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Preface

Science and engineering form the backbone of any technological innovation. 
Physics is a fundamental aspect of  science. Engineering focuses on the 
conversion of scientific ideas into viable products and technologies. A sound 
knowledge of physics relevant to engineering is critical for converting ideas to 
new designs and products. An understanding of physics also helps engineers 
understand the working and limitations of existing devices and techniques, 
which eventually leads to new innovations and improvements.

It is interesting to note that in spite of the complexities of modern technol-
ogy, the underlying principle behind it still remains simple. In fact, it would 
not be wrong to say that unless the basic physics behind a technology is fully 
understood, it would be impossible to implement the full potential of the 
technology. The fundamental concepts of physics have laid the foundation 
for advances in engineering technology.

ABOUT THE BOOK
Engineering Physics is designed as a textbook for first year undergraduate 
engineering students. The book thoroughly explains all relevant and import-
ant topics in a student-friendly manner. The language and approach towards 
understanding the fundamental topics of physics is clear. The mathematics has 
been kept simple and understandable, enabling readers to easily comprehend 
the idea behind a concept. The book lays emphasis on explaining the principles 
as well as the applications of a given topic using numerous solved examples 
and self-explanatory figures and diagrams. It includes plenty of chapter-end 
practice questions, such as multiple-choice questions, review questions, and 
numerical problems, provided under the self-assessment section. Answers to 
multiple-choice questions and numerical problems are also provided at the 
end of the book.

KEY FEATURES OF THE BOOK AND THEIR BENEFITS

Features Benefits

Solved examples: 166 solved examples 
are provided

This will help readers learn how to apply 
concepts in a given problem.

Figures: 176 well-labelled figures are given This will help readers visualize the  
concepts and principles of physics.
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Preface v

Features Benefits

List of symbols: A list of symbols is given 
at the beginning of each chapter

This facilitates easy referencing of the 
symbols used in equations and figures 
across the text.

Summary of concepts, applications, and 
key formulae: These are given at the end 
of each chapter

This helps in quick revision of  the 
important formulae, concepts, and their 
applications.

Chapter-end self-assessment section: 
Contains 217 multiple-choice questions, 
273 review exercises, and 169 numerical 
problems. Answers to MCQs and numerical 
problems are given at the end of the book

This will help students practice and 
apply the concepts learnt and also 
self-check their understanding while 
preparing for examinations.

Interactive animations:  Links for 
interactive animations, provided as online 
resources, are indicated by a ‘mouse icon 

’ within the text

These animations will help readers 
understand the practical implementa-
tion of a concept or the occurrence of 
a phenomenon.

ORGANIZATION OF THE BOOK
The book consists of  11 chapters. A chapter-wise scheme of the book is 
presented here.

Chapter 1 on interference discusses the principle of superposition and the gen-
eration of coherent sources. It covers Young’s double-slit interference. It also 
explains the phenomenon of interference with due emphasis on the division of 
amplitude including interference in thin films and Newton’s rings. The chapter 
details the construction and working principle of various interferometers that 
are used for observing the phenomenon of interference.

Chapter 2 presents basics of diffraction, Huygen’s principle, and Fraunhoffer’s 
diffraction in detail. It elucidates the cases of single slit, double slit, circular 
aperture and N-slits. The chapter explains the resolving power of import-
ant optical instruments such as plane diffraction grating, telescope, and 
microscope.

Chapter 3 describes the phenomenon of polarization, types of polarization, 
and methods of producing polarization. It discusses in detail topics such as 
Malus law, Nicol prism as a polarizer and analyzer, quarter- and half-wave 
plates, Fresnel’s theory of optical rotation, and polarimeter.

Chapter 4 discusses the ordered excited state—lasers. It covers the various prop-
erties, types, components, and applications of lasers in detail. The Einstein’s 
transition probabilities have been mathematically derived giving the difference 
between the three different phenomenon of spontaneous, stimulated emission 
and absorption. The chapter also covers Ruby laser and He-Ne lasers.
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vi Preface

Chapter 5 covers architectural acoustics which has become an important 
feature of building design. This chapter details the classification of sound, 
characteristics of musical sounds, intensity of sound, reverberation, Sabine’s 
formula, and absorption coefficient.

Ultrasonic waves are used in non-destructive testing techniques and are 
produced by the magnetostriction method and piezoelectric effect. Chapter 6 
deals with the properties and detection of ultrasonic waves, cavitation, acoustic 
grating, SONAR, and the industrial and medical applications.

Chapter 7 on crystal physics introduces lattices, miller indices, atomic radius, 
coordination number, and crystal structures.

X-rays, to date, have made useful contributions towards material analysis 
and medical applications. Chapter 8 presents a discussion on diffraction of 
X-rays, X-ray spectrum, the different methods of production of X-rays, and 
its important applications.

Chapter 9 on nuclear physics and radioactivity has been included in the book, 
in view of its importance in energy generation, in addition to the use of fossil 
fuels. The chapter covers nuclear forces, conservation laws, and radioactive 
laws. The theory of nuclear fusion and fission has been explained with a 
mention of nuclear reactors.

Chapter 10 on dielectric properties of materials includes important topics such 
as electric dipole, dipole moment, dielectric constant, and polarizability. The 
different types of polarizations in dielectrics, their frequency and temperature 
dependence, and Clausius–Mossotti equation are presented in detail. Dielectric 
losses, their breakdown, and the applications of dielectric materials are also 
covered.

Chapter 11 discusses the magnetic properties of materials such as dia, para, 
and ferromagnetism in detail. The phenomenon of hysteresis, ferrites, and 
important applications of magnetic materials are also included in this chapter.

ONLINE RESOURCES
For the benefit of faculty and students reading this book, additional resources 
are available online at india.oup.com/orcs/9780199487127.

For Faculty
l Solutions manual l Chapter-wise PPTs

For Students
l Test generator l Model question papers
l Links to interactive animations (indicated with  in text)
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Learning objectives
After studying this chapter, students will be able to

 understand the concept of superposition of waves
 comprehend the meaning of coherence
 understand the physics of interference from two-point sources
 elucidate Young’s double-slit interference experiment in detail
 explain different types of interference
 explain the formation of interference pattern in thin films
 understand the formation of Newton’s rings
 elucidate the construction and working principle of interferometers

List of Symbols
 A = Amplitude

 w = Angular velocity
 I = Intensity

 c = Velocity of light
 ∆L  = Coherence length

 y = Wave function

 b = Fringe width
 m = Refractive index
 t = Thickness

l = Wavelength  R = Radius  d = Phase difference

1.1 INTRODUCTION
When two or more waves travel simultaneously through a medium, the resul-
tant displacement at any point of the medium is given by the vector sum 
of the displacements of the individual waves. This is called the principle of 
superposition of waves. In sound waves, this results in two interesting conse-
quences: stationary waves and beats. In the case of light, one such interesting 
consequence of the principle of superposition is interference. Application of 
the principle of interference can easily be observed in nature. Waves in water 
get superimposed and result in an interference pattern. Such interference 
patterns can be observed when small pebbles are thrown into lakes or ponds. 

Interference
1 C

H
A

P
T

E
R
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2 Engineering Physics

A single stone will create waves in water, but if  a second stone is dropped at 
a small distance from the first one, the waves generated by the two stones will 
interact and create interference patterns due to superposition. At regions of 
constructive interference, water waves can reach great heights, and create 
hazardous conditions and extreme damage. Superposition has been discussed 
in detail in this chapter. Concepts of superimposition have then been used for 
understanding the phenomenon of interference. Different types of interference 
patterns observed in thin films have also been discussed in detail. Some appli-
cations of interference have been presented towards the end of this chapter.

1.2 PRINCIPLE OF SUPERPOSITION OF WAVES 
A wave represents a travelling disturbance. It is represented mathematically 
in the following form:

 ψ ω δ= +( )A tsin  (1.1)

where A represents the amplitude, w the angular frequency, and d the phase of 
a wave with respect to some reference. As the wave travels through a medium, 
the particles of the medium get acted upon by the wave.

According to the principle of superposition, the resultant displacement of a 
particle of the medium acted upon by two or more waves simultaneously is given 
by the algebraic sum of the displacements produced by the individual waves.

Thus, if  two waves are represented by

 ψ ω1 1= A tsin  (1.2)

and ψ ω δ2 2= +( )A tsin  (1.3)

where d represents the phase difference between the two waves, then the resul-
tant displacement, y, is given by the following equation:

 ψ ψ ψ ω ω δ= + = + +( )1 2 1 2A t A tsin sin  (1.4)

When more than two waves are involved, the general expression for resultant 
displacement becomes as follows:

 ψ ψ ψ ψ ψ= + + + +1 2 3 … n  (1.5)

    = +( ) + +( ) + + +( )A t A t A tn n1 1 2 2sin sin sinω δ ω δ ω δ…  (1.6)

where A1, A2, …, An represent the amplitudes and d1, d2, …, dn represent the 
phases of the waves. Equation (1.6) is not easy to solve for general situations. 
For some special situations, however, a solution can be visualized. The easiest 
situation to visualize is the one in which all the individual waves have the same 
amplitude, say A, and also all the waves are in phase. The amplitude of the 
resultant of n waves in this case will be nA, and the corresponding intensity 
will be n2A2. For a random distribution of phases, a graphical method has to 
be used for evaluating the resultant amplitude. A typical figure is shown in 
Fig. 1.1, where A1 represents the amplitude of the resultant.
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Interference 3

Summation of projections of amplitudes along the x-direction results in 
the following equation:
 A Ax n1 1 2= + + +( )cos cos cosδ δ δ…  (1.7)

To calculate the intensity, square of Eq. (1.7) should be estimated. This would  
result in terms such as cos2d1, 2 cos (d1) cos (d2), and cos2(d2). For the superimpo-
sition of a large number of waves, the terms having products such as cos d1 cos d2  
will average out to zero. Thus, only terms such as cos2d1 and cos2 d2 can be assumed 
to survive. Similarly, the y-components would lead to the following relation:
 A Ay n1 1 2= + + +( )sin sin sinδ δ δ…  (1.8)

For evaluating intensity, square of Eq. (1.8) would also be needed. Once again, 
this would involve terms such as sin2

1δ , sin2
2δ , and 2 1 2sin sinδ δ . For a large 

number of waves, the cross-terms like sin sinδ δ1 2 can be assumed to result 
in zero average value, leaving out terms such as sin2

1δ  and sin2
2δ . The total 

resultant intensity can be obtained by adding contribution from Eqs (1.7) and 
(1.8). Thus, we have the following relation:

 

I A A

A

n= = + + + +( )
+ + +

1
2 2 2

1
2

2
2

3
2

2 2 2
21

cos cos cos cos

sin sin si

δ δ δ δ

δ δ

…

nn sin2
3

2δ δ+ +( )… n  (1.9)

Since (cos sin )2 2 1δ δ+ = , we get the following expression:

 I A nA= =1
2 2  (1.10)

The average resultant intensity is, therefore, n times the average intensity of a 
single wave. From Eq. (1.10) it can also be concluded that the resultant average 
amplitude is proportional to n, where n represents the number of waves.

Example 1.1 Two coherent sources whose intensity ratio is 64:1 produce interference 
fringes. Deduce the ratio of maximum intensity to minimum intensity.
Solution Suppose A1 and A2 represent the amplitudes of waves emitted by the two 
sources. Then we have

 I
I

A
A

1

2

1
2

2
2=  (1.11)

Fig. 1.1 Evaluation of 
resultant amplitude

y

O

A

A

X

A

A A

A1

f1

f2

f3
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4 Engineering Physics

which yields the following equation:

 A
A

I
I

1

2

1

2

8
1

= =  (1.12)

giving A A1 28=  (1.13)
We also know that

 
I
I

A A
A A

max

min

=
+( )
−( )

1 2

2

1 2

2  (1.14)

Using Eq. (1.13) in Eq. (1.14), we get the following relation:

I
I

A A
A A

A
A

max

min

=
+( )
−( )

=
( )
( )

=
8

8
2 2

2

2 2

2
2

2

2

2

9

7

81
49

Thus, I Imax min: := 81 49

Example 1.2 Two coherent sources whose intensity ratio is 4:1 produce interference 
fringes. Deduce the ratio of maximum intensity to minimum intensity.

Solution Let us consider the following equation: I
I

A
A

1

2

1
2

2
2=

which yields A
A

I
I

1

2

1

2

2
1

= =

giving, A1 = 2A2

We also know that 
I
I

A A

A A

A A

A A
max

min

=
+( )
−( )

=
+( )
−( )

= =1 2

2

1 2

2
2 2

2

1 2

2

2

2

2

2

3
1

9

Therefore, the required ratio is 9:1.

1.3 COHERENCE
Coherent sources are sources that have the same wavelength. The waves emitted 
by these sources at any point exhibit a correlation between the amplitudes and 
the phases. In other words, two waves are coherent if  they have a constant 
phase difference between them; coherent waves also have the same frequency 
and amplitude. Coherent sources are obtained by splitting a light source into 
parts. Some of the common methods used for the generation of coherent 
waves are as follows: 1. Young’s double-slit experiment 2. Fresnel’s biprism 
3. Llyod’s mirror. The different types of coherence are discussed as follows.

Temporal coherence A wave travels along its direction of  propagation. 
Different points along the direction of propagation have a phase associated 
with them. If  the phase difference between any two points along the direction 
of propagation is independent of time, then the wave is said to be temporarily 
coherent. Temporal coherence is also called longitudinal coherence. A time-in-
dependent phase difference also implies that the wave is monochromatic or of 
one wavelength. Suppose d1 and d2 represent the phases at points 1 and 2 for a 
wave at a particular instant t1. In addition, d1′ and d2′ represent the phases at 
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Interference 5

Fig. 1.2 Interference from two point sources 
(a) Path difference is l/2 (b) Path difference 
and the phase difference are zero

Phase difference = π

Phase difference = 0(b)

(a) s1

s1

s2

s2

l/2

the same two points 1 and 2 at a different time t2. For a wave having temporal 
coherence, the following relation must hold:

 δ δ δ δ2 1 2 1− = −′ ′  (1.15)

Spatial coherence Spatial coherence is related to the phase of a wave at dif-
ferent points that are transverse to the direction of propagation. If  the phase 
difference between any points located transverse to the direction of propa-
gation is independent of time, then the wave is said to be spatially coherent.

Coherence time and coherence length The time interval over which the phase 
of a wave remains constant is called the coherence time. For a perfectly mono-
chromatic sinusoidal wave, the coherence time is infinity. In reality, no wave 
is perfectly monochromatic, and therefore a finite coherence time exists. The 
coherence time is generally represented by a symbol ∆  t. The distance travelled 
by light during one coherence time is called the coherence length and is rep-
resented by the symbol ∆  L for light waves:

 ∆ ∆L c t=  (1.16)

where c represents the velocity of light.

1.4 INTERFERENCE OF LIGHT FROM TWO POINT SOURCES 
Sustainable interference patterns will occur only when overlapping waves 
satisfy the following conditions:
1. The waves must be of similar types (e.g., both of them are either light or 

sound waves).
2. Wave sources must be coherent.
3. The waves must have comparable (but not necessarily equal) amplitudes.

If two coherent, monochromatic point sources are set up, then an interference 
pattern is formed in the region where their waves overlap. Assume that the two 
sources are in phase with one another. Maxima will be formed where the waves 
from both sources arrive exactly half a cycle (p) out of phase. Phase differences are 
caused by the different distances travelled by the waves from the source to the point 
concerned. An extra path of one 
half-wavelength from one source 
will introduce a phase difference 
of p radians, resulting in cancella-
tion (a minimum), whereas a path 
difference of any whole-number 
multiple of wavelength results in 
the waves arriving in phase and 
adding (a maximum). The situa-
tion is depicted schematically in 
Fig. 1.2. Figure 1.2(a) depicts the 
situation where the path difference 
between  the waves originating  
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6 Engineering Physics

from S1 and S2 is l/2, resulting in a phase difference of p/2. The situation in which 
the path difference and the phase difference are zero is depicted in Fig. 1.2(b).

Path difference x is the difference in distance from each source to a par-
ticular point and d represents the difference in phase of the waves at a point. 
In general,

 δ
λ

=
2πx

 (1.17)

Equation (1.17) implies that x = λ; a path difference of a whole wavelength 
leads to a phase difference of δ = 2π.

Maxima are not regions with a permanent large disturbance—they oscillate 
like any other part of the wave, passing through zero to negative values every 
cycle. They represent the positions where this oscillation has the maximum 
amplitude.

Constructive interference occurs due to the superposition of two waves at 
a point such that the crest of one wave falls on the crest of the other, that is, 
the path difference between two waves is an integral multiple of the wavelength 
(nl). Intensity is maximum at these points (n is an integer or zero).

Destructive interference occurs due to the superposition of two waves at a 
point such that the crest of one wave falls on the trough of the other, that is, the 

path difference between the two waves is n +







1
2

λ, where l is the wavelength 

and n is an integer or zero. Intensity is minimum at these points.
Monochromatic sources are sources of light waves having the same wave-

length or frequency. In Section 1.3, we have learnt that coherent sources are 
sources of light waves having the same wavelength or frequency and a constant 
phase difference.

1.4.1 Mathematical Treatment of Interference
Let the waves from two coherence sources be represented as follows:

 y y w
1 10

= -( )sin t kx  (1.18)

 ψ ψ ω δ2 20= − +( )sin t kx  (1.19)

where d is the constant phase difference between them, y10 and y20 are the 
amplitudes, and w represents the angular frequency of the two waves.

The resultant of their superposition is given by [from Eqs (1.18) and (1.19)] 
the following relation:

 
ψ ψ ψ ψ ω ψ ω δ

ψ ω δ

= + = −( ) + −( )
+ −( )

1 2 10 20

20

sin sin cos

cos sin

t kx t kx

t kx
 (1.20)

or ψ ψ ψ δ ω ψ δ ω= +( ) −( ) + −( )10 20 20cos sin sin cost kx t kx  (1.21)

Let Acos cosθ ψ ψ δ= +10 20  (1.22)
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Interference 7

and Asin sinθ ψ δ= 20  (1.23)

Therefore, A2
10

2
20

2
10 202= + +ψ ψ ψ ψ δcos  (1.24)

and tan
sin

cos
θ

ψ δ
ψ ψ δ

=
+

20

10 20

 (1.25)

Using Eqs (1.21)–(1.23) in Eq. (1.24), the following relation can be obtained:

 y w q w q= -( ) + -( )A t kx A t kxsin cos cos sin  (1.26)

which gives the following expression:

 y w q= - +( )A t kxsin  (1.27)

We see that the resultant wave has an amplitude A, given by Eq. (1.24), and a phase 
angle of q, given by Eq. (1.25), with respect to the wave of source [Eq. (1.18)].

1.4.2 Constructive Interference
From Eq. (1.24), A2 is maximum when

 cosδ = 1 or δ = 0 2, ,… nπ  (1.28)

Amax
2

10
2

20
2

10 202= + +ψ ψ ψ ψ

or Amax
2

10 20

2= +( )ψ ψ

or Amax = +ψ ψ10 20  (1.29)

Since intensity I ~ A2, the maximum intensity is expressed as follows:

 I kmax ,= + +( )1 10
2

20
2

10 202ψ ψ ψ ψ  (1.30)

where k1 is a constant of proportionality.

1.4.3 Destructive Interference
Again from Eq. (1.24), A2 is minimum when cosδ = −1 or
 δ = +( )2 1n π  (1.31)

 ∴ = + − = −Amin ( )2
10
2

20
2

10 20 10 20
22ψ ψ ψ ψ ψ ψ

or Amin = −ψ ψ10 20  (1.32)

 ∴ = + −( )Minimum intensity I kmin ψ ψ ψ ψ10
2

20
2

10 202  (1.33)

where k is a constant of proportionality.
Thus, for constructive interference, the following relations hold:

Phase difference = δ = 0 2, ,… πn

Path difference = 
λ

δ λ
2

0
π

…= , , n
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8 Engineering Physics

Whereas for destructive interference, the following relations hold:

Phase difference = δ = +( )2 1n π

Path difference = 
λ
π

δ λ
2

1
2

= +





n

From Eqs (1.29) and (1.32) we can conclude that Amax will be the greatest and 
Amin the least when ψ ψ ψ10 20 0= = , that is, the two superposing waves have equal 
amplitude, because in that case the following relations are true:

A

A

I k k

max

min

cos cos

=

=

= + +( ) = +( )

2

0

2 2 1

0

1 0
2

0
2

0
2

0
2

1

ψ

ψ ψ ψ δ ψ δ

Example 1.3 Determine the ratio of intensity at the centre of a bright fringe to the 
intensity found at a point one-quarter of the distance between two fringes from the 
centre.
Solution From Eq. (1.24), wet get the following relation:

 I A= = + +2
10
2

20
2

10 202ψ ψ ψ ψ δcos  (1.34)

When ψ ψ10 20= , Eq. (1.34) can be rewritten in the following form:

 I = + +ψ ψ ψ δ10
2

10
2

10
22 cos  (1.35)

 = +( )2 110
2ψ δcos  (1.36)

At the centre, δ = 0. Using Eq. (1.36), we get the following expression:

 I0 10
2

10
22 1 1 4= +( ) =ψ ψ  (1.37)

The phase difference between two consecutive fringes is 2p. Thus, the phase difference 

at a distance that is one-quarter of the distance between two fringes will be 2
4 2
π π

= .

Suppose I1 represents the intensity at a distance that is one-quarter of the distance 
between two fringes, then using Eq. (1.36) we get the following relation:

 I1 10
2

10
22 1

2
2= +






 =ψ ψcos

π
 (1.38)

Using Eqs (1.37) and (1.38), we obtain the following relation: 
I
I

0

1

10
2

10
2

4
2

2= =
ψ
ψ

.

1.5 YOUNG’S DOUBLE-SLIT INTERFERENCE
The phenomenon of interference was first demonstrated experimentally by 
Thomas Young in the year 1801. A schematic of the phenomenon is shown 
in Fig. 1.3.

Sunlight is made to pass through the pin hole S. Two closely spaced pin 
holes S1 and S2 are placed on the way, and the interference pattern was observed 
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Interference 9

on screen XY. Young observed a few coloured bright and dark bands on the 
screen. Some modern modifications in the original set-up use narrow slits in 
place of pin holes S1 and S2, and sunlight is replaced by monochromatic light. 
As a result of these modifications, the interference pattern consists of equally 
spaced bright and dark bands.

As sunlight passes through the pin hole S, spherical waves originating from 
the pin holes start spreading out, as shown in Fig. 1.3. These spherical waves 
are incident on pin holes S1 and S2. According to the Huygen’s principle, each 
point on the wavefront is a centre of secondary wavelets. Thus, secondary 
waves start spreading out from pin holes S1 and S2, as shown in Fig. 1.3. As 
the secondary waves spread out, their radii increase and they superimpose 
on each other. In Fig. 1.3, crests and troughs are represented, respectively, 
by continuous and dotted circular arcs. There are points at which the crest 
of one of the secondary waves falls on that of another wave or the trough 
of one of the waves coincides with that of another wave. One such point is 
point A (shown in the inset of Fig. 1.3). The resultant amplitude is the sum 
of the amplitudes of the two individual waves, and therefore at such points, 
the resultant amplitude increases. This phenomenon, as mentioned earlier, 
is known as constructive interference. Since intensity is proportional to the 
square of the amplitude, the resultant intensity at points undergoing construc-
tive interference also increases. On the contrary, there are points where the 
crest of one wave falls on the trough of another wave or vice versa. One such 
point is point B (shown in the inset of Fig. 1.3). The resultant amplitude at 
these points is the difference between the two individual amplitudes and is 
therefore minimum. Such points are called regions of destructive interference. 

Fig. 1.3 Schematic of Young’s double-slit experiment

InsetSpherical waves

S

S1

S2

A

B
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10 Engineering Physics

Since intensity is proportional to the square of amplitude, intensity gets min-
imized at points having destructive interference.

Theory of fringe formation Figure 1.4 shows the source slit S and the two 
slits S1 and S2 that are equidistant from S.

X

P

O

Q

R

Y (Screen)

S

S1

S2

Source

M
2d

D

x

Fig. 1.4 Condition for 
fringe formation on 
screen

The distance between slits S1 and S2 is 2d, and the screen is assumed to be 
at distance D from the plane containing slits S1 and S2. Point O on the screen 
is equidistant from S1 and S2. Therefore, the path difference between the waves 
reaching point O from S1 and S2 is zero. This also means that there is no phase 
difference between the waves reaching point O from S1 and S2. The intensity at 
point O is, therefore, maximum. Let us now consider a point R at a distance 
x from O, as shown in Fig. 1.4. From the right-angle triangle S1PR, we get 
the following relation:

(S1R)2 = (S1P)2 + (PR)2

yielding (S1R)2 = D2 + (x + d)2 (1.39)

In addition, from the right-angle triangle S2QR we get the following relation:

(S2R)2 = (S2Q)2 + (OR)2

yielding  (S2R)2 = D2 + (x - d)2 (1.40)

Using Eqs (1.39) and (1.40), we get the following relation:

(S1R)2 − (S2R)2  = (x + d)2 − (x − d)2 = 4xd

leading to (S1R − S2R) (S1R + S2R) = 4xd (1.41)

In Young’s set-up, the distance between the screen and the plane containing slits 
S1 and S2, D, is much greater than the distance between the slits, 2d or x; therefore, 
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Interference 11

(S1R + S2R) can be replaced by 2D without introducing an appreciable error. 
Thus, Eq. (1.41) can be rewritten as follows:

(S1R − S2R) 2D = 4xd

or (S1R − S2R) = 
4
2

2xd
D

xd
D

=  (1.42)

Let us now determine the location of bright and dark fringes.
Bright fringes Point P is bright if  the path difference is a whole-number 
multiple of wavelength l. Thus,

 S P S P n n2 1 0 1 2− = =λ where , , ,…  (1.43)

Substitution of Eq. (1.43) into Eq. (1.42) leads to the following expression:
2xd
D

n= λ

or x
n D

d
=

λ
2

 (1.44)

Equation (1.44) gives the distance of the bright fringe from point O on the 
screen. The central bright fringe is at point O, since the path difference is zero. 
Other bright fringes are found for n = 1, 2, 3, … From Eq. (1.44), we obtain 
the following relations:

 n x
D
d

= =1
21,
λ

 (1.45)

 n x
D
d

= =2
2
22,
λ

 (1.46)

n x
D
d

= =3
3
23,
λ

 n n x
n D

dn= =,
λ
2

 (1.47)

The linear distance between any two consecutive fringes is given as follows:

 x x
D
d

D
d

D
d2 1

2
2 2 2

− = = =
λ λ λ

 (1.48)

Dark fringes Point P is dark if  the path difference is an odd number multiple 
of a half-wavelength. In this case,

 S P S P n2 1 2 1
2

−( ) = +( ) λ
 (1.49)

where n = 0, 1, 2, 3, …
Using Eqs (1.42) and (1.49), we get the following relation: 

2 2 1

2
xd
D

n
=

+( )
λ

which implies that

 x
n D

d
=

+( )2 1

4

λ
 (1.50)

From Eq. (1.50), we get the following relations for the dark fringes:

 n x
D
d

= =0
40gives
λ

 (1.51)
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12 Engineering Physics

 n x
D
d

= =1
3
41gives
λ

 (1.52)

 n x
D
d

= =2
5
42gives
λ

 (1.53)

 n n x
n D

dn= =
+( )

gives
2 1

4

λ
 (1.54)

The distance between two consecutive dark fringes is given as follows:

 x x
D
d

D
d

D
d

D
d2 1

5
4

3
4

2
4 2

− = − = =
λ λ λ λ

 (1.55)

From Eqs (1.48) and (1.55), it is clear that the spacing between two consecutive 
bright fringes (maxima) is the same as the distance between two consecutive 
dark fringes (minima). This expression is also called the fringe width, and a 
symbol b is often used to represent it. From Eqs (1.48) and (1.55), one can 
conclude that the fringe width is directly proportional to D and l, and inversely 
proportional to the distance between the two slits, 2d.

Example 1.4 Two straight and narrow parallel slits 0.9 mm apart are illuminated 
using a monochromatic light source. A screen placed at a distance of 90 cm is used 
to obtain fringes. It is found that the distance between consecutive fringes is 0.4 mm. 
Determine the wavelength of light.
Solution Using Eq. (1.48), we can write the following expression for fringe width b:

 β
λ

=
D

2d
 (1.56)

We can rewrite Eq. (1.56) in the following form:

 λ
β

=
× 2d
D

 (1.57)

Using the given values in Eq. (1.57), we get the following relation:

λ =
×

= × −0 04 0 09
90

4 10 5. .
cm  or l = 4000Å.

Example 1.5 In Young’s experiment, let a light of  wavelengths 5 4 10 7. × − m and 
6 85 10 8. × − m be used in turn, keeping the geometry same. Compare the fringe widths 
in the two cases.
Solution From Eq. (1.55), we have the following relation:

 β
λ

=
D

2d
 (1.58)

For the two wavelengths l1 and l2, we can write the following equations:

 β
λ

β
λ

1
1

2
2

2 2
= =

D
and

D
d d

 (1.59)

Using Eq. (1.59), we can write the following expression: 
β
β

1

2

7

8

2
5 4 10

2
6 85 10

8=
× ×

× ×
=

−

−

D

D
d

d

.

.

Thus, β β1 28=
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Interference 13

Example 1.6 In a Young’s double-slit experiment, the slits are separated by 0.28 mm 
and the screen is placed 1.4 m away. The distance between the central bright fringe and the 
fourth bright fringe has been measured to be 1.2 cm. Determine the wavelength of light.

Solution From Eq. (1.55), we get the following relation: β
λ

=
D

2dwhich yields the following equation:

 λ
β

=
( )2d

D
 (1.60)

Use of these values in Eq. (1.60) leads to the following expression:

λ =
⋅






×

×
= ×

−
−1 2

4
0 28 10

1 4
600 10

5
9.

.
m

Example 1.7 Two coherent sources are placed 0.9 mm apart and generate interference 
fringes on a screen 1 m away. The second dark fringe is formed at a distance of 0.08 cm 
from the central fringe. Determine the wavelength of the monochromatic light used.

Solution Wavelength of light, λ =
+( )

=
× ×

( )
= × −4

2 1
0 09 2 0 08

100 5
2 9 10 5dx

D n
n . .

. cm

Example 1.8 In the Young’s experiment, let light of wavelengths 6.2 × 10-7 m and 
7.1 × 10−8 m be used in turn, keeping the geometry same. Compare the fringe widths 
in these two cases.

Solution  On comparing fringe widths, 
β
β

λ
λ

1

2

1

2

7

8

6 2 10
7 1 10

62
7 1

8 73= =
×
×

= =
−

−

.

. .
.

Example 1.9 In a Young’s double-slit experiment, the slits are separated by 0.32 mm 
and the screen is placed 1.5 m away. The distance between the central bright fringe and 
the fourth bright fringe is measured to be 1.3 cm. Determine the wavelength of light.
Solution The wavelength is calculated as follows:

λ
β

=
( )

= 





× ×

×
= 






×

×−
− −2 1 3

4
10

0 32 10
1 5

1 3
4

6 32 102
3 5d

D
. .

.
. .

11 5
693 3 10 9

.
.= × − m.

1.6 TYPES OF INTERFERENCE
The phenomenon of interference requires two wavefronts to interact. These 
wavefronts can be obtained in two different ways, resulting in two different 
types of interference: (a) division of wavefront and (b) division of amplitude.

1.6.1 Division of Wavefront
In this type of interference, the incident wavefront is divided into two parts 
using the phenomenon of reflection, refraction, or diffraction. The two parts 
of the wavefronts are then made to travel unequal distances before reuniting 
at some angle. This process leads to the production of an interference pattern. 
Fresnel’s biprism and Lloyd’s mirror are examples of this type of interference.

1.6.2 Division of Amplitude
In this type of interference, the amplitude of the incoming beam is divided 
into two parts through the process of reflection or refraction. The two parts 
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14 Engineering Physics

then travel along different optical paths and finally superimpose to produce 
an interference pattern. To produce this type of an interference pattern, point 
or narrow line sources are not essential. Broad light sources can be employed 
to yield bright interference bands.

1.7 INTERFERENCE IN THIN FILMS
Interference in thin films occurs due to division of amplitude. When light is incident 
on thin films, it gets reflected from the top as well as the bottom surfaces of the 
films. There are multiple reflections within the films and therefore, the light also 
gets transmitted multiple times as it is incident on the bottom surface of the films. 
Since, the light rays have phase difference between them, interference fringes are 
created both in the reflected light as well as the transmitted light.

In Fig. 1.5, GH and G1H1 represent the two surfaces of a transparent film 
of uniform thickness. The path difference between reflected and refracted 
rays is given as follows:

 Path difference, PD = µ(BC + CD) − BE (1.61)

Fig. 1.5  Interference pattern in 
reflected light

t

B
r

r
i

i
D

E

F

r

P

G1

G

H1

H

A

C

t

Using Snell’s law at the interface, we get

µ = = =
sin
sin

i
r

BE BD
FD BD

BE
FD

giving the following relation:

 BE FD= ( )µ  (1.62)

Using Eq. (1.62) in Eq. (1.61), we obtain the following expression:

PD BC+CD FD= ( ) − ( )µ µ

which results in the following relation: PD BC+CF+FD FD= ( ) − ( )µ µ
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Interference 15

yielding PD BC+CF= ( )µ  (1.63)

Since BC PC= , Eq. (1.63) leads to the following form:

 PD PF= ( )µ  (1.64)

From triangle BPF, we get the following relation: cos r =
PF
BPresulting in

 PF BP= =cos cosr t r2  (1.65)
Substitution of the expression for PF [Eq. (1.65)] into Eq. (1.64) yields the 
following expression:

 PD = × =µ µ2 2t r t rcos cos  (1.66)

It is known that a ray reflected from a denser medium suffers a phase change 

of p, which corresponds to a path difference of λ
2

.

The effective path differences ( )PD eff thus becomes as follows:

 PD
eff( ) = ±( )2 2µ λt rcos  (1.67)

For maxima, the following relation must hold: 2
2

µ
λ

λt r ncos ± =
which gives the following expression:

 2 2 1 2µ λt r ncos = ±( )  (1.68)

When Eq. (1.68) is fulfilled, the thin film would appear bright in the reflected 
pattern.
For minima, we must satisfy the following relation: 2

2
2 1

2
µ

λ λ
t r ncos ± = ±( )

yielding 2 2 1
2 2

µ
λ λ

t r ncos = ±( ) ±  (1.69)

Since ( )n +1  or n −( )1  can also be taken as an integer, we can rewrite Eq. (1.69) 
in the following form:

 2µ λt r ncos =  (1.70)

where n = 0 1 2 3, , , ,…

When Eq. (1.70) is fulfilled, the films appear dark in the reflected pattern.

Note: If  the thickness of the soap bubble is such that the condition for 
minima, as given in Eq. (1.70) is fulfilled by the reflected light, the soap 
bubble will appear dark for that particular wavelength.

An interference pattern can also be observed in the transmitted light. 
Figure 1.6 is a schematic representation of this situation.

Figure 1.6 shows two transmitted rays, BT and DS, which are obtained 
after reflection and refraction of the corresponding incident rays. BF and DE 
are normals drawn on DC and BT, respectively. When DC is extended in the 
backward direction, it meets the extended BH at I.

The effective path difference (PD)eff is given as follows:
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16 Engineering Physics

 (PD)eff = µ(BC + CD) − BE (1.71)

We know that µ = sin i/sin r = [BE/BD]/[FD/BD]

Thus, BE = µFD (1.72)

Using Eq. (1.72) in Eq. (1.71), we get the following relation:

(PD)eff = µ (BC + CF + FD) − µFD

leading to (PD)eff = µ(BC + CF) = µ(BI)
implying that

 ( ) cosPD eff = 2µt r  (1.73)

In this case, reflections have taken place inside the film, and therefore the ray 
travels from a denser medium to a rarer medium, that is, air. Thus, no addi-
tional phase change of p is involved.
For maxima,

 2µ λt r ncos =  (1.74)

The condition indicated by Eq. (1.74) results in the film appearing bright in 
the transmitted light.
For minima,

 2 2 1
2

µ
λ

t r ncos = ±( )  (1.75)

where n can take values 1, 2, 3, …
The condition indicated by Eq. (1.75) results in the film appearing dark in 

the transmitted light.
A comparison of  Eqs (1.68), (1.70), (1.74), and (1.75) reveals that the 

conditions of maxima and minima get reversed as we change from reflected 
light to transmitted light.

Let us now see what happens if we replace monochromatic light with white 
light. The effective path difference is dependent upon µ, which in turn depends 
upon the wavelength of the incident light. For any particular region on the 
film and for a particular viewing position, the condition for maxima would 
be satisfied only for some wavelengths. Bright-coloured fringes would appear 

Fig. 1.6 Interference 
pattern in transmitted light
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Interference 17

in this position. Neighbouring wavelengths would result in reduced intensity. 
Wavelengths for which the condition for minima is satisfied would be absent in 
the observed pattern. The basic pattern would remain the same as we change the 
position of the eye or the region of the film that we are looking at. We also see 
that conditions for maxima and minima get reversed as we go from the reflected 
to the transmitted light. This is the reason why thin films (or soap bubbles) 
appear coloured when viewed under sunlight/white light. The colours absent 
in the reflected light are visible in the transmitted light and vice versa. Thus, the 
colours of the reflected and transmitted light are complementary to each other.

Example 1.10 A soap film has a refractive index of 4/3 and is 1 × 10−4 cm thick. It 
is illuminated by white light incident at an angle of 45°. On examining the reflected 
light using a spectroscope, a dark band is found corresponding to a wavelength of 
5 × 10−5 cm. Determine the order of interference band.
Solution For a dark band,

 2mt cos r = nl (1.76)

Further, sin r = 
sin sin45 1 3

sin      
 4 / 3 42  

i
r

µ
= = = ×  

 ∴ cos r = 
9

1
32

−  = 
1
 
4

 
23
2

 (1.77)

From Eq. 1.77, we get

  
4

5

2  cos 2 4 1 1 0  23  
 4.5

3 4 2   5.1 1 0

t r
n

µ
λ

−

−

× × × ×
= = =

× × ×
Thus, 5th order interference fringe is involved.

Example 1.11 White light is incident normally on a soapy water film of thickness 
4 × 10−5 cm and m = 1.33. Which wavelength is reflected strongly in zeroth order of 
the resulting interference pattern?

Solution For maxima,

 2mt cos r = (2n + 1) l/2 (1.78)

Where, n = 0, 1, 2, 3, º
Further, cos r = 1 for normal incidence

Using Eq. (1.78), we get

 
( )

 4  cos 
  

2  1
t r
n

µλ =
+

 (1.79)

Putting n = 0 and other given values in Eq. (1.79), we get

 
5

54 1.33 4 1 0
    21.28 1 0  

1
λ

−
−× × ×

= = ×

Thus, it can be noted here that this wavelength is not in the visible region.

Example 1.12 In a thin film, between points A and B, six fringes are seen with a 
light of wavelength 6000 Å. If  the light used is of wavelength 4500 Å, what are the 
number of fringes observed between A and B?
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18 Engineering Physics

Solution If  t represents the thickness of the film between points A and B, then from 
Eq. (1.70), we get the following relation:

 2µ λt r ncos =  (1.80)

Since two wavelengths are involved, we can write the following formula:

 2 1 1 2 2µ λ λt r n ncos = =  (1.81)

or 6 6000 45002× = ×n , that is, n2 8=

Example 1.13 In a thin film, between points A and B, five fringes are seen with a light 
of wavelength 5000 Å. What are the number of fringes observed between A and B?
Solution Let us consider the following expression: 50 5800 50002× = ×n

This yields the following value: n2

5 5800
5000

6=
×

≅

1.8 NEWTON’S RINGS
Figure 1.7 shows a schematic representation of a plano-convex lens L kept 
on a plane glass plate GP. An air film of variable thickness is then formed 
between the bottom surface of the lens and the top surface of the glass plate. 
From Fig. 1.7, it is clear that the thickness of the film increases as we move 
away from the point of contact. Thickness of the air film is zero at the point of 
contact, while it is constant along the circles drawn using the point of contact 
as the centre. The resultant interference pattern thus consists of alternate dark 
and bright rings that are concentric around the point of contact. These rings 
are also known as Newton’s rings, as they were first analysed by Newton. The 
rings are formed because the air has a circular symmetry. These rings can be 
viewed using a travelling microscope.

Fig. 1.7 Formation of 
Newton’s rings

G

L
r

R
i

T

Q
1

2

S
P

A monochromatic ray QR is incident on the plane surface of  the 
 plano-convex lens L. RS represents the refracted ray. At the glass–air 
interface, a portion gets reflected and comes out of  the lens in the form of 
ray 1. The portion transmitted at point S gets reflected at point T on the 
top surface of  the glass plate and finally comes out of  the lens as ray 2. 
Since ray 2 results due to reflection at an air (rarer)–glass (denser) interface, 
it undergoes a phase change of  p. The rays are coherent and produce an 
interference pattern. The rays are coherent and produce an interference 
pattern in the form of  alternate bright and dark concentric circular rugs 
known as Newton rings.
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Interference 19

Fig. 1.8 Schematic of curved surface of lens in contact with plane 
glass plate

A

O R
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B
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L2

E t
G P

r

The effective path difference between rays 1 and 2 is given by expression 
(1.71), which is valid for the interference pattern obtained with films of vari-
able thickness, namely

 PD
eff( ) = +( ) +2

2
µ θ

λ
t rcos  (1.82)

If the plano-convex lens has a large radius of curvature, the angle q is extremely 
small and can be neglected. Equation (1.82) can then be written as follows:

 PD
eff( ) = +2

2
µ

λ
t rcos  (1.83)

For an air film, µ = 1 and, for normal incidence, r = 0. Under these conditions, 
Eq. (1.83) reduces to the following form:

 PD
eff( ) = +2

2
t

λ
 (1.84)

Newton’s Rings by Reflected Light
Figure 1.8 shows the curved surface of the lens as a part of a circle with centre C1.

L1BL2 represents the lens placed on the glass plate GP. The curved surface 
L1BL2 of the lens is part of the spherical surface shown as a dotted circle with 
centre O in Fig. 1.8. Let R represent the radius of curvature and r the radius 
of the Newton’s ring corresponding to the constant film thickness t.

Using Eq. (1.84), for the nth bright fringe, we have the following relation:

2
2

t n+ =
λ

λ

which leads to the following form:
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20 Engineering Physics

 2 2 1
2

t n= −( ) λ
 (1.85)

where, n = 1, 2, 3, …
For the nth dark ring, we have

 2t n= λ  (1.86)

where, n = 0, 1, 2, 3, …
From the property of the circle, for the circle shown in Fig. 1.7, we can write 
the following expression: NP NQ NO ND× = ×
Substituting values, we get the following equation:

r r t R t Rt t Rt× = −( ) = − ≈2 2 22

which gives the following relation:

 r Rt t
r
R

2
2

or
2

= =2  (1.87)

Using Eqs (1.85) and (1.86), we get the following expression for a bright ring:

2
2

2 1
2

2

⋅ = −( )r
R

n
λ

yielding r
n R2 2 1

2
=

−( )λ

Substituting r =
D
2

, we get the following equation: 
D2

4

2 1

2
=

−( )n Rλ

which yields the following expression:

 D R n= ( ) −( )2 2 1λ  (1.88)

or D ∝ −2 1n  (1.89)

Thus, diameters of bright rings are proportional to the square roots of the 
odd numbers 2 1n −( ).
Using Eqs (1.86) and (1.87), we get the following relation for the nth dark 

ring: 2
2

2

× =r
n

R
λ

which leads to the following expres-
sion: r n2 = λR

or D n2 4= λR  (1.90)

Thus, D R= ∝2 n nλ  (1.91)

Diameters of dark rings are propor-
tional to the square roots of natural 
numbers. Figure  1.9 shows a sche-
matic representation of  Newton’s 
rings as seen in reflected light. Fig. 1.9 Newton’s rings in reflected light

Newton’s 
rings
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Interference 21

Newton’s Rings by Transmitted light
Newton’s rings can also be observed in the transmitted light. In this case, for 
bright rings we have the following condition:
 2t n= λ  (1.92)

and for dark rings we have the following condition:

 2 2 1
2

t n= −( ) λ
 (1.93)

Combining Eqs (1.87) and (1.92), we obtain the following relation for bright 

rings: 2
2

2

× =
r

n
R

λ

or r n2 = λR

which results in the following equation:

 D = ∝2 n R nλ  (1.94)

Combining Eqs (1.92) and (1.86), we get the following expression for dark 

rings: 2
2

2 1
2

2

× = −
r

n
R

( )
λ

which gives the following relation: r
n R2 2 1

2
=

−( )λ

Thus, D R n n= × − ∝ −( )2 2 1 2 1λ  (1.95)

The central ring is bright in the transmitted pattern, whereas it is dark in the 
reflected pattern.

Application: Determination of Wavelength
Let Dn and Dn p+  represent, respectively, the diameters of the nth and ( )thn p+  
dark rings obtained in the reflected pattern. Using Eq. (1.90), we get the 
following relation:

 Dn n R2 4= λ  (1.96)

and Dn p n p R+ = +( )2 4 λ  (1.97)

From this, we get the following equation:

 D D Rn p n p+ − =2 2 4 λ  (1.98)

which results in the following expression:

 λ =
−+D D

R
n p n

p

2 2

4
 (1.99)

Wavelength l of  monochromatic light (or sodium light) can be determined 
using Eq. (1.99).

Application: Determination of Refractive Index of a Given Liquid
Suppose a liquid of unknown refractive index µ is used to replace the air film 
between the lens and the glass plate. If  the corresponding diameters of the 
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22 Engineering Physics

nth  and ( )n p+ th  dark rings are represented by Dn
′  and D( )n p+

′ , respectively, 
then we have the following relations:

 D
R

n

n′ 2 4
=

λ
µ  (1.100)

and D
R

n p

n p
+( ) =

+( )′ 2 4 λ
µ

 (1.101)

Using Eqs (1.100) and (1.101), we get the following expression:

D D
R

n p n

p
+ − =′ ′2 2 4 λ

µ

or µ λ
=

−+

4
2 2

p R
D Dn p n

′
′

 (1.102)

Using Eq. (1.99) in Eq. (1.102), we get the following expression:

 µ =
−

−
+( )

+

D D

D D
n p n

n p n

2 2

2 2′ ′  (1.103)

Refractive index µ of  the liquid can be determined using Eq. (1.103).

Example 1.14 In a Newton’s ring set-up, the diameter of the fourth ring was found 
to be 0.4 cm and that of the 24th ring was 0.8 cm. The radius of curvature of the 
plano-convex lens is 100 cm. Calculate the wavelength of light used.
Solution Using Eq. (1.99), we get the following relation:

 λ =
−+D D

R
n p n

p

2 2

4
 (1.104)

In the given problem, n p n p+ = = =24 4 20and Thus. .
Substituting these values into Eq. (1.104), we get the following value:

λ =
( ) − ( )

× ×( )
= × −0 8 0 4

4 20 100
6 10

2 2

5. .
cm

Example 1.15 In a Newton’s ring experimental set-up, the diameter of the ninth 
ring changes from 1.42 to 1.28 cm when a liquid of refractive index µ replaces air in 
the space between the lens and the plate. Determine the refractive index of the liquid.
Solution From Eq. (1.100), we get the following relation:

 D
R

n

n′ 2 4
=

λ
µ

 (1.105)

With the liquid occupying the space, we get the following equation:

 D
R

n
′ 2 4 9

=
× ×λ

µ
 (1.106)

For air as a medium, we have the following expression:

 D R9
2 4 9= × ×λ  (1.107)

Using Eqs (1.105) and (1.106), we can obtain the following value: µ = =
( )
( )

=
D
D

9
2

9
2

2

2

1 42

1 28
1 231′

.

.
. .
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Interference 23

Example 1.16 In a Newton’s ring set-up, the diameter of the third ring has been 
found to be 0.2 cm and that of the 20th ring 0.7 cm. The radius of curvature of the 
plano-convex lens is 90 cm. Calculate the wavelength of the light used.

Solution Let us consider the following expression: λ =
−+D D

pR
n p n
2 2

4
Where ;n p n+ = =20 3  giving p =17

Substituting these values, we get the following result:

λ =
( ) − ( )

× ×
=

×( )
× ×

= × −0 7 0 2

4 17 90

0 49 0 04

4 17 90
7 35 10

2 2

5. . . .
. cm

Example 1.17 In a Newton’s ring experimental set-up, the diameter of the eighth 
ring changes from 1.25 to 1.14 cm when a liquid of refractive index µ replaces air in 
the space between the lens and the plate. Determine the refractive index of the liquid.

Solution The refractive index is µ = =
( )
( )

=
D
D

8
2

8
2

2

2

1 25

1 14
1 20′

.

.
.

1.9 INTERFEROMETER
Interferometers are instruments that can be used to study the phenomenon 
of interference. These instruments can also be used to apply the principle of 
interference to evaluate some real-life situations. One such evaluation involved 
the validity of presence of ether using the Michelson–Morley experiment. 
We will be discussing the construction and working principle of Michelson 
and Fabry–Perot interferometers in detail in this section. A brief  outline of 
Twyman–Green interferometer will also be presented in this section.

1.9.1 Michelson Interferometer
Michelson interferometer is an optical instrument that was introduced by 
Albert Michelson in 1881. The instrument is used in investigations where 
small changes in optical path length is involved. It can be used for accurate 
comparison of wavelength, measurement of refractive index of gases and 
transparent solids, and determination of small changes in length. Some useful 
applications of Michelson interferometer are as follows:

  Experimental evidence of special relativity
  Discovery of hyperfine structure in energy levels of atoms
  Measurement of tidal effects due to moon
  Use of wavelength of light as international standard of meter

Working Principle
The Michelson interferometer uses the principle of division of amplitude to 
provide interference fringes. Hence, the interference in Michelson interfer-
ometer is similar to that in the thin films. An incident beam of light falls on a 
beam splitter. The beam splitter reflects half  the intensity in one direction and 
transmits other half  in another direction. The two beams then travel different 
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24 Engineering Physics

optical paths and finally interfere in a common region. The difference in the 
optical path length decides the characteristics of  the formed interference 
fringes. 

Construction
Figure 1.10 gives a basic schematic of Michelson interferometer.

The instrument consists of an extended source S and a collimating lens L. 
Two glass plates G and G1 are placed at an angle of 45° with respect to the 
horizontal. The glass plate G is semi-silvered. The apparatus also contains 
two mirrors M1 and M2, each provided with three levelling screws. The mir-
ror M1 is mounted on a carriage with a provision of very accurate upward 
and downward movement. The system also has a telescope T to observe the 
formed interference fringes.

The extended source S emits a monochromatic beam. This monochromatic 
beam is rendered parallel due to the collimating lens L. This parallel beam is 
then incident on the semi-silvered glass plate G, which is placed at an angle 
of 45° with respect to the incident beam. This splits the beam into two parts. 
One part is reflected from the semi-silvered surface of the glass plate G and 
moves towards mirror M1. The other part gets transmitted through the glass 
plate G and moves towards mirror M2. Mirrors M1 and M2 are held perpen-
dicular to the respective incident beams, which then retrace their original 
paths, as shown in Fig. 1.10. The reflected rays then meet at the semi-silvered 
surface of the plate G and finally enter the telescope, where the interference 
pattern is formed.

A compensating plate G1 is used to ensure that the optical paths of  rays 
from glass plate G to mirrors M1 and M2 are made equal. The mirror M1 
is mounted on a carriage and can therefore be moved through a precise 

Fig. 1.10 Schematic of Michelson interferometer

G
S

G1

M1

M2

(Extented
  source)

L

Collimating lens

Stage

Levelling screws

Levelling screws

(Mirror)

(Mirror)

T (Telescope)

© Oxford University Press. All rights reserved.

Oxfo
rd

 U
niversi

ty
 Pre

ss



Interference 25

distance, to introduce a desired path difference between the two interfering 
rays.

To visualize fringe formation, let us imagine that one of the arms of the 
interferometer is rotated so that the instrument has a single optical axis. The 
reflections from mirrors M1 and M2 is then analogous to reflection from 
two surfaces with an air gap of thickness ‘d’. This is shown schematically in 
Fig. 1.11.

M1

M2

d cosqd cosq

d

Fig. 1.11 Formation of Fringes in Michelson interferometer

The phase shift introduced due to reflection is same for both the mirrors. 
The condition for constructive interference is therefore given by, 

 2d cos q = ml (1.108)

where m represents the order of interference. 
If  the two mirrors are aligned perfectly perpendicular to each other, then 

constant path difference exists over all the regions of the mirrors. The resultant 
fringe pattern consists of a series of concentric rings. Each ring corresponds to 
a particular angle of view measured with respect to normal to the mirror M1. 
These fringes are therefore called fringes of equal inclination. These fringes are 
analogous to the interference fringes formed when light from extended source 
falls on a thin film. As the mirror M1 is moved in a direction that reduces the 
path difference to zero, fringe pattern collapses and the fringes disappear. 

1.9.2 Fabry–Perot Interferometer
The Fabry–Perot interferometer was invented in 1897 by Charles Fabry and 
Alfred Perot. It is also known as an etalon. In Fabry–Perot interferometer, light 
transmitted through two partially reflecting mirrors interfere to produce an 
interference pattern. On the other hand, the interference pattern in Michelson 
interferometer is formed by the reflected light. Fabry–Perot interferometer is 
widely used in the fields of telecommunication, lasers, and spectroscopy to 
control and determine the wavelengths of light. 
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26 Engineering Physics

Working Principle
An incident ray undergoes multiple reflections and therefore results in a 
series of parallel transmitted rays. This results in the formation of circular 
interference fringes. These fringes are sharp and easy to observe and analyze.

Construction
The Fabry–Perot interferometer consists of two plane parallel glass plates 
C and D separated by a fixed distance as shown schematically in Fig. 1.12. 

Fig. 1.12 Schematic of Fabry–Perot interferometer
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L

C D

Carriageway Telescope

Semi-silvered glass plates 

(Extented
  source)

The inner surfaces of the two glass plates are silvered resulting in 80% to 
90% reflection. One of the glass plates is attached to a carriageway that enables 
it to be moved in a precise manner perpendicular to its plane. The separation t 
between the two plates can thus be adjusted. Light from the extended source, S, 
is rendered parallel by the collimating lens. Multiple reflections then take place 
within the two plates, C and D. This results in the formation of circular fringes of 
equal inclination in the optical plane of the objective of the observing telescope.

1.9.3 Twyman–Green Interferometer
It is a variant of Michelson interferometer was introduced by Frank Twyman 
and Arthur Green in 1961. The Twyman–Green interferometer uses a mono-
chromatic point source instead of the extended light source, which is used in 
the Michelson interferometer. This interferometer also uses the principle of 
division of amplitude for production of interference fringes. This interferom-
eter is used in determining defects in lenses, prisms, plane mirrors, etc. 

Construction
The monochromatic source in Twyman–Green Interferometer is kept at the 
principal focus of a well-corrected lens. The complete schematic of the instru-
ment is shown in Fig. 1.13.

The two mirrors M1 and M2 are held perpendicular to each other whereas 
the beam splitter makes an angle of 45° with respect to the normal to each 
mirror. By adjusting the portion of mirror M1, a path difference can be intro-
duced between the two interfering beams. If  the path difference is given by 
mλ
2

 then constructive interference takes place whereas if  the path difference 
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Interference 27

satisfies the condition m +





1
2 2

λ
,  then complete destructive interference takes 

place. 
The mirror M1 can also be rotated. This rotation leads to the formation of 

fringes of equal thickness on the screen. To test optical components, fringes 
of equal thickness are first obtained by tilting the mirror M1. The component 
to be tested is then placed in the path of one of the arms of interferometer. 
The change in the fringe pattern in used to determine the optical quality of 
the component. 

Fig. 1.13 Schematic representation of Twyman–Green interferometer

Note: Other Interferometers
Mach-Zehnder Interferometer It can be considered as a variant of the 
Michelson/Twyman–Green interferometers. It produces an interference 
pattern with the light only making a single-pass through the sample. It has 
relatively large and freely accessible working space and flexibility in the 
location of the fringes. This interferometer is used an important diagnostic 
tool. It is frequently used in the fields of plasma physics, aerodynamics, 
and heat transfer to measure density, pressure, and temperature changes 
in gases. 
Fizeau interferometer It was developed by Hippolyte Fizeau. It is a vari-
ation of Fabry–Perot, but it is generally easier to use. It is widely used for 
doing optical and engineering measurements.

IMPORTANT CONCEPTS

1. When two or more waves travel simultaneously through a medium, the resultant 
displacement at any point of the medium is given by the vector sum of the dis-
placements of the individual waves. This is called the principle of superposition 
of waves.

2. Two waves are coherent if  they have a constant phase between them and also have 
the same frequency.

Source

Lens

Rotation

Beam splitter

Screen

M1

M2
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28 Engineering Physics

3. If  the phase difference between any two points along the direction of propagation 
is independent of time, then the wave is said to be temporarily coherent.

4. If  the phase difference between any points located transverse to the direction of 
propagation is independent of time, then the wave is said to be spatially coherent.

5. Constructive interference occurs due to the superposition of two waves at a point 
such that the crest of one wave falls on the crest of the other, that is, the path 
difference between two waves is an integral multiple of the wavelength (nl). The 
intensity is maximum at these points (n is an integer or zero).

6. Destructive interference occurs due to the superposition of two waves at a point 
such that the crest of one wave falls on the trough of the other, that is, the path 

difference between the two waves is n +







1
2

λ , where l is the wavelength and n is 

an integer or zero. The intensity is minimum at these points.
7. The phenomenon of  interference requires two wavefronts to interact. These 

wavefronts can be obtained in two different ways, resulting in two different types 
of interference: (a) division of wavefront and (b) division of amplitude.

8. Newton’s rings are observed when monochromatic light is incident on a film 
formed between a plano-convex lens and a plane surface.

APPLICATIONS

1. Many optical coatings use optical interference to deliver specific properties. 
One important example is the use of  antireflection coatings. Destructive 
interference of reflected rays ensures the absence of chosen wavelengths in the 
reflected light. A similar principle is also used to fabricate narrow-bandpass 
or band-reject filters. These filters are extensively used in optical systems.

2. Another interesting application of destructive interference can be observed in 
noise cancelling headphones. These headphones have an inbuilt mechanism 
and circuitry, which produce their own sound waves that imitate the incoming 
noise in every respect, except that the sound waves produced by the headphone 
circuitry is 180° out of phase with the intruding waves.

IMPORTANT FORMULAE
1. A wave is represented as follows:

ψ = Asinωt

2. I A nA= =1
2 2

3. ∆ ∆L t= c 

4. δ =
2πx
L

5. A2
10
2

20
2

10 202= + +ψ ψ ψ ψ δcos

tan
sin

cos
θ

ψ δ
ψ ψ δ

=
+

20

10 20

6. I kmax = + +( )ψ ψ ψ ψ10
2

20
2

10 202

7. I kmin = + −( )ψ ψ ψ ψ10
2

20
2

10 202

8. For constructive interference:
PD = 0, ,… nλ

 9.  For destructive interference:

PD = +





n

1
2

λ

10. 
I
I

max

min

=
+( )
−( )

ψ ψ

ψ ψ
10 20

2

10 20

2

11. β
λ

= =fringe width
D

2d
12. For interference in thin films:

2µ λt r ncos =

13. For Newton’s rings, for the nth dark 
ring in reflected light:

D R2 4= nλ
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Interference 29

 For nth bright ring in reflected light:

D = ( ) −( )2 2 1λR n

14. For Newton’s rings:

µ =
−

−
+( )

+( )

D D

D D
n p n

n p n

2 2

2 2′ ′

SELF-ASSESSMENT

Multiple-choice Questions
1.1 A travelling disturbance is represented by

 (a) ψ δ= +( )Asin ωt   (b) ψ ω δ= +( )Asin2 t

 (c) ψ ω δ= +( )Acos t   (d) ψ ω δ= +( )Acos2 t

1.2 For superposition of n waves of equal amplitude, we have

 (a) I A= n2 2  (b) I A= n3 2  (c) I A= n 2 (d) I A= n

1.3 Coherence length and coherence time are related through the expression

 (a) ∆
∆

L
c

=
t

 (b) ∆ ∆L c= 2 t  (c) ∆ ∆L c= ( )t
2

 (d) ∆ ∆L c= t

 1.4 For constructive interference, we have

 (a) Imax ∝ + +( )ψ ψ ψ ψ10
2

20
2

10 202  (b) Imax ∝ + −( )ψ ψ ψ ψ10
2

20
2

10 202

 (c) Imax ∝ +( )ψ ψ10
2

20
2   (d) Imax ∝ −( )ψ ψ10

2
20
2

 1.5 Linear distance between two consecutive fringes is given by

 (a) 
λ 2d( )

D
 (b) 

λD
d

 (c) 
λD
2d

 (d) λDd

 1.6 For interferences in thin films, the condition for bright fringe is

 (a) 2µ λt r ncos =    (b) 2
2

µ
λ

λt r ncos ± =

 (c) 2µ λ λt r ncos ± =   (d) 2µ λ λt r ncos − =

 1.7 Dark rings in a Newton’s ring set-up obey the relation

 (a) D n∝  (b) D n∝ 2  (c) D n∝ −( )2 2  (d) D n∝ −( )2 1

 1.8 Intensity of a travelling disturbance with amplitude B is proportional to

 (a) B (b) 
1
B

 (c) 
1

2B
 (d) B2

 1.9 Two overlapping waves produce a stable interference pattern; their amplitudes 
must be

 (a) vastly different  (b) equal (c) comparable (d) unrated
1.10 Condition for temporal coherence is

 (a) δ δ δ δ2 1 2 1− = +′ ′    (b) δ δ δ δ2 1 2 1− = −′ ′

 (c) δ δ δ δ2 1 2 12− = −( )′ ′   (d) δ δ δ δ2 2 1 22− = −( )′ ′

1.11 Coherence time for a perfectly monochromatic sinusoidal wave is

 (a) infinity (b) 0 (c) 1 (d) 2
1.12 A path difference of one half-wavelength introduces a phase difference of
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30 Engineering Physics

 (a) 2p	 (b) p	 (c) 
3
2
π 

 (d) π  2

1.13 Constructive interference will not take place for a phase value equal to

 (a) 0 (b) 2p	 (c) p	 (d) 4p
1.14 In a Young’s double-slit experiment, the position of bright fringes is given by

 (a) x
ndD

=
2λ

 (b) x
ndD

=
λ

 (c) x
n d
D

=
λ

 (d) x
n D

d
=

λ
2

1.15 When light gets reflected from a denser medium, it suffers a phase change of
 (a) 2p	 (b) p/2 (c) p	 (d) 3p
1.16 In an interference pattern produced by identical coherent sources of monochromatic 

light, the intensity at the site of central maximum is I. If intensity at the same spot 
when either of the two slits is closed is I0, we must have the condition that

 (a) I = I0   (b) I = 2I0

 (c) I = 4I0   (d) I and I0 are not related

1.17 What happens when monochromatic light used in Young’s slit experiment is 
replaced by white light?

 (a) Bright fringes become white.
 (b)  The central fringe is white and all other are coloured.
 (c) All fringes are coloured.
 (d) No fringes are observed.
1.18 A path difference of 3p/2 between two waves corresponds to a phase difference of

 (a) 3p/2 (b) p/3 (c) 3p	 (d) 2p/3
1.19 Newton’s ring experiment is based on

 (a) division of amplitude (b) division of wavefront
 (c) none of these   (d) combination of (a) and (b)

Review Questions
 1.1 What is the difference between temporal coherence and spatial coherence?
 1.2 If  the amplitudes of two coherent light waves are in the ratio 1:4, find the ratio 

of maximum to minimum intensity in the interference pattern.
 1.3 Find an expression for the intensity distribution when two sinusoidal coherent 

waves with amplitudes A1 and A2 and a phase difference of f superpose to pro-
duce interference.

 1.4 Find an expression for the fringe width in the interference pattern of Young’s 
double-slit experiment.

 1.5 Two independent sources of  light of  the same wavelength cannot produce 
interference. Justify.

 1.6 Explain why an extended source of light is required for fringes in a Newton’s 
ring experiment. When white light is used in place of a monochromatic light, 
what change is expected?

 1.7 Can you measure the refractive index of a liquid by Newton’s ring experiment? 
Explain.

 1.8 Explain interference of light due to thin films.
 1.9 Explain the principle of superposition of waves.
1.10 Derive an expression for interference in thin films due to reflection.
1.11 Explain why a convex lens is placed between a monochromatic light source and 

a microscope while performing experiments on Newton’s rings.
1.12 Describe in detail, with the necessary theory, an experiment to determine the 

refractive index of a transparent liquid using Newton’s rings.
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1.13 Why are very narrow slits used in Young’s double-slit interference experiment?
1.14 Describe, with the necessary equation, how you will determine the refractive 

index of water using Newton’s ring apparatus.
1.15 With the help of a suitable ray diagram, describe the production of Newton’s rings.
1.16 What is a coherent source? Explain the different methods used to obtain coherent 

sources.
1.17 Prove that the diameter of the nth dark ring in a Newton’s ring set-up is directly 

proportional to the square root of the ring number.
1.18 Describe the origin of colour on a thin film, along with the derivation of con-

structive and destructive conditions.
1.19 What is interference?
1.20 Show that for n interfering waves, I A A= =1

2 2n .
1.21 What is coherence?
1.22 How many types of coherence are generally observed?
1.23 Define coherence time and coherence length.

1.24 Show that Imax = + +( )k ψ ψ ψ ψ10
2

20
2

10 202

1.25 Derive the following expression: Imax

minI
=

+( )
−( )

ψ ψ

ψ ψ
10 20

2

10 20

2
.

1.26 Derive an expression for fringe width for a Young’s double-slit experiment.
1.27 Derive the expression 2µ λt r ncos =  for interference patterns observed in thin films.
1.28 Show that for interference from wedge-shaped thin films, the following relation 

holds: β
λ

θ
λ
θ

= ≈
2 2sin

1.29 Describe a set-up that can be used to observe Newton’s rings.
1.30 Show that for the nth bright ring in a Newton’s ring set-up in reflected light the 

diameter is given by the following expression: D R= ( ) −( )2 2 1λ n

1.31 Show that for Newton’s rings, µ =
−

−
+( )

+( )

D D

D D
n p n

n p n

2 2

2 2’ ’

1.32 What are Interferometers?
1.33 Draw a schematic of a Michelson interferometer.
1.34 Explain the working principle of a Michelson interferometer.
1.35 Explain the working principle of a Fabry–Perot interferometer

Numerical Problems
1.1 Two coherent sources whose intensity ratio is 49:1 produce interference fringes. 

Deduce the ratio of maximum intensity to minimum intensity. 

 Hint
I
I

: max

min

=
+( )
−( )













A A

A A
1 2

2

1 2

2

1.2 Determine the ratio of intensity of the centre of a bright fringe to the intensity 

found at a point 
1
6

 of the distance between two fringes from the centre. 

 Hint I: = +( ) 2 110
2ψ δcos

1.3 Two straight and narrow parallel slits  0.8 mm apart are illuminated using a 
monochromatic light source. A screen placed at a distance of 100 cm is used to 
obtain fringes. It is found that the distance between consecutive fringes is 0.5 mm. 

Determine the wavelength of light. Hint
D

: β
λ

=



2d
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32 Engineering Physics

 1.4 Two coherent sources are placed  1.2 mm apart, which generate interference 
fringes on a screen 0.9 m away. The second dark fringe is formed at a distance 
of 1 mm from the central fringe. Calculate the wavelength of the monochromatic 

light used. Hint
D

: x
n

dn =
+( )









2 1

4

λ

 1.5 In Young’s experiment, let light of wavelengths 5 × 10-7 m and 8 × 10-8 m be used 
in turn, keeping the geometry same. Compare the fringe width in the two cases. 

  Hint
D

: β
λ

=



2d

 1.6 In a thin film, between points A and B, six fringes are seen with a light of wave-
length 5400 Å. If  the light used is of wavelength 4100 Å, what are the number 
of fringes obtained between A and B? [Hint: 2µ λt r ncos = ]

 1.7 A soap film has a refractive index of 4/3 and is 2 × 10-4 cm thick. It is illumi-
nated by white light incident at an angle of 45°. On examining the reflected light 
using a spectroscope, a dark band is found corresponding to a wavelength of 
6 × 10-5 cm. Calculate the order of the interference band. [Hint: 2mt cos r = nl]

 1.8 White light is incident normally on a soapy water film of thickness 5.5 × 10-5  cm 
and m = 1.35. Determine any wavelength that is reflected strongly in the visible 
region. [Hint:  2mt cos r = (2n + 1) l/2]

 1.9 In a Young’s double-slit experiment, the slits are separated by a distance 
of 0.3 mm and the screen is placed 1.42 m away. The distance between the central 
bright fringe and the fourth bright fringe is measured to be 1.1 cm. Calculate 

the wavelength of light. Hint
D

: β
λ

=



2d

1.10 In a Newton’s ring set-up, the diameter of the eighth ring has been found to 
be 0.42 cm and that of the 25th ring 0.84 cm. The radius of curvature of the 
plano-convex lens is 95 cm. Determine the wavelength of the light used. 

 Hint
D D

R
: λ =

−











+n p n

p

2 2

4

1.11 In a Newton’s ring experimental set-up, the diameter of the eighth ring changes 
from 1.35 to 1.17 cm when a liquid of refractive index µ replaces air in the space 
between the lens and the plate. Calculate the refractive index of the liquid.

 Hint D
R

: 8

2 4 8′

=
× ×









λ
µ

1.12 Two coherent sources have their intensities in the ratio 81:9. An interference 
pattern is obtained using these two sources. Calculate the ratio of maximum 

intensity to minimum intensity. Hint
I
I

A A

A A
: max

min

=
+( )
−( )













1 2

2

1 2

2

1.13 The wavelength of the monochromatic light source in Problem 1.4 is changed 
to 6000 Å. Calculate the new distance of the second dark fringe from the central 

fringe. Hint
D

: x
n

dn =
+( )









2 1

4

λ
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