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Preface

Science and engineering form the backbone of any technological innovation. 
Engineering focuses on the conversion of scientific ideas into viable products 
and technologies. Physics is a fundamental aspect of  science. Therefore, 
knowledge of physics relevant to engineering is critical for converting ideas to 
products. An understanding of physics also helps engineers comprehend the 
working and limitations of existing devices and techniques, which eventually 
leads to new innovations and improvements.

It is interesting to note that in spite of the complexities of modern tech-
nology, the underlying principle behind these still remain simple. In fact, it 
would not be wrong to say that unless the basic physics behind a technology 
is fully understood, it would be impossible to implement the full potential of 
the technology.

The fundamental concepts of physics have laid the foundation for advances 
in engineering technology.

ABOUT THE BOOK
Engineering Physics is primarily designed to serve as a textbook to cater to 
the requirements of the latest first year engineering physics syllabus of Anna 
University.

The book thoroughly explains all relevant and important topics in a stu-
dent-friendly manner. The language and approach towards understanding the 
fundamental topics of physics is clear. The mathematics has been kept simple 
and understandable, enabling readers to easily understand the principle and 
idea behind a concept. The book lays emphasis on explaining the principles 
using numerous solved examples and well-labelled figures and diagrams. The 
text is supplemented with plenty of chapter-end practice questions, such as 
multiple-choice questions, review questions, and numerical problems.

Key Features of the Book and Their Benefits

Features Benefits

Topical coverage: Topics are arranged 
as per the latest R17 syllabus of Anna 
University.

Completely fulfils the syllabus 
requirements.
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Preface  v

Features Benefits

Figures and tables: More than 170 well-la-
belled figures and tables are given.

This will help readers visualize the con-
cepts and principles of physics.

Solved examples: Around 120 solved 
examples are provided.

This will help readers learn how to apply 
concepts in a given problem.

List of symbols: A list of symbols is given 
at the beginning of each chapter.

This facilitates easy referencing of  the 
symbols used in equations and figures 
across the text.

Summary of concepts, applications, and 
key formulae: These are given at the end 
of each chapter.

This helps in quick revision of  the 
important formulae, concepts, and their 
applications.

Chapter-end self-assessment section:
Contains 165 multiple-choice questions, 
215 review exercises, and 100+ numer-
ical problems. Answers to MCQs and 
numerical problems are given at the end 
of the book.

This will help students practice and apply 
the concepts learnt and also self-check 
their understanding while preparing for 
examinations.

Interactive animations: Links for inter-
active animations, provided as online 
resources, are indicated by a
‘mouse icon’  within the text.

These animations will help readers 
understand the practical implementa-
tion of a concept or the occurrence of a 
phenomenon.

CONTENTS AND COVERAGE
The book has 7 chapters and 3 appendices. The following is a short description 
of each chapter. 

Chapter 1 discusses the different properties of matter, elasticity moduli, and 
the effect of stress and strain, torsion, twisting couple, and bending moment 
on bodies. The basic principles and applications of properties of matter are 
illustrated through torsion pendulum, cantilevers, and I-shaped girders. 

Chapter 2 on waves and oscillations elucidates the concept of  potential 
energy, the linear restoring force resulting in linear harmonic oscillations, 
damped harmonic oscillations, quality factor, and forced vibrations and its 
phase characteristics. The conventional definition of waves, wave equation, 
plane progressive waves, characteristics of sound waves, and Doppler effect 
are discussed.

Chapter 3 discusses the ordered excited state—lasers. It covers the various 
properties, components, and applications of lasers in detail. The Einstein’s 
transition probabilities have been mathematically derived giving the difference 
between the three different phenomenon of spontaneous, stimulated emission, 
and absorption. The chapter also covers various types of lasers, namely, Ruby 
laser, He-Ne laser, Nd:YAG laser, and semiconductor lasers.
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vi  Preface

Chapter 4 explains the propagation of light waves in an optical fibre system. It 
discusses the various types of optical fibres, their classifications, applications, 
and the losses associated with them. The chapter covers numerical aperture 
of optical fibre systems, fibre drawings, splicing, LEDs, detectors, fibre optic 
sensors, and endoscopes. 

Chapter 5 introduces the concept of thermal physics and explains the various 
modes of heat transfer. Concepts of thermal expansion, thermal conductivity, 
and thermal are elucidated through various applications.

Chapter 6 lays emphasis on quantum physics. The chapter begins with the 
discussion on black body radiation and Planck’s law of blackbody radiation 
to strengthen the basis of quantum mechanics. It then deals with the Compton 
effect, concept of matter waves, De Broglie’s hypothesis, wave-particle duality, 
phase and group velocity, Heisenberg’s uncertainty principle, and wave func-
tion. The chapter presents Schrodinger’s time-independent and dependent wave 
equations to study the quantum or discrete behaviour of particles in a box. 
Finally, the concept of quantum tunneling and its use in scanning tunneling 
microscope has been discussed.

Chapter 7 on crystal physics introduces lattices, miller indices, atomic radius, 
coordination number, and packing factor. Polymorphism, and allotropy are 
also explained. The different types of crystal structures, crystal imperfections 
and techniques of growth of single crystals are also covered in detail.

Appendices A, B, and C covers SI units, important physical constants, and 
lattice constants respectively.

ONLINE RESOURCES
For the benefit of faculty and students reading this book, additional resources 
are available online at india.oup.com/orcs/ 9780199484638.

For Faculty
∑	 Solutions manual  ∑	 Chapter-wise PPTs          

For Students
∑	 MCQs test generator    
∑	 Model question papers
∑	 Links to interactive animations (indicated with  in the text)

ACKNOWLEDGEMENTS
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Preface  vii
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Properties of Matter

Learning Objectives
After studying this chapter, students will be able to

 understand the concept of elasticity, stress, and strain
 realize Hook’s law and relationship between the different elastic constants
 comprehend the important elastic properties of materials
 learn about tensile strength, torsional stress, deformations, twisting couple,

and torsion pendulum
 understand bending moments as well as uniform and non-uniform bending

in beams
 describe I-shaped girders and stress due to bending in beams

List of Symbols
	 a	= �Distance between 

the one end of 
a beam and the 
weight hanger in 
metres.

	A	= �Area of the beam 
(m)2

	C	= �Integration 
constant 

d	= �Thickness of the 
beam(scale)

f	= �Force experienced 
by a shearing 
stress

F	= �Force applied in 
order to shear a 
material

g	= �Acceleration due 
to gravity

I	= �Geometric 
moment of inertia

	K	= �Bulk modulus of 
elasticity

l	= �Length of the 
beam between the 
knife edges

	 L	= �Total length of the 
beam

	m	= �Mass added to the 
beam 

	M	= �Moment of a force
	R	= �Radius of curva-

ture of the neutral 
axis

	 T	= �Torque of a beam
	 y	= �Depression of a 

beam loaded at the 
centre or loaded at 
its free end

	a	= �Longitudinal 
strain per unit 
stress

b	= �Lateral strain per 
unit stress

	 s	= Poisson’s ratio
	ss	 = �Bending stress on 

a material
h	= �Rigidity modulus 

of elasticity
	 J	= Frequency
	 l	= �Wavelength 

1 C
H

A
P

T
E

R
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2  Engineering Physics

q	= �Angular 
displacement

	°C	= Degrees Celsius
Δ	= �Incremental 

change (in length)

k	= Torsional constant

1.1  INTRODUCTION
All bodies can be “deformed” by suitable applied forces. When the deforming 
forces are removed, the body is either able to recover its original condition 
or not able to retain its original condition. As a result, there is a stress in the 
body. Therefore, the substances or bodies or materials are either elastic or 
plastic. The elastic modulus determine the extent of change in the condition 
of a body. Different types of stress, strain and their relationship using the 
stress-strain diagram. Factors affecting elasticity and tensile strength, and 
concepts of  deformations, twisting couple, and torsion pendulum will be 
discussed in the chapter.

In this chapter, we will discuss the theory and experiments for bending 
moment, stress, and uniform and non-uniform bending in beams. Thus, this 
chapter aims at providing a firm foundation of the basic principles involved 
in dealing with materials, their properties and applications in engineering. 

1.2  ELASTICITY, STRESS, AND STRAIN
Every object tries to oppose any effort/force trying to change its shape and size. 
The extent of this opposition depends upon its elastic properties. A change in 
size or shape of a solid body requires the application of an external force. Any 
force resulting in a change in shape or size of a body is called a deforming force. 
This force can thus change the length, volume, or merely the shape of a body. 
It, thus, tries to produce a change in the normal equilibrium position of the 
atoms or molecules constituting the body. The body responds by generating an 
internal restoring force that resists any change in its shape or size. The internal 
restoring force per unit area of a deformed body is called the stress in the body.
Thus, 

Stress = 
Internal restoring force

Area
(1.1)

Two possibilities exist at this stage. 
 First, on removal of the deforming force, the restoring force brings the

body back to its original shape or size. Such type of bodies are called 
elastic bodies. Thus, this property of materials by virtue of which they 
tend to regain their original shape and size upon removal of the external 
or deforming force is called elasticity. For example: a rubber band.

 Second, the body does not regain its original shape or size on removal
of the deforming force (or external force). Such type of bodies are called 
plastic bodies. For example, a plastic scale when elongated by applying 
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Properties of Matter  3

a force F, will not regain its original size and shape on removal of the 
force F.

Hence, two types of bodies or materials exist in nature, namely, elastic bodies 
and plastic bodies. Bodies that can recover completely their original condition 
are said to be perfectly elastic. For perfectly elastic bodies, the restoring force 
has got to be equal to the deforming force and expression (1.1) reduces to 
the following form:

Stress = 
Deforming force

Area
(1.2)

The SI unit of stress is N/m2.
On the other hand, bodies that cannot recover to their original shape or size 

are said to be perfectly plastic. Generally, most of the materials which exist in 
nature are not completely perfectly elastic or perfectly plastic.

1.2.1  Types of Stress
A deforming force acting normal to the area of a body generates normal stress 
and that acting tangential to the area generates tangential stress. 

Normal stress  can be of two types, namely, tensile stress and compressive 
stress.

Tensile stress  The restoring force per unit area of a body whose length has 
been increased in the direction of the deforming force is called tensile stress. 
This type of stress results from extension produced in a body. A spring gets 
extended when a mass is at one of its ends. A restoring force generates tensile 
stress.

Compressive stress  The restoring force per unit area of a body whose length 
has decreased under the application of a deforming force is called compressive 
stress. Springs in the shock absorbers of vehicles experience compressive stress.

Tangential stress (or Shearing stress)  The restoring force per unit area of a 
body whose shape changes due to the application of a tangential force i.e., the 
force acts along the surface of the body is called tangential or shearing stress. 

1.2.2  Strain
Let us now turn our attention to the consequences of stresses acting on a 
body. The deforming force acting on a body leads to a change in shape or 
size of the body or both. The change produced in the dimensions of a body 
is reflected in the strain. The fractional deformation that the body undergoes 
is called strain. Thus, strain is the ratio of change in dimension to the original 
dimension. Since it is a ratio it is dimensionless. Thus,

Strain = 
Change in dimension

Original dimension
(1.3)
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4  Engineering Physics

There are three types of strain:

1. Linear strain = 
Change in length

Original length
= Dl

l
(1.4)

2. Volume strain = 
Change in volume

Original volume
= Dv
V

(1.5)

3. Shape strain or shear = Angular deformation in radians (1.6)

Linear strain and volume strain
are easy to visualize. The extension 
produced in a stretched rubber band 
is an example of linear strain. The 
increasing radius of a balloon as it 
is inflated is an example of volume 
strain. To visualize shear strain, let 
us consider a cubical body of side 
l as shown in Fig. 1.1. A tangential 
force F is shown to be applied to the 
face PQRS. An angular deformation 
q is produced in the process, as shown 
in the figure.

The surface PQRS gets shifted to P¢Q¢R¢S¢ under the influence of this 
force. Then, 

Shearing strain = q =  
Dl
l

(1.7)

Thus, shearing strain is the angle through which a surface perpendicular 

to the fixed surface gets angularly displaced.

1.2.3  Hooke’s Law
The fundamental law of elasticity was enunciated by Robert Hooke in the year 
1679 and it states that provided the strain is small, the stress is proportional to 
the strain. The ratio of stress/strain is a constant (E) and called the modulus 
of elasticity or the coefficient of elasticity.

Stress
Strain

 = E, where E is an elastic constant	 (1.8)

Thus, according to Hook’s law, stress is directly proportional to the strain 
produced by it within the elastic limits, i.e., Stress µ Strain.

Since stress is having the unit of pressure and strain is just a ratio, the 
units and dimensions of the modulus of elasticity are the same as those of 
the pressure. The value of E depends on the nature of the material and the 
conditions it undergoes after it is manufactured.

Note: Elastic limits depicts the maximum stress for which the material is 
able to recover its original conditions.

Fixed surface

R

V
l

q

∆l

V

P

W T

S
S′

P′

Q′
R′

Q

Fig. 1.1  Angular deformation produced 
by tangential force
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Properties of Matter  5

1.3  STRESS- STRAIN DIAGRAM AND ITS USES
Suppose we carry out the following experiment. A wire of a uniform cross 
section is hung vertically from a rigid support. The free end of the wire has a 
pan on which weights can be kept to subject the wire to different stress levels. 
Another similar wire is kept close to the first wire. A small weight is attached 
to the free end of the second wire, and a fixed weight and a Vernier scale is 
attached to the wire carrying the pan with variable weights. Such a set-up is 
shown in Fig. 1.2.

Wire A in the figure carries the main scale and wire B the Vernier scale. 
We now vary the stress by keeping different weights on the pan, and note the 
corresponding extensions produced using the Vernier and main scale combi-
nation. What is the type of curve that we obtain if  we plot strain as a function 
of stress? A typical plot is shown in Fig. 1.3.

A

Main scale

W1

Vernier scale

Pan

B

Fig. 1.2  Experimental set-up to 
study stress–strain relationship

St
re

ss

Strain

(Breaking stress)

E (Wire
breaks)

Plastic

Elastic

A

B

D

C

Fig. 1.3  Stress–Strain relationship for 
a wire

Important points in the curve are clearly identified. Let us now under-
stand the curve in detail. Up to point A, stress and strain are linearly 
related. In this region, stress is directly proportional to strain. Point A is 
called the proportional limit of the material. After this point, non-linear-
ity sets in for the stress–strain relationship. Up to point B, the wire would 
return to its original length if  the deforming force is removed. B thus rep-
resents the elastic limit. Beyond point B, the material does not return to its 
original length on removal of the deforming force. In fact, a residual strain 
or permanent strain remains on removing the force that caused the wire to 
extend. The material is said to have acquired a permanent set. This is the 
beginning of the plastic region, which continues up to point E. Point C, 
slightly ahead of point B, is called the yield point of the wire. On increasing 
the stress further, the strain increases rapidly due to a greatly increased 
extension of the wire. Point D in the figure represents the maximum of 
the breaking stress. Here, the material is having the lowest cross-section 
and is said to be ductile. The wire finally breaks or fractures at point E. 
At this point E, even without the application of any stress, the material 
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6  Engineering Physics

simply snips and reaches the lowest part of the graph. Hence, the strain 
required to completely break the material can be found once we know the 
details about the breaking point stress.

Materials that elongate considerably and go through a plastic deformation 
region before breaking are called ductile materials. Wrought iron, lead, and 
copper are common examples of ductile materials. Materials that break 
just beyond the elastic limit are called brittle materials. High-carbon steel 
and glass are some examples. There exists another category of material 
that does not display any region in their stress–strain curve, where stress 
is directly proportional to strain. These materials, however, show elastic 
behaviour for a large stress range. Thus, the materials return to its original 
length on removal of  the deforming force; such materials that can be 
stressed to large strain values are called elastomers. We have all handled 
rubber bands and experienced that they can withstand a large amount 
of extension. Rubber is a well-known elastomer. The elastic tissue of the 
large vessel carrying blood from the heart (aorta) is also an elastomer.
Note: Stress and strain are complementary to each other.

1.3.1  Uses of Stress-Strain Curve (or Diagram)
Stress-strain curve is used to measure below properties of materials including 
metals:
1. Stress-strain curve is used to read the structural load bearing capability

or loadability of materials as it is one of the very important properties for 
materials.

2. It is also useful in finding elastic and plastic deformation limits commonly
known as yield point of the material.

3. This curve is used to calculate maximum elongation, maximum tensile
strength, reduction in the area of the material, and the fracture or breaking 
point of the material.

All the aforementioned values are very useful, especially for design engi-
neers, as they enable them to calculate the force, a material can withstand with 
regard to the cross-section area used without permanent deforming.

1.4 � TYPES OF ELASTIC MODULUS (OR ELASTICITY) AND 
RELATION BETWEEN THEM

Corresponding to the three types of strain learnt in section 1.2.2, we have 
three types of elasticity or elastic modulus, which are as follows. 
1. Linear elasticity called Young’s modulus corresponding to linear or tensile

strain,
2. Elasticity of volume, or Bulk modulus corresponding to the volume strain,

and
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Properties of Matter  7

3. Elasticity of shape, shear modulus or modulus of rigidity, corresponding
to shear strain.
We will be discussing these three types of elastic modulus in this section.

1.4.1  Young’s Modulus (Y)
When a deforming force is applied on a body only along a particular direction, 
the change for unit length in that direction is called longitudinal or linear or 
elongation strain. The force applied per unit area of cross-section is called 
longitudinal or linear stress.

Suppose a force F is applied along the length of a wire l in one direction. 
Let us also assume the wire has an area of cross-section ‘A’. Suppose further 
that due to the applied stress, the original length ‘l’ of  the wire changed by a 
magnitude ‘Dl’. Then 

Longitudinal stress = 
F
A

(1.9)

and also,

Longitudinal strain = 
Dl
l

 (1.10)

Within the elastic limit, the ratio of longitudinal stress to the longitudinal 
strain is called the Young’s modulus of elasticity, Y. Therefore,

Y = 
longitudinal stress

longitudinal strain
(1.11)

Using Eq. (1.9) and (1.10) in Eq. (1.11) we get

	 Y = 
F A
l l
/
/D

=
Fl
l A( )D

(1.12)

Eq. (1.12) is the expression for Young’s modulus for both compressive and 
extensive stress. The unit of Young’s modulus is N/m2.

Example 1.1 	 A load of 3 kg results in an extension of 2 mm in a wire of original 
length 2 m and diameter 1 m. Calculate the Young’s modulus for the material of the 
wire.

Solution  Load, W = 3 × 9.8 = 29.4 N	 (1.13)

Young’s Modulus, Y, is given by,

	 Y = �
F
A

L
L

◊
D

(1.14)

Putting given values and calculated value of W in Eq. (1.14) we get,

		  y = ¥ ¥
¥ ¥

29 4 2 4

0 002 0 001 2

.

( . ) ( . )p
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8  Engineering Physics

		 = 
29 4 2 4 7

0 002 22 0 001
3 74 10

2

10.

( . ) ( . )
.

¥ ¥ ¥
¥ ¥

= ¥ N/m

Example 1.2	 A load of 2 kg produces an extension of 4 metres in length and 2 mm 
of diameter. Calculate the Young’s modulus of the wire.
Solution  Here, the load applied W = 2 × 9.8 = 19.6 N.
 Increase in length = 2 mm = 0.002 m.
Original length = L = 4 m.; radius of the wire = r = 0.001 m. 

Using the equation, F A
l l
/
/D

, we get,

19.6 × 4 /3.14 × (.001)2 × .002  = 78.4/0.63 × 10–8 = 1.24  ¥ 1010 N/m2.

Example 1.3	 A copper wire of 3 m length and 1mm diameter is subjected to a ten-
sion of 5 N. Calculate the elongation produced in the wire, if  the Young’s modulus 
of elasticity of copper is 120 GPa.

Solution  Young’s modulus Y = 
F A
l l
/
/D

. 

Hence, Δl = F ¥ l /A Y = 5 ¥ 3 / [3.14 ¥ (0.5 ¥ 10–3)2 ¥ 120 ¥ 109] = 15.9 ¥ 10–3 m. 
Therefore, the elongation produced is = 15.9 mm.

Example 1.4	 What force is required to stretch a steel wire to double its length when  
its area of cross-section is 1 cm2 and Young’s modulus of elasticity is Y = 2 ¥ 1011 N/m2.

Solution  The Young’s modulus is given by the formula Y = stress / strain = 
F L
A l
.
.

, 
where, L is original length, 
l is increase in length, 
A is the area of cross-section, and 

F is the force in Newton. Therefore force F = 
YAl
L

Newton 

Using this formula and substituting the terms, we get, F = 2 ¥ 107 Newton 

Example 1.5	 A wire of length l m and radius 0.5 mm elongates by 0.32 mm when 
stretched by a force of 49 N and twists through 0.4 radian when equal and opposite 
torques of 3 ¥ 10–3 Nm are applied at its ends. Calculate the elastic constant for iron.

Solution  Using the general term, Y = Stress / Strain =  
F L
A l
.
.

, 

We get, in this problem, Y
Fl
r x

=
p 2 , 

Substituting the given values, we get, Y = 19.5 ¥ 1010 N/m2

1.4.2  Bulk Modulus (K)
The force is applied normally and uniformly to the whole surface of the body, 
so that, while there is a change of volume, there is no change of shape.

Suppose a body has a volume V and area A. Suppose further that a force F 
is applied uniformly, normal to the surface area A. If  the volume undergoes 

a change DV due to the applied force. 
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Properties of Matter  9

The Bulk modulus, K, is then defined as,

	 K = 
F A
V V

FV
A V

/

/D D
=

( )
(1.15)

The ratio, F
A

 is equal to the pressure, P. Thus, Eq. (1.15) reduces to,

	 K = 
PV
V( )D

(1.16)

Bulk modulus has the unit of N/m2.
Bulk modulus is sometimes known as “incompressibility” and hence its 

reciprocal is 1/K called compressibility. The unit of compressibility is m2/N.

1.4.3  Modulus of Rigidity (h)
In this case, while there is a change in the shape of a body, there is no change 
in its volume. The stress here is a tangential stress. It is clearly equal to the 
force F divided by the area of the applied force (i.e., F/a).

We will now take the case of a force that does not change the size of a body 
but only changes the shape of a body. As an example, Fig. 1.4 shows a cube 
that is deformed in shape due to a tangential force, F.

G

EF

q

q
q

q

H

C
C¢

D¢
DF

DL

C C¢ D
D¢

F E

L

F

(a) (b)

Fig. 1.4  (a) Shearing force on one face of a cube (b) schematic of one face

If  ‘A’ is the area of the force then the tangential stress is given by, F/A. The 
shearing strain, q, is given by,

q q@ @ ¢
tan

CC
CF

(1.17)

which can be written as,

q = DL
L

(1.18)

where, DL is the relative displacement produced by the tangential force and 
L is the edge length of the cube.

The ratio of tangential stress and the shearing strain is called the modulus 
of rigidity, h. Using Eq. (1.18) and the expression for tangential stress, we have,
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10  Engineering Physics

 h = F A
L L
/
/D = 

FL
A L( )D (1.19)

The unit of modulus of rigidity is N/m2.

1.4.4  Poisson’s Ratio (r) 
When we stretch a string or a wire, it becomes longer but thinner, i.e., the 
increase in its length is always accompanied by a decrease in its cross-section. 
In other words a linear or a tangential strain produced in the wire is accom-
panied by a transverse or a lateral strain of an opposite kind in a direction at 
right angles to the direction of the applied force.

Hence, within the elastic limit, the lateral strain (b) is proportional to the 
linear or tangential strain (a) for the material of a given body and the ratio 
between the two is a constant called “Poisson’s ratio” for that material. It is 
denoted by the letter s and thus,

Poisson’s ratio = 
lateral strain

linear strain
= =s b

a

or	 s = 
1
m

= b
a

or	 s = 
Secondary strain

Primary strain

( )

( )

b
a

If  a force deforms a body in the direction in 
which it is applied, it also results in deforma-
tions in other directions. Let us try to under-
stand using a wire as an example. If  the wire 
is stretched by a force applied along its length, 
the same force also results in a reduction in 
its diameter. This is shown schematically in 
Fig. 1.5.

In this figure a force F extends the length 
of a wire by a magnitude DL and results in a 
reduction in its diameter from D to D1. The 
strain produced along the direction of applied 
force is called longitudinal strain and that pro-
duced in the perpendicular direction is called 
the lateral strain. The longituding strain per 

unit stress, a, is given by,

 a = DL/L (1.20)

The lateral strain b is given by,

b = 
( )D D

D
- 1 (1.21)

D

D1

DL

F

L

Fig. 1.5  Extension of a wire 
due to applied force
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Properties of Matter  11

Poisson’s ratio, s, is then defined as, 

s = 
Lateral strain

Longitudinal strain
 =

- -( )D D D
L L

1 /

/D
leading to, 

s = – 
( )

( )

D D L
D L

- 1

D
(1.22)

Here, the negative sign is used due to the fact that the longitudinal strain 
and the lateral strain have the opposite sense, i.e., if  the length increases then 
the diameter of the wire decreases and vice versa.

1.4.5  Relation between Elastic Modulus (Qualitative)
We define a as the increase per unit length per unit tension along the direction 
of a force F. (Here, a is linear or tangential strain). We define b as the con-
traction produced per unit length per unit tension in a direction perpendicular 
to the force. (Here, b is lateral strain) K is the Bulk modulus, Y is the Young’s 
modulus, and h is the rigidity modulus of a material.

K = 
1

3 2( )a b-
(Relation I)

or	 a – 2b = 1/3K	 (1.23)

h  = 
1

2( )a b+
 (Relation II)

or  a + b =  
1

2h (1.24)

Subtracting Eq. (1.23) from Eq. (1.24), we get

( ) ( ) ( )- + -

- =

1 1

2
1

3
a b

K

a + b = 
1

2h

\	 (1.24) – (1.25) gives,

	 3b = 
1

2

1

3

3 2

6h
h

h
- = -

K
K

K

or	 b = 
3 2

18

K
K

- h
h

Multiplying Eq. (1.24) by 2 and adding it to Eq. (1.23) we get,

3a = 
1 1

3

3

9h
a h

h
+ = +

K
K

K
or

or   1 3

9

9

3Y
K
K

Y K
K

= + =
+

h
h

h
h

or
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12  Engineering Physics

i.e., 9 3 9 3 1

Y
K
K Y K

= + = +h
h h

or

Relation between the different elastic constants and Poisson’s ratio is dis-
cussed separately in the following sections.

Relation between Y and a
Let us consider a cube of unit side length. Let us further assume a unit force 
acts along one of the sides of the cube. The Young’s modulus, Y, is given by

	 Y = 
Stress

Longitudinal strain
= 1

a (1.25)

Relation between K, `,  and a
Let us take a cube of unit length with the origin coinciding with the origin ‘O’. 
The three sides of the cube are assumed to be parallel to the three mutually 
perpendicular axes as shown schematically in Fig. 1.6.

Z

C

Fz
Fy

Fx

Fx

X
A

Y

B

O

FzFy

Fig. 1.6  Forces applied on 
a cubical body

Let a represent the increase in length per unit length per unit force along 
the direction of the applied force. Also, let b represent the increase in length 
per unit length per unit force in a direction that is perpendicular to the applied 
force. Forces Fx, Fx; Fy, Fy and Fz, Fz represent pairs of forces applied along 
x, y, and z directions respectively. Lengths OA, OB and OC after application 
of the forces have the expressions,

	 OA = 1 + aFx – bFy – bFz (1.26)

	 OB = 1 + aFy – bFx – bFz (1.27)

and

	 OC = 1+ aFz – bFx – bFy (1.28)

Volume of the cube is,

	 OA × OB × OC (1.29)

Putting OA, OB, OC from Eqs (1.26), (1.27), (1.28) into Eq. (1.29) yields,

Volume = (1 – aFx – bFy – bFz)(1 + aFy – bFx – bFz)

 (1 + aFz – bFx – bFy) (1.30)

© Oxford University Press. All rights reserved.

Oxfo
rd

 U
niversi

ty
 Pre

ss



Properties of Matter  13

Neglecting higher powers of a, b, Eq. (1.30) can be simplified to, 

Volume = 1 + (a – 2b)(Fx + Fy + Fz) (1.31)

If, Fx = Fy = Fz = F, Eq. (1.31) reduces to,

Volume = 1 + (a – 2b)3F (1.32)

Original volume = 1

Change in volume = (a – 2b)3F (1.33)

Using Eq. (1.33),

Volume strain = 
3 2

1

F ( )a b-
(1.34)

Bulk modulus, K = 
Stress

Volume strain
(1.35)

Using Eq. (1.34) in Eq. (1.35), we get,

	 K = 
F

F3 2

1

3 2( ) ( )a b a b-
=

-
(1.36)

Eq. (1.36) gives the relationship between K, a and b.

Relation between Y, K and `

Equation (1.36) can rewritten as,

	 K = 
1

3 1 2

/

/

a
b a( )-

(1.37)

Also, 	 s  = 
Lateral strain

Longitudinal strain
= b

a
(1.38)

Using Eq. (1.35) and (1.36) in Eq. (1.37), we get,

	 K = 
Y

3 1 2( )- s
(1.39)

Equation (1.39) gives a relation between K, Y, and s.

Relation between g, `, and a
Let us take a cube of side length L. A tangential stress S is applied on the 
cube as shown in Fig. 1.7 for a face of the cube.

2L

DC¢
D¢

C

q q

G

L

F E

DL

DL

S

Fig. 1.7  Tangential stress S 
on a face of a cube
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14  Engineering Physics

As a consequence of the applied stress the cube gets distorted to C¢D¢EF from 
the original CDEF. The diagonal CE contracts and the diagonal FD expands 
through the same magnitude. DG is perpendicular on the new diagonal FD¢. 
The tangential stress S is equivalent to a compressive stress S along the diagonal 
CE and a tensile stress along the diagonal FD. Let a represents the longitudinal 
strain per unit stress and b represents the lateral strain per unit stress.

From Fig. 1.7 we can see that,

Strain =
GD
FD

¢
  = S(a + b)	  (1.40)

Also,

GD¢ = DD¢cos (DD¢G) = DD¢ cos GS = 
( )DL

2
(1.41)

and,

FD = L L L2 2 2+ = (1.42)

Using Eqs. (1.41) and (1.42) in Eq. (1.40), we get

S(a + b) = 
( ) ( )D DL

L
L
L

/ 2

2 2
= (1.43)

For small q, 
( )DL

L
 ª q, thus Eq. (1.43) reduces to,

S(a + b) = 
q
2

which can be written as,

S
q a b

=
+

1

2( )
(1.44)

But 
S
q

 = h = modulus of rigidity. Thus Eq. (1.44) can be rewritten as, 

h = 
1

2( )a b+
(1.45)

leading to,

h = 
1

2 1

/

/

a
b a( )+

(1.46)

Using Eq. (1.25) and (1.38) in Eq. (1.46), we get

h = 
Y

2 1( )+ s
(1.47)

 Equation (1.47) gives a relation between Y, h and S.

Relation between Y, K, h and s

From Eq. (1.39) we have

K = 
y

3 1 2( )- s
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Properties of Matter  15

which can be rewritten as,

Y
K3 = 1 – 2s (1.48)

Also, from Eq. (1.47) we get,

Y
h

= 2(1 + s) (1.49)

Adding Eq. (1.48) and (1.49), we get

Y
K

Y
3

3+ =
h

yielding,

1

3

1 3

K Y
+ =

h
giving,

	 Y = 
9

3

h
h

K
K + (1.50)

Eq. (1.50) is a relation between Y, h and K.

Dividing Eq. (1.48) by Eq. (1.49) results in,

h s
s3

1 2

2 1K
= -

+( )

giving,

	 2h (1 + s) = 3K(1 – 2s)
yielding,

	 2h + 2hs = 3K – 6ks
which can be rewritten as,

	 2hs + 6Ks = 3K – 2h
leading to, 

s = 
3 2

3 3

K
K

-
+

h
h( )

(1.51)

Eq. (1.51) is a relation between s, K and h.

Example 1.6	 A wire of length 1 m and diameter 1 mm is fixed at one end and a couple 
is applied at the other end so that the wire twists by π/2 radians. Calculate the moment 
of the couple required if rigidity modulus of the material is h = 2.8 ¥ 1010 N/m2. 

Solution  The required formula is, restoring couple is T = 
phq

2

4

l
r

Substituting the given values, we get, T = 4.3 ¥ 10–3 Nm. 

1.4.6  Factors affecting Elastic Modulus (or Elasticity)
The elastic properties of a material are linked up with the fine mass of its 
structure. Single crystals, when subjected to deformation, show a remarkable 
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16  Engineering Physics

increase in their hardness. For example, a single crystal of silver shows a 
remarkable increase in hardness on being stretched to more than twice its 
length. Its stiffness increases to as much as ninety-two times its original 
strength. Thus, the factors affecting elasticity are:
1. Effect of hammering, rolling and annealing;
2. Effect of impurities;
3. Effect of change of temperature

Effect of hammering, rolling, and annealing  Operations like hammering 
and rolling, etc. help break up the crystal grains into smaller unit results in 
an increase or extension of their elastic properties, whereas operations like 
annealing (ie, heating and then cooling gradually) tends to produce a uniform 
pattern of orientation of the constituent crystals, by orienting them all in 
one particular direction and thus forming larger crystal grains, resulting in a 
decrease in their elastic properties or an increase in softness or plasticity of 
the material.

Effect of impurities  It is well known that sometimes suitable impurities are 
deliberately added to metals to help bind their crystal grains better, without 
affecting their orientation. For example, carbon and potassium are added in 
minute quantities to molten iron and gold respectively for this purpose. Such 
impurities naturally affect the elastic properties of the metal to which they 
are added, enhancing or impairing them. In either case, the elastic properties 
are considerably strengthened.

Effect of temperature  A change in temperature also affects the elastic prop-
erties of a material—rise in temperature usually decreases its elasticity and 
vice-versa. Exceptions are “invar steel” whose elasticity remains practically 
unaffected by any changes in temperature.

Thus, lead becomes quite elastic and rings like steel when struck by a wooden 
mallet, and cooled in liquid air.

Carbon filament, which is highly elastic at the ordinary temperature, 
becomes plastic when heated by the current passed through it, as a result, it 
can be easily distorted by a magnet brought near it.

1.5  TENSILE STRENGTH
Tensile strength is the maximum tensile force required to pull something like 
a rope, wire, structural beam, etc. to the point where it breaks. It is measured 
as the maximum stress that a material can take without getting fractured 
on when being stretched divided by the original cross-sectional area of the 
material. Tensile strength specifies the point when a material goes from elastic 
to plastic deformation. 

Tensile strength can classified into three types:
1. Yield strength – It is the stress that a material can withstand without per-

manent deformation.
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Properties of Matter  17

2.	 Ultimate strength – It is the maximum stress a material can withstand.
3.	 Breaking strength – It is the stress coordinate on the stress-strain curve at 

the point of fracture (or rapture).
This concept is generally applied in various engineering fields such as 

material science, mechanical engineering, textile engineering, and structural 
engineering.

The working stress on a material should be kept below the tensile stress in 
order to prevent the material to lose its elastic properties. Let us consider a 
small cube (EFGD) of length l, as shown below. The centre of the cube is H 
and the lower part of the cube EF is clamped. Let a tangential force be applied 
(F) to the cube along the positive x-axis direction. The stress T is calculated 
as force per unit area, 

i.e.,	
F
l2  = T	 (1.52)

and it acts along the direction DG. The opposite reaction to this force is faced 
by the bottom surface EF in a direction towards negative x-axis .Thus the two 
faces have equal and opposite forces that constitute a deflecting couple. This 
couple tends to pull the object in the clockwise direction. The restoring force 
of equal magnitude, but opposite in direction, tends to act in the directions 
along FG and DE to balance this deflecting couple along DG and EF. The 
force that acts along DG can be made to resolve along DH and GH into two 
equal components f.

Fig. 1.8  Tangential force 
F (shear) acting on a 

surface of a cube EFGD

D G

FE

H

Similarly, the other three forces can be resolved into smaller components, 
each with magnitude f. So, in effect, we have four forces, each of value f, acting 
tangentially on the faces of the cube and these forces are resolve into eight 
forces, each of value f, acting along the diagonals DF and GE. The force acting 
along the diagonal DF tends to compress the square while the force along 
the diagonal GE tends to extend the square. Hence, an area of the triangular 
face, DFG, is generated .The area of this triangle is equal to

	 l ¥ l 2  = l2 2        	 (1.53)

The force acting on either side of the normal to it is 2f at the centre H, 

therefore, the compressive stress = 
force

area
  = 

2
22
f

l
	 (1.54)

But,	 f = F cos 45° = F / 2 	 (1.55)                     

Hence, compressive stress is equal to F
l2

  = T 	 (1.56)   

which is the tangential stress.
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18  Engineering Physics

Similarly, it can be proved that the tensile stress along GE is also equal to 
tangential stress T. Thus, a shearing stress is equal to a linear tensile stress 
and to an equal linear compressive stress.

As tensile strength is a limit state of tensile stress, it results in (a) ductile 
failure i.e., a material, if  ductile, that has already begun to flow plastically 
rapidly forms a constricted region called a neck, where it then breaks and, 
(b) brittle failure, i.e., the material suddenly breaks in two or more pieces at 
a low stress state. Tensile strength can be used in terms of either true stress 
or engineering stress.

1.5.1  Factors affecting Tensile Strength
The following factors affect the tensile strength of a material:

Effect of temperature  Tensile strength and temperature are inversely pro-
portional. Decrease in temperature causes an increase in the tensile strength 
and yield strength of all metals while tensile strength decreases with rise in 
temperature.

Effect of grain size  The metals are composed of crystals or grains. If  the 
grain size of a metal is small, it is called a fine grained metal, on the other 
hand, when the grain size is comparatively large, then it is called a coarse 
grained metal. A fine grained metal has a greater tensile and fatigue strength. 
It can be easily hardened.

Effect of heat treatment  Heat treatment is combination of  heating and 
cooling applied to a material. Mechanical properties like tensile strength, 
toughness and shock resistance can be improved by heat treatment. 

Effect of impurities  Presence of different impurities in the material affects 
tensile strength differently. Commonly found impurities are C, Cr, Ni, Mo, 
V, Nb, Ti, etc.

1.6  TORSIONAL STRESS AND DEFORMATIONS
Torsion is the twisting of an object due to an applied torque. Torque is a rotat-
ing force capable of turning a body. A stress is an internal resistance offered 
by a body per unit area of the cross section. For studying torsional stress, we 
may simply define it in terms of shearing stress which is produced when we 
apply the twisting moment to the end of a shaft about its axis. For example, 
when we turn a screw driver to produce torsion, our hand applies a torque 
‘T’ to the handle and twists the shank of the screw driver.

1.6.1  Deformations
Deformation means change in the shape or dimensions of a body as a result 
of stress and strain on a material. Let us understand this by taking an example 
of a shaft attached to the wall and rotating it, as shown in Fig. 1.9.
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Properties of Matter  19

From observation, the angle of twist of the shaft is proportional to the 
applied torque and to the shaft length h.

	 j µ T   and   

 j µ L, where j is the shearing angle, T is the torque applied and L is the 

length of the material.

Fig. 1.9  Shaft with a 
twisted-rotational torque

y

z

y

x

l

j

A circular shaft remains undistorted because its axis is symmetric about 
the centre. A non-circular shaft, on the other hand, when subjected to torsion, 
will be distorted, because it is not having an axis that is symmetrical about its 
centre. For any type of circular shafts, whether it is a solid material or a hollow 
material, a circular shaft will remain undistorted due to torsion. 

1.6.2  Twisting Couple
A pair of forces F, equal in magnitude, but oppositely directed, and displaced 
by perpendicular distance constitute a couple. It can also be defined as a 
system of forces with a resultant moment but without any force acting on it. 
The resultant moment of a couple is called as torque.

Twisting Couple of a Cylindrical Object  Let us consider a cylindrical object 
subjected to torsion. This cylinder is having length l metres and let R be the 
radius of the cylinder. Since the cylinder is subject to torsion, which is essen-
tially a rotation at the movable end while nothing happens to the fixed end of 
the cylinder, a twisting couple is accompanied by a restoring couple inside the 
cylinder. It is required to imagine that this cylinder consists of many coaxial 
cylinders and one such cylinder is having radius s and thickness ds as shown 
in Fig. 1.10. Let GH be a parallel line to the central axis EF and now, when 
the cylinder is twisted, the line GH is twisted through an angle j, so that the 
shearing angle is GFC.

From the diagram HC is = sq = lj    or   j = 
s
l
q

;

Rigidity modulus h = 
Shearing stress

Shearing strain
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20  Engineering Physics

F

G C
q

E R

l

F

G
C

q

f

Fig. 1.10  Twisting 
couple of a cylinder

Hence, h ¥ shearing strain = hj = 
h qs
l

     (1.57)

But shearing stress = 
Shearing force

Area over which the force acts

Shearing force = shearing stress ¥ area over which the force acts. But the 
area over which the force acts = p (s + ds)2 – p s2 

This area is equal to px2 + 2psds + πds2 – ps2  (ds2 term is neglected since 

it is very small). Thus, we get,

Area over which force acts = 2πsds. 

The shearing force 

F = 
h qs
l

 ¥ 2πsds = 
2 2phq
l
s sd (1.58) 

The moment of  the force about the axis EF of  the cylinder Force ¥ 
Perpendicular distance.

2 2phq
l
s sd  ¥ s = 

2 3phq
l
s sd (1.59)

The moment of this force on the entire cylinder of radius r is obtained by 
integrating the Eq. (1.59) between the limits s = 0 to s = r.

Hence, the twisting couple,

T = 
0

32
r

l
s sÚ phq

d

i.e., T = 2πhq =
s

r
4

0
4

È

Î
Í

˘

˚
˙

Applying the limits, we have,  

T =  
phq
2

4

l
r (1.60)

In the above expression, if  q = 1 radian, then, we get, 

Twisting couple per unit twist T = 
ph
2

4

l
r
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Properties of Matter  21

This is the twisting couple required to produce a twist of unit radian in a 
cylinder is called as torsional rigidity for a material of the cylinder.

Special case  In the hollow cylinder case, we have, for a cylinder of length l 
and inner radius r1 and outer radius r2, twisting couple of the cylinder 

	 T ¢ = 2

1

2phq
l

s s
r

r È
ÎÍ

˘
˚̇Ú d  = (r2

4 – r1
4) 

and hence the couple per unit twist of the cylinder = T ¢ = 
ph
2l

(r2
4 – r1

4), 
assuming q = 1 radian.

1.7  TORSION PENDULUM: THEORY AND EXPERIMENT
Theory  A torsional pendulum consists of a rigid object (like a circular disc) 
suspended by a wire attached to a rigid support as shown in the Fig. 1.11.

When this rigid object is twisted through an angle q, the twisted wire 
exerts a restoring torque on the object which will be proportional to angular 
displacement q.

Here,	 T = –kq		  (1.61) 

where k is called as the torsional constant of the sup-
porting wire. The value of k can be found by applying 
a known value of torque T in order to twist the wire 
through an angle q. Using Newton’s second law of 
motion for rotational motion, we have,

	 T = –kq = Id dt2 2q /    	 (1.62)

Hence,  	= – d2q/dt2 = –k/I ◊ q 	 (1.63)

This can be seen as the same result of the simple 
harmonic oscillator problem, where we had, 

	 w = k /I
and the period of the simple pendulum was  

	 T = 2π I /k        	 (1.64) 

where, I = moment of inertia of the suspended body,

	 k = couple/unit twist

This system is known as the torsional pendulum. As long as the elastic limit 
of the wire is not exceeded, there is no limit to the small-angle restriction.

Since, we have an expression for couple per unit twist as,

	 k h= 1

2

4p R
l

	 (1.65)

Where, l = length of the suspension wire; R = radius of the wire; h = rigidity 
modulus of the suspension wire.

O

P

R
R

q
max

Fig. 1.11  Torsional 
pendulum
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22  Engineering Physics

 Substituting Eq. (1.65) in Eq. (1.64) and squaring, we get an expression 
for rigidity modulus for the suspension wire as,

h = 
8

2 4

pIl
T R

 (1.66)

We can use Eq. (1.66) to calculate the moment of inertia of the disc, i.e., 

I = (1/2) MR2

 Now, let us consider, I0 be the moment of inertia of the disc alone and 
I1 & I2 be the moment of inertia of the disc with identical masses at distances 
d1 & d2 respectively (refer to Fig. 1.12). If I¢ is the moment of inertia of each 
identical mass about the vertical axis passing through its centre of gravity, then

I1 =I0 + 2I ¢  + 2md2
1 (1.67)

I2 =I0 +2I¢ + 2md2
2 (1.68)

 Thus, on subtracting Eq. (1.68) from Eq. (1.67), we get,  

I2 – I1 = 2m(d2
2 – d2

1) (1.69)

Using Eq. (1.64), we get,

T
I

0
2 2 04= p

k (1.70)

T
I

1
2 2 14= p

k
 (1.71)

T
I

2
2 2 24= p

k
 (1.72)

   On subtracting Eq. (1.72) from Eq. (1.71), we get,         

T T I I2
2

1
2 2

2 14
1- = -p
k

( )
(1.73)

     
where, T0, T1, T2 are the periods of torsional oscillation without identical 
mass, with identical pass at position d1, d2 respectively.

 On dividing Eq. (1.70) by Eq. (1.73) and using Eq. (1.69),

T
T T

I
I I

I
m d d

0
2

2
2

1
2

0

2 1

0

2
2

1
22-( ) =

-( ) =
-( )  (1.74)

 Therefore, the moment of inertia of the disc,

I m d d
T

T T
0 2

2
1
2 0

2

2
2

1
2

2= -
-( )( ) (1.75)

               
Now substituting Eq. (1.75) in Eq. (1.66), we get the expression for rigidity 

modulus ‘h’ as,

h =
-( )

-

16 2
2

1
2

4
2
2

1
2

pm d d

R
l

T T( )
(N/m )2 (1.76)
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Properties of Matter  23

Experiment  The aim of the experiment is to find the modulus of rigidity 
of a given wire. Rigidity modulus is defined as the ratio of shearing stress to 
the shearing strain.

	 h = Shearing Stress/ Shearing Strain

	 h = 
F A/
q

  (N/m2) 

Here, F is the stress which is force exerted on the object, A is the area of the 
object under stress, and q is the shearing strain (angle). The shearing strain is 
also calculated by measuring the ratio of the horizontal distance (Δx) that the 

shearing face moves, to the height of the object (h). Strain is given by 
Dx
h

Ê
ËÁ

ˆ
¯̃ .

Figure 1.12 shows the experimental 
set-up of torsional pendulum.   

In the first part of the experiment, 
we have to find the ‘moment of inertia’ 
Ig of  the circular solid disc which is 
suspended about the vertical axis. This 
is done by the method of torsional oscil-
lations. The torsion pendulum is made 
to suspend about the vertical axis and 
its height l metre, is measured from the 
fixed end (wall) to the point of suspen-
sion O. A stop watch is taken and the torsional pendulum is made to oscillate 
by gently giving a twist to the wire, so that the pendulum oscillates about the 
mean position P. The time taken for ten or twenty oscillations is observed as 
T and hence, the time taken for one oscillation is calculated as T0 (seconds). 
This is also known as ‘time period’ of oscillation of the torsional pendulum. 

Table for recording time period for10/20 oscillations 
Sl. 
no.

Length of the torsional 
pendulum l (in m)

Time taken for 10/20 
oscillations (seconds)

Time period T
T T

0
2

2
2

1
2

( )-T0 T1 T2

1 l1

2 l2

3 l3

Two equal masses of either 50 gm each or 100 gm each are taken and these 
are kept on top of the circular disc. In the first case, the masses are kept very 
close to the string or wire attached and the distance between them is measured 
as 2d1 cm. It is then divided by two, so that we get the distance from any one 
of the masses to the wire, when kept at the closest position. The time period of 
oscillation for this added mass is now calculated, by gently turning the system 
from its neutral position at P and by creating torsional oscillations. The total 

2d2

2d1

P
P

OO

Fig. 1.12  Experimental set-up of 
torsional pendulum 
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24  Engineering Physics

time taken for ten or twenty oscillations is observed and hence the time taken 
for one oscillation, namely T1 seconds, is noted down. Then, the two masses 
of 50 gm or 100 gm each are placed at the farthest end of the circular disc, 
without making the masses falling down, and the distance between them is 
measured as 2d2 cm. It is then divided by two, so that the distance of any one 
of the masses from the farthest end to the wire is now known. The system is 
now made to oscillate about its mean position P, and the total time taken for 
ten or twenty oscillations, using the stop watch, is observed. Then the ‘time 
period’ is calculated to be T2 seconds. This experiment is repeated for three 
different lengths, l1, l2, and l3  lengths of the torsional pendulum. Knowing 
the masses added, on any one side, in kilograms, we can calculate the moment 
of inertia of the system as,

I m d d T T Tg = - -2 2
2

1
2

0
2

2
2

1
2( ) ( )/ kg-m2.

A graph is plotted with length on the X-axis and T0
2 on the Y-axis. The result-

ing graph will appear as follows.

P

A

B
T0

2

l0

Fig. 1.13  Graph of a 
linear plot between T0

2 
and l

Table for calculating l/T2
0

S.No Length Time period
l
T0
2

1.

2.

3.

The graph in Fig. 1.13 shows that as the length increases, the time period 
also increases which shows a linear plot. From this graph, a slope namely 
l
T0

2
, can be calculated and substituted in the second part of  the exper-

iment. The value of  the moment of  inertia that we have obtained from 
the first part of  the experiment can be substituted in the formula,

h = 
8

0
2 4

p I l
T R

 (N/m2), to determine the rigidity modulus of the given wire. The 

screw gauge is used in the second part of the experiment to find out the radius 
of the given wire by measuring its diameter (or thickness) in mm. The screw 
gauge readings are also recorded.

Zero Error Correction (ZEC)...... (mm)          Least Count (L.C.) .........(mm)
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Properties of Matter  25

Table for calculating the mean diameter of the wire
S. No PSR(mm) HSC OR = PSR + HSC X L.C. TR = OR ±ZEC

1.

2.

3.

4.

5.

   Mean diameter = .......... ¥ 10–3 m

The mean diameter and hence the mean radius R is calculated.

Note:	 PSR	 = Pitch scale reading
	 HSC	 = Head scale count (coincidence)
	 OR	 = Observation reading
	 TR	 = Total reading

Applications of Torsional Pendulum
1.	 The working of “Torsion pendulum clocks” (also called torsion clocks or 

pendulum clocks), is based on torsional oscillation.
2.	 The freely decaying oscillation of Torsion pendulum in medium (like poly-

mers), helps to determine their characteristic properties.
3.	 Some researchers are trying to determine frictional forces between solid 

surfaces and flowing liquid environments using forced torsion pendulums.

1.8  BENDING OF BEAM
A rod or bar of uniform cross-section of a homogeneous, isotropic elastic 
material with a length that is much greater than its other dimensions is called a 
beam. Since the length of the beam is much greater than its other dimensions, 
shearing stresses can be neglected. When a beam is supported at one end and 
loaded at the other end, it is called a cantilever. When such a beam is fixed 
at one end and loaded at the other, within the limits of perfect elasticity, the 
loaded end sinks a little. The upper surface of the beam gets stretched and 
assumes a convex form and its lower surface gets compressed and assumes a 
concave form.

We will make the following assumptions while discussing the bending of beams:
1.	 Weight of the beam can be neglected in comparison to the load.
2.	 Shearing forces can be neglected.
3.	 There is no change in the cross section of the beam as it bends. This ensures 

that the geometric moment of inertia does not change as the beam bends.
4.	 The curvature of the bent beam is small.

1.9  BENDING MOMENT OF BEAMS
Let AB be a beam fixed at the end A and loaded at the end B, with EF as 
neutral axis. Let us consider the equilibrium of a section PBCP¢ of  it, cut by 
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26  Engineering Physics

a plane PP¢ at right angles to its length and the plane of bending as shown 
in Fig. 1.14.

An equal and opposite reactional force W must be acting vertically upwards 
along PP¢, since the beam is fixed at the end AD.

The couple due to these two equal and 
opposite forces tends to rotate or bend the 
beam in the clockwise direction. This couple, 
due to the load applied to the free end of the 
beam is thus the “bending couple” and the 
moment of this couple is called the “bending 
moment”, M.

Since the beam is in equilibrium, there 
must obviously be an equal and opposite 
couple also acting on the beam.

Referring to section PBCP¢, we know that 
the extended filaments above the neutral axis 
EF are in a state of tension and thus exert an “inward pull” on the filaments 
adjacent to them towards the fixed end of the beam. Similarly, the shortened 
filaments below EF are in a state of compression and exert an “outward push” 
on the filaments adjacent to the beam towards the loaded end of the beam.

The moment of these stresses thus balances the bending moment M due to 
the load when the beam is in equilibrium and must also be of the nature of 
the couple opposing or, resisting the bending couple due to the load.

The moment of  this balancing couple, due to tensile and compressive 
stress in the upper and lower halves of the beam respectively, is referred to 
as “moment of the resistance to bending” in engineering practice and acts in 
the plane of the bending. Since it is equal in magnitude to the moment of the 
bending couple, it is also called bending moment of the beam.

Expression for the bending moment  Let us consider a beam under the action 
of deforming forces. The beam bends into a circular arc. Figure 1.15 shows 
a portion of the beam.

R

P Q

B

Q¢P¢

q

ANeutral

axis

x

Fig. 1.15  Portion of the 
beam with radius of 

curvature R

Let AB be the neutral axis of the beam. Here the filaments above AB are 
elongated and the filaments below AB are compressed. The filament AB 

B

F

A

C

WP

E

D
P¢

Load ( )w

Fig. 1.14  Bending moment of
beam
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Properties of Matter  27

remains unchanged. Let PQ be the arc chosen on the neutral axis. If  R is the 
curvature of the neutral axis and q is the angle subtended by it at its centre C. 

Thus, the length of arc PQ = Rq	 (1.77)

Consider a filament P¢Q¢ at a distance ‘x’ from the neutral axis.

\	 The extended length = P¢Q¢ = (R + x)q	 (1.78)

Here, increase in length = P¢Q¢ – PQ

or,	 (R + x)q – Rq

\	 Increase in length = xq	 (1.79)

	 Linear strain = 
Increase in length

Original length
= 
x
R
q
q

\	 Linear strain = 
x
R

	 (1.80)

	 The Young’s modulus of a material = Y = 
Stress

Strain
\	 Stress = Y ¥ strain	 (1.81)

Using Eq. (1.80), we get,

	 stress = Y ◊ =x
R

Yx
R

q
q

If  dA is the area of cross-section of the filament P¢Q¢. Then, the tensile 

force on the area (dA) = Stress ¥ Area

\	 Tensile force = 
Yx
R

A◊ ( )d

Moment of a force = Force ¥ perpendicular distance

\	 Moment of a tensile force about the neutral axis (AB) or (PQ) 

	 = 
Yx
R

A x◊ ( )d

\ 	 PQ = 
Y
R

A x◊ ( )d 2

The moment of force acting on both upper and lower halves of the neutral 
axis can be obtained by summing all the moments of tensile and compressive 
forces about the neutral axis.

\	 the moment of all forces about the neutral axis = 
Y
R

x A◊ Â 2 ( )d

Here I x Ag = Â 2 ( )d  = AK2 is called the geometrical moment of inertia, 
where A is the total area of the beam and K is the radius of gyration.

Hence, total moment of all the forces or internal bending moment 

	 = 
YI
R
g 	 (1.82)
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28  Engineering Physics

Special cases 
(i)  Rectangular cross-section

If ‘b’ is the breadth and ‘d’ is the thickness of the beam, then area A = bd 

and	 K2 = 
d 2

12

\	 Ig = AK2 =
bd d bd◊ =

2 3

12 12

Substituting the value of Ig in Eq. (1.82), we get

Bending moment for a rectangular cross-section = Ybl
R

3

12(ii) Circular cross-section
For a circular cross-section if  ‘r’ is the radius, then area A = pr2 and

K2 = 
r2

4

\	 Ig = AK2 = 
pr r2 2

4

¥
i.e., Ig =

pr4

4

Using this in Eq. (1.82), we get,
Bending moment of a circular cross-section = 

pYr
R

4

4

1.10  CANTILEVER: THEORY AND EXPERIMENT 
A cantilever is a beam fixed horizontally at one end and loaded at the other end.

If  a load ‘W’ is applied at the free end, a couple is created between two 
forces i.e., (a) force (W) applied at the free end towards downward direction 
and (b) reaction (R) acting in the upward direction at the supporting end as 
shown in Fig. 1.16.

R

W Fig. 1.16  Cantilever beam

Under equilibrium condition,

External bending moment = Internal bending moment

Experiment for calculating depression of a cantilever-loaded at one end  Let ‘l’ 
be the length of the cantilever OA fixed at ‘O’. Let ‘W’ be the weight suspended 

© Oxford University Press. All rights reserved.

Oxfo
rd

 U
niversi

ty
 Pre

ss



Properties of Matter  29

at the free end of the cantilever. Due to the load applied, the cantilever moves 
to a new position OA¢ as shown in Fig. 1.17.

l

T

S

A¢

dy

dy

y

A

O

R dq

dq
dq

dx

(

)

l
x-

W

P Q

C

Fig. 1.17  Cantilever-loaded 
at its ends

Let us consider an element PQ of  the beam of length dx, at a distance OP 
= x from the fixed end. Let ‘C’ be the centre of curvature of the element PQ 
and let ‘R’ be the radius of curvature.

Due to the load applied at the free end of the cantilever an external couple 
is created between the load W at ‘A’ and the force of reaction ‘Q’. Here the 
arm of the couple (distance between the two equal and opposite forces) is l – x.

\	 The external bending moment = W (l – x)	 (1.83)

We know that the internal bending moment under equilibrium condition, 

	 = 
YI
R
g

	 (1.84) 

External bending moment = Internal bending moment 

\	 Eq. (1.83) = Eq. (1.84)

i.e., 	 W(l – x) = 
YI
R
g

or	 R = 
YI

W l x
g

( )-  	 (1.85) 

Two tangents are drawn at points P and Q, which meet the vertical line 
AA¢ at T and S respectively.

Let the smallest depression produced from T to S = dy
and let the angle between the two tangents = dq

Then we can write, the angle between CP and CQ is also dq .
i.e., –PCQ = dq.
Thus, the arc length PQ = R. dq = dx

or	 dq = 
dx
R

	 (1.86) 

Substituting Eq. (1.85) in Eq. (1.86)

	 dq = 
dx

YI W l xg[ ( )]/ -  

or	 dq = 
d
YIg

w
 (l – x) dx 	 (1.87)
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30  Engineering Physics

From DQA¢S we can write, 

dq = 
dy
l x( )-

If  dq is very small, then we can write,

dy = dq (l – x)	    (1.88)

Using Eqs (1.87) and (1.88), we have,

dy = 
W
YIg

 (l  – x)2 . dx	 (1.89)

Therefore, total depression at the free end of the cantilever can be derived 
by integrating Eq. (1.89) within the limits 0 to ‘l’.

\	 y = 
W
YI

l x x
g

l
( ) .-Ú 2

0

d

		 = 
W
YI

l lx x x
g

l
( )2 2

0

2- +Ú d

		 = 
W
YI

lx lx x dx
g

l
2

2 3

0

2

2 3
- +

Ê

ËÁ
ˆ

¯̃
Ú

\	 y = 
W
YI

l l l

g

3 3
3

3
- +

È

Î
Í

˘

˚
˙

\	 y = 
W
YI

l

g
◊
Ê

ËÁ
ˆ

¯̃

3

3

\ Depression of cantilever at free end ‘y’ is,

y Wl
YIg

=
3

3 (1.90)

Special cases
(i) Rectangular cross-section

If ‘b’ is the breadth and ‘d’ is the thickness of the beam then we know

	 Ig = 
bd 3

12

Substituting the value of Ig is Eq. (1.90), we can write, the depression pro-

duced at the free end for a rectangular cross-reaction

	 y = 
Wl

Y bd

3

3

3
12

Ê

ËÁ
ˆ

¯̃
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\	 y = 
4 3

3

Wl
Ybd

(ii) Circular cross-section

If ‘r’ is the radius of circular cross section, then we know that,

	 Ig = 
pr4

4
Substituting the value of Ig in Eq. (1.90), we can write

Depression produced y = 
Wl

Y r

3

43 4( )p /

	
y Wl

r Y
= 4

3

3

4p

Note: The angle between the tangents at the end of the cantilever can be 
obtained by integrating within the limits 0 to ‘l’.

\	 q = 
W
Y

xdx Wl
YIg

l
- =

Ê

Ë
Á

ˆ

¯
˜Ú or q

2

0 2

Example 1.7	 The free end of a given cantilever depresses 5 mm under a certain load. 
Calculate the depression produced if  the length is increased to three times its original 
length.
Solution  From Eq. (1.90), the depression y of  the free end is given by

	 y = 
Wl
YIG

3

3
	 (1.91)

If y1, l1 represent the original depression and length respectively and y2, l2 represent 
the corresponding final quantities, then we have,

	
y
y

2

1

  = l
l
2

1

3Ê
ËÁ

ˆ
¯̃

	

or 	 y2 = l
l

y2

1

3

1

Ê
ËÁ

ˆ
¯̃

yielding, y2 = (3)3 × 5 mm = 27 × 5 = 135 mm

1.11  UNIFORM BENDING: THEORY AND EXPERIMENT
In uniform bending, there is an elevation at the centre of the beam due to the 
weights loaded at both ends.

Let us consider a beam of negligible mass, supported symmetrically on 
the two knife edges A and B as shown in Fig. 1.18. Let the length between 
A and B be ‘l’. Let equal weights W, be added to either ends of the beam C 
and D respectively.
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W W

P
E a

D

A F C B
xC

l

xx

W

W W

W

(a)	 (b)
Fig. 1.18  Cantilever with uniform bending (a) experimental set-up (b) schematic 

layout 
Let the distance CA = 3D = a
Due to the load applied the beam bends from position F to E as an arc of a 

circle and produces an elevation ‘x’ from position F to E. Let ‘W’ be the reac-
tion produced at the points A and B which acts vertically, upwards as shown.

Consider a point ‘P’ on the cross-section of the beam. Then, the forces 
acting on the part PC of  the beam are
1. Force W at ‘C’ and
2. Reaction W at ‘A’

Let the distance PC = a1 and PA = a2 (as shown in Fig. 1.19), then the
external bending moment about P, is

	 Mp = W ¥ a1 – W ¥ a2

Here, the clockwise moment is taken as 
negative and the anticlockwise moment is 
taken as positive.

External bending moment about P can be 
written as Mp = W.(a1 – a2)

	 Mp = W.a	 (1.92)

We know that the internal bending moment 

	 =
YI
R
g

(1.93)

Under equilibrium condition, 

internal bending moment = external bending moment

Therefore, from Eq. (1.92) and Eq. (1.93), we get,

	 W.a = 
YI
R
g

(1.94)

C

W

W

P

Aa

a1

a2

Fig. 1.19  Diagram for bending 
moment
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Properties of Matter  33

Since for a given load, W, Y, Ig, a, R are constants, therefore, this type 
bending is called uniform bending. Here, it is found that the elevation ‘x’ forms 
an arc of the circle of radians ‘R’ as shown in Fig. 1.20.

In DAFO, we can write

	 OA2 = AF2 + FO2

Since OF = FE

	 OA2 = AF2 + FE2

Rearranging,

	 AF2 = FE 
OA
FE

FE
2

-
È

Î
Í

˘

˚
˙ (1.95)

Here, AF = 
l
2

, FE = x =
R
2

; OA = R

\ Equation (1.95) can be written as

l
2

2Ê
ËÁ

ˆ
¯̃ = x

R
R

x
2

2( )/
-

È

Î
Í

˘

˚
˙

l x R x
2

4
2= -[ ]

l xR x
2

2

4
2= -

If  the elevation ‘x’ is very small, then the term x2 can be neglected.

Therefore, we can write l2

4
 = 2xR.

or	 x = 
l
R

2

8

Radius of curvature R = 
l
x

2

8
(1.96)

Substituting for ‘R’ in Eq. (1.94)

we get,	 W.a = 
YI

l x
g

( )2 8/

or	 W.a = 
8

2

YI x

l
g

\ the elevation of point ‘E’ above A is

x Wal
YIg

=
2

8
(1.97)

E

B

x

O

R/2l/2

A

R

F

Fig. 1.20  Elevation of the 
central part
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34  Engineering Physics

1.12  NON-UNIFORM BENDING: THEORY AND EXPERIMENT

Theory  In solids, Young’s modulus 
is defined as the ratio of the longitu-
dinal stress over longitudinal strain, 
in the range of elasticity the Hooke’s 
law holds (stress is directly propor-
tional to strain). It is a measure of 
stiffness of elastic material. Young’s 
modulus of elasticity was discovered 
by Thomas Young, a 19th century 
British scientist. The ratio between 
the stress and the strain in a solid material is known as ‘modulus of elastic-
ity’. Stress can be of two types, namely linear stress and normal stress. Linear 
stress is applied to a material along its length and normal stress is applied in 
a direction perpendicular to the plane of a material. The SI unit of Young’s 
modulus is Newton/metre2 or Pascal.

If  a wire of length l and area of cross-section ‘A’ be stretched by a force F 
and if  a change (increase) of length ‘l’ is produced, then,

	 Y = 
Normal stress

Linear strain

/

/
= F A
l lD  = Stress/Unit area (N/m2).

Let AB be a beam that is supported on two knife edges. The length of the 
beam is l cm. The beam is now loaded at its middle point O by a weight as 
shown in Fig. 1.21,

	 W = mg 	 (1.98) 

The reaction at the knife edges will be W/2 at A and at B respectively. 
The beam now bends because of the load mg. The beam may be regarded as 
two cantilevers whose free end carries a load of W/2 each of length l/2 and 
at a fixed point O. Using the theory of the cantilever, where the equilibrium 
bending moment is equal to the  restoring moment we have,

	
Y
R Ig  = W ( l – x) 	 (1.99)

where, Y is the Young’s modulus of elasticity, R is the reaction, Ig is the geomet-
ric moment of inertia, and Ig  = AK2, A being the total area of a section of the 
beam, and K being the radius of gyration of the beam. If  y is the depression 
of the beam at O, the radius of curvature of the beam R is given by,

	
1
R

 = d2y/dx2 .1 1

2

/ + Ê
ËÁ

ˆ
¯̃

È

Î
Í
Í

˘

˚
˙
˙

dy
dx

  	 (1.100) 

where, dy
dx

 is the slope of the tangent at the point (x, y). Since the slope is 

small, 
dy
dx

Ê
ËÁ

ˆ
¯̃

2

is negligible and hence the expression becomes, 

O

A B

W mg=

l/2

W/2 W/2

l/2

 
Fig. 1.21  Non-uniform bending method 

(Theory) 
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1
R

 =  d2y/ dx2 (1.101)

Comparing Eq. (1.101) with Eq. (1.99), we get, 

d2y/ dx2  = W(l – x)/ YIg (1.102) 

On integrating Eq. (1.102), we get,

d
d
y
x  =

W lx x
YIg

( )- 2 2/
  + C1 (1.103)

where,  C1 is the constant of integration. When x = 0, that is, at the point A, 

the tangent is horizontal and hence the slope,  d
d
y
x

= 0, so that on using this,
we get C1 = 0. Hence,

dy
dx

 =
W lx x

YIg

( )- 2 2/
(1.104) 

Now, once again, on integration, we get, 

y = 
W lx x

YIg

( )2 32 6/ /-
  + C2 (1.405)

Applying the same condition, we find that at x = 0, C2 = 0. Hence, 

y = 
W lx x

YIg

( )2 32 6/ /-
(1.106)

This relation gives the depression of a point B at a distance x from a fixed 
end. At the free end, x = l, and therefore, the depression produced at the free 
end is

y0 = 
W l l

YIg

( )3 32 6/ /-
  = Wl3/ 3YIg (1.107)

For a beam of rectangular cross-section, we have, Ig = bd
3

12
(1.108)

 Hence, on substituting Eq. (1.108) in Eq. (1.107), we get, 

Y = 
4 3

3

Wl
Ybd

(1.109) 

When W = mg is substituted in Eq. (1.109), we get, 

Y = 
4 3

3

mgl
Ybd

(N/m2)

Thus, the Young’s modulus of elasticity of a rectangular beam (wooden 
scale) is calculated using the non-uniform bending method.

Experiment  The aim of the experiment is to find the Young’s modulus of 
elasticity of a wooden metre scale, say, by the non-uniform bending method. 
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36  Engineering Physics

For this, the apparatus shown in Fig. 1.22 is used, and the beam is supported 
between two knife-edges AB. A pin is inverted and its tip faces the top at O. 
A Vernier microscope is kept to study the variation of  the horizontal 
cross-wire(depression) of the beam (scale), each time, when a mass is either 
loaded or unloaded from the beam. The distance between the two-knife edges 
is measured as L (m).      

The wooden scale is tied with an 
inverted pin at the middle of its length. 
A weight hanger containing weights of 
multiples of 50 gm each is suspended 
at the centre of the beam. A travelling 
microscope is taken and its horizontal 
cross-wire is adjusted to the tip of the 
beam by keeping a 50 gm mass in the 
beginning. The reading is noted. Then, 
another 50gm mass is added to this and 
again the depression of the pin is fol-
lowed by the travelling microscope, and the reading is taken. The experiment 
is repeated for another two or three masses, each of 50 gm, is added to the 
existing mass. Readings are noted. Then the reverse procedure, namely every 
mass of 50 gm are unloaded, and each time the elevation of the pin is traced 
by the microscope, and then readings are taken. So, a set of readings for both 
the loading and unloading masses will now become available. The average is 
found for all these readings and the depression y is found by subtracting two 
successive readings, taken two at a time. In the second part of the experiment, 
a Vernier caliper is used to measure the breadth of the scale and a screw gauge 
is used to measure the thickness of the scale. The readings are recorded as 
shown in the following tables.

	 ZEC =  Z.E. ¥ L.C. =  ................ (cm) 

Table for Microscope Readings
S. 
No.

Length 
between the 
knife edges(l) 
m

Load (K gm) Microscope 
readings
Loading(P)      
Unloading(Q)

Mean  
(P + Q)/2 

Depression 
(y) for 50 gm

1 W

2 W +50 gm

3. W +100 gm

4.  W + 150 gm

Mean (y1)

1. W

2. W + 50 gm

3. W + 100 gm

A O

L

B

W mg=

                                                 
Fig. 1.22  Experimental set-up for  

non-uniform bending method
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4. W + 150 gm

Mean (y2)

1. W

2. W + 50 gm

3. W + 100 gm

4. W + 150 gm 

Mean (y3)

Table for calculating breadth of the scale using Vernier Caliper
ZEC = Z.E. ¥ L.C. = .......... (cm)

S. No MSR (cm) VSC MSR + VSC ¥ L.C. CR TR = CR ±  ZEC

    Mean breadth= (cm) =...............   ¥ 10–2 m. 

Note:	 MSR	 = Main scale reading
VSC	 = Vernier scale coincidence
CR	 = Corrected reading
TR	 = Total reading

Using the formula Y = 
4 3

3

mg l
Ybd

 (N/m2), we can calculate the Young’s 

Modulus of elasticity, by theory. A graph is plotted between L3 vs y (depression) 
as shown in Fig. 1.23. Knowing the three different lengths and three different 
mean depression values, we get a linear dependence plot as shown below. 

Table for calculating thickness of the scale using Screw Gauge
ZEC = Z.E. ¥ L.C. = .......... (mm)	 L.C. = ......... (mm)

Sl.No PSR 
(mm)

HSC  HSC ¥ 
L.C.

PSR + 
HSC ¥ 
L.C.

CR TR = 
CR  ± 
ZEC(mm)

1.

2.

3.

4.

5.

Mean thickness = ............. (mm)   =             ................ ¥ 10–3 m.
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y

B

A

O L
3

Fig. 1.23  Cube of length 
vs depression y in a non-
uniform bending method

From the graph, the slope is found to be y/L3. The reciprocal of the slope 
is then taken to be L3/y and substituted in the above formula to get the exper-
imental value of Y, the Young’s modulus of elasticity of a given wooden 
beam (scale).

Example 1.8 	 Calculate the Young’s modulus in the cantilever depression method 
used. The length of the cantilever is 1 m which is suspended with a load of 150 gm. 
The depression is found to be 4 cm. The thickness of the beam is 5 mm and breadth 
of the beam is 3 cm.

Solution  Here, Y =  4 3

3

mg l
Ybd

 (N/m2). 

Substituting for various terms, we get,
4 ¥ 9.8 ¥ 1 ¥ 1 ¥ 1 ¥ 150 ¥ 10–3/[3 ¥ 10–2 ¥ (5 ¥ 10–3)3 ¥ 4 ¥ 10–2] 

= 5.88 /1.5 ¥ 1010 = 3.92 ¥ 1010 N/m2

Example 1.9 	 A circular and a square cantilever are made of a same material and 
have equal area of cross-section and length. Find the ratio of their depression for a  
given load.
Solution  The geometric moment of inertia for a circular section Ic = πr4/4.  The 

geometric moment of inertia for a square section Is = 
bd 3

12
. (for a square b = d = a) 

Therefore,

	  Is = a4/4

For a circular cantilever, for a given load, ycircular = Mgl3/3YIc; and for a square 
ysquare = Mgl3/3YIs. Hence, taking the ratio, we get, 
ycircular /ysquare = Is /Ic  = [a4/4] /[ πr4/4] = a4/ 3πr4. 

Also, the area of cross-sections are equal, i.e., πr2 = a2.

Hence, yc/ys = π2 /3π = π/3.	

Example 1.10	 A cantilever of rectangular cross-section has a length of 50 cm. Its 
breadth is 3 cm and its thickness is 0.6 cm. A weight of 1 Kg is attached at the free 
end. The depression produced is 4.2 cm. Calculate the Young’s modulus of the material 
of the bar. Given that g = 9.8 m/sec2.
Solution  Using the formula, for the non-uniform bending method, i.e., 

Y = 
4 3

3

mg l
Ybd

(N/m2), 

Substituting the given, we get, Y = 1.8 ¥ 1010 N/m2 

Example 1.11	 A uniform rectangular bar1m long, 2 cm broad, and 0.5 cm thick is 
supported on its flat face symmetrically on two knife edges 70 cm apart. If  loads of 
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Properties of Matter  39

200 gm are hung from the two ends, the elevation of the centre of the bar is 48 mm. 
Find the Young’s modulus of the bar.
Solution  Applying the uniform bending method principle here, and using the formula 

Y = 
4 3

3

mgl
Ybd

, substituting the various terms, we obtain, Y = 1.8 ¥ 1010 N/m2

Example 1.12	 A cantilever of length 0.5 m has a depression of 15 mm at its free end. 
Calculate the depression at a distance of 0.3 m from the fixed end.

Solution  We know that the depression of the cantilever at a distance x from its fixed 

end is given by, y = W
YI

lx x2 3

2 6
-

È

Î
Í
Í

˘

˚
˙
˙

, and at the free end, d =Wl
YI

3

3

Here, l is the length of the cantilever, 
W is the load, 
Y is the Young’s modulus of the material and 
I is the geometric moment of inertia and  = 0.015m.
On substituting these terms, we get, y = 6.48 mm = 6.48 ¥ 10–3 m 

1.13  I-SHAPED GIRDERS
The girders with upper and lower sections broadened and middle section 
tapered, so that it can withstand heavy loads over it is called as I-shaped 
girders (refer to Fig. 1.24). Since the girder looks like the letter I, they are 
known as I-shaped girders.

  Fig. 1.24  I-shaped girders

Minimization of the depression produced 
We know that the depression in the case of a rectangular section is given as,

y = 4 3

3

Wl
Ybd

Depression ‘y’ can be minimized by either decreasing the load (W) or the 
length of the girder (l) or by increasing the Young’s modulus or the breadth 
(b) or the thickness (d) of the girder.

Since length ‘l’ is a fixed quantity, it cannot be decreased.
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Therefore, breadth and thickness may be adjusted by increasing the depth 
and decreasing the breadth (since thickness increases by d3). Thus volume of 
girder is increased and hence depression produced is reduced. Depression can 
also be reduced by properly choosing  materials of high Young’s modulus.

Applications of I-shaped Girders
1.	 They are used in the construction of bridges over rivers.
2.	 They are very much useful in the production of iron nails which are used 

in railway tracks.
3.	 They are used in supporting beams for ceilings in the construction of 

buildings.
4.	 They are used in construction of dams.

Advantages 
1.	 More stability
2.	 More stronger
3.	 High durability

1.14  STRESS DUE TO BENDING OF BEAMS
Consider a beam under the action of  a bending moment as shown in  
Fig. 1.25.

Fig. 1.25  Stress due to 
bending of a beam

P

N

Q
M

A B

P1
Q1

s

R R

O

q

M-N = neutral axis

R = Radius of curvature

q = Included angle

Bending occurs with the centre of curvature at O, having a radius of curva-
ture, included angle q, and the neutral surface MN. If  the longitudinal stress 
at a chosen filament P1Q1 at a distance s from the neutral surface MN is ss 
then the strain in P1Q1 is given by,

	 Strain	 =  
Change in length

Original length

		  = 
PQ PQ
PQ

1 1 -
 = 

( )R s R
R

+ -q q
q

= 
s
R
q
q

 = s
R

Also,	 Strain	 = 
stress

Young' smodulus
 = 

s
Y

  = 
s
R

 

gives us,  ss = 
s
R
Y
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Here, 
s
R

 is a constant for a particular cross-section of the beam. Hence,

bending stress can be calculated at a par-
ticular cross-section and it is found that 
it is proportional to the distance from 
the neutral axis. For positive values of s, 
below the neutral axis, bending stress ss 
is positive or compressive stress and for 
negative values, above the neutral axis, the 
bending stress ss is taken as negative, or 
tensile stress (refer to Fig. 1.26).

IMPORTANT CONCEPTS

1. Stress is defined as the restoring force per unit area that brings back the body to
its original state from the deformed state. Its unit is N/m2.

2. Strain is defined as the change in dimension (fractional change) produced by an
external force on the body. It has no unit.

3. There are 2 types of stress—(a) normal stress and  (b) tangential stress or shearing 
stress.

4. There are 3 types of strain—(a) longitudinal or tensile strain, (b) shearing strain
and (c) volumetric strain.

5. According to Hooke’s law, stress is directly proportional to the strain produced,
within the elastic limit.

6. There are 3 types of modulus of elasticity—(a) Young’s modulus (Y), corre-
sponding to longitudinal or tensile strain, (b) Bulk modulus (K) corresponding
to volume strain, and (c) Rigidity modulus (h) or modulus corresponding to the
shearing strain.

7. Poisson’s ratio is defined as the ratio between lateral strain per unit stress(b) to

the longitudinal strain per unit stress(a). Thus, s =
b
a

.

8. Relation between Y, h, and K is given as,  Y =
9

3

K
K

h
h+

.

9. Factors affecting elasticity are stress, annealing, temperature, impurities, and
nature of crystals.

10. The working stress on a material should be kept below the tensile stress in order
to prevent the material from losing its elastic properties.

11. A shearing stress is equal to a linear tensile stress and to an equal linear compres-
sive stress.

12. Torsion is the twisting of an object due to an applied torque.
13. Torsional stress is defined as a shearing stress produced when we apply the twisting 

moment to the end of a shaft about its axis.
14. Deformation means change in the shape or dimensions of a body as a result of

stress and strain on a material.
15. When subjected to torsion, every cross-section of a circular shaft remains plane

and undistorted. Cross-sections of non-circular (non-axisymmetric) shafts are
distorted when subjected to torsion. Cross-sections for hollow and solid circular
shafts remain plane and undistorted because a circular shaft is axisymmetric.

Bending

Compressive stress

Tensile stress

Fig. 1.26  Tensile stress and 
Compressive stress
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42  Engineering Physics

16.	 The moment of a force about a point is defined as the product of the magnitude 
of a force and the perpendicular distance from the point to the line of action of 
force.

17.	 Couple constitutes a pair of two equal and opposite forces acting on a body, in 
such a way that the lines of action of the two forces are not in the same straight 
line.

18.	 Torque is a rotating force and is equal to the moment of the couple. Torque is 
the product of one of the forces forming couple and the perpendicular distance 
between the two opposite forces.

19.	 A torsional pendulum consists of a rigid object (like a circular disc) suspended 
by a wire attached to a rigid support. 

20.	 A beam is defined as a rod or a bar, either circular or rectangular, of uniform 
cross-section whose length is very much greater than its outer dimensions, such 
as breadth and thickness.

21.	 Total moment of all forces or the internal bending moment is = YIg/R, where Y 
is Young’s modulus of elasticity and Ig =AK2, is the geometric moment of inertia. 
Here, A is the total area of the beam, K is the radius of gyration. R is the radius 
of curvature of the neutral axis.

22.	 A cantilever is a beam fixed horizontally at one end and loaded at the other end.
23.	 Expression for depression of a cantilever loaded at its free end: y = Wl3/ 3YIg, 

where Y is the Young’s modulus of elasticity, y is the depression at the free end, 
W = mg where m is the mass and g is the acceleration due to gravity, Ig is the 
geometric moment of inertia.

24.	 Uniform bending-elevation at the centre of the beam loaded at both ends:  y= 
3mgal2/2bd3Y, where y is the elevation at the centre, m is the mass, g is the accel-
eration due to gravity, a is the distance between any one of the knife-edges to the 
weight hanger, l is the distance between the knife edges, b is the breadth of the 
beam (scale), d is the thickness of the beam (scale), and Y is the Young’s modulus 
of elasticity.

25.	 Non-uniform bending-expression for depression for a beam loaded at the centre: 

Y = 
4 3

3

mgl
Ybd

  (N/m2), where Y is the Young’s modulus of elasticity, m is the mass 

loaded in the centre each time, g is the acceleration due to gravity, l is the length 
between the knife edges, y is the depression at the centre, b is the breadth of the 
beam, and d is the thickness of the beam.

26.	 The girders with upper and lower sections broadened and the middle section 
tapered, so that it can withstand heavy loads over it is called I-section girder. 

27.	 For a beam subjected to bending stress, it can be calculated at a particular cross-sec-
tion and it is found that it is proportional to the distance from the neutral axis. 

 IMPORTANT FORMULAE 

		 1.	 Deforming stress =  
F
A

		 2.	 Strain = 
Change in dimension

original dimension
  

		 3.	 Force (Hooke’s law) 

			  F = –k. X

		 4.	 Tensile strength 

			  =
Maximum Tensile load

Original cross-sectional area

		 5.	 Young’s Modulus of elasticity	

			  Y FL
Al

=  
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6. Rigidity Modulus: h = Fl
Al

7. Bulk modulus of elasticity: K = 
pV
J

8. Twisting couple per unit twist for a

cylinder (or a wire): C
l
r = phq

2

4

9. Twisting couple per unit twist for a

hollow cylinder: T
l
r r= -( )ph

2
2

4
1
4 

		10. Period of  the torsional pendulum:

T I=  2p /k
	11. Moment of inertia for a circular disc, 

suspended about a vertical axis ,using 
the torsional oscillation method:

I m d d T
T Tg = -( )

-
Ê

ËÁ
ˆ

¯̃
2 2

2
1
2 0

2

2
2

1
2

	12. Rigidity modulus of a wire using tor-

sional pendulum method: h = 8

0
2 4

ÀIl
T R

	13. For a cantilever, the depression due

to a load at the free end: y
Wl
YIg

=
3

3�
		14. The Young’s modulus of  a beam

(wooden scale), using the non-uni-
form bending method:  

Y mgl
ybd

= 4 3

3

		15. The Young’s modulus of  a beam
(wooden scale), using the uniform 
bending method: 

Y mgal
bd y

= 3

2

2

3

APPLICATIONS

1. Elastic constants, namely Young’s modulus of elasticity, Rigidity modulus of
elasticity, Bulk modulus of elasticity are all important properties of matter that 
deal with deformation and its consequences. These parameters have their appli-
cations in building a robust bridge, a high-rise building, or lay down concrete
sleepers on a railway track, etc.

2. The I-shaped girders are another practical example of how a beam supports
almost the entire weight of an object kept on it. This is used in engineering
applications, such as construction of railway tracks, building bridges, construct-
ing buildings, etc. Hence, the study of properties of matter is the first tool in
engineering principles.

SELF-ASSESSMENT

Multiple-choice Questions
  1.1	 Young’s modulus has units of

(a)  N/m3	
(b)  N/m2

(c)  N-m2	
(d)  N/m

  1.2	 Correct expression for Bulk modulus is P

(a)  PV(DV)

(b) 
P V
V

( )D
(c) PV

V( )D

(d) PV
V

2

( )D
  1.3	 The correct relation between Y and a is 

(a)  Y = a

(b)  Y = a2

(c)  Y =
1

2a

(d)  Y = 
1
a
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44  Engineering Physics

  1.4	 Choose the correct expression,

(a)  K = 
1

3 2( )a b-

(b) K = 
1

3( )a b-

(c)  K = 3

2( )a b-

(d)  K = 3

2

a
b

 1.5	 For a cantilever loaded at the free end, the depression y at the free end is pro-
portional to

(a)  l2	

(b)  l3	

(c)  l	

(d) 
1

2

2Iw

 1.6	 Three wires of a same material are stretched by the same load. The dimensions 
are given below. Which one of them will elongate the most?

(a)	 diameter 1 mm, length 100 cm
(b)	 diameter 2 mm, length 200 cm 

	 (c)	 diameter 0.5 mm, length 50 cm
	 (d)	 diameter 0.7 mm, length 150 cm

 1.7	 A wire of length L and radius r is fixed at one end and a force F is applied to 
the other end produces an extension l. The extension produced in another wire 
of the same material of length 2L and a radius 2r by a force 2F is 
(a)	 l
b) 2l

(c)	 l/2		
(d)	 4l

 1.8	 The extension of a wire by the application of a load is 3 mm. The extension 
in a wire of the same material and length but half  the radius by the same load 
will be 
(a)	 12.0 mm
(b)	 0.75 mm         

(c)	 6.0 mm  
(d)	 1.5 mm 

 1.9	 If  the diameter of the suspension wire is doubled without changing the length 
in case of a torsional pendulum, the time period
(a)	 will increase       
(b)	 will not be affected         

(c)	 will decrease      
(d)	 will double

1.10	 A grandfather clock depends on the period of a pendulum to keep correct 
time. Suppose the clock is calibrated correctly and then a child slides the bob 
of the pendulum downward on the oscillating rod. Does the clock run?
(a)	 slow	
(b)	 fast	

(c)	 correctly		
(d)	 will stop

1.11	 Suppose the above grandfather clock is calibrated correctly at sea level and is 
taken to the top of a very tall mountain. Does the clock now run?
(a)	 slow	
(b)	 fast	

(c)	 correctly		
(d)	 will stop

1.12	 The total kinetic energy in pure rolling without sliding is:

(a)	 1

2

2Iw

(b)	 1

2

2mv

(c)	
1

2

2mv

(d)	 1

2
Iw

1.13	 The moment of inertia does not depend upon  
(a)	 mass of the body				
(b)	 the distribution of the mass of the body
(c)	 the angular velocity of the body  and 	
(d)	 axis of rotation of the body
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1.14	 Without weighing, how will you distinguish between the two identical balls of  
same material but one of solid and the other one being hollow.
(a)	 by rolling them down an inclined plane in air 
(b)	 by determining their moment of inertia about the centre
(c)	 by spinning them by equal torque
(d)	 all of the above

1.15	 One solid sphere and a disc of same radius are falling along an inclined plane 
without slip. One reaches earlier than the other due to: 
(a)	 different radius of gyration			
(b)	 different size
(c)	 different friction
(d)	 different moment of inertia

1.16	 A spiral spring is stretched by a weight attached to it. The strain will be 
(a)	 elastic		
(b)	 bulk		

(c)	 shear 
(d)	 tensile

1.17	 The effect of temperature on the value of modulus of elasticity for various 
substances in general 
(a)	 increases with increase in temperature		
(b)	 remains constant	
(c)	 decreases with rise in temperature			
(d)	 none of the above

Review Questions
  1.1	 Define Young’s modulus and give its unit.
  1.2	 What is compressibility?
  1.3	 Define modulus of rigidity.
  1.4	 What is the unit of Poisson’s ratio?
  1.5	 Derive a relation between y and a.
  1.6	 Derive a relation between K, a and b.
  1.7	 Derive a relation between Y, k and b.
  1.8	 Derive a relation between h, a and b.
  1.9	 Derive a relation between Y, h and k.
1.10	 Derive an expression for internal bending moment of a beam.
1.11	 Define neutral axis.
1.12	 How are the various filaments of a beam affected when the beam is loaded?
1.13	 Mention the factors affecting elasticity of a material.
1.15	 How does temperature and impurity in a material affect the elasticity of 

materials?
1.17	 What are the types of stresses?
1.18	 State Hooke’s law.
1.19	 What are the types of moduli of elasticity?
1.20	 What is uniform bending?
1.23	 Define elastic limit and plastic limit.
1.24	 Define yield point.
1.25	 What is Poisson’s ratio?
1.26	 Define torque.
1.27	 Define shearing strain.
1.28	 What is a stress–strain diagram? Write a short note on it.
1.29	 Explain the factors affecting the elasticity of a material.
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46  Engineering Physics

1.30	 What is meant by bending of beams? Derive the expression for the bending 
moment for rectangular and circular cross-sections.

1.31	 What is a cantilever? Derive the expression for the depression produced due 
to a load hanging at the end of a cantilever beam.

1.32	 Describe how you will find elevation for a beam which is subjected to uniform 
bending.

1.33	 Explain how you will find the Young’s modulus of a material by using the 
non-uniform bending method.

1.34	 Write a short note on I-shaped girders. Mention their uses.

Numerical Problems
 1.1	 A uniform rectangular bar 1 m long, 0.02 m broad, and 0.003 m thick is sup-

ported on two knife edges 0.7 m apart. When the loads of 0.2  Kg are hung 
from the ends, the elevation of the bar above its normal position is found to be 
0.0022 m. Find the Young’s modulus of the material of the bar.

 1.2	 In an experiment, a bar of length 1.5 m is clamped horizontally at one end and a 
load of 0.1 Kg is attached at its free end. Calculate the depression at the loaded 
end if  Y = 9.78 ¥ 1010 N/m2 and the bar is of breadth 0.024 m and thickness is  
0.005 m. 

 1.3	 A uniform rectangular bar 1m long, 2 cm broad and 0.5 cm thick is supported 
on its flat  face symmetrically on two knife edges 70 cm apart. If  loads of  
200 gm are hung from the two ends, the elevation of the centre of the bar is  
48 mm. Find the Young’s modulus of the bar.

 1.4	 A bar, one metre long with a square cross-section, of side 5 mm, is supported 
horizontally at its ends and is loaded at the middle point. It is depressed by 
1.96 mm by a load of 100 gm, calculate the Young’s modulus of the material 
of the bar.	

  1.5	 A cantilever of steel fixed horizontally is subjected to a load of 225 gm at its 
free end. The geometric moment of inertia of the cantilever is 4.5 ¥ 10–11 m4. 
If  the length of the cantilever and Young’s modulus of steel are 1 m and 200 ¥ 
109 Pascal respectively, calculate the depression at the loaded end. 

 1.6	 A circular and a square cantilever are made of same material and have an equal 
area of cross-section and length. Find the ratio of their depression for a given 
load.			

 1.7	 A copper wire of 3 m length and 1mm diameter is subjected to a tension of 5 Kg 
weight. Calculate the elongation produced in the wire if  the Young’s modulus 
of elasticity of copper is 120 GP.			

 1.8	 Determine Young’s modulus of material of a rod, if  it is bent uniformly over 
two knife-edges separated by a distance of 0.6 m and loads of 2.5 Kgs are hung 
at 0.18 m away from the knife edges. The breadth and thickness of the rod is 
0.025 m and 0.005 m respectively. The elevation at the middle of the rod is  
0.007 m.	

  1.9	 Find the amount of work done in twisting a steel wire of radius 1mm and 
length 25 cm through an angle of 45°, the modulus of rigidity of steel being  
8 ¥ 1010 Nm–2.

1.10	 The end of a given strip, cantilever depresses 10 mm under a certain load. 
Calculate the depression under the same load for another cantilever of the 
same material, 2 times its length, 2 times in width, and three times its thickness 
(vertical).			

1.11	 A wire of length l m and diameter 1 mm is clamped at one of its ends. Calculate 
the couple required to twist the other end by 90°. Given that h = 2.8 ¥ 1010 
Nm–2.	 © Oxford University Press. All rights reserved.
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