the enhancements made to Java in its latest versions. It describes how to install and run
the JDK that is in turn required for executing a Java program.
 Chapter 3 describes the basic programming constructs used in Java such as variables, datatypes,
and identifiers. Java reserved keywords are also depicted in this chapter. The operators (arithmetic,
relational, boolean, etc.) that act on variables are also explained in this chapter. For each set of
operators, we have provided sufficient examples along with their explanation and output. Apart
from variables and operators, this chapter focuses on statements like if and other loops available
in Java (for, while, do…while, and for...each).
 Chapter 4 deals with classes and objects. A lot of practical problems and their solutions
have been discussed in this chapter. It begins with how to define classes, objects, and method
creation. Method overloading is also discussed. Later, it emphasizes on the differences between
instance variables/methods and class variables and methods. Finally, a discussion about arrays,
this keyword, and command-line arguments is also provided.
 Chapter 5 focuses on inheritance and its uses. How it is realized in Java is discussed in this
chapter. Apart from this, polymorphism concepts are visualized through method overriding and
super keyword. How practical programming problems are solved through super keyword forms
a major part of this chapter. Towards the end of the chapter, some related concepts like abstract
classes are also discussed.
 Chapter 6 covers interfaces, packages, and enumeration. It highlights the differences between
abstract classes and interfaces and their practical usages with examples. The role of packages in
Java and their creation and usage is also discussed. In-depth coverage of a predefined package
java.lang is included in this chapter along with some of the famous classes such as String,
StringBuffer, StringBuilder, and Wrapper classes.
 Chapter 7 discusses exceptions in detail. Apart from explaining in detail the five keywords
(try, catch, throw, throws, and finally) used in handling exceptions, it also discusses how a user
can create his own exceptions and handle them. Concepts such as exception, encapsulation, and
enrichment are also explained in this chapter. Besides these, the new facilities provided by Java
like assertions and logging are also discussed.
 Chapter 8 covers multithreading concepts, its states, and priorities. It also discusses in detail
the inter-thread communication and synchronization concepts. Methods, such as wait(), notify(),
and notifyAll(), have also been discussed.
 Chapter 9 emphasizes on the essentials of I/O concepts like how standard input can be taken
and how output is delivered to the standard output. A few main classes of the java.io package
are discussed with examples and their usages. Console class, used for taking user input, is also

Programming in JAVA.indb 7 19/12/17 4:02 PM

© Oxford University Press. All rights reserved.

Oxfo
rd

 U
niversi

ty
 Pre

ss

viii Preface to the Revised Second Edition

discussed. What is the use of making objects persistent and how will it be done is discussed
towards the end of the chapter.
 Chapter 10 discusses the java.util package in detail. Interfaces, such as Map, Set, and List, have
been discussed in detail as well as their subclasses such as LinkedList, ArrayList, Vector,HashSet,
HashMap, TreeMap. Java 5 introduced a new feature named ‘Generics’ which forms the core of
the java.util package. This concept along with its application has been covered in detail.
 Chapter 11 explains how network programming can be done in Java. In-depth coverage of
sockets is extended in this chapter. Client and server concept is illustrated by the programs
created. TCP and UDP clients and server and their interactions are demonstrated. The concept
of multithreading is merged with socket and illustrated to create server programs. Some main
classes such as URL, URL connection, and network interface are also discussed.
 Chapter 12 focuses on applets, its lifecycle, methods, and how they are different from
applications. Besides providing an in-depth coverage of java.applet package, some of the
classes of java.awt package are also discussed as they are very useful in creating applets such
as Graphics class, Font class, Color class, and FontMetric class. All these classes are discussed
and supported by an example for each of them.
 Chapter 13 talks about event handling in Java. Basically for creating effective GUI applications,
we need to handle events and this forms the basis of this chapter. The event handling model is
not only discussed but applied throughout the chapter. All the approaches to event handling have
been discussed such as Listener interfaces, Adapter classes, inner classes, and anonymous inner
classes.
 Chapter 14 focuses on GUI creation through java.awt package. It has an in-depth coverage
of containers and components. Containers, such as Frame and Window, and components, such
as Label, Button, TextField, Choice, Checkbox, and List, are discussed in detail. How the
components can be arranged in a container is also discussed.
 Chapter 15 shows how to create more advanced and lightweight GUI applications in Java.
More advanced layouts such as SpringLayout have been discussed. Lightweight components,
such as JButton, JLabel, JCheckBox, JToggleButton, JList, JScrollPane, and JTabbedPane, have
been discussed. How to create Dialogs is also discussed. The pluggable look and feel of Java is
explained in detail.
 Chapter 16 focuses on advanced Java concepts such as servlets, JDBC, and RMI. An
introduction to the advanced technologies has been discussed. This chapter is equipped with
numerous figures showing how to install the necessary software required for executing an
advanced Java program. The chapter also provides a step-by-step and simplified approach on
how to learn advanced concepts.
 Appendix A demystifies the this keyword and discusses its internal working.
 Appendix B discusses in detail the stack and heap memory usage in Java with practical
implementation.
 Appendix C gives a brief comparison of Java references vis-à-vis C pointers.
 Appendix D provides a brief discussion of pattern matching using regular expressions.
 Appendix E provides a step-by-step introduction to default and static methods introduced in
Java 8 interfaces.

Programming in JAVA.indb 8 19/12/17 4:02 PM

© Oxford University Press. All rights reserved.

Oxfo
rd

 U
niversi

ty
 Pre

ss

Preface to the Revised Second Edition ix

 Appendix F provides an in-depth coverage of functional programming and its use through
lambdas in Java.
 Appendix G includes a list of interview questions along with their answers which provides
an overview of the industry scenario and their requirements.

ACKNOWLEDGEMENTS

Several people have been instrumental throughout this tiring, yet wonderful journey. First of all,
we would like to express our sincere gratitude to our families without whose support, patience,
and cooperation, this book would not have been possible and we would not have been what we
are today.
 We are extremely thankful to our fraternal colleagues and friends for their endless support,
motivation and suggestions in revising this book. We would also like to thank our readers for
their valuable feedback, which has helped us in shaping this edition.

Sachin Malhotra
Saurabh Choudhary

Programming in JAVA.indb 9 19/12/17 4:02 PM

© Oxford University Press. All rights reserved.

Oxfo
rd

 U
niversi

ty
 Pre

ss

 Preface to the Revised Second Edition vi

 1. Introduction to OOP 1

 1.1 Introduction 1
 1.2 Need of Object-Oriented

Programming 2
 1.2.1 Procedural Languages 2
 1.2.2 Object-Oriented Modeling 2
 1.3 Principles of Object-Oriented

Languages 3
 1.3.1 Classes 3
 1.3.2 Objects 3
 1.3.3 Abstraction 3
 1.3.4 Inheritance 4
 1.3.5 Encapsulation 4
 1.3.6 Polymorphism 5
 1.4 Procedural Language vs OOP 5
 1.5 OOAD Using UML 6
 1.6 Applications of OOP 9

 2. Getting Started With Java 12
 2.1 Introduction 12
 2.2 History of Java 13
 2.3 Java’s Journey: From Embedded Systems

to Middle-Tier Applications 13
 2.4 Java Essentials 14
 2.5 Java Virtual Machine 15
 2.6 Java Features 16
 2.6.1 Platform Independence 16
 2.6.2 Object Oriented 16
 2.6.3 Both Compiled and Interpreted 17
 2.6.4 Java is Robust 18
 2.6.5 Java Language Security Features 18
 2.6.6 Java is Multithreaded 20
 2.6.7 Other Features 20
 2.7 Program Structure 21
 2.7.1 How to Execute a Java Program 21
 2.7.2 Why Save as Example.Java? 22

 2.7.3 Explanation 22
 2.8 Java Improvements 23
 2.8.1 Java 5.0 Features 23
 2.8.3 Java 6 Features 25
 2.8.4 Java 7 Features 26
 2.8.4 Brief Comparison of Different

Releases 27
 2.9 Differences between Java and C++ 28
 2.10 Installation of JDK 1.7 29
 2.10.1 Getting Started With the JDK 29
 2.10.2 JDK Installation Notes 29
 2.10.3 Exploring the JDK 37
 2.11 Integrated Development

Environment 39

 3. Java Programming Constructs 42
 3.1 Variables 42
 3.2 Primitive Data Types 42
 3.3 Identifier 44
 3.3.1 Rules for Naming 44
 3.3.2 Naming Convention 44
 3.3.3 Keywords 45
 3.4 Literals 45
 3.5 Operators 48
 3.5.1 Binary Operators 48
 3.5.2 Unary Operators 54
 3.5.3 Ternary Operator 54
 3.6 Expressions 55
 3.7 Precedence Rules and

Associativity 55
 3.8 Primitive Type Conversion

and Casting 57
 3.9 Flow of Control 61
 3.9.1 Conditional Statements 62
 3.9.2 Loops 65
 3.9.3 Branching Mechanism 68

Detailed Contents

Programming in JAVA.indb 11 19/12/17 4:02 PM

© Oxford University Press. All rights reserved.

Oxfo
rd

 U
niversi

ty
 Pre

ss

xii Detailed Contents

 4. Classes and Objects 74
 4.1 Classes 74
 4.2 Objects 75
 4.2.1 Difference between Objects

and Classes 76
 4.2.2 Why Should We Use

Objects and Classes? 76
 4.3 Class Declaration in Java 77
 4.3.1 Class Body 78
 4.4 Creating Objects 79
 4.4.1 Declaring an Object 79
 4.4.2 Instantiating an Object 79
 4.4.3 Initializing an Object 80
 4.5 Methods 82
 4.5.1 Why Use Methods? 82
 4.5.2 Method Types 82
 4.5.3 Method Declaration 83
 4.5.3 Instance Method Invocation 86
 4.5.4 Method Overloading 87
 4.6 Constructors 90
 4.6.1 Parameterized Constructors 93
 4.6.2 Constructor Overloading 94
 4.7 Cleaning Up Unused Objects 96
 4.7.1 The Garbage Collector 96
 4.7.2 Finalization 97
 4.7.3 Advantages and Disadvantages 97
 4.8 Class Variable and

Methods—Static Keyword 97
 4.8.1 Static Variables 98
 4.8.2 Static Methods 99
 4.8.3 Static Initialization Block 101
 4.9 this Keyword 103
 4.10 Arrays 105
 4.10.1 One-Dimensional Arrays 105
 4.10.2 Two-Dimensional Arrays 110
 4.10.3 Using for-each With Arrays 115
 4.10.4 Passing Arrays to Methods 115
 4.10.5 Returning Arrays from Methods 116
 4.10.6 Variable Arguments 117
 4.11 Command-line Arguments 118
 4.12 Nested Classes 119
 4.12.1 Inner Class 119
 4.12.2 Static Nested Class 122
 4.12.3 Why Do We Create Nested

Classes? 124
 4.13 Practical Problem: Complex

Number Program 124

 5. Inheritance 132
 5.1 Inheritance vs Aggregation 132
 5.1.1 Types of Inheritance 133
 5.1.2 Deriving Classes Using

Extends Keyword 135
 5.2 Overriding Method 137
 5.3 super Keyword 141
 5.4 final Keyword 146
 5.5 Abstract Class 147
 5.6 Shadowing vs Overriding 149
 5.7 Practical Problem: Circle

and Cylinder Class 151

 6. Interfaces, Packages, and
 Enumeration 156
 6.1 Interfaces 156
 6.1.1 Variables in Interface 158
 6.1.2 Extending Interfaces 160
 6.1.3 Interface vs Abstract Classes 160
 6.2 Packages 161
 6.2.1 Creating Packages 162
 6.2.2 Using Packages 164
 6.2.3 Access Protection 168
 6.3 java.lang Package 169
 6.3.1 java.lang.Object Class 169
 6.3.2 Java Wrapper Classes 170
 6.3.3 String Class 174
 6.3.4 StringBuffer Class 179
 6.3.5 StringBuilder Class 180
 6.3.6 Splitting Strings 181
 6.4 Enum Type 183
 6.4.1 Using Conditional Statements with an

Enumerated Variable 185
 6.4.2 Using for Loop for Accessing

Values 185
 6.4.3 Attributes and Methods Within

Enumeration 186
 6.5 Practical Problem: Banking Example 187

 7. Exception, Assertions,
 and Logging 199
 7.1 Introduction 199
 7.1.1 Exception Types 201
 7.2 Exception Handling Techniques 202
 7.2.1 try…catch 203
 7.2.2 throw Keyword 206

Programming in JAVA.indb 12 19/12/17 4:02 PM

© Oxford University Press. All rights reserved.

Oxfo
rd

 U
niversi

ty
 Pre

ss

Detailed Contents xiii

 7.2.3 throws 207
 7.2.4 finally Block 209
 7.2.5 try-with-resources Statement 210
 7.2.6 Multi Catch 212
 7.2.7 Improved Exception Handling

in Java 7 213
 7.3 User-Defined Exception 215
 7.4 Exception Encapsulation and Enrichment 216
 7.5 Assertions 217
 7.6 Logging 219

 8. Multithreading in Java 224
 8.1 Introduction 224
 8.2 Multithreading in Java 225
 8.3 java.lang.Thread 225
 8.4 Main Thread 227
 8.5 Creation of New Threads 228
 8.5.1 By Inheriting the Thread Class 228
 8.5.2 Implementing the Runnable

Interface 231
 8.6 Thread.State in Java 234
 8.6.1 Thread States 235
 8.7 Thread Priority 240
 8.8 Multithreading—Using isAlive()

 and join() 243
 8.9 Synchronization 245
 8.9.1 Synchronized Methods 246
 8.9.2 Synchronized Statements 246
 8.10 Suspending and Resuming Threads 246
 8.11 Communication between Threads 248
 8.12 Practical Problem: Time Clock Example 251

 9. Input/Output, Serialization
 and Cloning 256

 9.1 Introduction 256
 9.1.1 java.io.InputStream and

java io.OutputStream 257
 9.2 java.io.File Class 258
 9.3 Reading and Writing Data 261
 9.3.1 Reading/Writing Files Using Byte

Stream 261
 9.3.2 Reading/Writing Console

(User Input) 264
 9.3.3 Reading/Writing Files Using Character

Stream 269
 9.3.4 Reading/Writing Using Buffered Byte

Stream Classes 270

 9.3.5 Reading/Writing Using Buffered
Character Stream Classes 272

 9.4 Randomly Accessing a File 273
 9.5 Reading and Writing Files

Using New I/O Package 276
 9.6 Java 7 Nio Enhancements 278
 9.7 Serialization 283
 9.8 Cloning 285

 10. Generics, java.util and
other API 296

 10.1 Introduction 296
 10.2 Generics 301
 10.2.1 Using Generics in Arguments and

Return Types 304
 10.2.2 Wildcards 304
 10.2.3 Bounded Wildcards 306
 10.2.4 Defining Your Own

Generic Classes 307
 10.3 Linked List 309
 10.4 Set 311
 10.4.1 Hashset Class 312
 10.4.2 Treeset Class 314
 10.5 Maps 315
 10.5.1 Hashmap Class 315
 10.5.2 Treemap Class 317
 10.6 Collections Class 318
 10.7 Legacy Classes and Interfaces 319
 10.7.1 Difference between Vector

and Arraylist 319
 10.7.2 Difference between Enumerations and

Iterator 320
 10.8 Utility Classes: Random Class 320
 10.8.1 Observer and Observable 322
 10.9 Runtime Class 326
 10.10 Reflection API 328

 11. Network Programming 336
 11.1 Introduction 336
 11.1.1 TCP/IP Protocol Suite 336
 11.2 Sockets 337
 11.2.1 TCP Client and Server 338
 11.2.2 UDP Client and Server 342
 11.3 URL Class 344
 11.4 Multithreaded Sockets 346
 11.5 Network Interface 349

Programming in JAVA.indb 13 19/12/17 4:02 PM

© Oxford University Press. All rights reserved.

Oxfo
rd

 U
niversi

ty
 Pre

ss

xiv Detailed Contents

 12. Applets 354
 12.1 Introduction 354
 12.2 Applet Class 355
 12.3 Applet Structure 356
 12.4 Example Applet Program 357
 12.4.1 How to Run an Applet? 358
 12.5 Applet Life Cycle 359
 12.6 Common Methods Used in

Displaying the Output 361
 12.7 paint(), update(), and repaint() 364
 12.7.1 paint() Method 364
 12.7.2 update() Method 365
 12.7.3 repaint() Method 366
 12.8 More About Applet Tag 366
 12.9 getDocumentbase() and

getCodebase() Methods 369
 12.10 Appletcontext Interface 370
 12.10.1 Communication between Two

Applets 371
 12.11 How To Use An Audio Clip? 372
 12.12 Images in Applet 373
 12.12.1 Mediatracker Class 375
 12.13 Graphics Class 377
 12.13.1 An Example Applet Using

Graphics 379
 12.14 Color 380
 12.15 Font 382
 12.16 Fontmetrics 386
 12.17 Practical Problem: Digital Clock 390

 13. Event Handling in Java 394
 13.1 Introduction 394
 13.2 Event Delegation Model 395
 13.3 java.awt.Event Description 395
 13.3.1 Event Classes 395
 13.4 Sources of Events 404
 13.5 Event Listeners 404
 13.6 How Does The Model Work? 406
 13.7 Adapter Classes 410
 13.7.1 How To Use Adapter Classes 410
 13.7.2 Adapter Classes in Java 412
 13.8 Inner Classes in Event Handling 413
 13.9 Practical Problem: Cartoon Applet 416
 13.9.1 Smiling Cartoon With Blinking

Eyes (Part 1) 416
 13.9.2 Smiling Cartoon With Blinking

Eyes (Part 2) 420
 13.9.3 Smiling Cartoon (Part 3) 423

 14. Abstract Window Toolkit 429
 14.1 Introduction 429
 14.1.1 Why Awt? 429
 14.1.2 java.awt Package 430
 14.2 Components and Containers 432
 14.2.1 Component 432
 14.2.2 Components as Event Generator 433
 14.3 Button 434
 14.4 Label 437
 14.5 Checkbox 438
 14.6 Radio Buttons 441
 14.7 List Boxes 444
 14.8 Choice Boxes 448
 14.9 Textfield and Textarea 451
 14.10 Container Class 455
 14.10.1 Panels 455
 14.10.2 Window 456
 14.10.3 Frame 456
 14.11 Layouts 458
 14.11.1 FlowLayout 459
 14.11.2 BorderLayout 462
 14.11.3 CardLayout 465
 14.11.4 GridLayout 469
 14.11.5 GridbagLayout 471
 14.12 Menu 478
 14.13 Scrollbar 483
 14.14 Practical Problem: City

Map Applet 487

 15. Swing 495
 15.1 Introduction 495
 15.1.1 Features of Swing 496
 15.1.2 Differences between Swing and

AWT 496
 15.2 JFrame 497
 15.3 JApplet 500
 15.4 JPanel 501
 15.5 Components in Swings 502
 15.6 Layout Managers 506
 15.6.1 Springlayout 506
 15.6.2 Boxlayout 509
 15.7 JList and JScrollPane 510
 15.8 Split Pane 513
 15.9 JTabbedPane 514
 15.10 JTree 516
 15.11 JTable 521
 15.12 Dialog Box 525
 15.13 JFileChooser 529

Programming in JAVA.indb 14 19/12/17 4:02 PM

© Oxford University Press. All rights reserved.

Oxfo
rd

 U
niversi

ty
 Pre

ss

Detailed Contents xv

 15.14 JColorChooser 530
 15.15 Pluggable Look and Feel 531
 15.16 Inner Frames 539
 15.17 Practical Problem: Mini Editor 545

16. Introduction to Advanced Java 553
55316.1 Introduction to J2EE

16.2 Database Handling Using JDBC 553
16.2.1 Load the Driver 554
16.2.2 Establish Connection 556
16.2.3 Create Statement 556
16.2.4 Execute Query 557
16.2.5 Iterate Resultset 557
16.2.6 Scrollable Resultset 559
16.2.7 Transactions 560

 16.3 Servlets 562
16.3.1 Lifecycle of Servlets 562
16.3.2 First Servlet 563
16.3.3 Reading Client Data 567
16.3.4 Http Redirects 571
16.3.5 Cookies 572
16.3.6 Session Management 574

16.4 Practical Problem: Login Application 577

16.5 Introduction to Java Server Pages 589
16.5.1 JSP Life Cycle 589
16.5.2 Steps in JSP Page Execution 590
16.5.3 JSP Elements 590
16.5.4 Placing Your JSP in the Webserver 593

16.6 Java Beans 597
16.6.1 Properties of a Bean 597
16.6.2 Using Beans Through JSP 601
16.6.3 Calculatebean Example 602

16.7 Jar Files 605
16.7.1 Creating a Jar File 605
16.7.2 Viewing the Contents of

a Jar File 606
16.7.3 Extracting the Contents

of Jar 607
16.7.4 Manifest Files 607

16.8 Remote Method Invocation 609
16.8.1 RMI Networking Model 609
16.8.2 Creating an Rmi Application 610

16.9 Introduction to EJB 613
16.9.1 Types of EJB 614
16.9.2 EJB Architecture 615

 16.10 Hello World—EJB Example 616

Appendix A: this Reference Demystified 628
Appendix B: Stacks versus Heaps 629
Appendix C: Pointer versus Reference Variables 631
Appendix D: Regular Expressions 634
Appendix E: Interfaces in Java 8 646
Appendix F: Functional Programming with

Lambdas 651
Appendix G: Interview Questions 668
Index 675

Programming in JAVA.indb 15 19/12/17 4:02 PM

© Oxford University Press. All rights reserved.

Oxfo
rd

 U
niversi

ty
 Pre

ss

 Beauty is our weapon against nature; by it we make objects, giving them limit,
symmetry, proportion. Beauty halts and freezes the melting flux of nature.

 Camille Paglia

After reading this chapter, the readers will be able to
 u know what is object-oriented programming
 u understand the principles of OOP
 u understand how is OOP different from procedural languages
 u comprehend the problems in procedural programming and how OOP overcomes them
 u learn the applications of OOP
 u use UML notations

1.1 INTRODUCTION

Object-oriented programming (OOP) is one of the most interesting and useful innovations in
software development. OOP has strong historical roots in programming paradigms and practices.
It addresses the problems commonly known as the software crisis. Software have become
inherently complex which has led to many problems within the development of large software
projects. Many software have failed in the past. The term ‘software crisis’ describes software
failure in terms of

 l Exceeding software budget
 l Software not meeting clients’ requirements
 l Bugs in the software

OOP is a programming paradigm which deals with the concept of objects to build programs
and software applications. It is modeled around the real world. The world we live in is full of
objects. Every object has a well-defined identity, attributes, and behavior. Objects exhibit the
same behavior in programming. The features of object-oriented programming also map closely
to the real-world features like inheritance, abstraction, encapsulation, and polymorphism. We
will discuss them later in the chapter.

Introduction to
OOP 1

Programming in JAVA.indb 1 19/12/17 4:02 PM

© Oxford University Press. All rights reserved.

Oxfo
rd

 U
niversi

ty
 Pre

ss

2 Programming in Java

1.2 NEED OF OBJECT-ORIENTED PROGRAMMING

There were certain limitations in earlier programming approaches and to overcome these
limitations, a new programming approach was required. We first need to know what these
limitations were.

1.2.1 Procedural Languages
In procedural languages, such as C, FORTRAN, and PASCAL, a program is a list of instructions.
The programmer creates a list of instructions to write a very small program. As the length of a
program increases, its complexity increases making it difficult to maintain a very large program.
In the structured programming, this problem can be overcome by dividing a large program into
different functions or modules, but this gives birth to other problems. Large programs can still
become increasingly complex. There are two main problems in procedural languages—(i) the
functions have unrestricted access to global data and (ii) they provide poor mapping to the real
world.

Here are some other problems in the procedural languages. Computer languages generally
have built-in data types: integers, character, float, and so on. It is very difficult to create a new
data type or a user-defined data type. For example, if we want to work with dates or complex
numbers, then it becomes very difficult to work with built-in types. Creating our own data types is
a feature called extensibility: we can extend the capabilities of a language. Procedural languages
are not extensible. In the traditional languages, it is hard to write and maintain complex results.

1.2.2 Object-Oriented Modeling
In the physical world, we deal with objects like person, plane, or car. Such objects are not like
data and functions. In the complex real-world situations, we have objects which have some
attributes and behavior. We deal with similar objects in OOP. Objects are defined by their unique
identity, state, and behavior. The state of an object is identified by the value of its attributes and
behavior by methods.

Attributes
Attributes define the data for an object. Every object has some attributes. Different types of
objects contain different attributes or characteristics. For example, the attributes of a student
object are name, roll number, and subject; and the attributes for a car object would be color,
engine power, number of seats, etc. These attributes will have specific values, such as Peter (for
name) or 23 (for roll number).

Behavior
The response of an object when subjected to stimulation is called its behavior. Behavior defines
what can be done with the objects and may manipulate the attributes of an object. For example,
if a manager orders an employee to do some task, then he responds either by doing it or not
doing it. The wings of a fan start moving only when the fan is switched ON. Behavior actually
determines the way an object interacts with other objects. We can say that behavior is synonym
to functions or methods: we call a function to perform some task. For example, an Employee
class will have functions such as adding an employee, updating an employee details, etc.

Programming in JAVA.indb 2 19/12/17 4:02 PM

© Oxford University Press. All rights reserved.

Oxfo
rd

 U
niversi

ty
 Pre

ss

Introduction to OOP 3

Note If we try to represent the CPU of a computer in OOP terminology, then CPU is the object.
The CPU is responsible for fetching the instructions and executing them. So fetching and
executing are two possible functions (methods or behavior) of CPU. The place (attributes)
where CPU stores the retrieved instructions, values and result of the execution (registers) will
then be the attributes of the CPU.

1.3 PRINCIPLES OF OBJECT-ORIENTED LANGUAGES

OOP languages follow certain principles such as class, object, and abstraction. These principles
map very closely to the real world.

1.3.1 Classes
A class is defined as the blueprint for an object. It serves as a plan or a template. The description
of a number of similar objects is also called a class. An object is not created by just defining a
class. It has to be created explicitly. Classes are logical in nature. For example, furniture does
not have any existence but tables and chairs do exist. A class is also defined as a new data type,
a user-defined type which contains two things: data members and methods.

1.3.2 Objects
Objects are defined as the instances of a class, e.g. table, chair are all instances of the class
Furniture. Objects of a class will have same attributes and behavior which are defined in that
class. The only difference between objects would be the value of attributes, which may vary.
Objects (in real life as well as programming) can be physical, conceptual, or software. Objects
have unique identity, state, and behavior. There may be several types of objects:

 l Creator objects: Humans, Employees, Students, Animal
 l Physical objects: Car, Bus, Plane
 l Objects in computer system: Monitor, Keyboard, Mouse, CPU, Memory

1.3.3 Abstraction
Can you classify the following items?

 l Elephant l CD player
 l Television l Chair
 l Table l Tiger

How many classes do you identify here? The obvious answer anybody would give is three, i.e.,
Animal, Furniture, and Electronic items. But how do you come to this conclusion? Well, we
grouped similar items like Elephant and Tiger and focused on the generic characteristics rather
than specific characteristics. This is called abstraction. Everything in this world can be classified
as living or non-living and that would be the highest level of abstraction.

Another well-known analogy for abstraction is a car. We drive cars without knowing the
internal details about how the engine works and how the car stops on applying brakes. We are
happy with the abstraction provided to us, e.g., brakes, steering, etc. and we interact with them.
In real life, human beings manage complexity by abstracting details away. In programming,
we manage complexity by concentrating only on the essential characteristics and suppressing
implementation details.

Programming in JAVA.indb 3 19/12/17 4:02 PM

© Oxford University Press. All rights reserved.

Oxfo
rd

 U
niversi

ty
 Pre

ss

4 Programming in Java

1.3.4 Inheritance
Inheritance is the way to adopt the characteristics of one class into another class. Here we have
two types of classes: base class and subclass. There exists a parent–child relationship among
the classes. When a class inherits another class, it has all the properties of the base class and it
adds some new properties of its own. We can categorize vehicles into car, bus, scooter, ships,
planes, etc. The class of animals can be divided into mammals, amphibians, birds, and so on.

The principle of dividing a class into subclass is that each subclass shares common
characteristics with the class from where they are inherited or derived. Cars, scooters, planes,
and ships all have an engine and a speedometer. These are the characteristics of vehicles. Each
subclass has its own characteristic feature, e.g., motorcycles have disk braking system, while
planes have hydraulic braking system. A car can run only on the surface, while a plane can fly
in air and a ship sails over water (see Fig. 1.1).

Vehicle

Road vehicle Air vehicle Water vehicle

Bus Motor bike Aeroplane Boat

Fig. 1.1 Inheritance

Inheritance aids in reusability. When we create a class, it can be distributed to other
programmers which they can use in their programs. This is called reusability. Suppose someone
wants to make a program for a calculator, he can use a predefined class for arithmetic operations,
and then he need not define all the methods for these operations. This is similar to using library
functions in procedural language. In OOP, this can be done using the inheritance feature. A
programmer can use a base class with or without modifying it. He can derive a child class from
a parent class and then add some additional features to his class.

1.3.5 Encapsulation
Encapsulation is one of the features of object-oriented methodology. The process of binding
the data procedures into objects to hide them from
the outside world is called encapsulation (see Fig.
1.2). It provides us the power to restrict anyone from
directly altering the data. Encapsulation is also known
as data hiding. An access to the data has to be through
the methods of the class. The data is hidden from the
outside world and as a result, it is protected. The details
that are not useful for other objects should be hidden
from them. This is called encapsulation. For example,
an object that does the calculation must provide an
interface to obtain the result. However, the internal
coding used to calculate need not be made available
to the requesting object.

Method

Method

Method

Data
Accessing
data

Fig. 1.2 Diagrammatic Illustration of a
Class to Show Encapsulation

Programming in JAVA.indb 4 19/12/17 4:02 PM

© Oxford University Press. All rights reserved.

Oxfo
rd

 U
niversi

ty
 Pre

ss

Introduction to OOP 5

1.3.6 Polymorphism
Polymorphism simply means many forms. It can be defined as the same thing being used in
different forms. For example, there are certain bacteria that exhibit in more than one morphological
form. In programming, polymorphism is of two types: compile-time and runtime polymorphism.
Runtime polymorphism, also known as dynamic binding or late binding, is used to determine
which method to invoke at runtime. The binding of method call to its method is done at runtime
and hence the term late binding is used. In case of compile-time polymorphism, the compiler
determines which method (from all the overloaded methods) will be executed. The binding of
method call to the method is done at compile time. So the decision is made early and hence
the term early binding. Compile-time polymorphism in Java is implemented by overloading
and runtime polymorphism by overriding. In overloading, a method has the same name with
different signatures. (A signature is the list of formal arguments that is passed to the method.)
In overriding, a method is defined in subclass with the same name and same signature as that
of parent class. This distinction between compile-time and runtime polymorphism is of method
invocation. Compile-time polymorphism is also implemented by operator overloading which
is a feature present in C++ but not in Java. Operator overloading allows the user to define new
meanings for that operator so that it can be used in different ways. The operator (+) in Java is
however an exception as it can be used for addition of two integers as well as concatenation of
two strings or an integer with a string. This operator is overloaded by the language itself and
the Java programmer cannot overload any operator.

1.4 PROCEDURAL LANGUAGE VS OOP

Table 1.1 highlights some of the major differences between procedural and object-oriented
programming languages.

Table 1.1 Procedural Languages vs OOP

Procedural Languages OOP
l Separate data from functions that operate on them. l Encapsulate data and methods in a class.
l Not suitable for defining abstract types. l Suitable for defining abstract types.
l Debugging is difficult. l Debugging is easier.
l Difficult to implement change. l Easier to manage and implement change.
l Not suitable for larger programs and applications. l Suitable for larger programs and applications.
l Analysis and design not so easy. l Analysis and design made easier.
l Faster. l Slower.
l Less flexible. l Highly flexible.
l Data and procedure based. l Object oriented.
l Less reusable. l More reusable.
l Only data and procedures are there. l Inheritance, encapsulation, and polymorphism are the

key features.
l Use top-down approach. l Use bottom-up approach.
l Only a function calls another. l Object communication is there.
l Example: C, Basic, FORTRAN. l Example: JAVA, C++, VB.NET, C#.NET.

Programming in JAVA.indb 5 19/12/17 4:02 PM

© Oxford University Press. All rights reserved.

Oxfo
rd

 U
niversi

ty
 Pre

ss

6 Programming in Java

1.5 OOAD USING UML

An object-oriented system comprises of objects. The behavior of a system results from its objects
and their interactions. Interaction between objects involves sending messages to each other.
Every object is capable of receiving messages, processing them, and sending to other objects.

Object-oriented Analysis and Design (OOAD)
It is an approach that models software as a group of interacting objects. A model is a description
of the system that we intend to build. Each object is characterized by its class having its own state
(attributes) and behavior. Object-oriented analysis (OOA) analyzes the functional requirements
of a system and focuses on what the system should do. Object-oriented design (OOD) focuses on
how the system does it. The most popular modeling language for OOAD is the unified modeling
language (UML).

UML is a standard language for OOAD. It contains graphical notations for all entities (class,
object, etc.) used in the object-oriented languages along with the relationship that exists among
them. These notations are used to create models. UML helps in visualizing the system, thereby
reducing complexity and improving software quality. The notations used for class and object are
shown in Fig. 1.3. For example, consider an Employee class with attributes name, designation,
salary, etc. and operations such as addEmployee, deleteEmployee, and searchEmployee.

The notation for employee class and its object is as follows:

Employee

name
address
designation
salary

addEmployee
deleteEmployee
searchEmployee

Class

Attributes

Behavior

Fig. 1.3 UML Notation for Class

The notation for an object is very much similar to the class notation. The class name underlined
and followed by a colon represents an object (Fig. 1.4).

:Employee

name=peter
address=NY
designation=manager
salary=10000

addEmployee
deleteEmployee
searchEmployee

Object

Attributes

Fig. 1.4 UML Notation for Object

Programming in JAVA.indb 6 19/12/17 4:02 PM

© Oxford University Press. All rights reserved.

Oxfo
rd

 U
niversi

ty
 Pre

ss

Introduction to OOP 7

An instance of a class can be related to any number of instances of other class known as
multiplicity of the relation. One-to-one, one-to-many, and many-to-many are different types
of multiplicities that exist among objects. The multiplicities along with their examples and
respective notations are shown below. Figure 1.5(a) illustrates the generic notation for representing
multiplicity in object-oriented analysis and design. One-to-one mapping is shown as a straight
line between the two classes. Figure 1.5(b) shows the UML notation for demonstrating the one-
to-one mapping. The 1..1 multiplicity depicted on the straight line (both ends) indicates a single
instance of a class is associated with single instance of other class. Figure 1.5 shows that each
country has a president and a president is associated with a country.

Country Presidenthas Country has President1.1 1.1

(a) (b)

Fig. 1.5 One-to-one Relationship

A country has many states and many states belong to a country. So there exists a one-to-many
relationship between the two. This relationship is shown in Fig. 1.6. Part (a) of this figure shows
the generic notation where a solid dot is indicated on the many side and both classes are joined
by a straight line. Figure 1.6(b) shows the UML notation where 1..* indicates the one to many
relationship between country and states. On the country end, a 1..1 multiplicity is placed to
indicate one country and on states end, a 1..* is placed to indicate many states.

Country has 1..1

(a)

States Country has

(b)

States1..*

Fig. 1.6 One-to-many Relationship

Let us take another example to explain many-to-many relationship. A teacher teaches many
students and a student can be taught by many teachers. There exists a many-to-many relationship
between them. Many-to-many relationship (Generic notation in OOAD) are represented by
placing solid dots on both ends joined by a straight line as shown in Fig. 1.7(a). The respective
notation in UML is shown in Fig. 1.7(b) where 1..* on both ends is used to signify many-to-
many relationship.

Teacher teaches 1..*

(a)

Student teaches

(b)

1..*Teacher Student

Fig. 1.7 Many-to-many Relationship

Programming in JAVA.indb 7 19/12/17 4:02 PM

© Oxford University Press. All rights reserved.

Oxfo
rd

 U
niversi

ty
 Pre

ss

8 Programming in Java

Besides multiplicity of relations, the relationships can be of various types: inheritance,
aggregation, composition. These relationships can be denoted in UML with links and associations.
The links represent the connection between the objects and associations represent groups of links
between classes. If a class inherits another class, then there exists a parent-child relationship
between them. This relationship is depicted in UML as shown in Fig. 1.8. For example, Shape
is the superclass, and the subclasses of Shape can take any shape, e.g., Square, Triangle, etc.

Shape

Triangle Square

Fig. 1.8 UML Diagram Depicting Inheritance

The above diagram can be extended to depict the OOP principle of polymorphism. Every shape
will have a method named area() which would calculate the area of that shape. The implementation
of area() method would be different for different shapes. For example, the formula for calculating
area of a triangle is different from a square. So the implementation is different but the name of
the method is same. This is polymorphism (one name many implementations). In Fig 1.9 below,
the area() method is overridden by Triangle and Square classes.

Shape

Triangle

area()

area()

Square

area()

Rectangle

area()

Fig. 1.9 UML Diagram Depicting Polymorphism

Another kind of relationship that exists among objects is the part-of-relationship. When a
particular object is a part of another object then we say that it is aggregation. For example,

Programming in JAVA.indb 8 19/12/17 4:02 PM

© Oxford University Press. All rights reserved.

Oxfo
rd

 U
niversi

ty
 Pre

ss

Introduction to OOP 9

car is an aggregation of many objects: engine, door, etc. and engine in turn is an aggregation
of many objects, e.g., cylinder, piston, valves, etc. as shown in Fig. 1.10(a). A special kind of
aggregation is composition where one object owns other objects. If the owner object does not
exist, the owned objects also cease to exist. For example, the human body is a very good example
of composition. It is a composition of different organs. The hands, feet, and internal organs such
as the lung and intestine are also parts of the body owned by the body.

Car

Engine Door

Cylinder Radiator Liver Lungs

Human body

(a) (b)

Fig. 1.10 (a) Aggregation and (b) Composition

1.6 APPLICATIONS OF OOP

The basic thought behind object-oriented language is to make an object by combining data and
functions as a single unit and then operate on that data. In procedural approach, the focus is on
business process and the data needed to support the process. For example, in the late 1990s, a
problem bothered every programmer, popularly known as the Y2K problem. Everybody related
to the computer industry was afraid of what will happen past midnight 31 December 1999. The
problem arises due to the writing convention of the year attribute. In early programming days,
a programmer wrote a year in two digits, so there was a problem to distinguish the year 1900
from 2000 because if we write only the last two digits of a year, the computer cannot differentiate
between the two. Nobody perceived this problem and used the date and year code as and when
required, thus aggravating the problem. The solution to this problem was to analyze multiple
lines of codes everywhere and change the year to four digits rather than two. It seems simple to
change the state variable of year but analyzing a code of several thousands of lines to find how
many times you have used date in your code is not an easy task.

If object-oriented programming language had been used, we could have created a Date class
with day, month, and year attributes in it. Wherever the date functionality would be required,

Programming in JAVA.indb 9 19/12/17 4:02 PM

© Oxford University Press. All rights reserved.

Oxfo
rd

 U
niversi

ty
 Pre

ss

10 Programming in Java

a Date object would be created and used. At a later point of time, if a change is required, for
example, the year of Date class needs to be changed to four digits, then this change would be
incorporated in the class only and this change would automatically be reflected in all the objects
of the Date class whenever they are created and used. So, the change would have to be done at
one place only, i.e., the class and wherever the objects of the class are being used, the changes
would be reflected automatically. There is no need to analyze the whole code and change it.

In OOP, we access data with the help of objects, so it is very easy to overcome a problem
without modifying the whole system. Likewise, OOP is used in various fields, such as

 l Real-time systems l Neural networks
 l Artificial intelligence l Database management
 l Expert systems

SUMMARY

EXERCISES

Objective Questions
 1. In an object model, which one of the following is

true?
 (a) Abstraction, encapsulation, and multitasking

are the major principles
 (b) Hierarchy, concurrency, and typing are the

major principles
 (c) Abstraction, encapsulation, and polymor-

phism are the major principles
 (d) Typing is the major principle
 2. Which one of the following is not an object-

oriented language?
 (a) Simula (b) Java
 (c) C++ (d) C
 3. The ability to hide many different implementations

behind an interface is
 (a) Abstraction (b) Inheritance

Object-oriented languages have become an ubiquitous
standard for programming. They have been derived
from the real world. OOP revolves around objects and
classes. A class is defined as a group of objects with
similar attributes and behavior. OOP is a programming
paradigm which deals with the concepts of objects to
develop software applications. Certain principles have
been laid down by OOP which are followed by every
OOP language. These principles are: inheritance,
abstraction, encapsulation, and polymorphism.
 We have presented a detailed comparison of
procedural and object-oriented languages. For building

large projects, a technique known as OOAD is used.
Object-oriented analysis and design deals with how a
system is modeled. OOA deals with what the system
should do and OOD deals with how the system
achieves what has been specified by OOA.
 OOAD is realized with the help of a language known
as UML. UML stands for unified modeling language;
it is a standard language used for visualizing the
software. An abstract model is created for the entire
software using graphical notations provided by UML.

 (c) Polymorphism (d) None of the above
 4. Which one of the following terms must relate to

polymorphism?
 (a) Static allocation (b) Static typing
 (c) Dynamic binding (d) Dynamic allocation
 5. Providing access to an object only through its

member functions, while keeping the details
private is called

 (a) Information hiding (b) Encapsulation
 (c) Modularity (d) Inheritance
 6. The concept of derived classes is involved in
 (a) Inheritance
 (b) Encapsulation
 (c) Data hiding
 (d) Abstract data types

Programming in JAVA.indb 10 19/12/17 4:02 PM

© Oxford University Press. All rights reserved.

Oxfo
rd

 U
niversi

ty
 Pre

ss

Introduction to OOP 11

 7. Inheritance is a way to
 (a) Organize data
 (b) Pass arguments to objects of classes
 (c) Add features to existing classes without

rewriting them
 (d) Improve data-hiding and encapsulation
 8. UML is used for
 (a) Creating models
 (b) Representing classes, objects and their

relationships pictorially
 (c) Reducing complexity and improving software

quality

 (d) All the above
 9. Which of the following is true about class?
 (a) Class possesses data and methods
 (b) Classes are physical in nature
 (c) Collection of similar type of objects is a class
 (d) Both (a) and (c)
 10. Which of the following is true about procedural

languages?
 (a) Debugging is easier
 (b) Analysis and design is easy
 (c) Less reusable
	 (d)	 Difficult	to	implement	changes

Review Questions

Answers to Objective Questions
 1. (c) 2. (d) 3. (c) 4. (c)
 5. (b) 6. (a) 7. (c) 8. (d)
 9. (d) 10. (c) and (d)

 1. Explain the importance of object-oriented pro-
gramming languages.

 2. Explain the difference between class and object.
 3. Differentiate between procedural languages and

OOP languages.

 4. Write short notes on: (a) inheritance, (b) poly-
morphism, (c) abstraction, (d) encapsulation.

 5. Differentiate between runtime and compite-time
polymorphism.

Programming Exercises
 1. Identify the relevant classes along with their

attributes for the following: A departmental store
needs to maintain an inventory of cosmetic items
which might be found there. You should include
female as well as male cosmetic items. Keep
information on all items such as item name,
category, manufacturer, cost, date purchased,
and serial number.

 2. Identify the relevant classes along with their
attributes	from	the	following	problem	specification:	

 A hospital wants to keep track of scheduled
appointments of a patient with his doctor. When
a patient is given an appointment, he should be
given	a	confirmation	that	states	the	time	and	date	
of appointment along with the doctor’s name.
Meanwhile the doctor should also be informed
about the patient details. Each doctor has one
weekday as off-day and no patients should be
assigned to a doctor on that day.

Programming in JAVA.indb 11 19/12/17 4:02 PM

© Oxford University Press. All rights reserved.

Oxfo
rd

 U
niversi

ty
 Pre

ss

