
Assistant Professor
Department of Computer Science

University of Delhi

Object Oriented
Programming

with C++

REEMA THAREJA

Prelims.indd 1 10/30/2017 1:28:12 PM

© Oxford University Press. All rights reserved.

Oxfo
rd

 U
niversi

ty
 Pre

ss

3
Oxford University Press is a department of the University of Oxford.

It furthers the University’s objective of excellence in research, scholarship,
and education by publishing worldwide. Oxford is a registered trade mark of

Oxford University Press in the UK and in certain other countries.

Published in India by
Oxford University Press

Ground Floor, 2/11, Ansari Road, Daryaganj, New Delhi 110002, India

© Oxford University Press 2015, 2018

The moral rights of the author/s have been asserted.

First Edition published in 2015
Revised First Edition published in 2018

All rights reserved. No part of this publication may be reproduced, stored in
a retrieval system, or transmitted, in any form or by any means, without the

prior permission in writing of Oxford University Press, or as expressly permitted
by law, by licence, or under terms agreed with the appropriate reprographics

rights organization. Enquiries concerning reproduction outside the scope of the
above should be sent to the Rights Department, Oxford University Press, at the

address above.

You must not circulate this work in any other form
and you must impose this same condition on any acquirer.

ISBN-13: 978-0-19-948567-3
ISBN-10: 0-19-948567-4

Typeset in Times New Roman
by Ideal Publishing Solutions, Delhi

Printed in India by Rakmo Press, New Delhi 110020

Cover image: Mmaxer / Shutterstock

Third-party website addresses mentioned in this book are provided
by Oxford University Press in good faith and for information only.

Oxford University Press disclaims any responsibility for the material contained therein.

Prelims.indd 2 10/24/2017 5:01:59 PM

© Oxford University Press. All rights reserved.

Oxfo
rd

 U
niversi

ty
 Pre

ss

Features of

Span of Coverage
The book provides wider span of coverage of topics, starting from basic
concepts of object oriented programming (OOP) including discussion
on Arrays, Functions, Strings, and Pointers, details on all the impor-
tant concepts such as Classes, Inheritance, Operator Overloading, File
Management, and Exception Handling. It also includes separate chapters
on Standard Library Template (STL) and Object Oriented Systems. This
will help readers have a thorough knowledge of the subject.

INTRODUCTION TO C++
C++ is a general purpose programming language developed by Bjarne Stroustrup in 1979 at
Bell Labs. Similar to C programming, C++ is also considered as an intermediate level lan-
guage because it includes the features of both high-level and low-level languages.

C++ is a very popular programming language that can be implemented on a wide variety
of hardware and operating system platforms. It is a powerful language for high-performance
applications, including writing operating systems, system software, application software,
device drivers, embedded software, high-performance client and server applications, soft-
ware engineering, graphics, games, and animation software. C++ is a superset of the C lan-
guage; it supports all features of C language and adds other new features such as classes,
objects, polymorphism, inheritance, data abstraction, encapsulation, single-line comments
using two forward slashes, strong type checking, and so on.

C++ is an object oriented programming (OOP) language and facilitates design, reuse,
and maintenance for complex software. It has an extensive library to enable programmers
to reuse the existing code. Generally, the number of instructions required to perform a task
in C++ is comparatively less than those required to be written in other high-level languages.
The code written in C++ is easy to write, debug, and modify.

2.1 HISTORY OF C++
In 1979, Bjarne Stroustrup, while working for his Ph D thesis, used a language called Simula,
which was specifically designed for simulations. It was the first language to support the
features of OOP. Though the language was very powerful, it was too slow for practical use.
Therefore, Stroustrup started working on ‘C with Classes’, with an aim to integrate OOP
features such as classes, inheritance, inline functions, and default arguments with the C lan-
guage. This new language was easily portable and fast, provided low-level functionality, and
included OOP concepts. In the same period, C front (the first C with classes compiler) was

Basics of C++
Programming

Introduction to C++ • Structure of C++ programs • Files in a
C++ program • Writing C++ programs • Keywords • Identifiers
• Data types • Operators • Type conversion and type casting

CHAPTER 2

Chapter-2.indd 27 10/23/2017 4:35:27 PM

INTRODUCTION
C++ enables programmers to break up a program into segments commonly known as func-
tions. Each function can be written more or less independently of the others. Every function
in the program is supposed to perform a well-defined task. Therefore, the program code of
one function is completely insulated from that of other functions.

Every function interfaces to the outside world in terms of how information is transferred
to it and how results generated by the function are transmitted back from it. This interface is
basically specified by the function name. For example, look at Fig. 4.1 which explains how
the main() calls another function to perform a well-defined task.

In Fig. 4.1, we see that main() calls function named func1(). Therefore, main() is
known as the calling function and func1() is known as the called function. The moment
the compiler encounters a function call, instead of executing the next statement in the
calling function, the control jumps to the statements that are a part of the called function.
After the called function is executed, the control is returned back to the calling program.

Functions

Function declaration, definition, and call • Return statement
Passing parameters • Using default arguments • Returning
reference variables • Functions with variable arguments
• Storage classes • Variable scope • Inline functions • Function
overloading • Recursive functions

main()
{
……………………
……………………
func1();
……………………
………………
return 0;
}

func1()
{
 Statement block;
}

Figure 4.1 main() and func1()

CHAPTER 4

Chapter-4.indd 145 10/23/2017 4:36:39 PM

INTRODUCTION
The object-oriented programming paradigm centres on modelling real world problems. It
makes a clear-cut boundary between data and functions. However, it stores them together in
a single entity known as class.

Classes form the building blocks of the object-oriented programming paradigm. They
simplify the development of large and complex projects and help produce software which is
easy to understand, modular, re-usable, and easily expandable.

Syntactically, classes are similar to structures, as seen in Chapter 8 on Structure, Union,
and Enumerated Data Types. However, the only difference between a structure and a class
is that by default, members of a class are private, while members of a structure are public.
If you can recollect, both data members and member functions of the structure could be
accessed from the main() using the dot operator. This means that both data as well as func-
tions were public that could be used by any function in the program. Although there is no
general rule as when to use a structure and when to use a class, generally, C++ programmers
use structures for holding data and classes to hold data and functions.

9.1 SPECIFYING A CLASS
A class is the basic mechanism to provide data encapsulation. Data encapsulation is an impor-
tant feature of object-oriented programming paradigm. It binds data and member functions in
a single entity in such a way that data can be manipulated only through the functions defined
in that class. When defining a class, we are actually creating a new user-defined data type
which will be treated in the same way as other built-in data types.

The process of specifying a class consists of two steps—class declaration and func-
tion definitions (Fig. 9.1). While class declaration specifies the type and scope of its

Classes and
Objects

Class declaration and definition • Objects • Nested member
functions • Inline member functions • Memory allocation for
objects • Array of objects • Passing and returning objects
• Classes and pointers • Friend functions and classes • Local,
empty, and nested classes

CHAPTER 9

Chapter-9.indd 370 10/23/2017 4:42:25 PM

INTRODUCTION
Reusability is an important feature of object oriented programming (OOP). Reusing an exist-
ing piece of code offers manifold benefits. It not only saves the effort and cost required to
build a software product but also enhances its reliability. Therefore, programmers need not
re-write, re-debug, and re-test the code that has already been tested and being used in existing
software.

To support reusability, C++ supports the concept of reusing existing classes as it allows
programmers to create new classes that reuse prewritten and tested classes. The existing
classes are adapted as per user’s requirements so that the newly formed classes can be incor-
porated in the current software application being developed.

The technique of creating a new class from an existing class is called inheritance. The old
or existing class is called the base class and the new class is known as the derived class or
sub-class. The derived classes are created by first inheriting the data and methods of the base
class and then adding new specialized data and functions in it. During the process of inher-
itance, the base class remains unchanged. The concept of inheritance is, therefore, frequently
used to implement the is-a relationship.

For example, teacher is-a person, student is-a person; while both teacher and student
are a person in the first place, both also have some distinguishing features. Therefore, all the
common traits of teacher and student are specified in the Person class and specialized features
are incorporated in two separate classes of Teacher and Student.

Similarly, a dentist or a surgeon is a doctor and doctor is a person. Fig. 12.1 illustrates the
concept of inheritance which follows a top-down approach to problem solving. In top-down
design approach, generalized classes are designed first and specialized classes are derived by
inheriting or extending generalized classes.

Inheritance
and Run-Time
Polymorphism

Defining derived classes • Access specifiers • Types of
inheritance • Ambiguities • Constructors • Virtual base
classes • Abstract classes • Pure virtual functions • Object
slicing • Run-time polymorphism • Virtual constructors and
virtual destructors

CHAPTER 12

Chapter-12.indd 529 10/23/2017 4:48:08 PM

INTRODUCTION
The programs that we write may behave abnormally or unexpectedly because of some errors
and/or exceptions as shown in Fig. 15.1. The two common types of errors that we often
encounter are syntax errors and logic errors. While logic errors occur due to poor understand-
ing of problem and its solution, syntax errors, on the other hand, arise due to poor under-
standing of the language. However, such errors can be detected by exhaustive and debugging
and testing procedures.

However, many times, we come across some peculiar problems which are often catego-
rized as exceptions. Exceptions are run-time anomalies or unusual conditions such as divide
by zero, accessing arrays out of its bounds, running out of memory or disk space, overflow,
and underflow that a program may encounter during execution. Like errors, exceptions can
also be categorized as synchronous or asynchronous exceptions. While synchronous excep-
tions—divide by zero, array index out of bound, etc. can be controlled by the program,

CHAPTER 15
Exception
Handling

• Try catch block • Multiple catch statements • Catch all
exceptions • Stack unwinding • Re-throwing exceptions
• Standard exceptions • Exceptions in operator overloaded
functions • Exceptions in constructors and destructors
• Handling uncaught exceptions

Figure 15.1 Errors and exceptions

Abnormal or

unexpected

behaviour of

program

Errors

Exceptions

Logical errors

Syntactic errors

Synchronous

Asynchronous

Chapter-15.indd 672 10/23/2017 4:51:09 PM

INTRODUCTION
The standard template library (STL) is a collection of classes that provide templated
containers, algorithms, and iterators (Fig. 16.1). It contains common classes or algo-
rithms so that programmers can use them without having to write and debug the classes.
The STL components, which are now a part of C++ library, are defined in the namespace
std. Therefore, all programs that make use of STL components must have the directive
using namespace std;

STL and New
Features in C++

Containers • Algorithms • Iterators • String class
• Boolean data type • Explicit and mutable • RTTI operators
• Namespaces

Figure 16.1 Classes in STL

Components of STL

Containers Algorithms Iterators

16.1 CONTAINERS
Containers are objects that

• store data
• define the manner in which data will be stored
• are implemented using templates, and can, therefore, store data of different data

types

There are three types of containers as shown in Table 16.1. Each container class defines func-
tions to manipulate the data. For example, for manipulating the contents of a vector, the class
must have functions to insert, delete, sort, and swap elements.

CHAPTER 16

Chapter-16.indd 713 10/23/2017 4:51:44 PM

Approach
The book adopts bottom-up and example-based approach for explain-
ing concepts. It first introduces the concept using simple language,
examples and illustrations, and then delves into its intricacies and
implementation aspects. This makes the text easier to comprehend for
the readers.

13Inheritance and Run-Time Polymorphism

 Explanation : In the program, class Result has been derived from Student in pro-
tected mode. Therefore, Result can use all protected as well as public members of
 Student . The private members are being used only through public member function
 total() .

 12.6 MULTI-LEVEL INHERITANCE

 The technique of deriving a class from an already derived class is called multi-level inher-
itance. In Figure 12.6, base class acts as the base for derived class 1 , which in turn, acts

 }
 void get_data();
 int total();
 void display()
 { show_rno();
 cout<<"\n COURSE : "<<course;
 cout<<"\n TOTAL MARKS : "<<total();
 }
};
int Result :: total()
{ int tot_marks = 0;
 for(int i=0;i<3;i++)
 tot_marks += marks[i];
 return tot_marks;
}
main()
{ int rno, m1, m2, m3;
 char course[10];
 cout<<"\n ENter the roll number : ";
 cin>>rno;
 cout<<"\n Enter the course : ";
 cin.ignore();
 cin.getline(course, 10);;
 cout<<"\n ENter marks in three subjects : ";
 cin>>m1>>m2>>m3;
 Result R(rno, course, m1, m2, m3);
 R.display();
}

 OUTPUT
 Enter the roll number :1
 ENter the course :BTECH
 ENter marks in three subjects :97 98 99
 COURSE :BTECH
 ROLL NO :1
 TOTAL MARKS :294

14 Object Oriented Programming with C++

as a base for derived class 2 . Therefore, derived class 1 is known as the
intermediate base class as this class provides a link for inheritance between the
 base class and the derived class 2 . The chain of classes from base class
->derived class 1 ->derived class 2 is known as the inheritance path. In
multi-level inheritance, the number of levels can go up to any number based on
the requirement. Consider the same program with multi-level inheritance.

AQ4

Base class

Derived class 1

Derived class 2

 Figure 12.6 Multi-
level inheritance

 #include<iostream.h>
#include<string.h>
class Student
{ protected:
 int roll_no;
 char name[20];
 char course[10];
 public:
 void get_data()
 { cout<<"\n Enter roll number : ";
 cin>>roll_no;
 cout<<"\n Enter name : ";
 cin.ignore();
 cin.getline(name, 20);
 cout<<"\n Enter course : ";
 cin.getline(course, 10);
 }
 int get_rno()
 { return roll_no;
 }
 char * get_name()
 { return name;
 }
 char * get_course()
 { return course;
 }
};
class Marks : public Student
{ protected:
 int marks[3];
 public:
 void get_marks()
 { cout<<"\n Enter marks in three subjects : ";
 cin>>marks[0]>>marks[1]>>marks[2];
 }
 int total()
 { return (marks[0] + marks[1] + marks[2]);
 }
};

 Example 12.4 Multi-level inheritance

540 Object Oriented Programming with C++

Explanation: In the program, class Result has been derived from Student in protected mode.
Therefore, Result can use all protected as well as public members of Student. The private members
are being used only through public member function total().

12.6 MULTI-LEVEL INHERITANCE
The technique of deriving a class from an already derived class is called multi-level
inheritance. In Fig. 12.6, base class acts as the base for derived class 1, which
in turn, acts as a base for derived class 2. Therefore, derived class 1 is known
as the intermediate base class as this class provides a link for inheritance between
the base class and the derived class 2. The chain of classes from base class
->derived class 1 ->derived class 2 is known as the inheritance path. In multi-
level inheritance, the number of levels can go up to any number based on the require-
ment. Consider the same program with multi-level inheritance.

Enter the course :BTECH
Enter marks in three subjects :97 98 99
COURSE :BTECH
ROLL NO :1
TOTAL MARKS :294

Base class

Derived class 1

Derived class 2

Figure 12.6 Multi-
level inheritance

using namespace std;
#include<iostream>
#include<string.h>
class Student
{ protected:
 int roll_no;
 char name[20];
 char course[10];
 public:
 void get_data()
 { cout<<"\n Enter roll number : ";
 cin>>roll_no;
 cout<<"\n Enter name : ";
 cin.ignore();
 cin.getline(name, 20);
 cout<<"\n Enter course : ";
 cin.getline(course, 10);
 }
 int get_rno()
 { return roll_no;
 }
 char * get_name()
 { return name;
 }
 char * get_course()
 { return course;
 }
};
class Marks : public Student
{ protected:
 int marks[3];

Example 12.4 Multi-level inheritance

OOPC++.indb 540 8/9/2017 11:40:35 AM

Programming Examples and Case
Studies
Plenty of programming examples (close to 520) along with
their outputs and descriptions are provided in support of text.
These examples are arranged in a simple-to-complex format.
Case-studies illustrating the applications of concepts studied
in different scenarios are also included in the book. These
will help readers understand the concept, logic, and syntax
used while developing a program, thereby transforming
them into efficient programmers.

Object Oriented Programming with C++690

 Complex &operator+=(Complex &C)
 { if(real == 0 &&C.real == 0)
 throw Error();
 else
 { real += C.real;
 imag += C.imag;
 return *this;
 }
 }
};
int main()
{ Complex C1(0,2), C2(0,4);
 try
 {
 C1+=C2;
 C1.display();
 }
 catch(Complex :: Error)
 { cout<<"\n Add Zero Exception";
 }
cout<<"\n Exiting MAIN()";
}

OUTPUT
Add Zero Exception
Exiting MAIN()

15.4 EXCEPTIONS AND INHERITANCE
In this chapter, we have seen that C++ allows programmers to throw classes as exceptions. Since a
class can be inherited from another class, let us consider what happens when the inherited classes
are used as exceptions. In such a situation, exception handlers will not only match classes of a
specific type but will also match classes derived from that specific type. Consider the following
program.

using namespace std;
#include<iostream>
class Base {};
class Derived: public Base
{};
int main()
{ try
 { throw Derived();
 }
 catch (Base B)
 {
 cout<<"\n Base Class Exception Caught";
 }

Example 15.10 Program using exceptions and inheritance

OOPC++.indb 690 8/9/2017 11:40:51 AM

This case study shows the implementation of concepts
discussed in Chapter 6 on Strings.

C3.1 JOSEPHUS PROBLEM
In Josephus problem, n people stand in a circle waiting to
be executed. The counting starts at some point in the circle
and proceeds in a specific direction around the circle. In
each step, a certain number of people are skipped and the
next person is executed or eliminated. The elimination of
people makes the circle smaller and smaller. In the last
step, only one person remains and is declared the ‘winner.’

Therefore, if there are n number of people and a
number k which indicates that k - 1 people are skipped
and the kth person in the circle is eliminated, then the
problem is to choose a position in the initial circle so
that the given person becomes the winner.

Example
If there are five (n) people and every second (k) person
is eliminated, then first the person at position two is
eliminated followed by the person at position four, fol-
lowed by person at position one, and finally, the person
at position five is eliminated. Therefore, the person at
position three becomes the winner (refer to Fig. C3.1).

Try the same process with n = 7 and k = 3. You will
find that person at position four is the winner. The elim-
ination goes in the sequence of 3, 6, 2, 7, 5, and 1.

Case Study 3

1
5 2

4 3

1
5 2

4 3

1
5 2

4 3

1
5 2

4 3

1
5 2

4 3

Figure C3.1 Josephus problem

using namespace std;
#include<iostream>
struct node
{
 int player_id;
 struct node *next;
};
struct node *start, *ptr, *new_node;

Program C3.1 Given here is a code of Josephus
problem that finds solution using a circular linked list.

int main()
{
 int n, k, i, count;
 cout<<"\n Enter the number of players : ";
 cin>>n;
 cout<<"\n Enter the value of k
(every kth player gets eliminated): ";
 cin>>k;

 // Create circular linked list
containing all the players
 start = new node;

 start->player_id = 1;
 ptr = start;

 for(i = 2; i<= n; i++)
 {
 new_node = new node;
 ptr->next = new_node;
 new_node->player_id = i;
 new_node->next=start;
 ptr=new_node;
 }

 for(count = n; count > 1; count--)
 {
 for(i = 0; i< k - 1; ++i)
 ptr = ptr->next;

 ptr->next = ptr->next->next;
// Remove the eliminated player from the
circular linked list.
 }

 cout<<"\n The WINNER is Player
"<<ptr->player_id;

 return 0;
}

OUTPUT
Enter the number of players : 5
Enter the value of k (every kth
player gets eliminated): 2
The WINNER is Player 3

OOPC++.indb 369 8/9/2017 11:40:18 AM

88 Object Oriented Programming with C++

Test
expression

Statement block 1 Statement block 2

True

Statement x

False

if(test expression)
{

{

statement block 1;

statement block 2;
}

}

Statement x;

else

Syntax of if-else statement

Figure 3.3 If-else statement construct

Programming
Tip: Align
the matching
if-else clause
vertically.

In the syntax given here, we have written a statement block. A statement block may
include one or more statements. According to the if-else construct, first, the test expres-
sion is evaluated. If the expression is true, statement block 1 is executed and statement
block 2 is skipped. If the expression is false, statement block 2 is executed and state-
ment block 1 is ignored. Now, in any case after the statement block 1 or 2 gets executed,
the control will pass to statement x. Therefore, statement x is executed in every case.

Program 3.3 Write a program to find the larger number between two numbers.

using namespace std;
#include<iostream>
main()
{ int a, b, large;
 cout<<"\n Enter the value of a and b : ";
 cin>>a>>b;
 if(a>b)
 large = a;
 else
 large = b;
 cout<<"\n LARGE = "<<large;
}

OUTPUT
Enter the value of a and b : 12 32
LARGE = 32

Program 3.4 Write a program to find whether the given number is even or odd.

using namespace std;
#include<iostream>
main()
{ int num;
 cout<<"\n Enter any number : ";
 cin>>num;
 if(num%2 == 0)
 cout<<"\n"<<num<<" is an even number";
 else

OOPC++.indb 88 8/9/2017 11:39:49 AM

Prelims.indd 4 10/24/2017 5:02:01 PM

© Oxford University Press. All rights reserved.

Oxfo
rd

 U
niversi

ty
 Pre

ss

the Book

Notes and Programming Tips
Every chapter includes ‘notes’ mentioning the important
concepts to remember and ‘programming tips’ stating the
do’s and don’ts while developing a program. This will help
readers keep the critical points in mind and create error-free
programs.

435Constructors and Destructors

Explanation : If you compile this program, you will get an error. In the program, there are two
constructors: one is the default constructor and the second is with both default arguments. When
this program is compiled, the compiler gets confused which one of the two constructors to call
as both of them satisfy the condition to be called during creation of object S1 . Hence, an error
will be shown. The moment you remove any one of the constructor the program will compile
successfully.

 Note A constructor that has all default arguments is similar to a default (no – argument) constructor.

 10.4 CONSTRUCTOR OVERLOADING
 Like normal functions, constructors can also be overloaded. When a class has multiple
constructors, they are called overloaded constructors. Some important features of over-
loaded constructors are as follows:

 • They have the same name; the names of all the constructors is the name of the class.
 • Overloaded constructors differ in their signature with respect to the number and

sequence of arguments passed.

 When an object of the class is created, the speci c constructor is called. Consider the
program code given here which uses the concept of overloaded constructors.

Programming
Tip:You can call
a constructor
from main()
since a
constructor is
like a member
function
declared in the
public section.

 #include<iostream.h>
#include<string.h>
class Person
{ private:
 int age;
 char  rst_name[10];
 char middle_name[10];

 Example 10.8 Multiple constructors in a program

 { roll_no = 0;
 marks = 0;
 }
 Student(int r = 0, int m = 0) // constructor 2
 { roll_no = r;
 marks = m;
 }
 voidshow_data()
 { cout<<"\n ROLL NO. = "<<roll_no;
 cout<<"\t MARKS = "<<marks;
 }

};
main()
{ Student S1; // which constructor to call? ERROR
 S1.show_data();
 Student S2(03);
 S2.show_data();
 Student S3(05, 98);
 S3.show_data();
}

Prograamming
Tip: C+++
allows uusers to
place deefault
argumennts in
the definition of
a constrructor
rather tthan in
the decllaration.

Glossary and Points to remember
A point-wise summary and glossary of terms are provided at the end
of each chapter to help readers quickly recollect and memorize the
important concepts explained in that chapter.

24 Object Oriented Programming with C++

 Points to Remember
 • If a procedure is formally de ned, it must be

implemented using some formal language, and
such a language is often known as a programming
language.

 • Programming languages are used to create pro-
grams that control the behaviour of a system, to
express algorithms, or used as a mode of human
communication.

 • Machine language was used to program the  rst
stored-program computer systems. This is the lowest
level of programming language.

 • Assembly languages are symbolic programming
languages that use symbolic notation to represent
machine-language instructions.

 • 5GLs are centred on solving problems using con-
straints given to the program.

 • Object oriented programming (OOP) emphasizes on
classes and objects.

 • Programs written using monolithic programming
languages such as assembly language and BASIC
consist of global data and sequential code.

 • In procedural languages, a program is divided into n
number of subroutines that access global data.

 • Structured programming employs a top-down
approach in which the overall program structure is
broken down into separate modules.

 • OOP treats data as a critical element in the program
development and restricts its  ow freely around the
system.

 • A class provides a template or a blueprint that
describes the structure and behaviour of a set of sim-
ilar objects.

 Glossary
 Assembler System software that translates a code writ-
ten in assembly language into machine language

 Compiler A special type of program that transforms
source code written in a third programming language
into machine language

 Data abstraction Creating a new data type using
encapsulated items that is well suited for an application

 Data encapsulation It is also called data hiding, and
is the technique of packing data and functions into a
single component (class) to hide implementation details
of a class from users

 Functional abstraction A technique that allows a pro-
grammer to concentrate on what a function (or module)
does and not on how it does.

 Inheritance A concept of object oriented programming
in which a new class is created from an existing class

 Linker A program that combines object modules to form
an executable program

 Loader A program that copies programs from a storage
device to main memory, where they can be executed

 Method Function associated with a class

 Multiple inheritance A technique that allows a sub
class to inherit properties and methods from multiple
parent classes

 Object An instance of a class

 Polymorphism A concept that enables programmers to
assign a different meaning or usage to a variable, func-
tion, or an object in different contexts

 Programming language A language speci cally
designed to express computations that can be performed
the computer

 Programming paradigm A fundamental style of pro-
gramming that de nes how the structure and basic ele-
ments of a computer program will be built

 Repetition A technique that allows a selected statement
to remain active until the program reaches a point where
there is a need for some other action to take place.

 Sequential code Code in which all the instructions are
executed in the speci ed sequence one by one

 Selection A technique that allows for choosing any one
of a number of statements to execute, based on the cur-
rent status of the program

Turbo C++ Turbo C++ is a utility tool that helps programmers to code their C++ programs easily and
effectively. Although Turbo C++ lacks some of the advanced features but it includes all features that
any user might need to execute their programs. On the positive side, it is a free software which is sim-
ple to use and has an intuitive interface. However, on the downside it has very few advanced features.

Test Your Skills
The book contains numerous (close to 1880)
questions and a variety of chapter-end exer-
cises including objective-type questions (fill
in the blanks, true/false, and multiple choice
questions) with answers, review questions,
programming exercises, and find the output
and error questions. These are provided to test
readers’ knowledge of the concepts, improve
their programming skills as also help them
practice and prepare for their examinations.

63Basics of C++ Programming

 8. Which of the following is not a  oating-point
constant?
 (a) 20 (b) −4.5
 (c) ‘a’ (d) “1”
 (e) pi

 9. Identify the invalid variable names.
 (a) Initial.Name (b) A+B
 (c) $amt (d) Floats
 (e) 1 st _row

 10. Which operator cannot be used with  oat
operands?
 (a) + (b) −
 (c) % (d) ∗
 (e) /

 11. Identify the erroneous expression.
 (a) x = y = 2, 4; (b) res = ++a ∗ 5;
 (c) res = /4; (e) res = a++ −b ∗2

 Review Questions
 1. What are header  les? Why are they impor-

tant? Can we write a C++ program without
using any header  le?

 2. What are variables?
 3. Explain the difference between declaration

and de nition.
 4. How memory is reserved using a declaration

statement?
 5. What does the data type of a variable signify?
 6. Give the structure of a C++ program.
 7. What do you understand by identi ers and

keywords?
 8. Write a short note on basic data types that the

C++ language supports.
 9. Why do we need signed and unsigned

char?
 10. Explain the terms ‘variables’ and ‘constants’?

How many types of variables are supported
by C++?

 11. Why do we include <iostream.h> in our
programs?

 12. Write a short note on operators available in
C++ language.

 13. Give the operator precedence chart.
 14. Evaluate the expression: (x > y) + ++a || !c

 15. Differentiate between type casting and type
conversion

 16. Write a program to read an integer. Display
the value of that integer in decimal, octal and
hexadecimal notation

 17. How can we get formatted output in C++
programs?

 18. Explain the utility of #de ne and #include
statements.

 Programming Exercises
 1. Write a program that prints the a  oating

point value in exponential format with the
following speci cations:
 (a) correct to two decimal places;
 (b) correct to four decimal places; and
 (c) correct to eight decimal places.

 2. Write a program to read 10 integers. Display
these numbers by printing three numbers in a
line separated by commas.

 3. Write a program to print the count of even
numbers between 1-200 and print their sum.

 4. Write a program to count number of vowels
in a text.

 5. Write a program to read the address of a user.
Display the result by breaking it in multiple
lines.

 6. Write a program to read two  oating point
numbers. Add these numbers and assign the
result to an integer. Finally display the value
of all the three variables.

 7. Write a program to read a  oating point num-
ber. Display the rightmost digit of the integral
part of the number.

 8. Write a program to calculate simple interest
and compound interest.

 9. Write a program to calculate salary of an
employee given his basic pay (to be entered
by the user), HRA = 10 per cent of basic pay,
TA =  ve per cent of basic pay. De ne HRA
and TA as constants and use them to calculate
the salary of the employee.

 10. Write a program to prepare a grocery bill. For
that enter the name of the items purchased,
quantity in which it is purchased and its price

26 Object Oriented Programming with C++

 • OOP treats data as a critical element in the pro-
gram development and restricts its  ow freely
around the system.

 • A class provides a template or a blueprint that
describes the structure and behaviour of a set of
similar objects.

 Glossary

 Assembler System software that translates a
code written in assembly language into machine
language

 Compiler A special type of program that trans-
forms source code written in a third programming
language into machine language

 Data abstraction Creating a new data type using
encapsulated items that is well suited for an
application

 Data encapsulation It is also called data hiding,
and is the technique of packing data and functions
into a single component (class) to hide implemen-
tation details of a class from users

 Functional abstraction A technique that allows a
programmer to concentrate on what a function (or
module) does and not on how it does.

 Inheritance A concept of object oriented pro-
gramming in which a new class is created from an
existing class

 Linker A program that combines object modules
to form an executable program

 Loader A program that copies programs from a
storage device to main memory, where they can
be executed

 Method Function associated with a class

 Multiple inheritance A technique that allows a
sub class to inherit properties and methods from
multiple parent classes

 Object An instance of a class

 Polymorphism A concept that enables program-
mers to assign a different meaning or usage to a
variable, function, or an object in different contexts

 Programming language A language speci cally
designed to express computations that can be per-
formed the computer

 Programming paradigm A fundamental style of
programming that de nes how the structure and
basic elements of a computer program will be built

 Repetition A technique that allows a selected
statement to remain active until the program
reaches a point where there is a need for some
other action to take place.

 Sequential code Code in which all the instructions
are executed in the speci ed sequence one by one

 Selection A technique that allows for choosing any
one of a number of statements to execute, based on
the current status of the program

 Exercises

 Fill in the Blanks
 1. Programming languages have a vocabulary

of ______ and _____ for instructing a com-
puter to perform speci c tasks.

 2. Assembly language uses _____ to write
programs.

 3. An assembly language statement consists of a
_____, _____, and ____.

 4. ______ are used to identify and reference
instructions in the program.

 5. The output of an assembler is a _____  le.
 6. A typical example of a 4GL is the ______.

AQ8

27Introduction to Object Oriented Programming

 7. Examples of a 5GL include ______, _____,
and ____.

 8. _____ de nes the structure of a program.
 9. _____ programming emphasizes on classes

and objects.
 10. Logic-oriented programming focus on _____

expressed in ______.
 11. Two examples of languages that support

monolithic programming paradigm are ____
and _____.

 12. ____ and ____ statements are used to change
the sequence of execution of instructions.

 13. FORTRAN and COBOL are two popular
______ programming languages.

 14. Functional abstraction was  rst supported by
_______ programming.

 15. An object contains ____ and ______.
 16. ______ paradigm supports bottom-up

approach of problem solving.
 17. _____ provides a template that describes the

structure and behaviour of an object.
 18. While _____ is a logical structure, ____ is a

physical actuality.
 19. State de nes the _______.
 20. The data that is transferred with the message

is called _____.
 21. A message consists of _____, _____, and

_______.
 22. Inheritance relation is also called as ______

relation.
 23. _____ is related to classes and their hierarchy.
 24. Polymorphism is related to _______.
 25. Any data or function with access level ______

can be accessed by any function belonging to
any class.

 State True or False
 1. A programming language provides a blue-

print to write a program to solve a particular
problem.

 2. Machine language is the lowest level of
language.

 3. Code written in machine language is not
portable.

 4. Compiler not only translates the code into
machine language but also executes it.

 5. An interpreted program executes faster than a
compiled program.

 6. Nonprocedural code that illustrates the ‘how’
aspect of the task is a feature of 3GL.

 7. Constraint-based programming is used for
hypothesis derivation.

 8. In monolithic paradigm, global data can be
accessed and modi ed from any part of the
program.

 9. Monolithic program has two modules.
 10. Monolithic programs are easy to debug and

maintain.
 11. Structured programming is based on

modularization.
 12. Object oriented programming supports

modularization.
 13. Structured programming heavily used Go to

statements.
 14. Modules enhance the programmer’s

productivity.
 15. A structured program takes more time to be

written than other programs.
 16. The interface speci es how to send a message

to the object.
 17. OOP does not support modularization.
 18. A class is a user-de ned data type.
 19. Once a class is declared, a programmer can

create maximum 10 objects of that class.
 20. Polymorphism means several different forms.
 21. Any data or function with access level private

can be accesses only by that class or by any
class that is inherited from it.

 22. OOP helps to develop secure programs.
 23. It is dif cult to manage software complexity

in object oriented programs.
 24. Programs written using object oriented lan-

guages have greater processing overhead.

 Multiple Choice Questions
 1. Which language is good for processing

numerical data?
 (a) C (b) C++
 (c) FORTRAN (d) Java

AQ9

27Introduction to Object Oriented Programming

 7. Examples of a 5GL include ______, _____,
and ____.

 8. _____ de nes the structure of a program.
 9. _____ programming emphasizes on classes

and objects.
 10. Logic-oriented programming focus on _____

expressed in ______.
 11. Two examples of languages that support

monolithic programming paradigm are ____
and _____.

 12. ____ and ____ statements are used to change
the sequence of execution of instructions.

 13. FORTRAN and COBOL are two popular
______ programming languages.

 14. Functional abstraction was  rst supported by
_______ programming.

 15. An object contains ____ and ______.
 16. ______ paradigm supports bottom-up

approach of problem solving.
 17. _____ provides a template that describes the

structure and behaviour of an object.
 18. While _____ is a logical structure, ____ is a

physical actuality.
 19. State de nes the _______.
 20. The data that is transferred with the message

is called _____.
 21. A message consists of _____, _____, and

_______.
 22. Inheritance relation is also called as ______

relation.
 23. _____ is related to classes and their hierarchy.
 24. Polymorphism is related to _______.
 25. Any data or function with access level ______

can be accessed by any function belonging to
any class.

 State True or False
 1. A programming language provides a blue-

print to write a program to solve a particular
problem.

 2. Machine language is the lowest level of
language.

 3. Code written in machine language is not
portable.

 4. Compiler not only translates the code into
machine language but also executes it.

 5. An interpreted program executes faster than a
compiled program.

 6. Nonprocedural code that illustrates the ‘how’
aspect of the task is a feature of 3GL.

 7. Constraint-based programming is used for
hypothesis derivation.

 8. In monolithic paradigm, global data can be
accessed and modi ed from any part of the
program.

 9. Monolithic program has two modules.
 10. Monolithic programs are easy to debug and

maintain.
 11. Structured programming is based on

modularization.
 12. Object oriented programming supports

modularization.
 13. Structured programming heavily used Go to

statements.
 14. Modules enhance the programmer’s

productivity.
 15. A structured program takes more time to be

written than other programs.
 16. The interface speci es how to send a message

to the object.
 17. OOP does not support modularization.
 18. A class is a user-de ned data type.
 19. Once a class is declared, a programmer can

create maximum 10 objects of that class.
 20. Polymorphism means several different forms.
 21. Any data or function with access level private

can be accesses only by that class or by any
class that is inherited from it.

 22. OOP helps to develop secure programs.
 23. It is dif cult to manage software complexity

in object oriented programs.
 24. Programs written using object oriented lan-

guages have greater processing overhead.

 Multiple Choice Questions
 1. Which language is good for processing

numerical data?
 (a) C (b) C++
 (c) FORTRAN (d) Java

AQ9

28 Object Oriented Programming with C++

 2. Which is the fastest and the most ef cient
language?
 (a) Machine level
 (b) Assembly
 (c) High level
 (d) Arti cial intelligence

 3. FORTRAN, COBOL, and Pascal are exam-
ples of which generation language?
 (a) First (b) Second
 (c) Third (d) Fourth

 4. In which generation language does the code
comprise instructions written in English-like
sentences?
 (a) First (b) Second
 (c) Third (d) Fourth

 5. Which feature is affected by programming
paradigm?
 (a) Style of programming
 (b) Capabilities
 (c) Limitations
 (d) All of these

 6. Which programming paradigm utilizes invar-
iant relationships to solve a problem?
 (a) Rule-based
 (b) Constraint-based
 (c) Structured
 (d) Object oriented

 7. Which is the preferred paradigm for design-
ing a knowledge base?
 (a) Rule-based
 (b) Constraint-based
 (c) Structured
 (d) Object oriented

 8. Which type of programming does not support
sub routines?
 (a) Monolithic (b) Structured
 (c) Rule-based (d) Object oriented

 9. C and Pascal belong to which type of pro-
gramming language?
 (a) Monolithic (b) Structured
 (c) Logic-oriented (d) Objecto riented

 10. Which paradigm holds data as a priority?
 (a) Monolithic (b) Structured
 (c) Logic-oriented (d) Object oriented

 11. Two objects can communicate with each
other through ____
 (a) Classes (b) Objects
 (c) Methods (d) Messages

 12. Which concept enables programmers to
assign a different meaning or usage to a
variable, function, or an object in different
contexts?
 (a) Inheritance
 (b) Message passing
 (c) Polymorphism
 (d) Abstraction

 13. Which access level allows data and functions
to be accessed only by the class in which it is
declared?
 (a) Public (b) Private
 (c) Protected (d) None of these

 14. In which of these applications is OOP
applied?
 (a) CAD (b) CAM
 (c) Compiler design (d) All of these

 Review Questions
 1. What is a programming language?
 2. Write a short note on generation of program-

ming languages.
 3. Differentiate between a compiler and an

interpreter.
 4. Differentiate between syntax errors and logic

errors.
 5. What do you understand by the term ‘pro-

gramming paradigm’?
 6. Discuss any three programming paradigms in

detail.
 7. How is structured programming better than

monolithic programming?
 8. Describe the special characteristics of mono-

lithic programming
 9. Explain how functional abstraction is

achieved in structured programming.
 10. Which programming paradigm is data-based

and why?
 11. Explain the concepts of OOP.
 12. Differentiate between a class and an object

AQ10

135Decision Control and Looping Statements

 for (i = 1;;i++)
 sum += i;
 • int i = 10;
 while(i --> 0)
 cout<<i;
 • int i;
 for (i = 10;i > 5;i- = 2)
 cout<<i;
 • int i;
 for (i = 10;i > 5;)
 cout<<i;

 Find the errors in the following codes

 1. #include<iostream.h>
 main()
 { int i = 1;
 while(i <= 10)
 { i = 1;
 cout<<i;
 i++;
 }
 }
 2. #include<iostream.h>
 main()
 { int i;
 for(i = 0,i <= 10;i++)
 cout<<i;
 }
 3. #include<iostream.h>
 main()
 { int i = 1;
 do
 { cout<<i;
 i++;
 }while(i = 10)
 }
 4. #include<iostream.h>
 main()
 { int i,j;
 for(i = 1,j = 0;i + j <= 10;i++)
 cout<<i;
 j += 2;
 }

 Find the output in the following codes

 1. #include<iostream.h>
 main()
 { int a = 2, b = 3, c = 4;
 if(c!= 100)
 a = 10;

 else
 b = 10;
 if(a + b > 10)
 c = 12;
 a = 20;
 b = ++c;
 cout<<"\n a = "<<a<<" \t b = "<<b<< "

\t c = "<<c;
 }
 2. #include<iostream.h>
 main()
 { int a = 2, b = 3, c = 4;
 if(b == 2)
 a = 10;
 else
 c = 10;
 cout<<"\n a = "<<a<< " \t b = "<<b<<"

\t c = "<<c;
 }
 3. #include<iostream.h>
 main()
 { int a = 2, b = 3, c = 4;
 if(a&&b)
 c = 10;
 else
 c = 20;
 cout<<"\n a = "<<a<<" \t b = "<<b<<"

\t c = "<<c;
 }
 4. #include<iostream.h>
 main()
 { int a = 2, b = 3, c = 4;
 if(a || B || c)
 c = 10;
 else
 c = 20;
 cout<<"\n a = "<<a<<" \t b = "<<b<< "

\t c = "<<c;
 }
 5. #include<iostream.h>
 main()
 { int a = 2, b = 3, c = 4;
 if(a)
 if(b)
 c = 10;
 else
 c = 20;
 cout<<"\n a = "<<a<< " \t b = "<<b<<"

\t c = "<<c;
 }
 6. #include<iostream.h>
 main()

135Decision Control and Looping Statements

 for (i = 1;;i++)
 sum += i;
 • int i = 10;
 while(i --> 0)
 cout<<i;
 • int i;
 for (i = 10;i > 5;i- = 2)
 cout<<i;
 • int i;
 for (i = 10;i > 5;)
 cout<<i;

 Find the errors in the following codes

 1. #include<iostream.h>
 main()
 { int i = 1;
 while(i <= 10)
 { i = 1;
 cout<<i;
 i++;
 }
 }
 2. #include<iostream.h>
 main()
 { int i;
 for(i = 0,i <= 10;i++)
 cout<<i;
 }
 3. #include<iostream.h>
 main()
 { int i = 1;
 do
 { cout<<i;
 i++;
 }while(i = 10)
 }
 4. #include<iostream.h>
 main()
 { int i,j;
 for(i = 1,j = 0;i + j <= 10;i++)
 cout<<i;
 j += 2;
 }

 Find the output of the following codes

 1. #include<iostream.h>
 main()
 { int a = 2, b = 3, c = 4;
 if(c!= 100)
 a = 10;

 else
 b = 10;
 if(a + b > 10)
 c = 12;
 a = 20;
 b = ++c;
 cout<<"\n a = "<<a<<" \t b = "<<b<< "

\t c = "<<c;
 }
 2. #include<iostream.h>
 main()
 { int a = 2, b = 3, c = 4;
 if(b == 2)
 a = 10;
 else
 c = 10;
 cout<<"\n a = "<<a<< " \t b = "<<b<<"

\t c = "<<c;
 }
 3. #include<iostream.h>
 main()
 { int a = 2, b = 3, c = 4;
 if(a&&b)
 c = 10;
 else
 c = 20;
 cout<<"\n a = "<<a<<" \t b = "<<b<<"

\t c = "<<c;
 }
 4. #include<iostream.h>
 main()
 { int a = 2, b = 3, c = 4;
 if(a || B || c)
 c = 10;
 else
 c = 20;
 cout<<"\n a = "<<a<<" \t b = "<<b<< "

\t c = "<<c;
 }
 5. #include<iostream.h>
 main()
 { int a = 2, b = 3, c = 4;
 if(a)
 if(b)
 c = 10;
 else
 c = 20;
 cout<<"\n a = "<<a<< " \t b = "<<b<<"

\t c = "<<c;
 }
 6. #include<iostream.h>
 main()

Annexures and Appendices
The annexures linked to various chapters of the book details
some of the important concepts discussed in that particular chap-
ter to further enhance the knowledge of the readers. Appendices
on library functions and interview questions will help readers
get better understanding and hands-on knowledge of the C++
concepts.

24 Object Oriented Programming with C++

 Points to Remember
 • If a procedure is formally de ned, it must be

implemented using some formal language, and
such a language is often known as a programming
language.

 • Programming languages are used to create pro-
grams that control the behaviour of a system, to
express algorithms, or used as a mode of human
communication.

 • Machine language was used to program the  rst
stored-program computer systems. This is the lowest
level of programming language.

 • Assembly languages are symbolic programming
languages that use symbolic notation to represent
machine-language instructions.

 • 5GLs are centred on solving problems using con-
straints given to the program.

 • Object oriented programming (OOP) emphasizes on
classes and objects.

 • Programs written using monolithic programming
languages such as assembly language and BASIC
consist of global data and sequential code.

 • In procedural languages, a program is divided into n
number of subroutines that access global data.

 • Structured programming employs a top-down
approach in which the overall program structure is
broken down into separate modules.

 • OOP treats data as a critical element in the program
development and restricts its  ow freely around the
system.

 • A class provides a template or a blueprint that
describes the structure and behaviour of a set of sim-
ilar objects.

 Glossary
 Assembler System software that translates a code writ-
ten in assembly language into machine language

 Compiler A special type of program that transforms
source code written in a third programming language
into machine language

 Data abstraction Creating a new data type using
encapsulated items that is well suited for an application

 Data encapsulation It is also called data hiding, and
is the technique of packing data and functions into a
single component (class) to hide implementation details
of a class from users

 Functional abstraction A technique that allows a pro-
grammer to concentrate on what a function (or module)
does and not on how it does.

 Inheritance A concept of object oriented programming
in which a new class is created from an existing class

 Linker A program that combines object modules to form
an executable program

 Loader A program that copies programs from a storage
device to main memory, where they can be executed

 Method Function associated with a class

 Multiple inheritance A technique that allows a sub
class to inherit properties and methods from multiple
parent classes

 Object An instance of a class

 Polymorphism A concept that enables programmers to
assign a different meaning or usage to a variable, func-
tion, or an object in different contexts

 Programming language A language speci cally
designed to express computations that can be performed
the computer

 Programming paradigm A fundamental style of pro-
gramming that de nes how the structure and basic ele-
ments of a computer program will be built

 Repetition A technique that allows a selected statement
to remain active until the program reaches a point where
there is a need for some other action to take place.

 Sequential code Code in which all the instructions are
executed in the speci ed sequence one by one

 Selection A technique that allows for choosing any one
of a number of statements to execute, based on the cur-
rent status of the program

Turbo C++ Turbo C++ is a utility tool that helps programmers to code their C++ programs easily and
effectively. Although Turbo C++ lacks some of the advanced features but it includes all features that
any user might need to execute their programs. On the positive side, it is a free software which is sim-
ple to use and has an intuitive interface. However, on the downside it has very few advanced features.

ANNEXURE 3

INTRODUCTION TO BIT FIELDS
Like C, C++ facilitates users to store integer members into memory spaces smaller than the
compiler would ordinarily allow. These space-saving structure members are called bit fields.
In addition to this, it also permits the users to explicitly declare the width in bits. Bit fields
are generally used in developing application programs that must force a data structure to
correspond to a fixed hardware representation and are unlikely to be portable.

Therefore, besides having declarators for members of a structure or union, a structure
declarator can also be a specified number of bits, generally known as a bit field. A bit field is
interpreted as an integral type. The syntax for specifying a bit field can be given as

type-specifier declarator: constant-expression

In the syntax, the constant-expression is used to specify the width of the field in bits. The
type-specifier for the declarator must be unsigned int, signed int, or int, and the constant-
expression must be a non-negative integer value. If the value of the constant expression is
zero, the declaration has no declarator.

A3.1 KEY POINTS ABOUT BIT FIELDS
• C++ does not permit arrays of bit fields, pointers to bit fields, and functions return-

ing bit fields.
• C++ permits ordinary member variables along with bit fields as structure members.
• The declaratoris optional and is used to name the bit field.
• Bit fields can only be declared as part of a structure.
• The address-of operator (&) cannot be applied to bit-field components. This means

you cannot use scanf to read values into a bit field. To read a value, you may use a
temporary variable and then assign its value to the bit field.

• Bit fields that are not named cannot be referenced and their contents at run time
are unpredictable. However, they can be used as dummy fields, for alignment
purposes.

• Bit fields must be long enough to contain the bit pattern.
• When a value that is out of range is assigned to a bit field, the low-order bit pattern

is preserved and the appropriate bits are assigned.

Bit-Fields and
Slack Bytes in
Structures

Ann3.indd 367 10/23/2017 4:41:23 PM

ANNEXURE 5

INTRODUCTION
Smart pointers are objects which store pointers to dynamically allocated (heap) objects.
They are objects which behave like pointers but do more than a pointer. Smart pointers
are flexible as pointers and have the advantage of being an object. Like an ordinary class,
they also have constructors and destructors which are invoked automatically. A smart pointer
is designed to handle the problems caused by using normal pointers and are hence called
smart.

A5.1 FEATURES OF SMART POINTERS
• They are much like built-in C++ pointers except that they automatically delete the

object pointed to at the appropriate time.
• They ensure proper destruction of dynamically allocated objects.
• They keep track of dynamically allocated objects shared by multiple owners.
• Smart pointer class templates have a template parameter, T, to specify the type of

the object pointed to by the smart pointer.
• The behaviour of smart pointer templates is undefined if the destructor or operator

delete for objects of type T throw exceptions.
• Many functions in smart pointer classes have no side effect. This is because when

an exception is thrown by an object of one of these classes, the entire program state
remains the same as it was prior to the function call which resulted in the exception
being thrown.

• Member functions of smart pointer classes neither throw exceptions nor call other
functions which may throw exceptions.

• Smart pointers can be used exactly like dumb or raw pointers. The only difference
is that pointer arithmetic is not allowed on smart pointers as they may be unsafe.
Smart pointers can be mixed with raw pointers; for example, smartPtr = rawPtr;
rawPtr = smartPtr; etc.

Unlike dumb pointers, smart pointers throw an exception when
• its value is NULL
• an attempt is made to dereference it
• it destroys its contents automatically when it goes out of scope.

Smart Pointers

Ann5.indd 755 10/23/2017 4:52:57 PM

C++ Standard
Library
Functions

APPENDIX A

The C++ standard library offers a huge collection of functions that perform
error checking, string manipulations, common mathematical calculations, input/
output, character manipulations, and lots of other important operations. These
functions make the job of programmers easy by providing many of the much-
needed capabilities. The C++ standard library functions (see below table), are
included as a part of the C++ programming environment.

Note Old-style header files, which end with .h, have now been superseded by the
C++ standard library header files.

C++ standard library header files

C++ standard
library header file

Description

<iostream> It includes function prototypes for the C++ standard input and standard output
functions. This header file replaces header file <iostream.h>.

<iomanip> It comprises function prototypes for stream manipulators that format streams
of data. This header file replaces header file <iomanip.h>.

<cmath> It consists of function prototypes for math library functions. This header file
replaces header file <math.h>.

<cstdlib> It includes function prototypes for conversions of numbers to text, text to
numbers, memory allocation, random numbers, and various other utility
functions. <cstdlib> replaces header file <stdlib.h>.

<ctime> <ctime> includes function prototypes and types for manipulating the time and
date. This header file replaces header file <time.h>.

<cctype> It comprises function prototypes for functions that test characters for certain
properties, including whether the character is a digit or a punctuation, and
function prototypes for functions that can be used to convert lowercase letters
to uppercase letters and vice versa. <cctype> replaces header file <ctype.h>.

(Contd)

App_A.indd 772 10/23/2017 4:53:52 PM

C++ Interview
Questions

APPENDIX B

How does void * differ in C and C++?
C allows a void* pointer to be assigned to any pointer type without a cast. However, in C++,
it must be explicitly type casted. For example,

void *ptr;
int *i = ptr; // allowed in C but not in C++
int *i = (int*) ptr; // C++ style

using namespace std;
#include<iostream>
int main()
{
 cout<<sizeof('a');
 return 0;
}
In C++, output is 1 byte while in C, it is 2 bytes.

Example 1 Write a program that produces different results in C and C++.

 One example is as follows: character literals are treated differently in C and
C++. In C, character literals like 'a' are treated as integers, while in C++, they
are treated as characters.

Note C++ makes this difference because it supports function overloading. If it
treats integer and character literals similarly then overloading will lose its
meaning.

App_B.indd 775 10/23/2017 4:54:23 PM

435Constructors and Destructors

Explanation : If you compile this program, you will get an error. In the program, there are two
constructors: one is the default constructor and the second is with both default arguments. When
this program is compiled, the compiler gets confused which one of the two constructors to call
as both of them satisfy the condition to be called during creation of object S1 . Hence, an error
will be shown. The moment you remove any one of the constructor the program will compile
successfully.

 Note A constructor that has all default arguments is similar to a default (no – argument) constructor.

 10.4 CONSTRUCTOR OVERLOADING
 Like normal functions, constructors can also be overloaded. When a class has multiple
constructors, they are called overloaded constructors. Some important features of over-
loaded constructors are as follows:

 • They have the same name; the names of all the constructors is the name of the class.
 • Overloaded constructors differ in their signature with respect to the number and

sequence of arguments passed.

 When an object of the class is created, the speci c constructor is called. Consider the
program code given here which uses the concept of overloaded constructors.

Programming
Tip:You can call
a constructor
from main()
since a
constructor is
like a member
function
declared in the
public section.

 #include<iostream.h>
#include<string.h>
class Person
{ private:
 int age;
 char  rst_name[10];
 char middle_name[10];

 Example 10.8 Multiple constructors in a program

 { roll_no = 0;
 marks = 0;
 }
 Student(int r = 0, int m = 0) // constructor 2
 { roll_no = r;
 marks = m;
 }
 voidshow_data()
 { cout<<"\n ROLL NO. = "<<roll_no;
 cout<<"\t MARKS = "<<marks;
 }

};
main()
{ Student S1; // which constructor to call? ERROR
 S1.show_data();
 Student S2(03);
 S2.show_data();
 Student S3(05, 98);
 S3.show_data();
}

Prograamming
Tip: C+++
allows uusers to
place deefault
argumennts in
the definition of
a constrructor
rather tthan in
the decllaration.

Prelims.indd 5 10/24/2017 5:02:02 PM

© Oxford University Press. All rights reserved.

Oxfo
rd

 U
niversi

ty
 Pre

ss

Preface
C++ is a general purpose, compiled programming language that stands second (only to C) in the most popu-
lar programming languages list. It is based on object-oriented concepts and can be used on several different
software platforms. C++ programming language has been in use for a long time. Therefore there is a lot of
information available on it and hence, it is easier to comprehend. Moreover, a sound understanding of C++
concepts facilitates in learning JAVA and similar programming languages.

In recent times, C++ is extensively used for implementing desktop applications, system programming,
designing operating system kernels, developing embedded systems and web search engines, SQL servers,
space probes, telephone switches, and entertainment software, to name a few. The important features that
make C++ so exciting to use include its high performance, efficiency, and flexibility.

No student can learn to program just by reading a book; rather it is a skill that must be developed by
practice. After learning the C++ concepts and their applications demonstrated through example programs,
students will find a number of programming exercises at the end of each chapter which will help them hone
their programming skills.

About the Book
Object Oriented Programming with C++ is designed as a textbook for undergraduate degree and diploma
students of computer science engineering and information technology as well as postgraduate students of
computer applications. The objective of this book is to introduce the concepts of C++ programming language
and apply these concepts in solving real world problems. This will help readers get acquainted with the tech-
niques and applications of C++ and also prepare them for taking up programming-based challenging tasks.
The book is also useful as a reference and resource to computer professionals working in C++ and other
similar languages.

Beginning with an introduction to programming languages and object-oriented programming concepts;
the book goes on to elucidate the basics of C++ programming. It explains the various control and looping
statements, functions, arrays, strings, pointers, structure, union and enumeration in the subsequent chapters.
Further, it discusses the important constructs of C++ programming, namely, classes and objects, construc-
tors and destructors, operator overloading, inheritance, polymorphism, templates, generics, and exception
handling in detail. Finally, standard template library and object oriented analysis, design and development
are discussed in separate chapters. The book also contains useful annexures to various chapters including
user-defined header files, pointer declarations, bit-fields, volatile and restrict qualifiers, and smart pointers for
additional information. Case studies, important library functions, and interview questions are also provided
to supplement the text.

The book first explains the fundamentals of a concept using simple language, examples and illustrations,
and then delves into its complexities and implementation aspects. Every chapter contains multiple program-
ming examples to impart practically sound knowledge of the concepts learnt. All these programs have already
been implemented and tested using Dev C++ and g++ compilers. To further enhance the understanding of
the subject and the application and analytical ability of the students, there are numerous objective type, sub-
jective type, and programming exercises at the end of each chapter. Thus, this text can be easily grasped by
the readers.

Prelims.indd 6 10/24/2017 5:02:02 PM

© Oxford University Press. All rights reserved.

Oxfo
rd

 U
niversi

ty
 Pre

ss

viiPreface

Salient Features
The salient features of the book include:

•	 Simple and lucid explanations for important C++ concepts using block diagrams and examples for easy
understanding.

•	 All programs in this book compiled on Dev C++ and g++ compilers.
•	 Plenty of example programs provided along with their outputs to help readers hone their programming skills.
•	 Notes and Programming tips to help readers keep in mind the critical concepts and develop error-free

programs.
•	 Case studies interspersed within the text include programs which demonstrate the implementation of the

concepts learnt in the various chapters.
•	 Abundant and variety of chapter-end exercises including objective-type questions (fill in the blanks, true/

false, and multiple choice questions) with answers, review questions, programming exercises, and find the
error and output type questions for self-check and practice.

•	 Glossary of key terms and point-wise summary at the end of each chapter to help readers quickly revise
and memorize the important concepts learnt.

•	 Interview questions at the end of the book to help readers prepare for competitive examinations.

Organization of the Book
The book is divided into 17 chapters, 6 case studies, 5 annexures, and 2 appendices.

Chapter 1 provides an introduction to programming languages, different programming paradigms, con-
cepts of OOP along with merits and demerits of object oriented programming languages. The chapter also
gives a comparative study of some OOP languages and highlights the difference between C and C++.

Chapter 2 discusses the building blocks of the C++ programming language. The chapter includes identifi-
ers, constants, variables, operators, type conversion, and casting supported by the C++ language.

Annexure 1 given at the end of this chapter covers user-defined header files.
Chapter 3 deals with the different types of decision control statements in C++ such as conditional branch-

ing statement, iterative statement, break statement, control statement, and jump statement.
Case Study 1 including representation of roman numbers and calculation of day and date of birth using a

program illustrates the implementation of concepts discussed in Chapters 2 and 3.
Chapter 4 deals with declaring, defining, and calling functions. The chapter also discusses the storage

classes, variable scope in C++, inline functions, and function overloading. It ends with an important concept
of recursive functions.

Chapter 5 provides a detailed explanation of arrays that includes one, two, and multi-dimensional arrays.
The operations that can be performed on such arrays are also explained.

Case Study 2 shows the applications of concepts discussed in Chapters 4 and 5 with the help of merge sort
and quick sort examples.

Chapter 6 unleashes the concept of strings which are better known as character arrays. The chapter not
only focuses on reading and writing strings but also explains various operations that can be used to manipu-
late the strings.

Chapter 7 presents a detailed overview of pointers, pointer variables, pointer arithmetic, so and so forth.
The chapter also relates the use of pointers with arrays, strings and functions for writing better and efficient
programs. The chapter ends with the discussions on dynamic memory management.

Annexure 2 on the process of deciphering pointer declarations is given after Chapter 7.
Chapter 8 deals with the two user-defined data types—structure and union. The chapter includes the use of

structures and unions with pointers, arrays and functions so that the inter-connectivity between the program-
ming techniques can be well understood. Enumerated data types are also explained in this chapter.

Prelims.indd 7 10/24/2017 5:02:02 PM

© Oxford University Press. All rights reserved.

Oxfo
rd

 U
niversi

ty
 Pre

ss

viii Preface

Annexure 3 discuss bit-fields and slack bytes in structures followed by Case Study 3 on Josephus Problem
shows the implementation of string operations.

Chapter 9 introduces the concept of classes and objects. It explains dynamic allocation of objects,
static data members, nested, inline and friend functions, constant members, this pointer, empty and local
classes.

Chapter 10 goes a step beyond declaration and definition of user defined classes. It unleashes the use of
constructors and destructors. It also explains overloading of constructors and creating anonymous objects.

Case Study 4 covering the examples of Interpolation Search and Selection Sort presents the implementa-
tion of concepts covered in Chapters 9 and 10.

Chapter 11 is all about overloading unary and binary operators. It also discusses the conversion of a vari-
able from one class type to another and from basic type to class type and vice versa.

Case Study 5 illustrates the concept of operator overloading discussed in Chapter 11.
Chapter 12 introduces inheritance in its various forms—single, hierarchical, hybrid, multi-level, and mul-

tiple. It provides a detailed explanation for different access specifiers, virtual functions, abstract classes, and
object slicing. It also throws light on polymorphism and run time polymorphism through virtual functions.
Abstract base classes, pure virtual functions, and virtual constructors and destructors are also covered in this
chapter.

Chapter 13 discusses how data can be stored in files. The chapter explains the different types of files, and
opening, processing and closing of files through a C++ program. These files are handled in text mode as well
as binary mode for better clarity of the concepts. It also discusses sequential I/O functions and error handling
during file operations.

Case Study 6 demonstrates the implementation of concepts discussed in Chapters 12 and 13.
Chapter 14 is about generic programming through templates. In this chapter, function and class templates

have been discussed. It also gives a combo effect of templates and overloading, templates and inheritance,
templates and static functions, templates and friends to name a few.

Chapter 15 presents the concepts of exception handling that can be used to make robust programs. The
chapter demonstrates the application of exception handling in overloaded classes and functions, inherited
classes, constructors or destructors. It also discusses various advantages and disadvantages of exception
handling.

Chapter 16 elucidates the features of the standard template library. It also introduces some new features
that have been added to the C++ language. These concepts include containers, iterators, algorithms, the
string class, data type Boolean, keywords—mutable and explicit, namespaces, and finally the run time type
identifiers.

Annexures 4 and 5 following this chapter briefs about the restrict and volatile qualifiers and smart point-
ers, respectively.

Chapter 17, the last chapter of the book, co-relates the use of objects and classes with the software devel-
opment methodology. The chapter also gives an introduction of unified modelling language (UML).

The two appendices, namely, Appendix A discusses some of the important library functions in C++ and
Appendix B provides frequently asked interview questions with answers and certain programming tips.

Online Resources
To aid teachers and students, the book is accompanied with online resources that are available at http://
oupinheonline.com/book/thareja-object-oriented-programming-with-C/9780199459636. The content for the
online resources are as follows.

For Faculty
•	 Chapter-wise PPTs •	 Solutions Manual

Prelims.indd 8 10/24/2017 5:02:02 PM

© Oxford University Press. All rights reserved.

Oxfo
rd

 U
niversi

ty
 Pre

ss

ixPreface

For Students
•	 Projects
•	 MCQ test generator
•	 Model Question Papers (with answers)
•	 Introduction to graphics programming
•	 Solution to find the output and error questions
•	 Algorithms for basic programs

•	 Source codes of the programs given in the book
•	 Additional case studies on data structures and

sorting
•	 Extra reading material on algorithms and flow-

charts, slack bytes, bit level programming, macros,
and ASCII chart

Acknowledgments
The writing of this textbook was a mammoth task for which a lot of help was required from many people.
Fortunately, I have had wholehearted support of my family, friends, and fellow members of the teaching staff
at Shyama Prasad Mukherji College, New Delhi.

My special thanks would always go to my parents, Mr Janak Raj Thareja and Mrs Usha Thareja, and my
siblings, Pallav, Kimi, and Rashi, who were a source of abiding inspiration and divine blessings for me. I am
especially thankful to my son, Goransh, who has been very patient and cooperative in letting me realize my
dreams. My sincere thanks goes to my uncle, Mr B.L. Theraja, for his inspiration and guidance in writing
this book. I would like to acknowledge Er Udit Chopra for his technical assistance in designing and testing
the programs.

I would like to express my gratitude to the following reviewers of this revised edition as well as the pre-
vious edition for their valuable suggestions and constructive feedback that helped in improving the book.

Ms Preeti Rai Jain
Miranda House, University of Delhi
Ms Seema Rani
Shyama Prasad Mukherji College, University of Delhi
Ms Pratibha Yadav
Shyama Prasad Mukherji College, University of Delhi
Mr Soumen Swarnakar
Netaji Subhash Engineering College, Garia, Kolkata
CH.V.K.N.S.N. Moorthy
Institute of Aeronautical Engineering (Autonomous), Hyderabad
Dr Anthonisan Arockiasamy
Saveetha School of Engineering, Saveetha University, Chennai
Nithya E.
Dr Ambedkar Institute of Technology, Bangalore

Last but not the least I would like to thank the editorial team at Oxford University Press, India for their
help and support.

Comments and suggestions for the improvement of the book are welcome. Please send to me at
reemathareja@gmail.com.

Reema Thareja

Prelims.indd 9 10/24/2017 5:02:02 PM

© Oxford University Press. All rights reserved.

Oxfo
rd

 U
niversi

ty
 Pre

ss

Detailed Contents
Features of the Book  iv
Preface  vi

	 1.	 Introduction to Object Oriented
Programming (OOP)	 1

Introduction  1
	 1.1	 Generation of Programming

Languages  2
	 1.1.1	 First Generation: Machine Language  2
	 1.1.2	 Second Generation: Assembly

Language  3
	 1.1.3	� Third Generation: High-Level

Language  5
	 1.1.4	 Fourth Generation: Very High-Level

Languages  8
	 1.1.5	 Fifth Generation Programming

Language  9
	 1.2	 Programming Paradigms  10

	 1.2.1	 Monolithic Programming  10
	 1.2.2	 Procedural Programming  10
	 1.2.3	 Structured Programming  11
	 1.2.4	 Object Oriented Programming  12

	 1.3	 Features of Object Oriented
Programming  14

	 1.3.1	 Classes  14
	 1.3.2	 Objects  15
	 1.3.3	 Method and Message Passing  15
	 1.3.4	 Inheritance  16
	 1.3.5	 Polymorphism: Static Binding and

Dynamic Binding  17
	 1.3.6	 Containership  17
	 1.3.7	 Genericity  18
	 1.3.8	 Delegation  18
	 1.3.9	 Data Abstraction and Encapsulation  18

	 1.4	� Merits and Demerits of Object Oriented
Programming Language  19

	 1.5	 Applications of Object Oriented
Programming  20

	 1.6	 Differences Between Programming
Languages  20

	 1.7	 C++ Compilers  22

	 2.	 Basics of C++ Programming	 27

Introduction to C++  27
	 2.1	 History of C++  27
	 2.2	 Structure of C++ Program  28
	 2.3	 Writing the First C++ Program  28
	 2.4	 Files Used in C++ Program  31

	 2.4.1	 Source Code File  31
	 2.4.2	 Header Files  31
	 2.4.3	 Object Files  33
	 2.4.4	 Binary Executable File  33

	 2.5	 Compiling and Executing
C++ Programs  33

	 2.6	 Using Comments  34
	 2.7	 Tokens in C++  35
	 2.8	 Character Set  35
	 2.9	 Keywords  36
	 2.10	 Identifier  36
	 2.11	 Data Types in C++  37
	 2.12	 Variables  39

	 2.12.1	 Declaring Variables  39
	 2.12.2	 Initializing Variables  40
	 2.12.3	 Reference Variables  40

	 2.13	 Constants  41
	 2.13.1	 Integer Constant  41
	 2.13.2	 Floating Point Constant  42
	 2.13.3	 Character Constant  42
	 2.13.4	 String Constant  42
	 2.13.5	 Declaring Constants  43

	 2.14	 Input and Output Statements in C++  43
	 2.14.1	 Streams  43
	 2.14.2	 Reading and Writing Characters and

Strings  45
	 2.14.3	� Formatted Input and Output

Operations  46
	 2.15	 Operators in C++  52

	 2.15.1	 Arithmetic Operators  52
	 2.15.2	 Relational Operators  55
	 2.15.3	 Equality Operators  56

Prelims.indd 10 10/24/2017 5:02:02 PM

© Oxford University Press. All rights reserved.

Oxfo
rd

 U
niversi

ty
 Pre

ss

xiDetailed Contents

	 2.15.4	 Logical Operators  56
	 2.15.5	 Unary Operators  58
	 2.15.6	 Conditional Operators  60
	 2.15.7	 Bitwise Operators  61
	 2.15.8	 Assignment Operators  63
	 2.15.9	 Comma Operator  64
2.15.10  Sizeof Operator  64
2.15.11  Operator Precedence and Associativity  65

	 2.16	 Type Conversion and Type Casting  72
	 2.16.1	 Type Conversion  72
	 2.16.2	 Type Casting  74

Annexure 1 – User-Defined Header Files  83

	 3.	 Decision Control and Looping
Statements	 85

Introduction to Decision Control Statements  85
	 3.1	 Conditional Branching Statements  85

	 3.1.1	 If Statement  86
	 3.1.2	 If-Else Statement  87
	 3.1.3	 If-Else-If Statement  90
	 3.1.4	 Switch Case Statement  96

	 3.2	 Iterative Statements  101
	 3.2.1	 While Loop  101
	 3.2.2	 Do-While Loop  105
	 3.2.3	 For Loop  108
	 3.2.4	 Selecting an Appropriate Loop  112

	 3.3	 Nested Loops  113
	 3.4	 Break Statement  125
	 3.5	 Continue Statement  126
	 3.6	 Goto Statement  128

	 3.6.1	 Key Points About Goto Statement  129
	 3.7	� Avoiding Usage of Break, Continue, and

Goto Statements  129
Case Study 1  141

	 4.	 Functions	 145

Introduction  145
	 4.1	 Need For Functions  146
	 4.2	 Using Functions  147
	 4.3	 Function Declaration or Function

Prototype  147
	 4.4	 Function Definition  149
	 4.5	 Function Call  150
	 4.6	 Return Statement  151
	 4.7	 Passing Parameters to the Function  153

	 4.7.1	 Call-By-Value  153
	 4.7.2	 Call-By-Address  155
	 4.7.3	 Call-By-Reference  156

	 4.8	 Default Arguments  161
	 4.9	 Return by Reference  163
	 4.10	 Passing Constants as Arguments  164
	 4.11	 Variables Scope  165

	 4.11.1	 Block Scope  165
	 4.11.2	 Function Scope  165
	 4.11.3	 Scope of the Program  166
	 4.11.4	 File Scope  167

	 4.12	 Storage Classes  167
	 4.12.1	 Auto Storage Class  167
	 4.12.2	 Register Storage Class  168
	 4.12.3	 Extern Storage Class  169
	 4.12.4	 Static Storage Class  170
	 4.12.5	 Comparison of Storage Classes  171

	 4.13	 Inline Functions  172
	 4.13.1	 Advantages and Disadvantages of Inline

Functions  173
	 4.13.2	 Comparison of Inline Functions

with Macros  173
	 4.14	 Function Overloading  174

	 4.14.1	 Matching Function Calls with Overloaded
Functions  175

	 4.14.2	 Key Points About Function
Overloading  176

	 4.14.3	 Functions that Cannot be
Overloaded  178

	 4.15	 Recursive Functions  179
	 4.15.1	 Greatest Common Divisor  180
	 4.15.2	 Finding Exponents  181
	 4.15.3	 Fibonacci Series  182

	 4.16	 Recursion Versus Iteration  183
	 4.17	 Functions with Variable Number of

Arguments  184

	 5.	 Arrays	 192

Introduction  192
	 5.1	 Declaration of Arrays  193
	 5.2	 Accessing Elements of the Array  194

	 5.2.1	 Calculating the Address of Array
Elements  195

	 5.3	 Storing Values in Arrays  196
	 5.3.1	 Initialization of Arrays  196
	 5.3.2	 Inputting Values  197
	 5.3.3	 Assigning Values  197

Prelims.indd 11 10/24/2017 5:02:02 PM

© Oxford University Press. All rights reserved.

Oxfo
rd

 U
niversi

ty
 Pre

ss

xii Detailed Contents

	 5.4	 Calculating the Length of Array  198
	 5.5	 Operations that can be Performed on

Arrays  198
	 5.5.1	 Traversal  199
	 5.5.2	 Insertion  205
	 5.5.3	 Deletion  206
	 5.5.4	 Merging  207
	 5.5.5	 Searching the Array Elements  209

	 5.6	� One-Dimensional Arrays for Inter
Function Communication  214

	 5.6.1	 Passing Individual Elements  214
	 5.6.2	 Passing The Entire Array  215

	 5.7	 Two-Dimensional Arrays  218
	 5.7.1	 Declaration of Two-Dimensional

Arrays  219
	 5.7.2	 Initialization of Two-Dimensional

Arrays  221
	 5.7.3	 Accessing the Elements  221

	 5.8	 Operations on Two-Dimensional
Arrays  225

	 5.9	� Two-Dimensional Arrays for
Inter-Function Communication  228

	 5.9.1	 Passing a Row  228
	 5.9.2	 Passing the Entire Two-Dimensional

Array  228
	 5.10	 Multi-Dimensional Arrays  232
Case Study 2  239

	 6.	 Strings	 244

Introduction  244
	 6.1	� Representation and Declaration of

Strings  244
	 6.1.1	 Reading Strings  246
	 6.1.2	 Writing Strings  247

	 6.2	 String Taxonomy  248
	 6.3	 Strings Operations  249
	 6.4	 Character Manipulation Functions  258
	 6.5	 String Functions Defined In String.h

Header File  259
	 6.6	 Array of Strings  267

	 7.	 Pointers	 282

Understanding Computer’s Memory  282
	 7.1	 Defining Pointers  283
	 7.2	 Declaring Pointer Variables  284

	 7.3	 Pointer Expressions and Pointer
Arithmetic  288

	 7.4	 Null Pointers  290
	 7.5	 Generic Pointers  291
	 7.6	 Passing Arguments to Function Using

Pointers  291
	 7.7	 Pointers And Arrays  292
	 7.8	 Passing Array To Functions  297
	 7.9	 Differences Between Array Name and

Pointers  299
	 7.10	 Pointers and Strings  300
	 7.11	 Array of Pointers  302
	 7.12	 Pointers and 2D Arrays  304
	 7.13	 Pointers and 3D Arrays  308
	 7.14	 Pointers to Functions  309

	 7.14.1	 Initializing Function Pointer  309
	 7.14.2	 Calling a Function using a Function

Pointer  310
	 7.14.3	 Comparing Function Pointers  311
	 7.14.4	 Passing a Function Pointer as an

Argument to a Function  311
	 7.15	 Array of Function Pointers  312
	 7.16	 Pointers to Pointers  313
	 7.17	 Constant Pointer  314
	 7.18	 Pointer to Constants  314
	 7.19	 Constant Pointer to a Constant  314
	 7.20	 Memory Allocation in C++

Programs  315
	 7.21	 Memory Usage  315
	 7.22	 Dynamic Memory Allocation  316

	 7.22.1	 Memory Allocation Process  316
	 7.22.2	 Allocating Memory using the New

Operator  316
	 7.22.3	 Releasing the Used Space using the

Delete Operator  317
	 7.22.4	 Alter the Size of Allocated Memory  318
	 7.22.5	 Advantages of New/Delete Operators

Over Malloc()/Free()  319
	 7.22.6	 Dynamically Allocating 2D Arrays  321

Annexure 2 – �Deciphering Pointer
Declarations  329

	 8.	 Structure, Union, and Enumerated
Data Types	 333

Introduction  333
	 8.1	 Structure Declaration  333

Prelims.indd 12 10/24/2017 5:02:03 PM

© Oxford University Press. All rights reserved.

Oxfo
rd

 U
niversi

ty
 Pre

ss

xiiiDetailed Contents

	 8.2	 Typedef Declarations  334
	 8.3	 Initialization of Structures  335
	 8.4	 Accessing the Members of a

Structure  336
	 8.5	 Copying and Comparing Structures  337
	 8.6	 Nested Structures  339
	 8.7	 Arrays of Structures  341
	 8.8	 Structures and Functions  344

	 8.8.1	 Passing Individual Members  344
	 8.8.2	 Passing The Entire Structure  345
	 8.8.3	 Returning Structures  346
	 8.8.4	 Passing Structures Through Pointers  348

	 8.9	 Self-Referential Structures  353
	 8.10	 C++ Extension to Structures  354
	 8.11	 Union  355

	 8.11.1	 Declaring a Union  355
	 8.11.2	 Accessing a Member of a Union  356
	 8.11.3	 Initializing Unions  356

	 8.12	 Unions Inside Structures  356
	 8.13	 Enumerated Data Types  357

	 8.13.1	 Enum Variables  359
	 8.13.2	 Assigning Values To Enumerated

Variables  359
	 8.13.3	 Enumeration Type Conversion  359
	 8.13.4	 Comparing Enumerated Types  360
	 8.13.5	 Input or Output Operations on Enumerated

Types  360
Annexure 3 – �Bit-Fields and Slack Bytes in

Structures	 367
Case Study 3  369

	 9.	 Classes and Objects	 370

Introduction  370
	 9.1	 Specifying a Class  370

	 9.1.1	 Class Declaration  371
	 9.1.2	 Function Definition  372

	 9.2	 Creating Objects  373
	 9.3	 Accessing Object Members  374
	 9.4	 Nested Member Functions  374
	 9.5	 Making a Member Function Inline  375
	 9.6	 Memory Allocation for Class and

Objects  380
	 9.6.1	 Memory Allocation for Static Data

Members  381
	 9.6.2	 Static Member Functions  383
	 9.6.3	 Static Object  384

	 9.7	 Array of Objects  385
	 9.8	 Dynamic Memory Allocation for Array

of Objects  385
	 9.9	 Objects as Function Arguments  388
	 9.10	 Returning Objects  389
	 9.11	 This Pointer  390
	 9.12	 Constant Parameters and Members  397
	 9.13	 Pointers within a Class  399
	 9.14	 Local Classes  401
	 9.15	 Nested Classes in C++  402
	 9.16	 Complex Objects (Object

Composition)  403
	 9.17	 Empty Classes  405
	 9.18	 Friend Function  411
	 9.19	 Friend Class  413
	 9.20	 Bit-Fields in Classes  418
	 9.21	 Pointers and Class Members  420

	 9.21.1	 Declaring and Assigning Pointer to
Data Members of a Class  420

	 9.21.2	 Pointer to Member Functions  422

	 10.	 Constructors and Destructors	 430

Introduction  430
	 10.1	 Constructor  431
	 10.2	 Types of Constructors  432

	 10.2.1	 Dummy Constructor (Do Nothing
Constructor)  432

	 10.2.2	 Default Constructor  432
	 10.2.3	 Parameterized Constructor  433
	 10.2.4	 Copy Constructor  433
	 10.2.5	 Dynamic Constructor  435

	 10.3	 Constructor with Default
Arguments  435

	 10.4	 Constructor Overloading  437
	 10.5	 Destructors  451

	 10.5.1	 Important Features  452
	 10.5.2	 Interesting Points About Constructors and

Destructors  457
	 10.6	 Object Copy  460
	 10.7	 Constant Objects  461

	 10.7.1	 Key Features of Constant Object  462
	 10.8	 Anonymous Objects  462

	 10.8.1	 Scope of Anonymous Objects  463
	 10.8.2	 Advantages of Anonymous Objects  463

	 10.9	 Anonymous Classes  464
Case Study 4  471

Prelims.indd 13 10/24/2017 5:02:03 PM

© Oxford University Press. All rights reserved.

Oxfo
rd

 U
niversi

ty
 Pre

ss

xiv Detailed Contents

	 11.	� Operator Overloading and Type
Conversions	 474

Introduction  474
	 11.1	 Scope of Operator Overloading  474
	 11.2	 Syntax for Operator Overloading  475
	 11.3	 Operators that can and cannot be

Overloaded  476
	 11.4	 Implementing Operator

Overloading  477
	 11.5	 Overloading Unary Operators  477

	 11.5.1	 Using a Member Function to Overload a
Unary Operator  477

	 11.5.2	 Returning Object  478
	 11.5.3	 Returning a Nameless Object  479
	 11.5.4	 Using a Friend Function to Overload a

Unary Operator  479
	 11.5.5	 Overloading the Prefix Increment and

Decrement Operators  480
	 11.5.6	� Overloading the Post-Fix Increment and

Post-Fix Decrement Operators  481
	 11.6	 Overloading Binary Operators  491
	 11.7	 Overloading Special Operators  501

	 11.7.1	 Overloading New and Delete
Operators  502

	 11.7.2	 Overloading Subscript Operators []
and ()  504

	 11.7.3	 Overloading Class Member Access
Operator (->)  507

	 11.7.4	 Overloading Input and Output
Operators  508

	 11.8	 Type Conversions  509
	 11.8.1	� Conversion from Basic to Class Type  509
	 11.8.2	 Conversion from Class to Basic Data

Type  509
	 11.8.3	 Conversion from Class to Class

Type  515
Case Study 5	 527

	 12.	 Inheritance and Run-Time
Polymorphism	 529

Introduction  529
	 12.1	 Defining Derived Classes  530
	 12.2	 Access Specifiers  530

	 12.2.1	 Inheriting Protected Members  531
	 12.2.2	 Inheriting the Class in Protected

Mode  532

	 12.3	 Types of Inheritance  532
	 12.4	 Single Inheritance  532
	 12.5	 Constructors and Destructors in

Derived Classes  536
	 12.5.1	 Invoking Constructors With

Arguments  538
	 12.6	 Multi-Level Inheritance  540
	 12.7	 Constructor In Multi-Level

Inheritance  541
	 12.8	 Multiple Inheritance  546
	 12.9	� Constructors and Destructors in Multiple

Inheritance  547
	12.10	 Ambiguity in Multiple Inheritance  549

	12.10.1	 Solution for the Ambiguity Problem  549
	12.10.2	 No Ambiguity In Single Inheritance  550

	12.11	 Hierarchical Inheritance  550
	12.12	� Constructors and Destructors in

Hierarchical Inheritance  552
	12.13	 Hybrid Inheritance  554
	12.14	 Multi-Path Inheritance  564

	12.14.1	 Problem in Multi-Path Inheritance or
Diamond Problem  564

	12.15	 Virtual Base Classes  564
	12.16	 Object Slicing  566
	12.17	 Pointers to Derived Class  567

	12.17.1	 Upcasting, Downcasting, and
Cross-Casting  569

	12.18	 Run-Time Polymorphism  569
	12.19	 Virtual Functions  570

	12.19.1	 Run-Time Polymorphism Through Virtual
Functions  570

	12.19.2	 Rules For Virtual Functions  572
	12.20	 Pure Virtual Functions  573
	12.21	 Abstract Base Classes  574
	12.22	 Concept of Vtables  577
	12.23	 Virtual Constructor And

Destructors  579
	12.23.1	 Virtual Destructor  579

	12.24	 Pros and Cons of Inheritance  580

	 13.	 File Handling	 592

Introduction  592
	 13.1	 Streams in C++  592
	 13.2	 Classes for File Stream Operations  593
	 13.3	 Opening and Closing of Files  594

	 13.3.1	 Opening Files using Constructors  595

Prelims.indd 14 10/24/2017 5:02:03 PM

© Oxford University Press. All rights reserved.

Oxfo
rd

 U
niversi

ty
 Pre

ss

xvDetailed Contents

	 13.3.2	 Opening Files using Member Function  597
	 13.3.3	 Test For Errors  597

	 13.4	 Detecting the End-of-File  598
	 13.5	 File Modes  600
	 13.6	 File Pointers and their

Manipulators  601
	 13.6.1	 Manipulating File Pointers  602
	 13.6.2	 Specifying The Offset  603

	 13.7	 Types of Files  604
	 13.7.1	 ASCII Text Files  604
	 13.7.2	 Binary Files  605

	 13.8	 Sequential Input and Output
Functions  605

	 13.8.1	 Get() and Put()  606
	 13.8.2	 Read() and Write()Functions  609

	 13.9	 Error Handling During File
Operations  617

	13.10	 Accepting Command Line
Arguments  618

Case Study 6	 629

	 14.	 Templates	 631

Introduction  631
	 14.1	 Use of Templates  632
	 14.2	 Function Templates  632

	 14.2.1	 Templates Versus Macros  634
	 14.2.2	 Guidelines for Using Template

Functions  634
	 14.3	 Class Template  643
	 14.4	 Class Templates and Friend

Function   650
	 14.5	 Templates and Static Variables in

C++  653
	 14.6	 Class Templates and Inheritance  655
	 14.7	 Class Template with Operator

Overloading  663
	 14.8	 Pros and Cons of Templates  665

	 15.	 Exception Handling	 672

Introduction  672
	 15.1	 Exception Handling  673

	 15.1.1	 Multiple Catch Statements  675
	 15.1.2	 Catch all Exceptions  676
	 15.1.3	 Exceptions in Invoked Function  677
	 15.1.4	 Stack Unwinding  679

	 15.1.5	 Rethrowing Exception  679
	 15.1.6	 Restricting the Exceptions that can be

Thrown  680
	 15.1.7	 Catching Class Type as Exceptions  682

	 15.2	 Exceptions in Constructors and
Destructors  687

	 15.3	 Exceptions in Operator Overloaded
Functions  689

	 15.4	 Exceptions and Inheritance  690
	 15.5	 Exceptions and Templates  691
	 15.6	 Handling Uncaught Exceptions  698
	 15.7	 Standard Exceptions  701
	 15.8	 Advantages of Exception Handling  703
	 15.9	 Word of Caution  704

	 16.	 STL and New Features in C++	 713

Introduction  713
	 16.1	 Containers  713
	 16.2	 Algorithms  715
	 16.3	 Iterators  717
	 16.4	 Using Containers  718

	 16.4.1	 Vector  718
	 16.4.2	 Dequeue  719
	 16.4.3	 List  720
	 16.4.4	 Maps  722

	 16.5	 String Class  725
	 16.6	 Data Type Boolean  728

	 16.6.1	 Uses of Boolean Data Type  729
	 16.6.2	 Applications of Operators  729

	 16.7	 Wchar_t Data Type  730
	 16.8	 Run-Time Type Information  731

	 16.8.1	 Static_cast Operator  731
	 16.8.2	 Const_cast Operator   732
	 16.8.3	 Reinterpret_cast Operator  733
	 16.8.4	 Dynamic_cast Operator  734
	 16.8.5	 Typeid Operator  735

	 16.9	 Explicit Keyword  737
	16.10	 Mutable Keyword  739
	16.11	 Namespaces  740

	16.11.1	 Nested Namespaces  741
	16.11.2	 Unnamed Namespaces  742
	16.11.3	 Similarity and Dissimilarity with

Classes  743
	16.11.4	 Classes Within Namespaces  743

	16.12	 Operator Keywords  744
	16.13	 Specifying Header Files  744

Prelims.indd 15 10/24/2017 5:02:03 PM

© Oxford University Press. All rights reserved.

Oxfo
rd

 U
niversi

ty
 Pre

ss

xvi Detailed Contents

Annexure 4 – �Volatile and Restrict
Qualifiers  753

Annexure 5 – �Smart Pointers	 755

	 17.	 Object-Oriented System Analysis,
Design, and Development	 757

Introduction  757
	 17.1	 Traditional Software Development

Process  758
	 17.2	 Building High-Quality Software  758
	 17.3	� Object Oriented Software Development

Methodology  759
	 17.4	 Object-Oriented Systems

Development  759
	 17.4.1	 Object-Oriented Analysis  760

	 17.4.2	 Object-Oriented Design  761
	 17.4.3	 Prototyping  762
	 17.4.4	 Objectives of OO Analysis and

Design  763
	 17.4.5	 Tools in OO Analysis and OO

Design  763
	 17.4.6	 Implementing Component-Based

Development  764
	 17.5	 Unified Modelling Language  765

	 17.5.1	 Class Diagrams  765
	 17.5.2	 Object Diagram  766
	 17.5.3	 Component Diagram  766
	 17.5.4	 Deployment Diagram  766
	 17.5.5	 Use Case Diagram  767
	 17.5.6	 Sequence Diagram  767
	 17.5.7	 State Chart Diagram  767
	 17.5.8	 Activity Diagram  768

Appendix A – �C++ Standard Library Functions  772
Appendix B – �C++ Interview Questions  775
Index  781
About the Author  784

Prelims.indd 16 10/24/2017 5:02:03 PM

© Oxford University Press. All rights reserved.

Oxfo
rd

 U
niversi

ty
 Pre

ss

INTRODUCTION
A programming language is a language specifically designed to express computations that
can be performed by the computer. Programming languages are used to create programs that
control the behaviour of a system, to express algorithms, or can be used as a mode of human
communication.

Usually, programming languages have a vocabulary of syntax and semantics for
instructing a computer to perform specific tasks. The term ‘programming language’ usu-
ally refers to high-level languages such as BASIC, C, C++, COBOL, FORTRAN,
ADA, and PASCAL, to name a few. All these languages have a unique set of keywords
(words that the language understands) and a special syntax for organizing program
instructions.

While high-level programming languages are easy for us to read and understand, the com-
puter understands the machine language that consists only of numbers. Different types of
central processing unit (CPU) have their own unique machine languages.

Assembly language is a type of language that exists in between machine languages
and high-level languages. Assembly languages are similar to machine languages, but
are much easier to program in because they allow a programmer to substitute names for
numbers.

However, irrespective of what language the programmer uses, the program written using
any programming language has to be converted into machine language so that the computer
can understand the same. There are two ways to do this—compile the program or interpret
the program.
The determination of the language is dependent on the following factors:

•	 The type of computer (microcontroller, microprocessor, etc.) on which the program has to
be executed.

•	 The type of program (system program, application program, etc.).

Introduction to
Object Oriented
Programming
(OOP)

Generation of programming languages • Programming par-
adigms • Concepts of OOP • Merits, demerits, and applica-
tions of OOP • Differences between C and C++

CHAPTER 1

Chapter-1.indd 1 10/23/2017 4:34:25 PM

© Oxford University Press. All rights reserved.

Oxfo
rd

 U
niversi

ty
 Pre

ss

2 Object Oriented Programming with C++

•	 The expertise of the programmer. That is, the proficiency level of a programmer in a particular
language.

For example, FORTRAN is particularly good for processing numerical data but it does not lend
itself very well to organizing large programs. Pascal can be used for writing well-structured and
readable programs but it is not as flexible as C language. C++ goes one step ahead of C by incorpo-
rating powerful object oriented features but it is complex and difficult to learn.

These programming languages have slowly evolved with time to be more user-friendly and
task-oriented. In the next section, we will study the different generations of programming languages
to understand their distinguishing features.

1.1  GENERATION OF PROGRAMMING LANGUAGES
We now know that programming languages are the primary tools for creating software. As of now,
hundreds of programming languages exist in the market, some more used than others and each
claiming to be the best. However, in the 1940s when computers were being developed, there was
just one language—machine language.

The concept of generations of programming languages (also known as levels) is closely con-
nected to the advances in technology. The five generations of programming languages include
machine language, assembly language, high-level language (also known as the third generation
language or 3GL), very high-level language (also known as the fourth generation language or 4GL),
and fifth generation language that includes artificial intelligence.

1.1.1  First Generation: Machine Language
The first program was programmed using the machine language. This is the lowest level of pro-
gramming language and is the only language that a computer understands. All the commands and
data values are expressed using 0s and 1s, corresponding to the off and on electrical states in a
computer.

In the 1950s, each computer had its own native language, and programmers had primitive sys-
tems for combining numbers to represent instructions such as add and subtract. Although there were
similarities between each of the machine languages, a computer could not understand programs
written in another machine language (refer to Fig. 1.1).

In machine language, all instructions, memory locations, numbers, and characters are represented
in strings of ones and zeroes.

In machine language, all instructions, memory locations, numbers, and characters are represented
in strings of 0s and 1s. Although machine language programs are typically displayed with the binary
numbers represented in octal (base 8) or hexadecimal (base 16) number systems, these programs are
not easy for humans to read, write, or debug.

The main advantage of machine language is that the execution of the code is very fast and effi-
cient since it is directly executed by the CPU. However, on the downside, machine language is
difficult to learn and is far more difficult to edit if errors occur. Moreover, if we want to store some
instructions in the memory at some location, then all the instructions after the insertion point would
have to be moved down to make room in the memory to accommodate the new instructions. In
addition, the code written in machine language is not portable, and to transfer the code to a different
computer, it needs to be completely rewritten since the machine language for one computer could
be significantly different from that for another computer. Architectural considerations make porta-
bility a tough issue to resolve. Table 1.1 lists the advantages and disadvantages of first generation
language.

OOPC++.indb 2 8/17/2017 1:58:24 PM

© Oxford University Press. All rights reserved.

Oxfo
rd

 U
niversi

ty
 Pre

ss

3Introduction to Object Oriented Programming (OOP)

1.1.2  Second Generation: Assembly Language
Second-generation programming languages (2GLs) comprise the assembly languages. Assembly
languages are symbolic programming languages that use symbolic notations to represent machine
language instructions. These languages are closely connected to machine language and the internal
architecture of the computer system on which they are used. Since it is close to machine language,
assembly language is also a low-level language. Nearly all computer systems have an assembly
language available for use.

Assembly language developed in the mid-1950s was a great leap forward. It used symbolic codes,
also known as mnemonic codes, which are easy-to-remember abbreviations, rather than numbers.
Examples of these codes include ADD for add, CMP for compare, and MUL for multiply.

Figure 1.1  A machine language program

000 0000A

000 0000F

000 0000B

0000

0008

0008

0008

0058

00Θ0

00A9

00CC

00E4

010D

013D

FF55 FF54 FF53

FF24 FF27

CF CF

CF

CF C1

C7D2CF

This is an example of a machine language program that
will add two numbers and find their average. It is in
hexadecimal notation instead of binary notation because
that is how the computer presented the code to the
programmer. The program was run on a VAX/VMS
computer, a product of the Digital Equipment Corporation.

Table 1.1  Advantages and disadvantages of first generation language

Advantages Disadvantages

•	 Code can be directly executed by the
computer.

•	 Execution is fast and efficient.
•	 Programs can be written to efficiently

utilize memory.

•	 Code is difficult to write.
•	 Code is difficult to understand by other people.
•	 Code is difficult to maintain.
•	 There is more possibility for errors to creep in.
•	 It is difficult to detect and correct errors.
•	 Code is machine dependent and thus non-portable.

OOPC++.indb 3 8/17/2017 1:58:24 PM

© Oxford University Press. All rights reserved.

Oxfo
rd

 U
niversi

ty
 Pre

ss

4 Object Oriented Programming with C++

Assembly language programs consist of a series of individual statements or instructions to
instruct the computer what to do. Basically, an assembly language statement consists of a label, an
operation code, and one or more operands.

Labels are used to identify and refer instructions in the program. The operation code (opcode) is
a mnemonic that specifies the operation to be performed, such as move, add, subtract, or compare.
The operand specifies the register or the location in the main memory where the data to be processed
is located.

However, like machine language, the statement or instruction in assembly language will vary
from machine to machine, because the language is directly related to the internal architecture of the
computer and is not designed to be machine independent. This makes the code written in assembly
language less portable, as the code written to be executed on one machine will not run on machines
from a different manufacturer or sometimes even the same manufacturer.

Nevertheless, the code written in assembly language will be very efficient in terms of execution
time and main memory usage, as the language is similar to computer language.

Programs written in assembly language need a translator, often known as the assembler, to con-
vert them into machine language. This is because the computer will understand only the language of
0s and 1s. It will not understand mnemonics such as ADD and SUB.
The following instructions are part of an assembly language code to illustrate addition of two
numbers:

MOV AX,4		 Stores the value 4 in the AX register of CPU
MOV BX,6		 Stores the value 6 in the BX register of CPU
ADD AX,BX		� Adds the contents of AX and BX registers; stores the result in AX register

Although it is much easier to work with assembly language than with machine language, it still
requires the programmer to think on the machine’s level. Even today, some programmers use
assembly language to write those parts of applications where speed of execution is critical; for
example, videogames, but most programmers have switched to 3GL or 4GL even to write such
codes. Table 1.2 lists the advantages and disadvantages of using second generation language.

Table 1.2  Advantages and disadvantages of second generation language

Advantages Disadvantages

•	 It is easy to understand.
•	 It is easier to write programs in assembly

language than in machine language.
•	 It is easy to detect and correct errors.
•	 It is easy to modify.
•	 It is less prone to errors.

•	 Code is machine dependent and thus
non-portable.

•	 Programmers must have a good knowledge of the
hardware and internal architecture of the CPU.

•	 The code cannot be directly executed by the
computer.

Assembler
Since computers can execute only codes written in machine language, a special program, called
the assembler, is required to convert the code written in assembly language into an equivalent code
in machine language, which contains only 0s and 1s. The working of an assembler is shown in
Fig. 1.2; it can be seen that the assembler takes an assembly language program as input and gives a
code in machine language (also called object program) as output. There is a one-to-one correspond-
ence between the assembly language code and the machine language code. However, if there is an

OOPC++.indb 4 8/17/2017 1:58:24 PM

© Oxford University Press. All rights reserved.

Oxfo
rd

 U
niversi

ty
 Pre

ss

5Introduction to Object Oriented Programming (OOP)

error, the assembler gives a list of errors. The object file
is created only when the assembly language code is free
from errors. The object file can be executed as and when
required.

1.1.3  �Third Generation: High-level
Language

Third-generation programming languages are a refine-
ment of 2GLs. The second generation brought logical
structure to software. The third generation was introduced
to make the languages more programmer friendly.

The 3GLs spurred the great increase in data processing
that occurred in the 1960s and 1970s. In these languages,
the program statements are not closely related to the

internal characteristics of the computer. Hence, these languages are often referred to as high-level
languages.

Figure 1.2  Assembler

Assembler
source file

Assembler

Error
listing

Object file

Note	 An assembler only translates an assembly program into machine language.  The result is an
object file that can be executed. However, the assembler itself does not execute the object file.

In general, a statement written in a high-level programming language will expand into several
machine language instructions. This is in contrast to assembly languages, where one statement
would generate one machine language instruction. 3GLs made programming easier, efficient, and
less prone to errors.

High-level languages fall somewhere between natural languages and machine languages. 3GLs
include FORTRAN and COBOL, which made it possible for scientists and entrepreneurs to write
programs using familiar terms instead of obscure machine instructions.

The widespread use of high-level languages in the early 1960s changed programming into some-
thing quite different from what it had been. Programs were written in languages that were more
English-like, making them more convenient to use and giving the programmer more time to address
a client’s problems.

Although 3GLs relieve the programmer of demanding details, they do not provide the flexibility
available in low-level languages. However, a few high-level languages such as C and FORTH com-
bine some of the flexibility of assembly languages with the power of high-level languages, but these
languages are not well suited to programmers at the beginner level.

Some high-level languages were specifically designed to serve a specific purpose (such as con-
trolling industrial robots or creating graphics), whereas other languages were flexible and con-
sidered to be general purpose. Most programmers preferred to use general-purpose high-level
languages such as BASIC, FORTRAN, Pascal, COBOL, C++, or Java to write the code for their
applications.

Again, a translator is needed to translate the instructions written in a high-level language into
the computer-executable machine language. Such translators are commonly known as interpreters
and compilers. Each high-level language has many compilers, and there is one for each type of
computer.

For example, the machine language generated by one computer’s C compiler is not the same as
the machine language of some other computer. Therefore, it is necessary to have a C compiler for
each type of computer on which the C programs are to be executed.

OOPC++.indb 5 8/17/2017 1:58:24 PM

© Oxford University Press. All rights reserved.

Oxfo
rd

 U
niversi

ty
 Pre

ss

6 Object Oriented Programming with C++

The 3GLs make it easy to write and debug a program and give a programmer more time to think
about its overall logic. Programs written in such languages are portable between machines. For
example, a program written in standard C can be compiled and executed on any computer that has a
standard C compiler. Table 1.3 provides the advantages and disadvantages of 3GLs.

Compiler
A compiler is a special type of program that transforms the source code written in a programming
language (the source language) into machine language, which uses only two digits—0 and 1 (the
target language). The resultant code in 0s and 1s is known as the object code. The object code is
used to create an executable program.

Therefore, a compiler (refer to Fig. 1.3) is used to translate the source code from a high-level
programming language to a lower-level language (e.g., assembly language or machine code). There
is a one-to-one correspondence between the high-level language code and machine language code
generated by the compiler.

Table 1.3  Advantages and disadvantages of third generation languages

Advantages Disadvantages

•	 The code is machine independent.
•	 It is easy to learn and use the language.
•	 There are few errors.
•	 It is easy to document and understand the code.
•	 It is easy to maintain the code.
•	 It is easy to detect and correct errors.

•	 Code may not be optimized.
•	 The code is less efficient.
•	 It is difficult to write a code that controls the

CPU, memory, and registers.

Figure 1.3  Compiler

Object
program

Source
program

Compiler Output

Error list
Data

If no errors

If
errors

Execute

If the source code contains errors, then the compiler will not be able to do its intended task. Errors
that limit the compiler in understanding a program are called syntax errors. Examples of syntax errors
are spelling mistakes, typing mistakes, illegal characters, and use of undefined variables. The other
type of error is the logical error, which occurs when the program does not function accurately. Logical
errors are much harder to locate and correct than syntax errors. Whenever errors are detected in the
source code, the compiler generates a list of error messages indicating the type of error and the line in
which the error has occurred. The programmer makes use of this error list to correct the source code.

The work of a compiler is only to translate the human-readable source code into a computer-
executable machine code. It can locate syntax errors in the program (if any) but cannot fix it. Unless
the syntactical error is rectified, the source code cannot be converted into the object code.

Each high-level language has a separate compiler. A compiler can translate a program in one
particular high-level language into machine language. For a program written in some other pro-
gramming language, a compiler for that specific language is needed.

OOPC++.indb 6 8/17/2017 1:58:24 PM

© Oxford University Press. All rights reserved.

Oxfo
rd

 U
niversi

ty
 Pre

ss

7Introduction to Object Oriented Programming (OOP)

How compilers work?
Compilers like other programs reside on the secondary storage. To translate a source code into its equivalent
machine language code, the computer first loads the compiler and the source program from the secondary mem-
ory to the main memory.  The computer then executes the compiler along with the source program as its input.  The
output of this execution is an object file which is also stored on the secondary storage. Whenever the program has
to be executed, the computer loads the object file into memory and executes it. This means that it is not necessary
to compile the program every time it has to be executed. Compilation will be needed only the source is modified.

Interpreter
Like the compiler, the interpreter executes instructions written in a high-level language. Basically,
a program written in a high-level language can be executed in any of the two ways—by compiling
the program or by passing the program through an interpreter.

The compiler translates instructions written in a high-level programming language directly into
machine language; the interpreter, on the other hand, translates the instructions into an intermediate
form, which it then executes. The interpreter takes one statement of high-level code, translates it into
the machine level code, executes it, and then takes the next statement and repeats the process until
the entire program is translated.

Note	 An interpreter not only translates the code into machine language but also executes it.

Figure 1.4 shows an interpreter that takes a source program
as its input and gives the output. This is in contrast with the
compiler, which produces an object file as the output of the
compilation process. Usually, a compiled program executes
faster than an interpreted program. Moreover, since there is
no object file saved for future use, users will have to reinter-

pret the entire program each time they want to execute the code.
Overall, compilers and interpreters both achieve similar purposes, but they are inherently dif-

ferent as to how they achieve that purpose. The differences between compilers and interpreters are
given in Table 1.4.

Figure 1.4  Interpreter

Source
file

Interpreter
software

Output

Computer

Table 1.4  Differences between compiler and an interpreter

Compiler Interpreter

•	 It translates the entire program in one go.
•	 It generates error(s) after translating the entire

program.
•	 Execution of code is faster.
•	 An object file is generated.
•	 Code need not be recompiled every time it is

executed.
•	 It merely translates the code.
•	 It requires more memory space (to save the

object file).

•	 It interprets and executes one statement at a
time.

•	 It stops translation after getting the first
error.

•	 Execution of code is slower as every time
reinterpretation of statements has to be
done.

•	 No object file is generated.
•	 Code has to be reinterpreted every time it is

executed.
•	 It translates as well as executes the code.
•	 It requires less memory space (no object file).

OOPC++.indb 7 8/17/2017 1:58:24 PM

© Oxford University Press. All rights reserved.

Oxfo
rd

 U
niversi

ty
 Pre

ss

8 Object Oriented Programming with C++

Figure 1.5  Role of linker

LinkerRuntime
library

Executable
program

Source
file

Object
file

Source
file

Object
file

Source
file

Object
file

Source
file

Object
file

Linker
Software development in the real world usually follows a modular approach as given in struc-
tured programming (discussed in Section 1.2.3). In this approach, a program is divided into various
(smaller) modules as it is easy to code, edit, debug, test, document, and maintain them. Moreover, a
module written for one program can also be used for another program. When a module is compiled,
an object file of that module is generated.

Once the modules are coded and tested, the object files of all the modules are combined together
to form the final executable file. Therefore, a linker, also called a link editor or binder, is a program
that combines the object modules to form an executable program (refer to Fig.1.5). Usually, the
compiler automatically invokes the linker as the last step in compiling a program.

Loader
A loader is a special type of program that copies programs from a storage device to the main mem-
ory, where they can be executed. The functionality and complexity of most loaders are hidden from
the users.

1.1.4  Fourth Generation: Very High-level Languages
With each generation, programming languages started becoming easier to use and more similar to
natural languages. 4GLs are a little different from their prior generation because they are non-proce-
dural. While writing a code using a procedural language, the programmer has to tell the computer how
a task is done—add this, compare that, do this if the condition is true, and so on—in a very specific
step-by-step manner. In striking contrast, while using a non-procedural language, programmers define
what they want the computer to do but they do not supply all the details of how it has to be done. For
example, in a procedural language like C++, to show the details of all the students we write programs
that contains instructions specifying how the details are to be fetched and displayed but the same task
in SQL (a non procedural language) can be written in a single sentence (select * from Students)

Although there is no standard rule that defines a 4GL, certain characteristics of such languages
include the following:

•	 The instructions of the code are written in English-like sentences.
•	 They are non-procedural, so users concentrate on the ‘what’ instead of the ‘how’ aspect of the task.

OOPC++.indb 8 8/17/2017 1:58:25 PM

© Oxford University Press. All rights reserved.

Oxfo
rd

 U
niversi

ty
 Pre

ss

9Introduction to Object Oriented Programming (OOP)

•	 The code written in a 4GL is easy to maintain.
•	 The code written in a 4GL enhances the productivity of programmers, as they have to type fewer

lines of code to get something done. A programmer supposedly becomes 10 times more produc-
tive when he/she writes the code using a 4GL than using a 3GL.

A typical example of a 4GL is the query language, which allows a user to request information from
a database with precisely worded English-like sentences. A query language is used as a database user
interface and hides the specific details of the database from the user. For example, when working with
structured query language (SQL), the programmer just needs to remember a few rules of syntax and
logic, and therefore, it is easier to learn than COBOL or C.

Let us take an example in which a report needs to be generated. The report displays the total
number of students enrolled in each class and in each semester. Using a 4GL, the request would look
similar to the following:

TABLE FILE ENROLLMENT
SUM STUDENTS BY SEMESTER BY CLASS

Therefore, we see that a 4GL is very simple to learn and work with. The same task if written in C or
any other 3GL would require multiple lines of code.

The 4GLs are still evolving, which makes it difficult to define or standardize them. The only
downside of a 4GL is that it does not make efficient use of a machine’s resources. However, the
benefit of executing a program quickly and easily far outweighs the extra costs of running it.

1.1.5  Fifth Generation Programming Language
Fifth-generation programming languages (5GLs) are centred on solving problems using the con-
straints given to a program rather than using an algorithm written by a programmer. Most con-
straint-based and logic programming languages and some declarative languages form a part of the
5GLS. These languages are widely used in artificial intelligence research. Another aspect of a 5GL
is that it contains visual tools to help develop a program. Typical examples of 5GLs include Prolog,
OPS5, Mercury, and Visual Basic.

Therefore, taking a forward leap, 5GLs are designed to make the computer solve a given problem
without the programmer. While working with a 4GL, programmers have to write a specific code to
do a work, but with a 5GL, they only have to worry about what problems need to be solved and what
conditions need to be met, without worrying about how to implement a routine or an algorithm to
solve them.

In general, 5GLs were built upon LISP, many originating on the LISP machine such as ICAD.
There are also many frame languages such as KL-ONE.

In the 1990s, 5GLs were considered the wave of the future, and some predicted that they would
replace all other languages for system development (except the low-level languages). During the
period ranging from 1982 to 1993, Japan carried out extensive research on and invested a large
amount of money into their fifth-generation computer systems project, hoping to design a mas-
sive computer network of machines using these tools. However, when large programs were built,
the flaws of the approach became more apparent. Researchers began to observe that given a set
of constraints defining a particular problem, deriving an efficient algorithm to solve it is itself a
very difficult problem. All factors could not be automated and some still require the insight of a
programmer.

However, today the fifth-generation languages are pursued as a possible level of computer lan-
guage. Software vendors across the globe currently claim that their software meets the visual ‘pro-
gramming’ requirements of the 5GL concept.

OOPC++.indb 9 8/17/2017 1:58:25 PM

© Oxford University Press. All rights reserved.

Oxfo
rd

 U
niversi

ty
 Pre

ss

10 Object Oriented Programming with C++

Figure 1.6  Structure of a
monolithic program

ADB 10

BDB 20
SUM DB?

Global data

Sequential
code with
JMP
instruction

MOV AX, A

ADD AX, B

MOV SUM, AX

JMP STOP

STOP: .EXIT

................

Knowing about the evolution of programming languages is just not enough until and unless we
have a sound background knowledge about structure and style of writing of programs. The next sec-
tion therefore talks about programming paradigms so that you can have an insight into how object
oriented programming is better than the traditional paradigms.

1.2  PROGRAMMING PARADIGMS
A programming paradigm is a fundamental style of programming that defines how the structure and
basic elements of a computer program will be built. The style of writing programs and the set of
capabilities and limitations that a particular programming language has depends on the program-
ming paradigm it supports. While some programming languages strictly follow a single paradigm,
others may draw concepts from more than one. The sweeping trend in the evolution of high-level
programming languages has resulted in a shift in programming paradigm. These paradigms, in
sequence of their application, can be classified as follows:

•	 Monolithic programming—emphasizes on finding a solution
•	 Procedural programming—lays stress on algorithms
•	 Structured programming—focuses on modules
•	 Object-oriented programming—emphasizes on classes and objects
•	 Logic-oriented programming—focuses on goals usually expressed in predicate calculus
•	 Rule-oriented programming—makes use of ‘if-then-else’ rules for computation
•	 Constraint-oriented programming—utilizes invariant relationships to solve a problem

Each of these paradigms has its own strengths and weaknesses and no single paradigm can suit
all applications. For example, for designing computation intensive problems, procedure-oriented
programming is preferred; for designing a knowledge base, rule-based programming would be the
best option; and for hypothesis derivation, logic-oriented programming is used. In this book, we will
discuss only first four paradigms. Among these paradigms, object oriented paradigms supersede to
serve as the architectural framework in which other paradigms are employed.

1.2.1  Monolithic Programming
Programs written using monolithic programming languages such as assembly language and BASIC
consist of global data and sequential code. The global data can be accessed and modified (knowingly
or mistakenly) from any part of the program, thereby, posing a serious threat to its integrity.

A sequential code is one in which all instructions are executed in the
specified sequence. In order to change the sequence of instructions, jump
statements or ‘goto’ statements are used. Figure 1.6 shows the structure
of a monolithic program.

As the name suggests, monolithic programs have just one program
module as such programming languages do not support the concept of
subroutines. Therefore, all the actions required to complete a particu-
lar task are embedded within the same application itself. This not only
makes the size of the program large but also makes it difficult to debug
and maintain.

For all these reasons, monolithic programming language is used only
for very small and simple applications where reusability is not a concern.

1.2.2  Procedural Programming
In procedural languages, a program is divided into n number of subrou-
tines that access global data. To avoid repetition of code, each subroutine

OOPC++.indb 10 8/17/2017 1:58:25 PM

© Oxford University Press. All rights reserved.

Oxfo
rd

 U
niversi

ty
 Pre

ss

11Introduction to Object Oriented Programming (OOP)

performs a well-defined task. A subroutine that needs the service
provided by another subroutine can call that subroutine. Therefore,
with ‘jump’, ‘goto’, and ‘call’ instructions, the sequence of execu-
tion of instructions can be altered. Figure 1.7 shows the structure of
a procedural language.

FORTRAN and COBOL are two popular procedural program-
ming languages.

Advantages
•  The only goal is to write correct programs
• � Programs were easier to write as compared to monolithic programming

Disadvantages
•	 Writing programs is complex.
•	 No concept of reusability.
•	 Requires more time and effort to write programs.
•	 Programs are difficult to maintain.
•	 Global data is shared and therefore may get altered (mistakenly).

1.2.3  Structured Programming
Structured programming, also referred to as modular programming, was first suggested by mathe-
maticians, Corrado Bohm and Guiseppe Jacopini. It was specifically designed to enforce a logical
structure on the program to make it more efficient and easier to understand and modify. Structured
programming was basically defined to be used in large programs that require large development
team to develop different parts of the same program.

Structured programming employs a top-down approach in which the overall program structure is
broken down into separate modules. This allows the code to be loaded into memory more efficiently
and also be reused in other programs. Modules are coded separately and once a module is written
and tested individually, it is then integrated with other modules to form the overall program structure
(refer to Fig.1.8).

Structured programming is, therefore, based on modularization which groups related statements
together into modules. Modularization makes it easier to write, debug, and understand the program.

Ideally, modules should not be longer than a page. It is always easy to understand a series of 10
single-page modules than a single 10-page program.

For large and complex programs, the overall program structure may further require the need to
break the modules into subsidiary pieces. This process continues until an individual piece of code

can be written easily.
Almost every modern programming language similar to

C, Pascal, etc. supports the concepts of structured program-
ming. Even OOP can be thought of as a type of structured
programming. In addition to the techniques of structured
programming for writing modules, it also focus on struc-
turing its data.

In structured programming, the program flow follows
a simple sequence and usually avoids the use of ‘goto’
statements. Besides sequential flow, structured program-
ming also supports selection and repetition as mentioned
here.

Figure 1.7  Structure of a proce-
dural program

Global data

Program

Subprogram

Figure 1.8  Structured program

Global data

Program

Modules have their
own local data and

also share the
global data

OOPC++.indb 11 8/17/2017 1:58:25 PM

© Oxford University Press. All rights reserved.

Oxfo
rd

 U
niversi

ty
 Pre

ss

12 Object Oriented Programming with C++

•	 Selection allows for choosing any one of a number of statements to execute, based on the current
status of the program. Selection statements contain keywords such as if, then, end if, or switch
that help to identify the order as a logical executable.

•	 In repetition, a selected statement remains active until the program reaches a point where there
is a need for some other action to take place. It includes keywords such as repeat, for, or do…
until. Essentially, repetition instructs the program as to how long it needs to continue the function
before requesting further instructions.

Advantages
•	 The goal of structured programming is to write correct programs that are easy to understand and

change.
•	 Modules enhance programmer’s productivity by allowing them to look at the big picture first and

focus on details later.
•	 With modules, many programmers can work on a single, large program, with each working on a

different module.
•	 A structured program takes less time to be written than other programs. Modules or procedures

written for one program can be reused in other programs as well.
•	 Each module performs a specific task.
•	 Each module has its own local data.
•	 A structured program is easy to debug because each procedure is specialized to perform just one

task and every procedure can be checked individually for the presence of any error. In striking
contrast, unstructured programs consist of a sequence of instructions that are not grouped for
specific tasks. Their logic is cluttered with details and, therefore, difficult to follow.

•	 Individual procedures are easy to change as well as understand. In a structured program, every
procedure has meaningful names and has clear documentation to identify the task performed by
it. Moreover, a correctly written structured program is self-documenting and can be easily under-
stood by another programmer.

•	 More emphasis is given on the code and the least importance is given to the data.
•	 Global data may get inadvertently changed by any module using it.
•	 Structured programs were the first to introduce the concept of functional abstraction.

Note	 Functional abstraction allows a programmer to concentrate on what a function (or module)
does and not on how it does.

Disadvantages
•	 Structured programming is not data-centered.
•	 Global data is shared and therefore may get inadvertently modified.
•	 Main focus is on functions.

1.2.4  Object Oriented Programming
With the increase in size and complexity of programs, there was a need for a new programming par-
adigm that could help to develop maintainable programs. To implement this, the flaws in previous
paradigms had to be corrected. Consequently, OOP was developed. It treats data as a critical ele-
ment in the program development and restricts its flow freely around the system. We have seen that
monolithic, procedural, and structured programming paradigms are task-based as they focus on the
actions the software should accomplish. However, the object oriented paradigm is task-based and
data-based. In this paradigm, all the relevant data and tasks are grouped together in entities known
as objects (refer to Fig. 1.9).

OOPC++.indb 12 8/17/2017 1:58:25 PM

© Oxford University Press. All rights reserved.

Oxfo
rd

 U
niversi

ty
 Pre

ss

13Introduction to Object Oriented Programming (OOP)

For example, consider a list of numbers stored in an array. The procedural
or structured programming paradigm considers this list as merely a collec-
tion of data. Any program that accesses this list must have some procedures
or functions to process this list. For example, to find the largest number or to
sort the numbers in the list, we needed specific procedures or functions to do
the task. Therefore, the list was a passive entity was it is maintained by a con-
trolling program rather than having the responsibility of maintaining itself.

However, in the object oriented paradigm, the list and the associated oper-
ations are treated as one entity known as an object. In this approach, the list is
considered an object consisting of the list, along with a collection of routines
for manipulating the list. In the list object, there may be routines for adding a
number to the list, deleting a number from the list, sorting the list, etc.

The striking difference between OOP and traditional approaches is that
the program accessing this list need not contain procedures for perform-
ing tasks; rather, it uses the routines provided in the object. In other words,
instead of sorting the list as in the procedural paradigm, the program asks the
list to sort itself.

Therefore, we can conclude that the object oriented paradigm is task-
based (as it considers operations) as well as data-based (as these operations

are grouped with the relevant data).
Figure 1.10 represents a generic object in the object oriented para-

digm. Every object contains some data and the operations, methods, or
functions that operate on that data. While some objects may contain only
basic data types such as characters, integers, floating types, the other
object, the other objects on the other hand may incorporate complex data
types such as trees or graphs.

Programs that need the object will access the object’s methods through
a specific interface. The interface specifies how to send a message to the
object, that is, a request for a certain operation to be performed.

For example, the interface for the list object may require that any
message for adding a new number to the list should include the number

to be added. Similarly, the interface might also require that any message for sorting specify whether
the sort should be ascending or descending. Hence, an interface specifies how messages can be sent
to the object.

Figure 1.9  Object
oriented paradigm

Objects of a program
interact by sending

messages to each other

Object 1

Object 2

Object 3

Object 4

The striking features of OOP include the following:

•	 The programs are data-centered.
•	 Programs are divided in terms of objects and not procedures.
•	 Functions that operate on data are tied together with the data.
•	 Data is hidden and not accessible by external functions.
•	 New data and functions can be easily added as and when required.
•	 Follows a bottom-up approach for problem solving.

Figure 1.10  Object

Private data

Methods/functions

Interface

Note	 OOP is used for simulating real world problems on computers because real world is made of
objects.

OOPC++.indb 13 8/17/2017 1:58:26 PM

© Oxford University Press. All rights reserved.

Oxfo
rd

 U
niversi

ty
 Pre

ss

14 Object Oriented Programming with C++

Note	 Classes define properties and behaviour of objects.

Figure 1.11  A sample
student class

class student
{
 private:
 int roll_no;
 char name[20];
 float marks;
 public:
 get_details();
 show_details();
};

1.3  FEATURES OF OBJECT ORIENTED PROGRAMMING
The object oriented language must support mechanisms to define, create, store, manipulate objects,
and allow communication between objects. In this section, we will read about the underlying con-
cepts of OOP. These are as follows:

•	 Classes
•	 Objects
•	 Methods
•	 Message passing

•	 Inheritance
•	 Polymorphism
•	 Containership
•	 Genericity

•	 Reusability
•	 Delegation
•	 Data Abstraction and
	 Encapsulation

1.3.1  Classes
Almost every language has some basic data types such as int, float, long, and so on, but not all real
world objects can be represented using these built-in types. Therefore, OOP, being specifically designed
to solve real world problems, allows its users to create user defined data types in the form of classes.

A class is used to describe something in the world, such as occurrences, things, external enti-
ties, and so on. A class provides a template or a blueprint that describes
the structure and behaviour of a set of similar objects. Once we have the
definition for a class, a specific instance of the class can be easily created.
For example, consider a class student. A student has attributes such as
roll number, name, course, and marks. The operations that can be per-
formed on its data may include ‘get_details’, ‘set_details’, ‘edit_details’,
and so on (refer to Fig. 1.11). Therefore, we can say that a class describes
one or more similar objects.

It must be noted that this data and the set of operations that we have
given here can be applied to all students in the class. When we create an
instance of a student, we are actually creating an object of class student.
Therefore, once a class is declared, a programmer can create any number of
objects of that class.

Top-down vs Bottom-up approach

While top-down approach follows a stepwise refinement by decomposing the algorithm into manageable modules,
the bottom-up approach on the other hand defines a module and then groups together several modules to form
a new higher level module.
In a top-down approach, we start from an abstract design and then at each step, this design is refined into more con-
crete levels until a level is reached that requires no further refinement Therefore, this approach is highly appreciated
for ease in documenting the modules, generation of test cases, implementation of code, and debugging. However, it
is also criticized because the sub-modules are analysed in isolation without concentrating on their communication
with other modules or on reusability of components and little attention is paid to data, thereby ignoring the concept
of information hiding.
While the bottom-up approach allows information hiding as it first identifies what has to be encapsulated within a
module and then provides an abstract interface to define the module’s boundaries as seen from the clients. But all
this is difficult to be done in a strict bottom-up strategy. Some top-down activities need to be performed for this.
Whether the top-down strategy should be followed or a bottom-up is a question that can be answered depending
on the application at hand.

OOPC++.indb 14 8/17/2017 1:58:26 PM

© Oxford University Press. All rights reserved.

Oxfo
rd

 U
niversi

ty
 Pre

ss

15Introduction to Object Oriented Programming (OOP)

Figure 1.12 
Representation of an
object

Object Name

Attribute 1

Function 1
Function 2

Function N

Attribute 2

Attribute N

………..

………..

Therefore, a class is a collection of objects of similar type. It is a user-defined data type that behaves
same as the built-in data types. This can be realized by ensuring that the syntax of creating an object
is same as that of creating an int variable. For example, to create an object (stud) of class student,
we write

student stud;

Note	 Defining a class does not create any object. Objects have to be explicitly created by using the
syntax as follows:
class-name object-name;

1.3.2  Objects
In the previous section, we have taken an example of student class and have mentioned that a class
is used to create instances, known as objects. Therefore, if student is a class, then all the 60 students
in a course (assuming there are maximum 60 students in a particular course) are the objects of the
student class. Therefore, all students such as Aditya, Chaitanya, Deepti, and Esha are objects of the
class.

Hence, a class can have multiple instances.
Every object contains some data and functions (also called methods) as shown in Fig. 1.12. These

methods store data in variables and respond to messages that they receive from other objects by exe-
cuting their methods (procedures).

Note	 While a class is a logical structure, an object is a physical actuality.

1.3.3  Method and Message Passing
A method is a function associated with a class. It defines the operations that the
object can execute when it receives a message. In object oriented language, only
methods of the class can access and manipulate the data stored in an instance
of the class (or object). Figure 1.13 shows how a class is declared using its data
members and member functions.

Every object of the class has its own set of values. Therefore, two distinguish-
able objects can have the same set of values. Generally, the set of values that
the object takes at a particular time is known as the state of the object. The state
of the object can be changed by applying a particular method. Table 1.5 shows
some real world objects along with their data and operations.

Figure 1.13  Objects sending messages

Message-
get_details of student
with roll_no 1

Sender
object

Receiver
object

1, Aditya, BTech, 92

OOPC++.indb 15 8/17/2017 1:58:26 PM

© Oxford University Press. All rights reserved.

Oxfo
rd

 U
niversi

ty
 Pre

ss

16 Object Oriented Programming with C++

Figure 1.14  Inheritance

Parent
features

Parent, base, or
super class

Child, derived, or sub class

Parent +
Child’s

features

Two objects can communicate with each other through messages. An object asks another object
to invoke one of its methods by sending it a message. In Fig. 1.13 in which a sender object is
sending a message to the receiver object to get the details of a student. In reply to the message, the
receiver sends the results of the execution to the sender.

In the figure, sender has asked the receiver to send the details of student having roll_no 1. This
means that the sender is passing some specific information to the receiver so that the receiver can
send the correct and precise information to the sender. The data that is transferred with the message
is called parameters. Here, roll_no 1 is the parameter.

Therefore, we can say that messages that are sent to other objects consist of three aspects—the
receiver object, the name of the method that the receiver should invoke, and the parameters that

must be used with the method.

1.3.4  Inheritance
Inheritance is a concept of OOP in which a new class is created from an exist-
ing class. The new class, often known as a sub-class, contains the attributes
and methods of the parent class (the existing class from which the new class
is created).

The new class, known as sub-class or derived class, inherits the attributes and
behaviour of the pre-existing class, which is referred to as super-class or parent
class (refer to Fig. 1.14). The inheritance relationship of sub- and super classes
generates a hierarchy. Therefore, inheritance relation is also called ‘is-a’ relation.
A sub-class not only has all the states and behaviours associated with the super-
class but has other specialized features (additional data or methods) as well.

The main advantage of inheritance is the ability to reuse the code. When
we want a specialized class, we do not have to write the entire code for that
class from scratch. We can inherit a class from a general class and add the
specialized code for the sub-class. For example, if we have a class student with
following members:

Properties:	 roll_number, name, course, and marks
Methods:	 get_details, set_details

Table 1.5  Objects with data and functions

Object Data or attributes Functions or methods

Person Name, age, sex Speak(), walk(), listen(), write()

Vehicle Name, company, model, capacity, colour Start(), stop(), accelerate()

Polygon Vertices, border, colour Draw(), erase

Account Type, number, balance Deposit(), withdraw(), enquire()

City Name, population, area, literacy rate Analyse, data(), display()

Computer Brand, resolution, price Processing(), display(), printing()

Note	 An object is an instance of a class which can be uniquely identified by its name. Every object has
a state which is given by the values of its attributes at a particular time.

We can inherit two classes from the class student, namely, under_graduate students and post_gradu-
ate students (refer to Fig. 1.15). These two classes will have all the properties and methods of class
students and in addition to that, will have even more specialized members.

OOPC++.indb 16 8/17/2017 1:58:26 PM

© Oxford University Press. All rights reserved.

Oxfo
rd

 U
niversi

ty
 Pre

ss

17Introduction to Object Oriented Programming (OOP)

Figure 1.15  Example for Inheritance

Student

Postgraduate
student

Undergraduate
student

When a derived class receives a message to execute a method,
it finds the method in its own class. If it finds the method, then
it simply executes it. If the method is not present, it searches for
that method in its super class. If the method is found, it is exe-
cuted, otherwise, an error message is reported. A sub class can
inherit properties and methods from multiple parent classes.  This
is called multiple inheritance.

Note	 A sub class can inherit properties and methods from multiple parent classes.  This is called mul-
tiple inheritance.

1.3.5  Polymorphism: Static Binding and Dynamic Binding
Polymorphism, one of the essential concepts of OOP, refers to having several different forms. While
inheritance is related to classes and their hierarchy, polymorphism, on the other hand, is related to
methods.

Polymorphism is a concept that enables the programmers to assign a different meaning or usage
to a variable, function, or an object in different contexts.

When polymorphism is applied on variables, the variable with a given name may be allowed
to have different forms. The program will then decide which form to use. For example, variable
‘roll_no’ of a class student may be an integer (number) or an alphanumeric character (combination
of numbers and alphabets). The program can be coded to distinguish between the two forms of the
variable so that it can be handled in its own way.

Polymorphism can also be applied to a function in such a way that depending on the parameters
it is given, a particular form of the function can be selected for execution. For example, if the roll
number of the student is an integer, then its corresponding function will be executed. In case it con-
sists of alphanumeric characters, another function having the same name will be executed. This type
of polymorphism is called function overloading.

Polymorphism can also be applied to operators. For example, we know that operators can be
applied only on basic data types that the programming language supports. Therefore, a + b will give
the result of adding a and b. If a = 2 and b = 3, then a + b = 5. When we overload the + operator to be
used with strings, then str1 + str2 gives the result str2 concatenated with str1. Therefore, if str1 =
“Oxford” and str 2 = “University” then str1 + str2 = “Oxford University”.

All types of polymorphism we have discussed so far are better known as compile time polymor-
phism or static binding. Dynamic binding or late binding, also known as run time polymorphism, is
a feature that enables programmers to associate a function call with a code at the execution (or run)
time. For example, if we have a function print_result() in class student, then both the inherited
classes, under graduate and post graduate students will also have the same function implemented in
their respective classes. Now, when there is a call to print_result(),
ptr_to_student-> print_result();

then, the decision regarding which version to call—the one in under graduate class or the one in post
graduate class—will be taken at the execution time. Hence, the name.

Note	 Binding means associating a function call with the corresponding function code to be executed
in response to the call.

1.3.6  Containership
The ability of a class to contain object(s) of one or more classes as member data. For example, class
One can have an object of class Two as its data member. This would allow the object of class One

OOPC++.indb 17 8/17/2017 1:58:27 PM

© Oxford University Press. All rights reserved.

Oxfo
rd

 U
niversi

ty
 Pre

ss

18 Object Oriented Programming with C++

Function template

Function 1 Function 2 Function n

Class template

Class 1 Class 2 Class n

(a) (b)

Figure 1.16  (a) Generated functions (b) Generated classes

to call the public functions of class Two. Here, class One becomes the container, whereas class Two
becomes the contained class.

Containership is also called composition because as in our example, class One is composed of
class Two. In OOP, containership represents a ‘has-a’ relationship.

1.3.7  Genericity
To reduce code duplication and generate short, simpler code, C++ supports the use of generic codes
(or templates) to define the same code for multiple data types. This means that a C++ function or
a class can perform similar operations on different data types like integers, float, and double. This
means that a generic function can be invoked with arguments of any compatible type.

Generic programs, therefore, act as a model of function or class that can be used to generate
functions or classes. During program compilation, C++ compiler generates one or more functions or
classes based on the specified template. Figure 1.16(a) and (b) clarifies this concept.

This discussion states that generic programming is a technique of programming in which a gen-
eral code is written first. The code is instantiated only when need arises for specific types (provided
as parameters).

Reusability
Reusability means developing codes that can be reused either in the same program or in different
programs. C++ gives due importance to building programs that are reusable. Reusability is attained
through inheritance, containership, polymorphism, and genericity.

1.3.8  Delegation
To provide maximum flexibility to programmers and to allow them to generate a reusable code,
object oriented languages also support delegation, also known as composition or containership. In
composition, an object can be composed of other objects and thus, the object exhibits a ‘has-a’
relationship.

In delegation, more than one object is involved in handling a request. The object that receives the
request for a service, delegates it to another object called its delegate. The property of delegation
emphasizes on the ideology that a complex object is made of several simpler objects. For example,
our body is made up of brain, heart, hands, eyes, ears, etc., the functioning of the whole body as a
system rests on correct functioning of the parts it is composed of. Similarly, a car has a wheel, brake,
gears, etc. to control it.

Delegation differs from inheritance in that two classes that participate in inheritance share an
‘is-a’ relationship; however, in delegate, they have a ‘has-a’ relationship.

1.3.9  Data Abstraction and Encapsulation
Data abstraction refers to the process by which data and functions are defined in such a way that
only essential details are revealed and the implementation details are hidden. The main focus of data
abstraction is to separate the interface and the implementation of a program. For example, as users
of television sets, we can switch it on or off, change the channel, set the volume, and add external

OOPC++.indb 18 8/17/2017 1:58:27 PM

© Oxford University Press. All rights reserved.

Oxfo
rd

 U
niversi

ty
 Pre

ss

19Introduction to Object Oriented Programming (OOP)

devices such as speakers and CD or DVD players without knowing the details about how its func-
tionality has been implemented. Therefore, the internal implementation is completely hidden from
the external world.

Similarly, in OOP languages, classes provide public methods to the outside world to provide the
functionality of the object or to manipulate the object’s data. Any entity outside the world does not
know about the implementation details of the class or that method.

Data encapsulation, also called data hiding, is the technique of packing data and functions into a
single component (class) to hide implementation details of a class from the users. Users are allowed
to execute only a restricted set of operations (class methods) on the data members of the class.
Therefore, encapsulation organizes the data and methods into a structure that prevents data access
by any function (or method) that is not specified in the class. This ensures the integrity of the data
contained in the object.

Encapsulation defines three access levels for data variables and member functions of the class.
These access levels specify the access rights, explained as follows.

•	 Any data or function with access level as public can be accessed by any function belonging to any
class. This is the lowest level of data protection.

•	 Any data or function with access level protected can be accessed only by that class or by any class
that is inherited from it.

•	 Any data or function with access level private can be accessed only by the class in which it is
declared. This is the highest level of data protection

Note	 Creating a new data type using encapsulated items that is well suited for an application is called
data abstraction.

1.4  �MERITS AND DEMERITS OF OBJECT ORIENTED PROGRAMMING
LANGUAGE

OOP offers many benefits to program developers and users. It not only provides a solution for many
problems associated with software development and its quality but also enhances programmer pro-
ductivity and reduces maintenance cost. Some key advantages of OOP include the following:

•	 Elimination of redundant code through inheritance (by extending existing classes)
•	 Higher productivity and reduced development time due to reusability of the existing modules
•	 Secure programs as data cannot be modified or accessed by any code outside the class
•	 Real world objects in the problem domain can be easily mapped objects in the program
•	 A program can be easily divided into parts based on objects
•	 The data-centred design approach captures more details of a model in a form that can be easily

implemented
•	 Programs designed using OOP are expandable as they can be easily upgraded from small to large

systems
•	 Message passing between objects simplifies the interface descriptions with external systems
•	 Software complexity becomes easily manageable
•	 With polymorphism, behaviour of functions, operators, or objects may vary depending upon the

circumstances
•	 Data abstraction and encapsulation hides implementation details from the external world and

provides it a clearly defined interface
•	 OOP enables programmers to write easily extendable and maintainable programs
•	 OOP supports code reusability to a great extent

OOPC++.indb 19 8/17/2017 1:58:27 PM

© Oxford University Press. All rights reserved.

Oxfo
rd

 U
niversi

ty
 Pre

ss

20 Object Oriented Programming with C++

However, the down side of OOP include the following:

•	 Programs written using object oriented languages have greater processing overhead as they
demand more resources

•	 Requires more skills to learn and implement the concepts
•	 Beneficial only for large and complicated programs
•	 Even an easy to use software when developed using OOP is hard to be build
•	 OOP cannot work with existing systems
•	 Programmers must have a good command in software engineering and programming methodology

1.5  APPLICATIONS OF OBJECT ORIENTED PROGRAMMING
No doubt, the concepts of object oriented technology have changed the way of thinking, analyzing,
planning, and implementing software. Software or applications developed using this technology are
not only efficient but also easy to upgrade. Therefore, programmers and software engineers all over
the world have shown their keen interest in developing applications using OOP. As a result, there
has been a constant increase in areas where OOP has been successfully implemented. Some of these
areas include the following:

•	 Designing user interfaces such as work screens, menus, windows, and so on
•	 Real-time systems
•	 Simulation and modelling
•	 Compiler design
•	 Client server system
•	 Object oriented databases
•	 Object oriented distributed database
•	 Artificial intelligence—expert systems and neural networks
•	 Parallel programming
•	 Decision control systems
•	 Office automation systems
•	 Networks for programming routers, firewalls, and other devices
•	 Computer-aided design (CAD) systems
•	 Computer-aided manufacturing (CAM) systems
•	 Computer animation
•	 Developing computer games
•	 Hypertext and hypermedia

1.6  DIFFERENCES BETWEEN PROGRAMMING LANGUAGES
Most of you have learnt programming in C. To appreciate the power of C++, let us first compare
C++ with C language which is not an object oriented language and then try to understand how C++
is different from other object oriented languages.

Table 1.6 summarizes the differences between C and C++ and Table 1.7 highlights the differ-
ences between commonly used object oriented languages.

Table 1.6  Differences between C and C++

C C++

•	 Procedural language
•	 Does not support virtual functions
•	 Does not support polymorphism
•	 Does not support operator overloading

•	 Uses top-down approach to build complex
programs

•	 Does not support namespaces
•	 Object oriented language

(Contd )

OOPC++.indb 20 8/17/2017 1:58:27 PM

© Oxford University Press. All rights reserved.

Oxfo
rd

 U
niversi

ty
 Pre

ss

21Introduction to Object Oriented Programming (OOP)

Table 1.6  (Contd )

C C++

•	 Supports virtual functions
•	 Supports polymorphism
•	 Supports operator overloading
•	 Uses bottom-up approach to build complex

programs
•	 Supports namespaces
•	 Can have multiple declarations for global

variables
•	 Printf() and scanf() functions in stdio.h file are

used for I/O
•	 Difficult to determine which function can and

cannot modify data
•	 Allows main() to be called through other

functions
•	 All variables must be defined at the beginning of

the function (or scope)
•	 Does not support inheritance
•	 Does not support exception handling
•	 Uses malloc(), calloc(), and free() for dynamically

allocating or de-allocating memory

•	 A character constant is automatically elevated
to an integer

•	 Identifiers cannot start with two or more
consecutive underscores, but may contain them
in other positions.

•	 Cannot have multiple declarations for global
variables

•	 Objects cin and cout of iostream are used for
input or output

•	 Easy mapping between data and functions
•	 Does not allow main() to be called through

other functions
•	 Variables can be defined at any location but

before their first use.
•	 Supports inheritance
•	 Supports exception handing
•	 Uses new and delete operators for dynamically

allocating or de-allocating memory
•	 A character constant is not elevated to integer
•	 Identifiers are not allowed to contain two or

more consecutive underscores in any position

Table 1.7  Comparison between commonly used object oriented languages

Attributes EIFFEL C++ JAVA SMALLTALK

Static typing Statically typed Statically typed
but supports
C-style ‘casts’
which may lead to
violation of type
rules

Statically typed
but needs
dynamic typing for
generic container
structures

Dynamically typed

Proprietary status Open and
standardized

Open,  ANSI
standard

Licensed from
Sun

Not standardized

Compilation
technology

Combination of
interpretation
and compilation

Compiled Interpreted
and on the fly
compilation

Initially
interpreted but
currently mix of
interpretation and
compilation

Efficiency of code Fast executable Fast executable Performance
problems

Executables
require a
‘Smalltalk image’

(Contd )

OOPC++.indb 21 8/17/2017 1:58:27 PM

© Oxford University Press. All rights reserved.

Oxfo
rd

 U
niversi

ty
 Pre

ss

22 Object Oriented Programming with C++

Attributes EIFFEL C++ JAVA SMALLTALK

Multiple inheritance Supported and
widely used

Supported but
not widely used
because of perfor-
mance problems

Single inheritance Single inheritance

Understandability Clear and
simple

Complex syntax Complex syntax In between simple
and complex

Garbage collection Supported
automatically

Not supported Supported
automatically

Supported
automatically

Encapsulation Supported Supported Poor support Supported

Binding (early or late) Early Both Late Late

Table 1.7  (Contd )

1.7  C++ COMPILERS
In this section we will discuss some C++ compilers that are widely used today.
Clang  Clang is a C++ compiler developed primarily by Apple. It supports various ISO (International
Standards Organization) C++ language standards. This compiler has been released under the BSD
license.
MinGW-w64  MinGW-w64 provides the library files, header files, and runtime support needed for
the GNU C++ compilers to run on a Windows system. The w64 means that the project support files
that allow users to create 64-bit programs in addition to 32-bit ones. Another appealing feature of
MinGW-w64 is that it provides cross-compilers that allows users to compile a Windows program
from a Linux system or vice versa. Applications generated using MinGW are faster than those gen-
erated by the Cygwin32 system and are free from the encumbrances of the GNU license.
Microsoft Visual Studio Express 2013  Visual Studio Express 2013 can be used on Windows
desktop as well as on Windows Phone. Visual Studio Express is a package that has an integrated
development environment (IDE), compilers for C++, C# and Visual Basic. However, the Express
version does not include all the tools and features of the full Visual Studio, like the full MSDN
library, resource editor, macro assembler, etc.
x86 Open64 compiler system  It is a high performance code generation tool designed for high
performance parallel computing workloads. It is a version of the Open64 compiler suite that requires
Linux and has been tuned for AMD processors. The C++ compiler conforms to the ISO C++ 98
standards and supports 32-bit and 64-bit code generation, vector and scalar code generation. It also
comprises of an optimizer that supports a huge variety of optimizations (global, loop transformation,
vectorization, feedback-directed, inter-procedural analysis, etc), multi-threading. The compiler cre-
ates a strong foundation for building robust, high performance parallel code. It also has an optimized
AMD Core Math Library and documentation.
Open Source Watcom/OpenWatcom C/C++ Compiler  An open source and free compiler
which generates code for Win32, Windows 3.1 (Win16), OS/2, Netware NLM, MSDOS (16-bit and
32-bit protected mode), etc. The compiler includes support for C++ Standard Template Library.
Digital Mars C/C++ Compiler (Symantec C++ Replacement)  Digital Mars C++ supports
compiling programs for Win32, Windows 3.1, MSDOS, and 32-bit extended MSDOS. If the target

OOPC++.indb 22 8/17/2017 1:58:27 PM

© Oxford University Press. All rights reserved.

Oxfo
rd

 U
niversi

ty
 Pre

ss

23Introduction to Object Oriented Programming (OOP)

machine does not have a floating point processor the programmers can still link the floating point
emulation into their programs. The compiler supports the C++ definition specified in The Annotated
C++ Reference Manual (ARM) and the enhanced language features of AT&T version 3.0. Features
like templates, nested classes, nested types, exception handling, and runtime type identification,
command line and GUI versions, tutorials, sample code, online updates, and much more all are
supported by this compiler.
Bloodshed Dev-C++ Compiler  A Win32 IDE that includes the egcs C++ compiler and GNU
debugger from the Mingw32 environment along with an editor and other facilities to make program
development using the Mingw32 gcc compiler easier on Windows. This compiler also comprises of
an installer for application programs.
DJGPP C++ Compilers  It is a development system based on GNU C++ compiler that generates
32-bit MSDOS executables. It is a complete system that comprises of IDEs, graphics libraries, lex-
ical analyser generators (flex), parser generators (bison), text processing utilities (like grep, sed), a
program maintenance utility (i.e. make), a dos extender, etc.
Cygwin C++ Compilers  The compiler generates Win32 GUI and console applications. It comes
with source code for the compiler, libraries, and tools. The compiler makes it easy for programmers
to distribute their source code (while compiling and linking with their libraries).
Sun Studio  It is a high-performance, optimizing compiler for the Solaris OS on SPARC and
×86/×64 platforms. It provides multi platform support and comprises of command-line tools plus a
NetBeans-based Integrated Development Environment (IDE) for application performance analysis
and debugging of mixed source language applications.
Borland C++  provides a programming environment for MS-DOS and Microsoft Windows. It
has an IDE and is considered as a successor to Turbo C++. Borland has a library that contains a
set of classes to make it easier to develop professional graphical Windows applications as DOS
applications.
Turbo C++  Turbo C++ is a utility tool that helps programmers to code their C++ programs easily and
effectively. Although Turbo C++ lacks some of the advanced features but it includes all features that
any user might need to execute their programs. On the positive side, it is a free software which is sim-
ple to use and has an intuitive interface. However, on the downside it has very few advanced features.

Points to Remember 
•	 If a procedure is formally defined, it must be

implemented using some formal language, and
such a language is often known as a programming
language.

•	 Programming languages are used to create pro-
grams that control the behaviour of a system, to
express algorithms, or used as a mode of human
communication.

•	 Machine language was used to program the first
stored-program computer systems. This is the lowest
level of programming language.

•	 Assembly languages are symbolic programming
languages that use symbolic notation to represent
machine-language instructions.

•	 5GLs are centred on solving problems using con-
straints given to the program.

•	 Object oriented programming (OOP) emphasizes on
classes and objects.

•	 Programs written using monolithic programming
languages such as assembly language and BASIC
consist of global data and sequential code.

•	 In procedural languages, a program is divided into n
number of subroutines that access global data.

•	 Structured programming employs a top-down
approach in which the overall program structure is
broken down into separate modules.

•	 OOP treats data as a critical element in the program
development and restricts its flow freely around the
system.

•	 A class provides a template or a blueprint that
describes the structure and behaviour of a set of sim-
ilar objects.

OOPC++.indb 23 8/17/2017 1:58:27 PM

© Oxford University Press. All rights reserved.

Oxfo
rd

 U
niversi

ty
 Pre

ss

24 Object Oriented Programming with C++

Glossary 
Assembler System software that translates a code writ-
ten in assembly language into machine language

Compiler A special type of program that transforms
source code written in a third programming language
into machine language

Data abstraction Creating a new data type using
encapsulated items that is well suited for an application

Data encapsulation It is also called data hiding, and
is the technique of packing data and functions into a
single component (class) to hide implementation details
of a class from users

Functional abstraction A technique that allows a pro-
grammer to concentrate on what a function (or module)
does and not on how it does

Inheritance A concept of object oriented programming
in which a new class is created from an existing class

Linker A program that combines object modules to
form an executable program

Loader A program that copies programs from a storage
device to main memory, where they can be executed

Method Function associated with a class

Multiple inheritance A technique that allows a sub
class to inherit properties and methods from multiple
parent classes

Object An instance of a class

Polymorphism A concept that enables programmers to
assign a different meaning or usage to a variable, func-
tion, or an object in different contexts

Programming language A language specifically
designed to express computations that can be performed
the computer

Programming paradigm A fundamental style of pro-
gramming that defines how the structure and basic ele-
ments of a computer program will be built

Repetition A technique that allows a selected state-
ment to remain active until the program reaches a point
where there is a need for some other action to take place

Sequential code Code in which all the instructions are
executed in the specified sequence one by one

Selection A technique that allows for choosing any one
of a number of statements to execute, based on the cur-
rent status of the program

Exercises

Fill in the Blanks

	 1.	 Programming languages have a vocabulary of
______ and _____ for instructing a computer to
perform specific tasks.

	 2.	 Assembly language uses _____ to write programs.
	 3.	 An assembly language statement consists of a

_____, _____, and ____.
	 4.	 ______ are used to identify and reference instruc-

tions in the program.
	 5.	 The output of an assembler is a _____ file.
	 6.	 A typical example of a 4GL is the ______.
	 7. 	 Examples of a 5GL include ______, _____, and

____.
	 8.	 _____ defines the structure of a program.
	 9.	 _____ programming emphasizes on classes and

objects.
	10.	 Logic-oriented programming focus on _____

expressed in ______.

	11.	 Two examples of languages that support mono-
lithic programming paradigm are ____ and _____.

	12.	 ____ and ____ statements are used to change the
sequence of execution of instructions.

	13.	 FORTRAN and COBOL are two popular ______
programming languages.

	14.	 Functional abstraction was first supported by
_______ programming.

	15.	 An object contains ____ and ______.
	16.	 ______ paradigm supports bottom-up approach of

problem solving.
	17.	 _____ provides a template that describes the struc-

ture and behaviour of an object.
	18.	 While _____ is a logical structure, ____ is a phys-

ical actuality.
	19.	 State defines the _______.
	20.	 The data that is transferred with the message is

called _____.
	21.	 A message consists of _____, _____, and _______.

OOPC++.indb 24 8/17/2017 1:58:27 PM

© Oxford University Press. All rights reserved.

Oxfo
rd

 U
niversi

ty
 Pre

ss

25Introduction to Object Oriented Programming (OOP)

	22.	 Inheritance relation is also called as ______
relation.

	23.	 _____ is related to classes and their hierarchy.
	24.	 Polymorphism is related to _______.
	25.	 Any data or function with access level ______

can be accessed by any function belonging to any
class.

State True or False

	 1.	 A programming language provides a blueprint to
write a program to solve a particular problem.

	 2.	 Machine language is the lowest level of language.
	 3.	 Code written in machine language is not portable.
	 4.	 Compiler not only translates the code into machine

language but also executes it.
	 5.	 An interpreted program executes faster than a

compiled program.
	 6.	 Nonprocedural code that illustrates the ‘how’

aspect of the task is a feature of 3GL.
	 7.	 Constraint-based programming is used for hypoth-

esis derivation.
	 8.	 In monolithic paradigm, global data can be accessed

and modified from any part of the program.
	 9.	 Monolithic program has two modules.
	10.	 Monolithic programs are easy to debug and

maintain.
	11.	 Structured programming is based on modulariza-

tion.
	12.	 Object oriented programming supports modulari-

zation.
	13.	 Structured programming heavily used goto state-

ments.
	14.	 Modules enhance the programmer’s productivity.
	15.	 A structured program takes more time to be writ-

ten than other programs.
	16.	 The interface specifies how to send a message to

the object.
	17.	 OOP does not support modularization.
	18.	 A class is a user-defined data type.
	19.	 Once a class is declared, a programmer can create

maximum 10 objects of that class.
	20.	 Polymorphism means several different forms.
	21.	 Any data or function with access level private can

be accesses only by that class or by any class that
is inherited from it.

	22.	 OOP helps to develop secure programs.

	23.	 It is difficult to manage software complexity in
object oriented programs.

	24.	 Programs written using object oriented languages
have greater processing overhead.

Multiple Choice Questions

	 1.	 Which language is good for processing numerical
data?
(a)	 C	 (b)	 C++
(c)	 FORTRAN	 (d)	 Java

	 2.	 Which is the fastest and the most efficient lan-
guage?
(a)	 Machine level
(b)	 Assembly
(c)	 High level
(d)	 Artificial intelligence

	 3.	 FORTRAN, COBOL, and Pascal are examples of
which generation language?
(a)	 First	 (b)	 Second
(c)	 Third	 (d)	 Fourth

	 4.	 In which generation language does the code com-
prise instructions written in English-like sentences?
(a)	 First	 (b)	 Second
(c)	 Third	 (d)	 Fourth

	 5.	 Which feature is affected by programming
paradigm?
(a)	 Style of programming
(b)	 Capabilities
(c)	 Limitations
(d)	 All of these

	 6.	 Which programming paradigm utilizes invariant
relationships to solve a problem?
(a)	 Rule-based
(b)	 Constraint-based
(c)	 Structured
(d)	 Object oriented

	 7.	 Which is the preferred paradigm for designing a
knowledge base?
(a)	 Rule-based
(b)	 Constraint-based
(c)	 Structured
(d)	 Object oriented

	 8.	 Which type of programming does not support sub
routines?
(a)	 Monolithic	 (b)	 Structured
(c)	 Rule-based	 (d)	 Object oriented

OOPC++.indb 25 8/17/2017 1:58:27 PM

© Oxford University Press. All rights reserved.

Oxfo
rd

 U
niversi

ty
 Pre

ss

26 Object Oriented Programming with C++

	 9.	 C and Pascal belong to which type of program-
ming language?
(a)	 Monolithic	 (b)	 Structured
(c)	 Logic-oriented	 (d)	 Object oriented

	10.	 Which paradigm holds data as a priority?
(a)	 Monolithic	 (b)	 Structured
(c)	 Logic-oriented	 (d)	 Object oriented

	11.	 Two objects can communicate with each other
through ____
(a)	 Classes	 (b)	 Objects
(c)	 Methods	 (d)	 Messages

	12.	 Which concept enables programmers to assign a
different meaning or usage to a variable, function,
or an object in different contexts?
(a)	 Inheritance
(b)	 Message passing
(c)	 Polymorphism
(d)	 Abstraction

	13.	 Which access level allows data and functions to be
accessed only by the class in which it is declared?
(a)	 Public	 (b)	 Private
(c)	 Protected	 (d)	 None of these

	14.	 In which of these applications is OOP applied?
(a)	 CAD	 (b)	 CAM
(c)	 Compiler design	 (d)	 All of these

Review Questions

	 1.	 What is a programming language?
	 2.	 Write a short note on generation of programming

languages.
	 3.	 Differentiate between a compiler and an interpreter.
	 4.	 Differentiate between syntax errors and logic errors.
	 5.	 What do you understand by the term ‘program-

ming paradigm’?
	 6.	 Discuss any three programming paradigms in detail.
	 7.	 How is structured programming better than mono-

lithic programming?
	 8.	 Describe the special characteristics of monolithic

programming.
	 9.	 Explain how functional abstraction is achieved in

structured programming.
	10.	 Which programming paradigm is data-based and

why?
	11.	 Explain the concepts of OOP.
	12.	 Differentiate between a class and an object.
	13.	 How is a message related with a method?
	14.	 Inheritance helps to make reusable code. Justify.
	15.	 What do you understand by the term ‘polymor-

phism’?
	16.	 Why is data abstraction and encapsulation called

the building blocks of OOP?
	17.	 Explain the three levels of data protection.
	18.	 What are the merits and demerits of OOP?

Answers
Fill in the Blanks

1. Syntax, semantics; 2. Mnemonic codes; 3. Label, an operation code, and one or more operands; 4. Labels;
5. Object; 6. Query language; 7. Prolog, OPS5, and Mercury; 8. Programming paradigm; 9. Object oriented;
10. Goals, predicate; 11. assembly language and BASIC; 12. goto and call; 13. 3GL; 14. Structured; 15. Data and
methods; 16. OOP; 17. Class; 18. Class, object; 19. values of its attributes at a particular time; 20. parameter;
21. the receiver object, the name of the method that the receiver should invoke, and the parameters that must be
used with the method; 22. Is-a; 23. Inheritance; 24. methods; 25. public

True or False

	 1.	 False	 2.	 True	 3.	 True	 4.	 False	 5.	 False	 6.	 False	 7.	 False	 8.	 True
	 9.	 False	 10.	 False	 11.	 True	 12.	 True	 13.	 False	 14.	 True	 15.	 False	 16.	 True
	17.	 False	 18.	 True	 19.	 False	 20.	 True	 21.	 False	 22.	 True	 23.	 False	 24.	 True

Multiple Choice Questions

1. (c); 2. (a); 3. (c); 4. (d); 5. (d); 6. (b); 7. (a); 8. (a); 9. (b); 10. (d); 11. (d); 12. (c); 13. (b); 14. (d)

OOPC++.indb 26 8/17/2017 1:58:27 PM

© Oxford University Press. All rights reserved.

Oxfo
rd

 U
niversi

ty
 Pre

ss

