
Assistant Professor
Department of Computer Science

Shyama Prasad Mukherji College for Women
University of Delhi

Reema Thareja

As per the latest AICTE syllabus

Programming in C

11011_Programming in C AICTE.indb 1 31/07/18 5:17 PM

© Oxford University Press. All rights reserved.

Oxfo
rd

 U
niversi

ty
 Pre

ss

3
Oxford University Press is a department of the University of Oxford.

It furthers the University’s objective of excellence in research, scholarship,
and education by publishing worldwide. Oxford is a registered trade mark of

Oxford University Press in the UK and in certain other countries.

Published in India by
Oxford University Press

Ground Floor, 2/11, Ansari Road, Daryaganj, New Delhi 110002, India

© Oxford University Press 2018

The moral rights of the author/s have been asserted.

First published in 2018

All rights reserved. No part of this publication may be reproduced, stored in
a retrieval system, or transmitted, in any form or by any means, without the

prior permission in writing of Oxford University Press, or as expressly permitted
by law, by licence, or under terms agreed with the appropriate reprographics

rights organization. Enquiries concerning reproduction outside the scope of the
above should be sent to the Rights Department, Oxford University Press, at the

address above.

You must not circulate this work in any other form
and you must impose this same condition on any acquirer.

ISBN-13: 978-0-19-949228-2
ISBN-10: 0-19-949228-X

Typeset in Times New Roman PS
by Ideal Publishing Solutions, Delhi

Printed in India by Magic International (P) Ltd., Greater Noida

Cover image: BEST-BACKGROUNDS / Shutterstock

Third-party website addresses mentioned in this book are provided
by Oxford University Press in good faith and for information only.

Oxford University Press disclaims any responsibility for the material contained therein.

11011_Programming in C AICTE.indb 2 31/07/18 5:17 PM

© Oxford University Press. All rights reserved.

Oxfo
rd

 U
niversi

ty
 Pre

ss

Preface

C is one of the most popular and successful programming
languages of all time and considered to be the origin of
all modern-day computer languages. Many of the popular
cross-platform programming languages, such as C++,
Java, Python, Objective-C, Perl, and Ruby, and scripting
languages, such as PHP, Lua, and Bash, borrow syntaxes
and functions from C.
 C is also used for programming embedded micropro-
cessors and device drivers. As many embedded systems
do not support C++, learning to develop programs using
a strict C, without advanced C++ features, is critical for
many applications including interface to hardware.
 Thus, studying C provides a good foundation to learn
advanced programming skills such as object-oriented
programming, event-driven programming, multi-thread
programming, real-time programming, embedded pro-
gramming, network programming, parallel programming,
other programming languages, as well as new and emerg-
ing computing paradigms such as grid computing and
cloud computing.

ABOUT THE BOOK
The objective of this book is to provide readers with a
sound understanding of the fundamentals of C and how
to apply them effectively. Every effort has been made to
acquaint readers with the techniques and applications in
the area. After learning the rudiments of program writing,
readers will find a number of examples and exercises that
would help them to design efficient programs.

 The salient features of the book include:
	 ∑ Lucid style of presentation that makes the concepts

easy to understand
	 ∑ Plenty of illustrations to support the explanations,

which help clarify the concepts in a clear manner
	 ∑ Programming tips in between the text educating

readers about common programming errors and how
to avoid them

 ∑ Notes highlighting important terms and concepts
 ∑ More than 240 programs that have been tested on

GCC compiler version 4.6.3
 ∑ Glossary of important terms at the end of each

chapter for recapitulation of the important concepts
learnt

 ∑ Comprehensive exercises at the end of each chapter
to facilitate revision

CONTENT AND COVERAGE
The book is organized into 12 chapters.
 Chapter 1 provides an introduction to computer hardware
and software. It also provides an insight into different
programming languages and the generations through which
these languages have evolved. The chapter also discusses
program design tools such as algorithms and flowcharts.
 Annexure 1 covers examples of different problems
solved using both algorithms and flowcharts.
 Chapter 2 discusses the building blocks of the C
programming language. The chapter discusses keywords,

11011_Programming in C AICTE.indb 5 31/07/18 5:17 PM

© Oxford University Press. All rights reserved.

Oxfo
rd

 U
niversi

ty
 Pre

ss

vi Preface

identifiers, basic data types, constants, variables, and
operators supported by the language. It also discusses the
storage classes as well as variable scope in C.
 Chapter 3 explains decision control and iterative
statements as well as special statements such as break
statement, control statement, and jump statement.
 Chapter 4 deals with declaring, defining, and calling
functions. A table listing all the built-in functions is also
provided in the chapter.
 Chapter 5 explains the important concept of recursion
and how different problems such as Fibonacci series
and Ackermann function can be solved using recursive
functions in C.
 Chapter 6 focuses on the concept of arrays, including
one-dimensional, two-dimensional, and multidimensional
arrays. Finally, the operations that can be performed on
such arrays are also explained.
 Chapter 7 discusses the concept of strings which are
also known as character arrays. The chapter not only
focuses on operations that can be used to manipulate
strings but also explains various operations that can be
used to manipulate the character arrays.
 Chapter 8 introduces algorithms that serve as building
blocks for creating efficient programs. The chapter
explains how to calculate the time complexity which is a
key concept for evaluating the performance of algorithms.
Searching algorithms such as linear search and binary
search are also explained in the chapter. It provides an
introduction to sorting and various sorting techniques such
as bubble sort, insertion sort, selection sort, merge sort,
and quick sort.
 Chapter 9 presents a detailed overview of pointers,
pointer variables, and pointer arithmetic. The chapter
also relates the use of pointers with arrays, strings, and
functions. This helps readers to understand how pointers
can be used to write better and efficient programs.
 Chapter 10 introduces two user-defined data types. The
first is a structure and the second is a union. The chapter
includes the use of structures and unions with pointers,
arrays, and functions so that the inter-connectivity between
the programming techniques can be well understood.
 Chapter 11 explains how data can be stored in files.
The chapter deals with opening, processing, and closing

of files through a C program. These files are handled in
text mode as well as binary mode for better clarity of the
concepts.
 Chapter 12 discusses singly linked lists. As a linked
list is a preferred data structure when memory needs to be
allocated dynamically for the data, the chapter gives the
techniques to insert and delete data from the linked list.
 Appendix A provides answers to all the objective-type
questions given in the exercises section in each chapter.

ONLINE RESOURCES
The following resources are available at Oxford University
Press India’s Higher Education Companion Site (https://
india.oup.com/digital/resources/Instructors-students) to
support the faculty and students using this text:

For Faculty

 ∑ Solutions Manual
 ∑ PowerPoint Slides

For Students

 ∑ Multiple Choice Questions
 ∑ Supplementary Reading: Data Structures

ACKNOWLEDGMENTS
I am grateful to my family, friends, and fellow members
of the teaching staff at the Institute of Information
Technology and Management.
 My special thanks would always go to my parents,
brother Pallav, sisters Kimi and Rashi, and son Goransh.
My sincere thanks goes to my uncle Mr B. L. Theraja for
his inspiration and guidance in writing this book. Finally,
I would like to acknowledge the technical assistance
provided to me by Mr Udit Chopra. I would like to thank
him for sparing his precious time to help me design and
test the programs.
 Last but not the least, my acknowledgements will
remain incomplete if I do not thank the editorial staff at
Oxford University Press, India, for their help and support.

Reema Thareja

11011_Programming in C AICTE.indb 6 31/07/18 5:17 PM

© Oxford University Press. All rights reserved.

Oxfo
rd

 U
niversi

ty
 Pre

ss

viiDetailed Contents

Brief Contents

Preface v
Detailed Contents ix
Roadmap to Syllabus xiv

 1. Introduction to Programming 1
 2. Introduction to C 29
 3. Decision Control and Looping Statements 80
 4. Functions 124
 5. Recursion 146
 6. Arrays 156
 7. Strings 193
 8. Algorithms 226
 9. Pointers 251
 10. Structure, Union, and Enumerated Data Types 291
 11. Files 320
 12. Linked Lists 355

Appendix A: Answers to Objective Questions 371

11011_Programming in C AICTE.indb 7 31/07/18 5:17 PM

© Oxford University Press. All rights reserved.

Oxfo
rd

 U
niversi

ty
 Pre

ss

 1.7 Program Design Tools: Algorithms,
Flowcharts, Pseudocodes 16

 1.7.1 Algorithms 16
 1.7.2 Flowcharts 17
 1.7.3 Pseudocodes 18
 1.8 Types of Errors 19
 1.8.1 Testing and Debugging Approaches 19
 Annexure 1 25

2. Introduction to C 29
 2.1 Introduction 29
 2.1.1 Background 29
 2.1.2 Characteristics of C 30
 2.1.3 Uses of C 31
 2.2 Structure of a C Program 31
 2.3 Writing the First C Program 32
 2.4 Files Used in a C Program 33
 2.4.1 Source Code Files 33
 2.4.2 Header Files 33
 2.4.3 Object Files 34
 2.4.4 Binary Executable Files 34
 2.5 Compiling and Executing C Programs 34
 2.6 Using Comments 35
 2.7 C Tokens 36
 2.8 Character Set in C 36
 2.9 Keywords 36

1. Introduction to Programming 1
 1.1 What is a Computer? 1
 1.2 Components of a Computer System 2
 1.2.1 Hardware 2
 1.2.2 Computer Software 7
 1.3 Stored Program Concept 10
 1.3.1 Types of Stored Program Computers 10
 1.4 Programming Languages 10
 1.5 Generation of Programming Languages 11
 1.5.1 First Generation: Machine Language 12
 1.5.2 Second Generation: Assembly

Language 12
 1.5.3 Third Generation Programming

Languages 13
 1.5.4 Fourth Generation: Very High-Level

Languages 14
 1.5.5 Fifth Generation Programming

Languages 14
 1.6 Design and Implementation of

Efficient Programs 15
 1.6.1 Requirements Analysis 15
 1.6.2 Design 15
 1.6.3 Implementation 15
 1.6.4 Testing 15
 1.6.5 Software Deployment, Training,

and Support 15
 1.6.6 Maintenance 16

Detailed Contents

Preface v
Brief Contents vii
Roadmap to Syllabus xiv

11011_Programming in C AICTE.indb 9 31/07/18 5:17 PM

© Oxford University Press. All rights reserved.

Oxfo
rd

 U
niversi

ty
 Pre

ss

x Detailed Contents

 2.10 Identifiers 37
 2.10.1 Rules for Forming Identifier

Names 37
 2.11 Basic Data Types in C 37
 2.11.1 How are Float and Double Stored? 38
 2.12 Variables 39
 2.12.1 Numeric Variables 39
 2.12.2 Character Variables 39
 2.12.3 Declaring Variables 39
 2.12.4 Initializing Variables 39
 2.13 Constants 40
 2.13.1 Integer Constants 40
 2.13.2 Floating Point Constants 40
 2.13.3 Character Constants 41
 2.13.4 String Constants 41
 2.13.5 Declaring Constants 41
 2.14 Input/Output Statements in C 41
 2.14.1 Streams 41
 2.14.2 Formatting Input/Output 42
 2.14.3 printf() 42
 2.14.4 scanf() 45
 2.14.5 Examples of printf/scanf 47
 2.14.6 Detecting Errors During

Data Input 49
 2.15 Operators in C 49
 2.15.1 Arithmetic Operators 49
 2.15.2 Relational Operators 51
 2.15.3 Equality Operators 52
 2.15.4 Logical Operators 52
 2.15.5 Unary Operators 53
 2.15.6 Conditional Operator 54
 2.15.7 Bitwise Operators 55
 2.15.8 Assignment Operators 56
 2.15.9 Comma Operator 57
 2.15.10 sizeof Operator 57
 2.15.11 Arithmetic Expressions in C 57
 2.16 Type Conversion and Typecasting 64
 2.16.1 Type Conversion 64
 2.16.2 Typecasting 65
 2.17 Scope of Variables 67
 2.17.1 Block Scope 67
 2.17.2 Function Scope 67
 2.17.3 Program Scope 68
 2.17.4 File Scope 68
 2.18 Storage Classes 69
 2.18.1 auto Storage Class 69
 2.18.2 register Storage Class 70
 2.18.3 extern Storage Class 70
 2.18.4 static Storage Class 71
 2.18.5 Comparison of Storage Classes 72

3. Decision Control and Looping
Statements 80

 3.1 Introduction to Decision Control Statements 80
 3.2 Conditional Branching Statements 80
 3.2.1 If Statement 80
 3.2.2 If–Else Statement 82
 3.2.3 If–Else–If Statement 84
 3.2.4 Switch Case 88
 3.3 Iterative Statements 92
 3.3.1 While Loop 92
 3.3.2 Do-While Loop 95
 3.3.3 For Loop 98
 3.4 Nested Loops 101
 3.5 The Break and Continue Statements 110
 3.5.1 break Statement 110
 3.5.2 continue Statement 111
 3.6 goto Statement 112

4. Functions 124
 4.1 Introduction 124
 4.1.1 Why are Functions Needed? 124
 4.2 Using Functions 125
 4.3 Function Declaration/Function Prototype 126
 4.4 Function Definition 127
 4.5 Function Call 127
 4.5.1 Points to Remember While Calling

Functions 128
 4.6 Return Statement 129
 4.6.1 Using Variable Number of Arguments 129
 4.7 Passing Parameters to Functions 130
 4.7.1 Call by Value 130
 4.7.2 Call by Reference 131
 4.8 Built-in Functions 134

5. Recursion 146
 5.1 Recursive Functions 146
 5.1.1 Greatest Common Divisor 147
 5.1.2 Finding Exponents 148
 5.1.3 Fibonacci Series 148
 5.1.4 The Ackermann Function 148
 5.2 Types of Recursion 149
 5.2.1 Direct Recursion 149
 5.2.2 Indirect Recursion 150
 5.2.3 Tail Recursion 150
 5.2.4 Linear and Tree Recursion 150
 5.3 Tower of Hanoi 151
 5.4 Recursion versus Iteration 153

11011_Programming in C AICTE.indb 10 31/07/18 5:17 PM

© Oxford University Press. All rights reserved.

Oxfo
rd

 U
niversi

ty
 Pre

ss

xiDetailed Contents

6. Arrays 156
 6.1 Introduction 156
 6.2 Declaration of Arrays 157
 6.3 Accessing the Elements of an Array 158
 6.3.1 Calculating the Address of

Array Elements 158
 6.3.2 Calculating the Length of an Array 159
 6.4 Storing Values in Arrays 159
 6.4.1 Initializing Arrays During Declaration 159
 6.4.2 Inputting Values from the Keyboard 160
 6.4.3 Assigning Values to Individual

Elements 160
 6.5 Operations on Arrays 160
 6.5.1 Traversing an Array 161
 6.5.2 Inserting an Element in an Array 165
 6.5.3 Deleting an Element from an Array 168
 6.5.4 Merging Two Arrays 170
 6.6 Passing Arrays to Functions 171
 6.7 Two-Dimensional Arrays 175
 6.7.1 Declaring Two-Dimensional Arrays 175
 6.7.2 Initializing Two-Dimensional Arrays 176
 6.7.3 Accessing the Elements of

Two-Dimensional Arrays 177
 6.8 Operations on Two-Dimensional Arrays 179
 6.9 Passing Two-Dimensional Arrays to Functions 182
 6.9.1 Passing a Row 183
 6.9.2 Passing an Entire 2D Array 183
 6.10 Multidimensional Arrays 185
 6.11 Sparse Matrices 186
 6.11.1 Array Representation of

Sparse Matrices 187
 6.12 Applications of Arrays 188

7. Strings 193
 7.1 Introduction 193
 7.1.1 Reading Strings 195
 7.1.2 Writing Strings 195
 7.1.3 Summary of Functions Used to

Read and Write Characters 196
 7.2 Suppressing Input 197
 7.2.1 Using a Scanset 197
 7.3 String Taxonomy 198
 7.4 Operations on Strings 199
 7.4.1 Finding the Length of a String 199
 7.4.2 Converting Characters of a String

into Upper Case 200
 7.4.3 Converting Characters of a String

into Lower Case 201

 7.4.4 Concatenating Two Strings to Form
a New String 201

 7.4.5 Appending a String to
Another String 202

 7.4.6 Comparing Two Strings 202
 7.4.7 Reversing a String 203
 7.4.8 Extracting a Substring from Left 204
 7.4.9 Extracting a Substring from Right

of the String 205
 7.4.10 Extracting a Substring from the

Middle of a String 205
 7.4.11 Inserting a String in Another String 206
 7.4.12 Indexing 207
 7.4.13 Deleting a String from the

Main String 207
 7.4.14 Replacing a Pattern with Another

Pattern in a String 208
 7.5 Miscellaneous String and Character Functions 209
 7.5.1 Character Manipulation Functions 209
 7.5.2 String Manipulation Functions 209
 7.6 Arrays of Strings 215

8. Algorithms 226
 8.1 Introduction to Algorithms 226
 8.1.1 Different Approaches to Designing

an Algorithm 226
 8.2 Control Structures used in Algorithms 227
 8.3 Time and Space Complexity 228
 8.3.1 Worst-case, Average-case,

Best-case, and Amortized Time
Complexity 229

 8.3.2 Time–Space Trade-Off 229
 8.3.3 Expressing Time and Space

Complexity 229
 8.3.4 Algorithm Efficiency 229
 8.4 Big O Notation 231
 8.5 Omega Notation (Ω) 233
 8.6 Theta Notation (Θ) 233
 8.7 Searching Algorithms 234
 8.7.1 Linear Search 234
 8.7.2 Binary Search 235
 8.8 Sorting Algorithms 237
 8.8.1 Bubble Sort 237
 8.8.2 Insertion Sort 239
 8.8.3 Selection Sort 240
 8.8.4 Merge Sort 241
 8.8.5 Quick Sort 244
 8.9 Comparison of Sorting Algorithms 247

11011_Programming in C AICTE.indb 11 31/07/18 5:17 PM

© Oxford University Press. All rights reserved.

Oxfo
rd

 U
niversi

ty
 Pre

ss

xii Detailed Contents

9. Pointers 251
 9.1 Understanding the Computer’s Memory 251
 9.2 Introduction to Pointers 252
 9.3 Declaring Pointer Variables 253
 9.4 Pointer Expressions and Pointer Arithmetic 255
 9.5 Null Pointers 259
 9.6 Generic Pointers 260
 9.7 Passing Arguments to Function

Using Pointers 260
 9.8 Pointers and Arrays 261
 9.9 Passing an Array to a Function 265
 9.10 Difference between Array

Name and Pointer 266
 9.11 Pointers and Strings 267
 9.12 Arrays of Pointers 270
 9.13 Pointers and 2D Arrays 272
 9.14 Pointers and 3D Arrays 274
 9.15 Function Pointers 275
 9.15.1 Initializing a Function Pointer 275
 9.15.2 Calling a Function using a Function

Pointer 275
 9.15.3 Comparing Function Pointers 276
 9.15.4 Passing a Function Pointer as an

Argument to a Function 276
 9.16 Array of Function Pointers 276
 9.17 Pointers to Pointers 277
 9.18 Memory Allocation in C Programs 278
 9.19 Memory Usage 278
 9.20 Dynamic Memory Allocation 278
 9.20.1 Memory Allocations Process 279
 9.20.2 Allocating a Block of Memory 279
 9.20.3 Releasing the Used Space 280
 9.20.4 To Alter the Size of

Allocated Memory 280
 9.21 Drawbacks of Pointers 282

10. Structure, Union, and Enumerated
Data Types 291

 10.1 Introduction 291
 10.1.1 Structure Declaration 291
 10.1.2 Typedef Declarations 293
 10.1.3 Initialization of Structures 293
 10.1.4 Accessing the Members of a

Structure 294
 10.1.5 Copying and Comparing Structures 294
 10.2 Nested Structures 297

 10.3 Arrays of Structures 298
 10.4 Structures and Functions 300
 10.4.1 Passing Individual Members 300
 10.4.2 Passing the Entire Structure 300
 10.4.3 Passing Structures

Through Pointers 303
 10.5 Self-referential Structures 308
 10.6 Unions 308
 10.6.1 Declaring a Union 308
 10.6.2 Accessing a Member of a Union 309
 10.6.3 Initializing Unions 309
 10.7 Arrays of Union Variables 310
 10.8 Unions Inside Structures 310
 10.9 Structures Inside Unions 311
 10.10 Enumerated Data Type 311
 10.10.1 enum Variables 312
 10.10.2 Using the Typedef Keyword 313
 10.10.3 Assigning Values to Enumerated

Variables 313
 10.10.4 Enumeration Type Conversion 313
 10.10.5 Comparing Enumerated Types 313
 10.10.6 Input/Output Operations on

Enumerated Types 313

11. Files 320
 11.1 Introduction to Files 320
 11.1.1 Streams in C 320
 11.1.2 Buffer Associated with File Stream 321
 11.1.3 Types of Files 321
 11.2 Using Files in C 322
 11.2.1 Declaring a File Pointer Variable 322
 11.2.2 Opening a File 322
 11.2.3 Closing a File Using fclose() 324
 11.3 Read Data From Files 324
 11.3.1 fscanf() 324
 11.3.2 fgets() 325
 11.3.3 fgetc() 326
 11.3.4 fread() 326
 11.4 Writing Data to Files 327
 11.4.1 fprintf() 327
 11.4.2 fputs() 329
 11.4.3 fputc() 329
 11.4.4 fwrite() 329
 11.5 Detecting the End-Of-File 330
 11.6 Error Handling During File Operations 331
 11.6.1 clearerr() 331
 11.6.2 perror() 332

11011_Programming in C AICTE.indb 12 31/07/18 5:17 PM

© Oxford University Press. All rights reserved.

Oxfo
rd

 U
niversi

ty
 Pre

ss

xiiiDetailed Contents

 11.7 Accepting Command Line
Arguments 332

 11.8 Functions for Selecting a
Record Randomly 345

 11.8.1 fseek() 345
 11.8.2 ftell() 347
 11.8.3 rewind() 348
 11.8.4 fgetpos() 348
 11.8.5 fsetpos() 349
 11.9 Remove () 349
 11.10 Renaming the File 349
 11.11 Creating a Temporary File 350

12. Linked Lists 355
 12.1 Introduction 355
 12.2 Linked Lists versus Arrays 356
 12.3 Memory Allocation and Deallocation for

a Linked List 357
 12.4 Types of Linked Lists 358
 12.5 Singly Linked Lists 359
 12.5.1 Traversing a Singly Linked List 359
 12.5.2 Searching for a Value in a Linked List 359
 12.5.3 Inserting a New Node in a Linked List 360

Appendix A: Answers to Objective Questions 371

11011_Programming in C AICTE.indb 13 31/07/18 5:17 PM

© Oxford University Press. All rights reserved.

Oxfo
rd

 U
niversi

ty
 Pre

ss

Roadmap to Syllabus

Unit No. Topics Chapter

1 Introduction to programming

Introduction to components of a computer system (disks, memory, processor, where a program
is stored and executed, operating system, compilers, etc.)

1

Idea of algorithm: steps to solve logical and numerical problems; Representation of algorithm:
Flowchart/Pseudocode with examples; From algorithms to programs

Source code; Variables (with data types); Variables and memory locations; Syntax and logical
errors in compilation; Object and executable code

1
Annexure 1

1+2

2 Arithmetic expressions and precedence 2

Conditional branching and loops; Writing and evaluation of conditionals and consequent
branching; Iteration and loops

3

3 Arrays (1-D, 2-D); Character arrays
Strings

6
7

4 Basic algorithms

Searching; Basic sorting algorithms (bubble, insertion and selection); Finding roots of equations
Notion of order of complexity through example programs (no formal definition required)

8
Annexure 1

5 Functions (including using built-in libraries); Parameter passing in functions; Call by value
Passing arrays to functions: idea of call by reference

4
6

6 Recursion, as a different way of solving problems. Example programs, such as finding factorial,
Fibonacci series, Ackerman function, etc.

Quick sort or Merge sort

5

8

7 Structures; Defining structures and Array of Structures 10

8 Idea of pointers; Defining pointers; Use of pointers in self-referential structures
Notion of linked list (no implementation)

9
12

9 File handling 11

11011_Programming in C AICTE.indb 14 31/07/18 5:17 PM

© Oxford University Press. All rights reserved.

Oxfo
rd

 U
niversi

ty
 Pre

ss

Introduction to
Programming

1

1.1 WHAT IS A COMPUTER?
A computer, in simple terms, can be defined as an electronic
device that is designed to accept data, perform the required
mathematical and logical operations at high speed, and
output the result. A computer accepts data, processes it,
and produces information (see Figure 1.1). Here, data
refers to some raw facts or figures, and information
implies the processed data. For example, if 12-12-92 is the
date of birth of a student, then it is data (a raw fact/figure).
However, when we process this data (subtract it from the
present date) and say that the age of the student is 18 years,
then the outcome is information.

Figure 1.1 Functions of computers

 Today, computers have become a crucial part of our
everyday lives, and we need computers just like we need
the television, telephones, or other electronic devices at
home. Computers are basically meant to solve problems
quickly and accurately.

Basic Computer Organization
A computer is an electronic device that basically performs
five major operations:

∑ Accepting data or instructions (input)
∑ Storing data
∑ Processing data
∑ Displaying results (output)
∑ Controlling and coordinating all operations inside a

computer

Refer to Figure 1.2, which shows the interaction between
the different units of a computer system.

Figure 1.2 Block diagram of a computer

Input This is the process of entering data and instructions
(also known as programs) in to the computer system. The
data and instructions can be entered by using different
input devices such as keyboard, mouse, scanner, and
trackball. Note that computers understand binary language,
which consists of only two symbols (0 and 1), so it is the
responsibility of the input devices to convert the input data
into binary codes.

∑  Hardware ∑  Stored program concept ∑  Compiler, interpreter, linker, loader
∑  Application software ∑  Generation of programming languages ∑  Machine language
∑  Assembly language ∑  Procedural and non-procedural languages ∑  Design of efficient programs
∑  System software

Takeaways

11011_Programming in C AICTE.indb 1 31/07/18 5:17 PM

© Oxford University Press. All rights reserved.

Oxfo
rd

 U
niversi

ty
 Pre

ss

2 Programming in C

Storage It is the process of saving data and instructions
permanently in the computer so that they can be used for
processing. The computer storage space not only stores
the data and programs that operate on that data but also
stores the intermediate results and the final results of
processing.
 A computer has two types of storage areas: primary
storage and secondary storage.

Processing The process of performing operations on the
data as per the instructions specified by the user (program)
is called processing. Data and instructions are taken from
the primary memory and transferred to the arithmetic
and logical unit (ALU), which performs all sorts of
calculations. The intermediate results of processing may
be stored in the main memory, as they might be required
again. When the processing completes, the final result
is then transferred to the main memory. Hence, the data
may move from main memory to the ALU multiple times
before the processing is over.

Output Output is the process of giving the result of data
processing to the outside world (external to the computer
system). The results are given through output devices such
as monitor and printer. Since the computer accepts data
only in the binary form and the result of processing is also
in the binary form, the result cannot be directly given to
the user. The output devices, therefore, convert the results
available in binary codes into a human-readable language
before displaying it to the user.

Control The control unit (CU) is the central nervous
system of the entire computer system. It manages and
controls all the components of the computer system.
The CU decides the manner in which instructions will
be executed and operations performed. It takes care of
the step-by-step processing of all operations that are
performed in the computer.

1.2 COMPONENTS OF A COMPUTER
SYSTEM

The components of a computer system consist of: Hardware
and Software.

1.2.1 Hardware
Hardware of a computer system includes:

∑ Memory
∑ Disks

∑ Processor
∑ Peripheral Devices/Input and Output Devices

Memory
Memory is an internal storage area in the computer, which
is used to store data and programs either temporarily or
permanently. Computer memory can be broadly divided
into two groups—primary memory and secondary
memory.
 While the main memory holds instructions and data
when a program is executing, the auxiliary or the secondary
memory holds data and programs that are not currently in
use and provides long-term storage.
To execute a program, all the instructions or data that
has to be used by the CPU has to be loaded into the main
memory. However, the primary memory is volatile and so
it can retain data only when the power is on. Moreover, it
is very expensive and therefore limited in capacity.
 On the contrary, the secondary memory stores data or
instructions permanently, even when the power is turned off.
It is cheap and can store large volumes of data. Moreover,
data stored in auxiliary memory is highly portable, as the
users can easily move it from one computer to another. The
only drawback of secondary memory is that data can be
accessed from it only at very low speeds as compared with
the data access speed of the primary memory.
 Random access memory (RAM) and read only memory
(ROM) are the two types of primary memory.

Random access memory RAM is a volatile storage area
within the computer that is typically used to store data
temporarily, so that it can be promptly accessed by the
processor. The information stored in the RAM is basically
loaded from the computer’s hard disk, and includes data
related to the operating system and applications that are
currently being executed by the processor.
 RAM is considered random access because any memory
cell can be directly accessed if its address is known. When
the RAM gets full, the computer system operates at a slow
speed. When multiple applications are being executed
simultaneously and the RAM gets fully occupied by
the application’s data, it is searched to identify memory
portions that have not been utilized. The contents of those
locations are then copied onto the hard drive. This action
frees up RAM space and enables the system to load other
pieces of required data.
 These days, the applications’ and operating system’s
demand for system RAM has drastically increased. For
example, in the year 2000, a personal computer (PC) had

11011_Programming in C AICTE.indb 2 31/07/18 5:17 PM

© Oxford University Press. All rights reserved.

Oxfo
rd

 U
niversi

ty
 Pre

ss

3Introduction to Programming

only 128 MB of RAM, but today PCs have 1–2 GB of
RAM installed, and may include graphics cards with their
own additional 512 MB or more of RAM. There are two
types of RAM—static RAM (SRAM) and dynamic RAM
(DRAM).

• Static RAM This is a type of RAM that holds data
without an external refresh as long as it is powered.

• Dynamic RAM This is the most common type of
memory used in personal computers, workstations, and
servers today. A DRAM chip contains millions of tiny
memory cells. Each cell is made up of a transistor and
a capacitor, and can contain 1 bit of information—0
or 1. To store a bit of information in a DRAM chip,
a tiny amount of power is put into the cell to charge
the capacitor. Hence, while reading a bit, the transistor
checks for a charge in the capacitor. If a charge is
present, then the reading is 1; if not, the reading is 0.

Read only memory ROM refers to computer memory
chips containing permanent or semi-permanent data.
Unlike RAM, ROM is non-volatile; that is, the data is
retained in it even after the computer is turned off.
 Most computers contain a small amount of ROM that
stores critical programs such as the basic input/output
system (BIOS), which is used to boot up the computer
when it is turned on. The BIOS consists of a few kilobytes
of code that tells the computer what to do when it starts
up, such as running hardware diagnostics and loading the
operating system into the RAM. Moreover, ROMs are used
extensively in calculators and peripheral devices such as
laser printers, whose fonts are often stored in ROMs.
 Originally, ROMs were read-only. So, in order to
update the programs stored in them, the ROM chip had to
be removed and physically replaced by another that had
a newer version of the program. However, today ROM
chips are not literally read-only, as updates to the chip
are possible. The process of updating a ROM chip is a
bit slower, as memory must be erased in large portions
before it can be rewritten. Rewritable ROM chips include
PROMs, EPROMs, and EEPROMs.

• Programmable read-only memory (PROM) It is also
called one-time programmable ROM, and can be
written to or programmed using a special device called
a PROM programmer.

• Erasable programmable read-only memory (EPROM) It
is a type of ROM that can be erased and re-programmed.
The EPROM can be erased by exposing the chip to strong
ultraviolet light, typically for 10 minutes or longer, and

can then be rewritten with a process that again needs the
application of a higher voltage. Repeated exposure to
ultraviolet light wears out the chip.

• Electrically erasable programmable read-only memory
(EEPROM) It is based on a semiconductor structure
similar to the EPROM, but allows the entire or selected
contents to be electrically erased, then rewritten
electrically, so that they need not be removed from the
computer (or camera, MP3 player, etc.). The process of
writing an EEPROM is also known as flashing.

Secondary storage devices Secondary storage (also
known as external memory or auxiliary storage) differs
from main memory in that it is not directly accessible by
the CPU. The secondary storage devices hold data even
when the computer is switched off. An example of such a
device is the hard disk.
 The computer usually uses its input/output channels to
access data from the secondary storage devices to transfer
the data to an intermediate area in the main memory.
Secondary storage devices are non-volatile in nature,
cheaper than the primary memory, and thus can be used
to store huge amounts of data. While the CPU can read
the data stored in the main memory in nanoseconds, the
data from the secondary storage devices can be accessed
in milliseconds.
 The secondary storage devices are basically formatted
according to a file system that organizes the data into files
and directories. The file system also provides additional
information to describe the owner of a certain file, the
access time, the access permissions, and other information.

Hard Disks
The hard drive is a part of the computer that stores all the
programs and files, so if the drive is damaged for some rea-
son, all the data stored on the computer is lost. The hard
disk provides relatively quick access to large amounts of
data stored on an electromagnetically charged surface or a
set of surfaces. Today, PCs come with hard disks that can
store gigabytes of data.
 A hard disk is basically a set of disks, stacked together
like phonograph records, that has data recorded electro-
magnetically in concentric circles known as tracks.
 A single hard disk includes several platters (or disks)
that are covered with a magnetic recording medium. Each
platter requires two read/write (R/W) heads, one for each
side. Note that in the figure, all the R/W heads are attached to
a single access arm and so they cannot move independently.
The parts of the hard disk are shown in Figure 1.3.

11011_Programming in C AICTE.indb 3 31/07/18 5:17 PM

© Oxford University Press. All rights reserved.

Oxfo
rd

 U
niversi

ty
 Pre

ss

4 Programming in C

 The R/W head can pivot back and forth over the platters
to read or write data on them. Data is actually stored on the
surface of a platter in sectors and tracks.

Figure 1.3 Schematic diagram of a hard disk

The performance of a hard disk depends on its access
time, which is the time required to read or write on the
disk. Access time is a combination of the following three
components:

∑ Seek time This is the time taken to position the R/W
head over the appropriate cylinder (usually around 8
ms on an average). Seek time varies depending on the
position of the access arm when the R/W command is
received. Its value will be maximum when the access
arm is positioned over the innermost track while the data
that has to be accessed is stored on the outermost track.
Similarly, it will be zero if the access arm is already
positioned over the desired track. On an average, the
seek time varies from 10 to 100 milliseconds.

∑ Rotational delay This is the time taken to bring the
target sector to rotate under the R/W head. Assuming
that the hard disk has 7,200 rpm, or 120 rotations per
second, a single rotation is done in approximately 8 ms.
The average rotational delay is around 4 ms.

∑ Transfer time The time to transfer data or read/write to
a disk is called the transfer rate.

 Thus, the overall time required to access data = seek
time + rotational delay + transfer time.
 The sum of the seek time and the rotational delay is also
known as disk latency. Disk latency is the time taken to
initiate a transfer.

Processor
A basic processor consists of two main parts—ALU and
control unit (CU). Besides these components, there are
also registers, an execution unit, and a bus interface unit
(BIU) as shown in Figure 1.4.

Figure 1.4 Basic computer organization

Execution unit The execution unit mainly consists of the
CU, ALU, and registers.
∑ Control unit The main function of the CU is to direct

and coordinate the computer operations. It interprets the
instructions (program) and initiates action to execute
them. The CU controls the flow of data through the
computer system and directs the ALU, registers, buses,
and input/output (I/O) devices. It is, therefore, called
the brain of the computer system. Similar to the human
brain, the CU controls all operations within the processor,
which in turn controls all other parts of the computer
system. In addition, the CU is responsible for fetching,
decoding, executing instructions, and storing results.

∑ Arithmetic and logic unit The ALU performs arithmetic
(add, subtract, multiply, divide, etc.), comparison (less
than, greater than, or equal to), and other operations.

Registers A processor register is a computer memory that
provides quick access to the data currently being used for
processing. The ALU stores all temporary results and the
final result in the processor registers. As mentioned earlier,
registers are at the top of memory hierarchy and are always
preferred to speed up program execution. Registers are
also used to store the instructions of the program currently
being executed. There are different types of registers, each
with a specific storage function.

11011_Programming in C AICTE.indb 4 31/07/18 5:17 PM

© Oxford University Press. All rights reserved.

Oxfo
rd

 U
niversi

ty
 Pre

ss

5Introduction to Programming

∑ Accumulator and general purpose registers These are
frequently used to store the data brought from the main
memory and the intermediate results during program
execution. The number of general purpose registers
present varies from processor to processor.

∑ Special purpose registers These include the memory
address register (MAR) that stores the address of the
data or instruction to be fetched from the main memory,
the memory buffer register (MBR) that stores the data
or instruction fetched from the main memory, the
instruction register (IR) that stores the instructions
currently being executed, the I/O register that is used
to transfer data or instructions to or from an I/O device,
and the program counter that stores the address of the
next instruction to be executed.

∑ Instruction cycle To execute an instruction, a processor
normally follows a set of basic operations that are
together known as an instruction cycle. The operations
performed in an instruction cycle involve fetch, decode,
execute, and store instructions.

Bus interface unit The BIU provides functions for transfer-
ring data between the execution unit of the CPU and other
components of the computer system that lie outside the CPU.
Every computer system has three different types of busses to
carry information from one part to the other. These are the
data bus, control bus, and address bus (Figure 1.5).

Figure 1.5 Buses with a computer system

The BIU puts the contents of the program counter on the
address bus. Note that the content of the program counter
is the address of the next instruction to be executed. Once
the memory receives an address from the BIU, it places
the contents at that address on the data bus, which is then
transferred to the IR of the processor through the MBR. At
this time, the contents of the program counter are modified
(e.g., incremented by 1) so that it now stores the address of
the next instruction.

Instruction set The instruction set is a set of commands
that instructs the processor to perform specific tasks. It

tells the processor what it needs to do, from where to find
data (register, memory, or I/O device), from where to find
instruction, and so on. Nowadays, computers come with
a large set of instructions, and each processor supports
its own instruction set. Although the instructions across
processors are almost the same, they may vary in their
internal design.

System clock A small quartz crystal circuit called
the system clock controls the timing of all operations
within the computer system. The system clock regularly
generates ticks to control the functioning of the computer.
Every processor has a system clock to synchronize various
operations that take place within the computer system.
Many modern computers even have multiple system
clocks that vibrate at a specific frequency.

Processor speed The speed of PCs and minicomputers is
usually specified in MHz or GHz. However, the speed of
a mainframe computer is measured in MIPS (millions of
instructions per second) or BIPS (billions of instructions
per second) and that of a supercomputer is measured
in MFLOPS (millions of floating-point operations per
second), GFLOPS (giga or billions of floating-point
operations per second). The reason for the variations
in speed is that personal or minicomputers use a single
processor to execute instructions, whereas mainframes
and supercomputers employ multiple processors to speed
up their overall performance.

Pipelining and parallel processing Most of the modern
PCs support pipelining. Pipelining is a technique with
which the processor can fetch the second instruction before
completing the execution of the first instruction. Initially,
a processor had to wait for an instruction to complete all
stages before it could fetch the next instruction, thereby
wasting its time. However, with pipelining, processors can
operate at a faster pace as they no longer have to wait for one
instruction to complete before fetching the next instruction.
Such processors that can execute more than one instruction
per clock cycle are called superscalar processors.

Peripheral Devices/Input and Output Devices
In order to accomplish tasks, a computer must be able to
interact with its users. For this purpose, we need input
and output devices, which are also known as peripheral
devices. There are different types of input/output devices,
and each device has capabilities that differentiate it from
the others.

11011_Programming in C AICTE.indb 5 31/07/18 5:17 PM

© Oxford University Press. All rights reserved.

Oxfo
rd

 U
niversi

ty
 Pre

ss

6 Programming in C

Figure 1.6 Categories of input devices

Input Devices An input device is used to feed data and
instructions into the computer. Figure 1.6 categorizes
input devices into different groups.

∑ Keyboard The keyboard is the main input device for
computers. Computer keyboards look very similar to
the keyboards on it and is used to access the options
available by pressing the right mouse button.

∑ Pointing Devices A pointing input device enables the
users to easily control the movement of the pointer to
select items on a display screen, to select commands
from commands menu, to draw graphs, etc. Some
examples of pointing devices include mouse, trackball,
light pen, joystick, and touchpad.

∑ Handheld Devices A handheld device is a pocket-sized
computing device with a display screen and touch input
and/or a miniature keyboard. Some common examples
of handheld devices include smartphones, PDAs,
handheld game consoles, and portable media players
(such as iPod).

∑ Optical Devices Optical devices, also known as data-
scanning devices, use light as a source of input for
detecting or recognizing different objects such as
characters, marks, codes, and images. The optical
device converts these objects into digital data and sends
it to the computer for further processing. Some optical
devices include barcode readers, image scanners, optical
character recognition (OCR) devices, optical mark
readers (OMR), and magnetic ink character recognition
(MICR) devices.

∑ Audio-visual Input Devices Today, all computers are
multimedia-enabled, that is, computers not only allow

one to read or write text, but also enable the user to
record songs, view animated movies, etc. Hence, in
addition to having a keyboard and a mouse, audio–
video devices have become a necessity today.

Output Devices Any device that outputs/gives information
from a computer can be called an output device. Basically,
output devices are electromechanical devices that accept
digital data (in the form of 0s and 1s) from the computer
and convert them into human-understandable language.
Monitors and speakers are two widely used output devices.
These devices provide instant feedback to the user’s input.
Output devices are classified based on whether they give a
hard copy or soft copy output (refer to Figure 1.7).

Figure 1.7 Classification of output devices

• Soft copy devices These devices produce an electronic
version of an output—for example, a file that is stored
on a hard disk, CD, or pen drive—and is displayed on
the computer screen.

• Hard copy devices These devices produce a physical
form of output. For example, the content of a file printed
on paper is a form of hard copy output.

11011_Programming in C AICTE.indb 6 31/07/18 5:17 PM

© Oxford University Press. All rights reserved.

Oxfo
rd

 U
niversi

ty
 Pre

ss

7Introduction to Programming

1.2.2 Computer Software
Computer software can be broadly classified into two
groups: system software and application software.

∑ System software [according to Nutt, 1997] provides
a general programming environment in which
programmers can create specific applications to suit their
needs. This environment provides new functions that are
not available at the hardware level and performs tasks
related to execution of application programs.

 System software represents programs that allow the
hardware to run properly. System software is transparent
to the user and acts as an interface between the hardware
of the computer and the application software that users
need to run on the computer. Figure 1.8 illustrates the
relationship between application software, system
software, and hardware.

∑ Application software is designed to solve a particular
problem for users. It is generally what we think of when
we say the word ‘computer programs’. Examples of
application software include spreadsheets, database
systems, desktop publishing systems, program
development software, games, web browsers, among
others. Simply put, application software represents
programs that allow users to do something besides
simply running the hardware.

Application programs (games, spreadsheets,
word processors, database, web browsers)

System Software (operating system)

Computer Hardware
(printer, mouse, scanner, keyboard, CPU, disk)

User 1 User 2 User N

Figure 1.8 Relationship between hardware, system
software, and application software

System Software
System software is software designed to operate the
computer hardware and to provide and maintain a platform
for running application software.

 The most widely used system software are discussed in
the following sections:

Computer BIOS and Device Drivers The computer BIOS
and device drivers provide basic functionality to operate
and control the hardware connected to or built into the
computer.
 BIOS or Basic Input/Output System is a de facto
standard defining a firmware interface. BIOS is built into
the computer and is the first code run by the computer
when it is switched on. The key role of BIOS is to load
and start the operating system.
 When the computer starts, the first function that BIOS
performs is to initialize and identify system devices such
as the video display card, keyboard and mouse, hard disk,
CD/DVD drive, and other hardware. In other words, the
code in the BIOS chip runs a series of tests called POST
(Power On Self Test) to ensure that the system devices are
working correctly.
 BIOS then locates software held on a peripheral device
such as a hard disk or a CD, and loads and executes that
software, giving it control of the computer. This process is
known as booting.
 BIOS is stored on a ROM chip built into the system and
has a user interface like that of a menu (Figure 1.9) that
can be accessed by pressing a certain key on the keyboard
when the computer starts. The BIOS menu can enable the
user to configure hardware, set the system clock, enable or
disable system components, and most importantly, select
which devices are eligible to be a potential boot device
and set various password prompts.
 To summarize, BIOS performs the following functions:

∑ Initializes the system hardware
∑ Initializes system registers
∑ Initializes power management system
∑ Tests RAM
∑ Tests all the serial and parallel ports
∑ Initializes CD/DVD drive and hard disk controllers
∑ Displays system summary information

Operating System The primary goal of an operating
system is to make the computer system (or any other
device in which it is installed like a cell phone) convenient
and efficient to use. An operating system offers generic
services to support user applications.
 From users’ point of view the primary consideration is
always the convenience. Users should find it easy to launch
an application and work on it. For example, we use icons

11011_Programming in C AICTE.indb 7 31/07/18 5:17 PM

© Oxford University Press. All rights reserved.

Oxfo
rd

 U
niversi

ty
 Pre

ss

8 Programming in C

which give us clues about applications. We have a different
icon for launching a web browser, e-mail application, or
even a document preparation application. In other words,
it is the human–computer interface which helps to identify
and launch an application. The interface hides a lot of
details of the instructions that perform all these tasks.
 Similarly, if we examine the programs that help us in using
input devices like keyboard/mouse, all the complex details of
the character reading programs are hidden from users. We
as users simply press buttons to perform the input operation
regardless of the complexity of the details involved.
 An operating system ensures that the system resources
(such as CPU, memory, I/O devices) are utilized efficiently.
For example, there may be many service requests on a web
server and each user request needs to be serviced. Moreover,
there may be many programs residing in the main memory.
Therefore, the system needs to determine which programs
are currently being executed and which programs need to
wait for some I/O operation. This information is necessary
because the programs that need to wait can be suspended
temporarily from engaging the processor. Hence, it is
important for an operating system to have a control policy
and algorithm to allocate the system resources.

Utility Software Utility software is used to analyse,
configure, optimize, and maintain the computer system.
Utility programs may be requested by application
programs during their execution for multiple purposes.
Some of them are as follows:

∑ Disk defragmenters can be used to detect computer files
whose contents are broken across several locations on
the hard disk, and move the fragments to one location in
order to increase efficiency.

∑ Disk checkers can be used to scan the contents of a hard
disk to find files or areas that are either corrupted in
some way, or were not correctly saved, and eliminate
them in order to make the hard drive operate more
efficiently.

∑ Disk cleaners can be used to locate files that are
either not required for computer operation, or take up
considerable amounts of space. Disk cleaners help users
to decide what to delete when their hard disk is full.

∑ Disk space analysers are used for visualizing the disk
space usage by getting the size for each folder (including
subfolders) and files in a folder or drive.

Figure 1.9 BIOS menu

11011_Programming in C AICTE.indb 8 31/07/18 5:17 PM

© Oxford University Press. All rights reserved.

Oxfo
rd

 U
niversi

ty
 Pre

ss

9Introduction to Programming

∑ Disk partitions utilities are used to divide an individual
drive into multiple logical drives, each with its own file
system. Each partition is then treated as an individual
drive.

∑ Backup utilities can be used to make a copy of all
information stored on a disk. In case a disk failure
occurs, backup utilities can be used to restore the entire
disk. Even if a file gets deleted accidentally, the backup
utility can be used to restore the deleted file.

∑ Disk compression utilities can be used to enhance the
capacity of the disk by compressing/decompressing the
contents of a disk.

∑ File managers can be used to provide a convenient
method of performing routine data management
tasks such as deleting, renaming, cataloguing, moving,
copying, merging, generating, and modifying data sets.

∑ System profilers can be used to provide detailed
information about the software installed and hardware
attached to the computer.

∑ Anti-virus utilities are used to scan for computer viruses.
∑ Data compression utilities can be used to output a file

with reduced file size.
∑ Cryptographic utilities can be used to encrypt and

decrypt files.
∑ Launcher applications can be used as a convenient

access point for application software.
∑ Registry cleaners can be used to clean and optimize the

Windows operating system registry by deleting the old
registry keys that are no longer in use.

∑ Network utilities can be used to analyse the computer’s
network connectivity, configure network settings, check
data transfer, or log events.

∑ Command line interface (CLI) and Graphical user
interface (GUI) can be used to make changes to the
operating system.

Compiler, Interpreter, Linker, and Loader 

∑ Compiler It is a special type of program that transforms
the source code written in a programming language (the
source language) into machine language comprising
just two digits, 1s and 0s (the target language). The
resultant code in 1s and 0s is known as the object code.
The object code is the one which will be used to create
an executable program.

 Therefore, a compiler is used to translate source code
from a high-level programming language to a lower level
language (e.g., assembly language or machine code).

 If the source code contains errors then the compiler will
not be able to perform its intended task. Errors resulting
from the code not conforming to the syntax of the
programming language are called syntax errors. Syntax
errors may be spelling mistakes, typing mistakes, etc.
Another type of error is logical error which occurs
when the program does not function accurately. Logical
errors are much harder to locate and correct.

 The work of a compiler is simply to translate human
readable source code into computer executable machine
code. It can locate syntax errors in the program (if any)
but cannot fix it. Until and unless the syntactical errors
are rectified the source code cannot be converted into
the object code.

∑ Interpreter Like the compiler, the interpreter also
executes instructions written in a high-level language.
Basically, a program written in a high-level language
can be executed in any of the two ways. First by
compiling the program and second, to pass the program
through an interpreter.

 While the compiler translates instructions written in
high-level programming language directly into the
machine language, the interpreter, on the other hand,
translates the instructions into an intermediate form,
which it then executes. This clearly means that the
interpreter interprets the source code line by line. This
is in striking contrast with the compiler which compiles
the entire code in one go.

 Usually, a compiled program executes faster than an
interpreted program. However, the big advantage of an
interpreted program is that it does not need to go through
the compilation stage during which machine instructions
are generated. This process can be time consuming
if the program is long. Moreover, the interpreter can
immediately execute high-level programs.

 All in all, compilers and interpreters both achieve
similar purposes, but inherently different as to how they
achieve that purpose.

∑ Linker (link editor binder) It is a program that combines
object modules to form an executable program.
Generally, in case of a large program, the programmers
prefer to break a code into smaller modules as this
simplifies the programming task. Eventually, when the
source code of all the modules has been converted into
object code, we need to put all the modules together.
This is the job of the linker. Usually, the compiler
automatically invokes the linker as the last step in
compiling a program.

11011_Programming in C AICTE.indb 9 31/07/18 5:17 PM

© Oxford University Press. All rights reserved.

Oxfo
rd

 U
niversi

ty
 Pre

ss

10 Programming in C

∑ Instructions written by the users are performed
sequentially until there is a break in the current flow.

∑ Input/Output and processing operations are performed
simultaneously. While data is being read/written, the
central processing unit (CPU) executes another program
in the memory that is ready for execution.

Note

A stored program architecture is a fundamental computer
architecture wherein the computer executes the
instructions that are stored in its memory.

 John W. Mauchly, an American physicist, and J. Presper
Eckert, an American engineer, further contributed to the
stored program concept to make digital computers much
more flexible and powerful. As a result, engineers in England
built the first stored-program computer, Manchester Mark
I, in the year 1949. They were shortly followed by the
Americans who designed EDVAC in the very same year.
 Today, a CPU chip can handle billions of instructions
per second. It executes instructions provided both the data
and instructions are valid. In case either one of them or
both are not valid, the computer stops the processing of
instructions.

1.3.1 Types of Stored Program Computers
A computer with a Von Neumann architecture (refer to
Figure 1.10) stores data and instructions in the same
memory. There is a serial machine in which data and
instructions are selected one at a time. Data and instructions
are transferred to and from memory through a shared data
bus. Since there is a single bus to carry data and instructions,
process execution becomes slower.
 Later Harvard University proposed a stored program
concept in which there was a separate memory to store data
and instructions. Instructions are selected serially from the
instruction memory and executed in the processor. When an
instruction needs data, it is selected from the data memory.
Since there are separate memories, execution becomes faster.

1.4 PROGRAMMING LANGUAGES
A programming language is a language specifically
designed to express computations that can be performed
by the computer. Programming languages are used to
create programs that control the behaviour of a system,
to express algorithms, or as a mode of human–computer
communication.

∑ Loader It is a special type of program that copies
programs from a storage device to main memory, where
they can be executed. However, in this book we will
not go into the details of how a loader actually works.
This is because the functionality of a loader is generally
hidden from the programmer. As a programmer, it
suffices to learn that the task of a loader is to bring the
program and all its related files into the main memory
from where it can be executed by the CPU.

Application Software
Application software is a type of computer software that
employs the capabilities of a computer directly to perform
a user-defined task. This is in contrast with system
software which is involved in integrating a computer’s
capabilities, but typically does not directly apply them in
the performance of tasks that benefit users.
 To better understand application software consider an
analogy where hardware would depict the relationship of
an electric light bulb (an application) to an electric power
generation plant (a system) that depicts the software.
 The power plant merely generates electricity which
is not by itself of any real use until harnessed to an
application like the electric light that performs a service
which actually benefits users.
 Typical examples of software applications are word
processors, spreadsheets, media players, education software,
CAD, CAM, data communication software, and statistical
and operational research software. Multiple applications
bundled together as a package are sometimes referred to as
an application suite.

1.3 STORED PROGRAM CONCEPT
All digital computers are based on the principle of stored
program concept,which was introduced by Sir John von
Neumann in the late 1940s. The following are the key
characteristic features of this concept:

∑ Before any data is processed, instructions are read into
memory.

∑ Instructions are stored in the computer’s memory for
execution.

∑ Instructions are stored in binary form (using binary
numbers—only 0s and 1s).

∑ Processing starts with the first instruction in the
program, which is copied into a control unit circuit. The
control unit executes the instructions.

11011_Programming in C AICTE.indb 10 31/07/18 5:17 PM

© Oxford University Press. All rights reserved.

Oxfo
rd

 U
niversi

ty
 Pre

ss

11Introduction to Programming

 Usually, programming languages have a vocabulary
of syntax and semantics for instructing a computer to
perform specific tasks. The term programming language
usually refers to high-level languages, such as BASIC,
C, C++, COBOL, FORTRAN, Ada, and Pascal to name a
few. Each of these languages has a unique set of keywords
(words that it understands) and a special syntax for
organizing program instructions.
 While high-level programming languages are easy
for humans to read and understand, the computer
actually understands the machine language that consists
of numbers only. Each type of CPU has its own unique
machine language.
 In between the machine languages and high-level
languages, there is another type of language known as
assembly language. Assembly languages are similar to
machine languages, but they are much easier to program
because they allow a programmer to substitute names for
numbers.
 However, irrespective of what language the programmer
uses, the program written using any programming
language has to be converted into machine language so
that the computer can understand it. There are two ways to
do this: compile the program or interpret the program
 The question of which language is the best depends on
the following factors:

∑ The type of computer on which the program has to be
executed

∑ The type of program
∑ The expertise of the programmer

 For example, FORTRAN is a particularly good
language for processing numerical data, but it does not
lend itself very well to organizing large programs. Pascal
can be used for writing well-structured and readable
programs, but it is not as flexible as the C programming
language. C++ goes one step ahead of C by incorporating
powerful object-oriented features, but it is complex and
difficult to learn.

1.5 GENERATION OF PROGRAMMING
LANGUAGES

We now know that programming languages are the
primary tools for creating software. As of now, hundreds
of programming languages exist in the market, some
more used than others, and each claiming to be the best.
However, back in the 1940s when computers were being
developed there was just one language—the machine
language.
 The concept of generations of programming languages
(also known as levels) is closely connected to the advances
in technology that brought about computer generations.
The four generations of programming languages include:

∑ Machine language
∑ Assembly language

Processor
Main

Memory

Address Bus - carries addresses

Data Bus - carries data and instructions

Instruction
memory

Processor

Instruction address

Instructions
Data

memory

Data address

Read/Write Data

(a)

(b)

Figure 1.10  Von Neumann architecture (a) Shared memory for instructions and data (b) Separate memories for
instructions and data

11011_Programming in C AICTE.indb 11 31/07/18 5:17 PM

© Oxford University Press. All rights reserved.

Oxfo
rd

 U
niversi

ty
 Pre

ss

12 Programming in C

∑ High-level language (also known as third generation
language or 3GL)

∑ Very high-level language (also known as fourth
generation language or 4GL)

1.5.1 First Generation: Machine Language
Machine language was used to program the first stored
program on computer systems. This is the lowest level of
programming language. The machine language is the only
language that the computer understands. All the commands
and data values are expressed using 1 and 0s, corresponding
to the ‘on’ and ‘off’ electrical states in a computer.
 In the 1950s each computer had its own native
language, and programmers had primitive systems for
combining numbers to represent instructions such as add
and subtract. Although there were similarities between
each of the machine languages, a computer could not
understand programs written in another machine language
(Figure 1.11).

D000000A D000
D000000F D009
D000000B D009

D009
D009
D0 0Q

DOD0
D00C
D0E4
Dd0D
Dd3D

C1
C7

CF
D2

CF
FF27

FF53
CF

FF54
CF

CF
FF24

FF55

MACHINE LANGUAGE
This is an example of a machine language program that will add
two numbers and find their average. It is in hexadecimal
notation instead of binary notation because this is how the
computer presented the code to the programmer.

Figure 1.11 A machine language program

 In machine language, all instructions, memory locations,
numbers, and characters are represented in strings of
1s and 0s. Although machine-language programs are
typically displayed with the binary numbers represented
in octal (base 8) or hexadecimal (base 16), these programs
are not easy for humans to read, write, or debug.
 The main advantage of machine language is that the

code can run very fast and efficiently, since it is directly
executed by the CPU.
 However, on the downside, the machine language is
difficult to learn and is far more difficult to edit if errors
occur. Moreover, if you want to add some instructions
into memory at some location, then all the instructions
after the insertion point would have to be moved down
to make room in memory to accommodate the new
instructions.
 Last but not the least, the code written in machine
language is not portable across systems and to transfer
the code to a different computer it needs to be completely
rewritten since the machine language for one computer
could be significantly different from another computer.
Architectural considerations made portability a tough
issue to resolve.

1.5.2 Second Generation: Assembly Language
The second generation of programming language includes
the assembly language. Assembly languages are symbolic
programming languages that use symbolic notation to
represent machine-language instructions. These languages
are closely connected to machine language and the internal
architecture of the computer system on which they are
used. Since they are close to the machine, assembly
language is also called low-level language. Nearly all
computer systems have an assembly language available
for use.
 Assembly language developed in the mid 1950s
was a great leap forward. It used symbolic codes also
known as mnemonic codes that are easy-to-remember
abbreviations, rather than numbers. Examples of these
codes include ADD for add, CMP for compare, MUL for
multiply, etc.
 Assembly language programs consist of a series of
individual statements or instructions that instruct the
computer what to do. Basically, an assembly language
statement consists of a label, an operation code, and one
or more operands.
 Labels are used to identify and reference instructions in
the program. The operation code (opcode) is a mnemonic
that specifies the operation that has to be performed such
as move, add, subtract, or compare. The operand specifies
the register or the location in main memory where the data
to be processed is located.
 However, like the machine language, the statement
or instruction in the assembly language will vary from

11011_Programming in C AICTE.indb 12 31/07/18 5:17 PM

© Oxford University Press. All rights reserved.

Oxfo
rd

 U
niversi

ty
 Pre

ss

13Introduction to Programming

machine to another because the language is directly
related to the internal architecture of the computer and is
not designed to be machine independent. This makes the
code written in assembly language less portable as the
code written for one machine will not run on machines
from a different or sometimes even the same manufacturer.
 No doubt, the code written in assembly language will be
very efficient in terms of execution time and main memory
usage as the language is also close to the computer.
 Programs written in assembly language need a
translator often known as assembler to convert them
into machine language. This is because the computer will
understand only the language of 1s and 0s and will not
understand mnemonics like ADD and SUB.
 The following instructions are a part of assembly
language code to illustrate addition of two numbers:

MOV AX,4 Stores value 4 in the AX

register of CPU

MOV BX,6 Stores value 6 in the BX

register of CPU

ADD AX,BX Adds the contents of AX and BX

registers. Stores the result in

AX register

 Although assembly languages are much better to pro-
gram as compared to the machine language, they still require
the programmer to think on the machine’s level. Even today,
some programmers still use assembly language to write parts
of applications where speed of execution is critical, such as
video games but most programmers today have switched to
third or fourth generation programming languages.

1.5.3  Third Generation Programming
Languages

A third generation programming language (3GL) is
a refinement of the second-generation programming
language. The 2GL languages brought logical structure to
software. The third generation was introduced to make the
languages more programmer friendly.
 Third Generation Programming Languages spurred the
great increase in data processing that occurred in the 1960s
and 1970s. In these languages, the program statements
are not closely related to the internal architecture of the
computer and is therefore often referred to as high-level
languages.
 Generally, a statement written in a high-level program-
ming language will expand into several machine language
instructions. This is in contrast to assembly languages,

where one statement would generate one machine language
instruction. Third Generation Programming Languages
made programming easier, efficient, and less prone to errors.
 High-level languages fall somewhere between natu-
ral languages and machine languages. Third Generation
Programming Languages include languages such as FOR-
TRAN (FORmula TRANslator) and COBOL (COmmon
Business Oriented Language) that made it possible for
scientists and business people to write programs using fa-
miliar terms instead of obscure machine instructions.
 The first widespread use of high-level languages in the
early 1960s changed programming into something quite
different from what it had been. Programs were written in
statements like English language statements, making them
more convenient to use and giving the programmer more
time to address a client’s problems.
 Although 3GLs relieve the programmer of demanding
details, they do not provide the flexibility available in low-
level languages. However, a few high-level languages
like C and FORTRAN combine some of the flexibility
of assembly language with the power of high-level
languages, but these languages are not well suited to an
amateur programmer.
 While some high-level languages were designed to serve
a specific purpose (such as controlling industrial robots
or creating graphics), other languages were flexible and
considered to be general-purpose languages. Most of the
programmers preferred to use general-purpose high-level
languages like BASIC (Beginners’ All-purpose Symbolic
Instruction Code), FORTRAN, PASCAL, COBOL, C++, or
Java to write the code for their applications.
 Again, a translator is needed to translate the instructions
written in high-level language into computer-executable
machine language. Such translators are commonly known
as interpreters and compilers. Each high-level language
has many compilers.
 For example, the machine language generated by one
computer’s C compiler is not the same as the machine
language of some other computer. Therefore, it is necessary
to have a C compiler for each type of computer on which
the C program has to be executed.
 Third generation programming languages have made
it easier to write and debug programs, which gives
programmers more time to think about its overall logic.
The programs written in such languages are portable
between machines. For example, a program written in
standard C can be compiled and executed on any computer
that has a standard C compiler.

11011_Programming in C AICTE.indb 13 31/07/18 5:17 PM

© Oxford University Press. All rights reserved.

Oxfo
rd

 U
niversi

ty
 Pre

ss

14 Programming in C

1.5.4 Fourth Generation: Very High-Level
Languages

With each generation, programming languages started
becoming easier to use and more like natural languages.
However, fourth generation programming languages
(4GLs) are a little different from their its prior generation
because they are basically non-procedural. When writing
code using a procedural language, the programmer has to
tell the computer how a task is done—add this, compare
that, do this if the condition is true, and so on, in a very
specific step-by-step manner. In striking contrast, while
using a non-procedural language the programmers define
only what they want the computer to do, without supplying
all the details of how it has to be done.
 There is no standard rule that defines what a 4GL is but
certain characteristics of such languages include:

∑ the code comprising instructions are written in English-
like sentences;

∑ they are non-procedural, so users concentrate on ‘what’
instead of the ‘how’ aspect of the task;

∑ the code is easier to maintain;

∑ the code enhances the productivity of the programmers
as they have to type fewer lines of code to get something
done. It is said that a programmer becomes 10 times
more productive when he writes the code using a 4GL
than using a 3GL.

 A typical example of a 4GL is the query language
that allows a user to request information from a database
with precisely worded English-like sentences. A query
language is used as a database user interface and hides the
specific details of the database from the user. For example,
when working with structured query language (SQL),
the programmer just needs to remember a few rules of
syntax and logic, and it is easier to learn than COBOL
or C.
 Let us take an example in which a report has to be
generated that displays the total number of students
enrolled in each class and in each semester. Using a 4GL,
the request would look similar to one that follows:

TABLE FILE ENROLLMENT

SUM STUDENTS BY SEMESTER BY CLASS

 So we see that a 4GL is much simpler to learn and work
with. The same code if written in C language or any other
3GL would require multiple lines of code to do the same
task.

 Fourth generation programming languages are still
evolving, which makes it difficult to define or standardize
them. The only downside of a 4GL is that it does not
make efficient use of the machine’s resources. However,
the benefit of executing a program fast and easily, far
outweighs the extra costs of running it.

1.5.5 Fifth Generation Programming Languages
Fifth generation programming languages (5GLs) are cen-
tred on solving problems using constraints given to the
program, rather than using an algorithm written by a pro-
grammer. Most constraint-based and logic programming
languages and some declarative languages form a part of
the fifth-generation languages. Fifth generation program-
ming languages are widely used in artificial intelligence
research. Typical examples of 5GLs include Prolog,
OPS5, and Mercury.
 Another aspect of a 5GL is that it contains visual tools
to help develop a program. A good example of a fifth
generation language is Visual Basic.
 So taking a forward leap than the 4GLs, 5GLs are
designed to make the computer solve a given problem
without the programmer. While working with a 4GL, the
programmer had to write specific code to do a work but
with 5GL, the programmer only needs to worry about
what problems need to be solved and what conditions need
to be met, without worrying about how to implement a
routine or algorithm to solve them.
 Generally, 5GLs were built upon Lisp, many originating
on the Lisp machine, such as ICAD. Then, there are many
frame languages such as KL-ONE.
 In the 1990s, 5GLs were considered to be the wave of
the future, and some predicted that they would replace all
other languages for system development (except the low-
level languages). In 1982 to 1993 Japan had put much
research and money into their fifth generation computer
systems project, hoping to design a massive computer
network of machines using these tools. But when larger
programs were built, the flaws of the approach became
more apparent. Researchers began to observe that starting
from a set of constraints for defining a particular problem,
then deriving an efficient algorithm to solve the problem
is a very difficult task. All these things could not be
automated and still requires the insight of a programmer.
 However, today the fifth-generation languages are
back as a possible level of computer language. Software
vendors across the globe currently claim that their software
meets the visual ‘programming’ requirements of the 5GL
concept.

11011_Programming in C AICTE.indb 14 31/07/18 5:17 PM

© Oxford University Press. All rights reserved.

Oxfo
rd

 U
niversi

ty
 Pre

ss

15Introduction to Programming

1.6 DESIGN AND IMPLEMENTATION
OF EFFICIENT PROGRAMS

The design and development of correct, efficient, and
maintainable programs depends on the approach adopted
by the programmer to perform various activities that need
to be performed during the development process. The entire
program or software (collection of programs) development
process is divided into a number of phases where each
phase performs a well-defined task. Moreover, the output
of one phase provides the input for its subsequent phase.
 The phases in software development process (as shown
in Figure 1.12) can be summarized as below:

Requirements
analysis

Design

Implementation

Testing

Software
deployment,
training and

support

Maintenance

Figure 1.12 Phases in software development life cycle

1.6.1 Requirements Analysis
In this phase, users’ expectations are gathered to know why
the program/software has to be built. Then all the gathered
requirements are analysed to pen down the scope or the
objective of the overall software product. The last activity
in this phase includes documenting every identified
requirement of the users in order to avoid any doubts or
uncertainty regarding the functionality of the programs.
The functionality, capability, performance, availability of
hardware and software components are all analysed in this
phase.

1.6.2 Design
The requirements documented in the previous phase acts
as an input to the design phase. In the design phase, a plan

of actions is made before the actual development process
could start. This plan will be followed throughout the
development process. Moreover, in the design phase the
core structure of the software/program is broken down
into modules. The solution of the program is then specified
for each module in the form of algorithms, flowcharts, or
pseudocodes. The design phase, therefore, specifies how
the program/software will be built.

1.6.3 Implementation
In this phase, the designed algorithms are converted into
program code using any of the high level languages. The
particular choice of language will depend on the type
of program like whether it is a system or an application
program. While C is preferred for writing system
programs, Visual Basic might be preferred for writing an
application program. The program codes are tested by the
programmer to ensure their correctness.
 This phase is also called construction or code generation
phase as the code of the software is generated in this
phase. While constructing the code, the development
team checks whether the software is compatible with
the available hardware and other software components
that were mentioned in the Requirements Specification
Document created in the first phase.

1.6.4 Testing
In this phase, all the modules are tested together to ensure
that the overall system works well as a whole product.
Although individual pieces of codes are already tested
by the programmers in the implementation phase, there
is always a chance for bugs to creep in the program when
the individual modules are integrated to form the overall
program structure. In this phase, the software is tested
using a large number of varied inputs also known as test
data to ensure that the software is working as expected
by the users’ requirements that were identified in the
requirements analysis phase.

1.6.5  Software Deployment, Training,
and Support

After the code is tested and the software or the program has
been approved by the users, it is then installed or deployed
in the production environment. Software Training and
Support is a crucial phase which is often ignored by most
of the developers. Program designers and developers
spend a lot of time to create software but if nobody in

11011_Programming in C AICTE.indb 15 31/07/18 5:17 PM

© Oxford University Press. All rights reserved.

Oxfo
rd

 U
niversi

ty
 Pre

ss

16 Programming in C

an organization knows how to use it or fix up certain
problems, then no one would like to use it. Moreover,
people are often resistant to change and avoid venturing
into an unfamiliar area, so as a part of the deployment
phase, it has become very crucial to have training classes
for the users of the software.

1.6.6 Maintenance
Maintenance and enhancements are ongoing activities
which are done to cope with newly discovered problems
or new requirements. Such activities may take a long time
to complete as the requirement may call for addition of
new code that does not fit the original design or an extra
piece of code required to fix an unforeseen problem. As a
general rule, if the cost of the maintenance phase exceeds
25% of the prior-phases cost then it clearly indicates that
the overall quality of at least one prior phase is poor. In
such cases, it is better to re-build the software (or some
modules) before maintenance cost is out of control.

1.7 PROGRAM DESIGN TOOLS:
ALGORITHMS, FLOWCHARTS,
PSEUDOCODES

This section will deal about different tools which are used
to design solution(s) of a given problem at hand.

1.7.1 Algorithms
In general terms, an algorithm provides a blueprint to
writing a program to solve a particular problem. It is
considered to be an effective procedure for solving a
problem in a finite number of steps. That is, a well-defined
algorithm always provides an answer, and is guaranteed
to terminate.
 Algorithms are mainly used to achieve software re-
use. Once we have an idea or a blueprint of a solution, we
can implement it in any high-level language, such as C,
C++, Java, and so on. In order to qualify as an algorithm,
a sequence of instructions must possess the following
characteristics:

∑ Be precise

∑ Be unambiguous

∑ Not even a single instruction must be repeated infinitely

∑ After the algorithm gets terminated, the desired result
must be obtained

Control Structures used in Algorithms
An algorithm has a finite number of steps and some steps
may involve decision-making and repetition. Broadly
speaking, an algorithm can employ any of the three control
structures, namely, sequence, decision, and repetition.

Sequence
Sequence means that each step of the algorithm is executed
in the specified order. An algorithm to add two numbers is
given in Figure 1.13. This algorithm performs the steps in
a purely sequential order.

Step 1: Input the first number as A
Step 2: Input the second number as B
Step 3: SET SUM = A + B
Step 4: PRINT SUM
Step 5: END

Figure 1.13 Algorithm to add two numbers

Decision
Decision statements are used when the outcome of the
process depends on some condition. For example, if
x=y, then print “EQUAL”. Hence, the general form of the
if construct can be given as
 if condition then process

 An algorithm to check the equality of two numbers is
shown in Figure 1.14.

Step 1: Input the first number as A
Step 2: Input the second number as B
Step 3: IF A = B

Then PRINT "EQUAL"
ELSE

PRINT "NOT EQUAL"
Step 4: END

Figure 1.14 Algorithm to test for equality of two numbers

Repetition
Repetition, which involves executing one or more
steps for a number of times, can be implemented using
constructs such as while, do-while, and for loops. These
loops execute one or more steps until some condition is
true. Figure 1.15 shows an algorithm that prints the first
10 natural numbers.

11011_Programming in C AICTE.indb 16 31/07/18 5:17 PM

© Oxford University Press. All rights reserved.

Oxfo
rd

 U
niversi

ty
 Pre

ss

17Introduction to Programming

Step 1: [INITIALIZE] SET I = 0, N = 10
Step 2: Repeat Step while I<=N
Step 3: PRINT I

Step 5: END
Step 4: SET I = I + 1

Figure 1.15 Algorithm to print first 10 natural numbers

Selecting the Most Efficient Algorithm
Many a times, you may formulate more than one algorithm
for a problem. In such cases, you must always analyse
all the alternatives and try to choose the most efficient
algorithm.
 Analysing an algorithm means determining the amount
of resources (such as time and memory) needed to execute
it. Algorithms are generally designed to work with an
arbitrary number of inputs, so the efficiency or complexity
of an algorithm is stated in terms of time and space
complexity.
 The time complexity of an algorithm is basically the
running time of a program as a function of the input size.
Similarly, the space complexity of an algorithm is the
amount of computer memory that is required during the
program execution as a function of the input size.
 In other words, the number of machine instructions
which a program executes is called its time complexity.
This number is primarily dependent on the size of the
program’s input and the algorithm used.
 Generally, the space needed by a program depends on
the following two parts:

∑ Fixed part: It varies from problem to problem. It
includes the space needed for storing instructions,
constants, variables, and structured variables (like
arrays and structures).

∑ Variable part: It varies from program to program. It
includes the space needed for recursion stack, and for
structured variables that are allocated space dynamically
during the runtime of a program.

 However, running time requirements are more critical
than memory requirements. Therefore, choose the
algorithm that has less running time complexity.

1.7.2 Flowcharts
A flowchart is a graphical or symbolic representation of
a process. It is basically used to design and document
virtually complex processes to help the viewers to
visualize the logic of the process, so that they can gain
a better understanding of the process and find flaws,

bottlenecks, and other less obvious features within it.
When designing a flowchart, each step in the process is
depicted by a different symbol and is associated with a
short description. The symbols in the flowchart (refer
Figure 1.16) are linked together with arrows to show the
flow of logic in the process.

Start or end
symbol

Arrows

Processing step Connector

Decision symbol

Input/Output
symbol

Figure 1.16 Symbols of flowchart

 The symbols of a flowchart include:

•	 Start and end symbols are also known as the terminal
symbols and are represented as circles, ovals, or
rounded rectangles. Terminal symbols are always the
first and the last symbols in a flowchart.

•	 Arrows depict the flow of control of the program. They
illustrate the exact sequence in which the instructions
are executed.

•	 Generic processing step, also called as an activity,
is represented using a rectangle. Activities include
instructions such as add a to b, save the result.
Therefore, a processing symbol represents arithmetic
and data movement instructions. When more than
one process has to be executed simultaneously, they
can be placed in the same processing box. However,
their execution will be carried out in the order of their
appearance.

•	 Input/output symbols are represented using a
parallelogram and are used to get inputs from the users
or display the results to them.

•	 A conditional or decision symbol is represented using a
diamond. It is basically used to depict a Yes/No question
or a True/False test. The two arrows coming out of it,
one from the bottom vertex and the other from the right
vertex, correspond to Yes or True, and No or False,
respectively. The arrows should always be labelled. A
decision symbol in a flowchart can have more than two
arrows, which indicate that a complex decision is being
taken.

•	 Labelled connectors are represented by an identifying
label inside a circle and are used in complex or multi-

11011_Programming in C AICTE.indb 17 31/07/18 5:17 PM

© Oxford University Press. All rights reserved.

Oxfo
rd

 U
niversi

ty
 Pre

ss

18 Programming in C

sheet diagrams to substitute for arrows. For each label,
the ‘outflow’ connector must have one or more ‘inflow’
connectors. A pair of identically labelled connectors
issued to indicate a continued flow when the use of lines
becomes confusing.

Example 1.1

Draw a flowchart to calculate the salary of a daily wager.

Solution

START

Input the no_of_hrs,
pay_per_hr, and
travel_allowance

Calculate SALARY = (no_of_hrs ×
pay_per_hr) + travel_allowance

Print SALARY

END

Example 1.2

Draw a flowchart to determine the largest of three numbers.

Solution

END

Print A
YES

Is A > C?

YES
NO Print C

Is A > B?
NO NO

Is B > C? Print C

YES

Print B

START

Read the values
of A, B, and C

1.7.3 Pseudocodes
Pseudocode is a compact and informal high-level
description of an algorithm that uses the structural
conventions of a programming language. It is basically
meant for human reading rather than machine reading,
so it omits the details that are not essential for humans.
Such details include variable declarations, system-specific
code, and sub-routines. Pseudocodes are an outline of a
program that can be easily converted into programming
statements. They consist of short English phrases that
explain specific tasks within a program’s algorithm. They
should not include keywords in any specific computer
language. The sole purpose of pseudocodes is to enhance
human understandability of the solution. They are
commonly used in textbooks and scientific publications
for documenting algorithms, and for sketching out the
program structure before the actual coding is done. This
helps even non-programmers to understand the logic of
the designed solution. There are no standards defined
for writing a pseudocode, because a pseudocode is not
an executable program. Flowcharts can be considered as
graphical alternatives to pseudocodes, but require more
space on paper.

Example 1.3

Write a pseudocode for calculating the price of a product
after adding sales tax to its original price.

Solution
1. Read the price of the product

2. Read the sales tax rate

3. Calculate sales tax = price of the item ×

sales tax rate

4. Calculate total price = price of the product

+ sales tax

5. Print total price

6. End

Variables: price of the product, sales tax

rate, sales tax, total price

Example 1.4

Write a pseudocode to read the marks of 10 students.
If marks are greater than 50, the student passes, else the
student fails. Count the number of students who pass and
the number who fail.

Solution
1. Set pass to 0
2. Set fail to 0
3. Set no of students to 0

11011_Programming in C AICTE.indb 18 31/07/18 5:17 PM

© Oxford University Press. All rights reserved.

Oxfo
rd

 U
niversi

ty
 Pre

ss

19Introduction to Programming

4. WHILE no of students < 10
 a. input the marks
 b. IF marks >= 50 then
 Set pass = pass + 1

 ELSE

 Set fail = fail + 1

 ENDIF

 ENDWHILE

5. End

Variables: pass, fail, no of students, marks

1.8 TYPES OF ERRORS
While writing programs, very often we get errors in our
program. These errors if not removed will either give
erroneous output or will not let the compiler to compile
the program. These errors are broadly classified under four
groups as shown in Figure 1.17.

Types of errors

Run-time
errors

Compile-time
errors

Linker
errors

Logical
errors

Figure 1.17 Types of Errors

Run-time Errors As the name suggests, run-time errors
occur when the program is being run executed. Such errors
occur when the program performs some illegal operations
like

•	 Dividing a number by zero
•	 Opening a file that already exists
•	 Lack of free memory space
•	 Finding square or logarithm of negative numbers

 Run-time errors may terminate program execution,
so the code must be written in such a way that it handles
all sorts of unexpected errors rather terminating it
unexpectedly. This ability to continue operation of a
program despite of run-time errors is called robustness.

Compile-time Errors Again as the name implies, compile-
errors occur at the time of compilation of the program.
Such errors can be further classified as follows:

Syntax Errors Syntax error is generated when rules of C
programming language are violated. For example, if we
write int a: then a syntax error will occur since the correct
statement should be int a;

Semantic Errors Semantic errors are those errors which
may comply with rules of the programming language but
are not meaningful to the compiler. For example, if we
write, a * b = c; it does not seem correct. Rather, if written
like c = a * b would have been more meaningful.

Logical Errors Logical errors are errors in the program
code that result in unexpected and undesirable output
which is obviously not correct. Such errors are not detected
by the compiler, and programmers must check their code
line by line or use a debugger to locate and rectify the
errors. Logical errors occur due to incorrect statements.
For example, if you meant to perform c = a + b; and by
mistake you typed c = a * b; then though this statement is
syntactically correct, it is logically wrong.

Linker Errors These errors occur when the linker is not
able to find the function definition for a given prototype.
For example, if you write clrscr(); but do not include
conio.h then a linker error will be shown. Similarly, even
if you have defined a function display_data() but while
calling if you mistakenly write displaydata() then again a
linker error will be generated.

1.8.1 Testing and Debugging Approaches
Testing is an activity that is performed to verify correct
behaviour of a program. It is specifically carried out with
an intent to find errors. Ideally testing should be conducted
at all stages of program development. However, in
the implementation stage, three types of tests can be
conducted:

Unit Tests Unit testing is applied only on a single unit
or module to ensure whether it exhibits the expected
behaviour.

Integration Tests These tests are a logical extension of
unit tests. In this test, two units that have already been
tested are combined into a component and the interface
between them is tested. The guiding principle is to test
combinations of pieces and then gradually expanding the
component to include other modules as well. This process
is repeated until all the modules are tested together. The
main focus of integration testing is to identify errors that
occur when the units are combined.

System Tests System testing checks the entire system. For
example, if our program code consists of three modules
then each of the module is tested individually using unit

11011_Programming in C AICTE.indb 19 31/07/18 5:17 PM

© Oxford University Press. All rights reserved.

Oxfo
rd

 U
niversi

ty
 Pre

ss

20 Programming in C

tests and then system test is applied to test this entire system
as one system.

Note
Testing should not be restricted to just execution testing.

Debugging, on the other hand, is an activity that includes
execution testing and code correction. The main aim of
debugging is locating errors in the program code. Once
the errors are located, they are then isolated and fixed to
produce an error-free code. Different approaches applied
for debugging a code includes:

Brute-Force Method In this technique, a printout of
CPU registers and relevant memory locations is taken,
studied, and documented. It is the least efficient way of
debugging a program and is generally done when all the
other methods fail.

Backtracking Method It is a popular technique that
is widely used to debug small applications. It works by
locating the first symptom of error and then trace backward
across the entire source code until the real cause of error
is detected. However, the main drawback of this approach
is that with increase in number of source code lines, the
possible backward paths become too large to manage.

Cause Elimination In this approach, a list of all possible
causes of an error is developed. Then relevant tests are
carried out to eliminate each of them. If some tests indicate
that a particular cause may be responsible for an error then
the data are refined to isolate the error.

Example 1.5

Let us take a problem, collect its requirement, design the
solution, implement it in C and then test our program.

Problem Statement To develop an automatic system that
accepts marks of a student and generates his/her grade.

Requirements Analysis Ask the users to enlist the rules
for assigning grades. These rules are:

Marks Grade
Above 75 O

60-75 A

50-60 B

40-50 C

Less than 40 D

Design In this phase, write an algorithm that gives a
solution to the problem.

Step 1: Enter the marks obtained as M
Step 2: If M > 75 then print “O”
Step 3: If M >= 60 and M < 75 then print “A”
Step 4: If M >= 50 and M < 60 then print “B”
Step 5: If M >= 40 and M < 50 then print “C”
 else
 print “D”
Step 6: End

Implementation Write the C program to implement the
proposed algorithm.

#include <stdio.h>

int main()

{ int marks;

 char grade;

 printf("\n Enter the marks of the student

: ");

 scanf("%d", &marks);

 if (marks<0 || marks >100)

 { printf("\n Not Possible");

 exit(1);

 }

 if(marks>=75)

 grade = 'O';

 else if(marks>=60 && marks<75)

 grade = 'A';

 else if(marks>=50 && marks<60)

 grade = 'B';

 else if(marks>=40 && marks<50)

 grade = 'C';

 else

 grade = 'D';

 printf("\n GRADE = %c", grade);

}

Test The above program is then tested with different test
data to ensure that the program gives correct output for all
relevant and possible inputs. The test cases are shown in
the table given below.

Test Case ID Input Expected Output Actual Output
1 -12 Not Possible Not Possible

2 112 Not Possible Not Possible

3 32 D D

4 46 C C

5 54 B B

6 68 A A

11011_Programming in C AICTE.indb 20 31/07/18 5:17 PM

© Oxford University Press. All rights reserved.

Oxfo
rd

 U
niversi

ty
 Pre

ss

21Introduction to Programming

Test Case ID Input Expected Output Actual Output
7 91 O O

8 40 C C

9 50 B B

10 60 A A

11 75 O O

12 100 O O

13 0 D D

 Note in the above table, we have identified test cases
for the following,
 1. “Not Possible” Combinations
 2. A middle value from each range
 3. Boundary values for each range

POINTS TO REMEMBER

∑ A computer has two parts—computer hardware which
does all the physical work and computer software which
tells the hardware what to do and how to do it.

∑ A program is a set of instructions that are arranged in
a sequence to guide a computer to find a solution for a
given problem. The process of writing a program is called
programming.

∑ Computer software is written by computer programmers
using a programming language.

∑ Modern-day computers are based on the principle of the
stored program concept, which was introduced by sir
John van Neumann in the late 1940s.

∑ Application software is designed to solve a particular
problem for users.

∑ System software represents programs that allow the
hardware to run properly. It acts as an interface between
the hardware of the computer and the application
software that users need to run on the computer.

∑ The key role of BIOS is to load and start the operating
system. The code in the BIOS chip runs a series of tests
called POST (Power On Self Test) to ensure that the system
devices are working correctly. BIOS is stored on a ROM
chip built into the system.

∑ Utility software is used to analyse, configure, optimize,
and maintain the computer system.

∑ A compiler is a special type of program that transforms
source code written in a programming language (the
source language) into machine language comprising of
just two digits—1s and 0s (the target language). The
resultant code in 1s and 0s is known as the object code.

∑ Linker is a program that combines object modules to form
an executable program.

∑ A loader is a special type of program that copies programs
from a storage device to main memory, where they can be
executed.

∑ The fourth generations of programming languages
are: machine language, assembly language, high-level
language, and very high-level language.

∑ Machine language is the lowest level of programming
language that a computer understands. All the instructions
and data values are expressed using 1s and 0s.

∑ Assembly language is a low-level language that uses symbolic
notation to represent machine language instructions.

∑ Third-generation languages are high-level languages in
which instructions are written in statements like English
language statements. Each instruction in this language
expands into several machine language instructions.

∑ Fourth-generation languages are non-procedural
languages in which programmers define only what they
want the computer to do, without supplying all the details
of how it has to be done.

• In requirements elicitation phase, users’ expectations are
gathered to know why the program/software has to be
built.

• Course of actions is planned in the design phase.

• An algorithm provides a blueprint to writing a program to
solve a particular problem.

• The time complexity of an algorithm is basically the
running time of a program as a function of the input size.
Similarly, the space complexity of an algorithm is the
amount of computer memory that is required during the
program execution as a function of the input size.

• A flowchart is a graphical or symbolic representation of a
process.

• A pseudocode is a compact and informal high-level
description of an algorithm that uses the structural
conventions of a programming language.

• In the implementation phase, the designed algorithms
are converted into program code using any of the high
level languages.

11011_Programming in C AICTE.indb 21 31/07/18 5:17 PM

© Oxford University Press. All rights reserved.

Oxfo
rd

 U
niversi

ty
 Pre

ss

22 Programming in C

• In the testing phase, all the modules are tested together
to ensure that the overall system works well as a whole
product.

• After the code is tested and the software or the program
has been approved by the users, it is then installed or

deployed in the production environment.

• Maintenance and enhancements are ongoing activities
which are done to cope with newly discovered problems
or new requirements.

EXERCISES

Fill in the Blanks
 1. ________ tells the hardware what to do and how to do

it.
 2. The hardware needs a ________ to instruct what has to

be done.
 3. The process of writing a program is called _______.
 4. ________ is used to write computer software.
 5. ________ transforms the source code into binary

language.
 6. ________ allows a computer to interact with additional

hardware devices such as printers, scanners, and video
cards.

 7. ________ helps in coordinating system resources and
allows other programs to execute.

 8. ________ provides a platform for running application
software.

 9. ________ can be used to encrypt and decrypt files.
 10. An assembly language statement consists of a ________,

an ________, and ________.

 11. In _______ phase user’s expectations are collected and
documented.

 12. The documented requirements act as an input to the
_____ phase.

 13. Modularization of the program is done in ______ phase.

 14. A conditional or decision symbol is represented using a
_______.

 15. _______ phase is also called construction or code
generation phase.

 16. _______ errors may terminate program execution.

 17. Debugging is an activity that includes _______ and
_______.

 18. Structured programming follows a _______ approach
for problem solving.

 19. ________ concept was introduced by sir John van
Neumann in the late 1940s.

GLOSSARY

Backtracking method The technique used to debug small
applications which works by locating the first symptom of
error and then tracing backward across the entire source
code until the real cause of error is detected.

Cause elimination The technique in which list of all possible
causes of an error is developed.

Compile errors Errors that occur at the time of compilation
of the program

Debugging An activity that includes execution testing and
code correction. The main aim of debugging is locating
errors in the program code.

Integration testing A testing technique in which two
units that have already been tested are combined into a
component and the interface between them is tested.

Linker error Errors that may occur when the linker is not able
to find the function definition for a given prototype

Logical errors Errors that result in unexpected and undesirable

output which is obviously not correct. Such errors are not
detected by the compiler.

Runtime errors Errors that occur when the program is being
executed

Semantic errors Errors which may comply with rules of
the programming language but are not meaningful to the
compiler

Syntax Errors Errors that are generated when rules of C
programming language are violated

System testing A testing technique that checks the entire
system

Testing An activity performed to verify correct behaviour of
a program. It is specifically carried out with the intent to find
errors.

Unit testing A testing technique applied only on a single
unit or module to ensure whether it exhibits the expected
behaviour.

11011_Programming in C AICTE.indb 22 31/07/18 5:17 PM

© Oxford University Press. All rights reserved.

Oxfo
rd

 U
niversi

ty
 Pre

ss

23Introduction to Programming

Multiple Choice Questions
 1. BIOS is stored in

 (a) RAM (b) ROM

 (c) Hard disk (d) None of these

 2. Which language should not be used for organizing large
programs?

 (a) C (b) C++

 (c) COBOL (d) FORTRAN

 3. Which language is a symbolic language?

 (a) Machine language (b) C

 (c) Assembly language (d) All of these

 4. Which language is a 3GL?

 (a) C (b) COBOL

 (c) FORTRAN (d) All of these

 5. Which language does not need any translator?

 (a) Machine language (b) 3GL

 (c) Assembly language (d) 4GL

 6. Choose the odd one out.

 (a) Compiler (b) Interpreter

 (c) Assembler (d) Linker

 7. Which one is a utility software?

 (a) Word processor

 (b) Antivirus

 (c) Desktop publishing tool

 (d) Compiler

 8. POST is performed by

 (a) Operating system (b) Assembler

 (c) BIOS (d) Linker

 9. Printer, monitor, keyboard, and mouse are examples of

 (a) Operating system

 (b) Computer hardware

 (c) Firmware

 (d) Device drivers

 10. Windows VISTA, Linux, Unix are examples of

 (a) Operating system

 (b) Computer hardware

 (c) Firmware

 (d) Device drivers

 11. The functionality, capability, performance, availability of
hardware and software components are all analysed in
which phase?

	 (a)	 Requirements analysis

 (b)	 Design

 (c)	 Implementation

 (d)	 Testing

 12. In which phase are algorithms, flowcharts, pseudocodes
prepared?

	 (a)	 Requirements analysis
 (b)	 Design
 (c)	 Implementation
 (c)	 Testing
 13. Algorithms should be
	 (a)	 Precise (b)	 Unambiguous
 (c)	 Clear (d)	 All of these
 14. To check whether a given number is even or odd, you

will use which type of control structure?
	 (a)	 Sequence (b)	 Decision
 (c)	 Repetition (d)	 All of these
 15. Which among the following is represented using a

rectangle?
	 (a)	 Terminal symbols (b)	 Processing steps
 (c)	 Input/output symbols (d)	 Decision symbol
 16. Trying to open a file that already exists, will result in

which type of error?
	 (a)	 Run time (b)	 Compile time
 (c)	 Linker error (d)	 Logical error
 17. Which among the following is an ongoing activity in

software development?
	 (a)	 Requirements analysis
 (b)	 Implementation
 (c)	 User training

 (d)	 Maintenance

State True or False

 1. Computer hardware does all the physical work.

 2. The computer hardware cannot think and make
decisions on its own.

 3. A software is a set of instructions that are arranged in a
sequence to guide a computer to find a solution for the
given problem.

 4. Word processor is an example of educational software.

 5. Desktop publishing system is a system software.

 6. BIOS defines firmware interface.

 7. Pascal cannot be used for writing well-structured
programs.

 8. Assembly language is a low-level programming language.

 9. Operation code is used to identify and reference
instructions in the program.

 10. 3GLs are procedural languages.

 11. Each phase in software development has a well-defined
set of tasks to be performed.

 12. Course of actions is planned in requirements analysis
phase.

11011_Programming in C AICTE.indb 23 31/07/18 5:17 PM

© Oxford University Press. All rights reserved.

Oxfo
rd

 U
niversi

ty
 Pre

ss

24 Programming in C

 13. Start and end symbols are also known as the terminal
symbols.

 14. A decision symbol in a flowchart cannot have more than
two arrows.

 15. Variable declarations are not included in the psuedocode.

 16. Logical errors are detected by the compiler.

Review Questions

 1. Broadly classify the computer system into two parts.
Also make a comparison between a human body and
the computer system thereby explaining what each part
does.

 2. Differentiate between computer hardware and software.

 3. Define programming.

 4. Define source code.

 5. What is booting?

 6. What criteria are used to select the language in which
the program will be written?

 7. Explain the role of operating system.

 8. Give some examples of computer software.

 9. Differentiate between the source code and the object
code.

 10. Why are compilers and interpreters used?

 11. Is there any difference between a compiler and an
interpreter?

 12. What is application software? Give examples.

 13. What is BIOS?

 14. What do you understand by utility software? Is it a must
to have it?

 15. Differentiate between syntax errors and logical errors.

 16. Can a program written in a high-level language be
executed without a linker?

 17. Give a brief description of generation of programming
languages. Highlight the advantages and disadvantages
of languages in each generation.

 18. What are the advantages of modularization?

 19. Briefly explain the phases in software development project.

 20. Explain the significance of an algorithm.

 21. What are the features of an ideal algorithm?

 22. What are the different control structures that are
frequently used while writing algorithms?

 23. Why is it recommended to draw a flowchart before
implementing a program?

 24. Explain the significance of different symbols used in a
flowchart.

 25. What do you understand by a pseudocode?

 26. Is it permissible to use keywords in a pseudocode?
Justify your answer.

 27. What factors determine the efficiency of an algorithm?

 28. Testing is an unavoidable phase in software development
life cycle. Comment.

 29. What are the different types of errors which frequently
occur in programs?

 30. Differentiate between syntax and semantic errors.

 31. Differentiate between unit test, integration test, and
system test.

 32. What are the different techniques for debugging a
computer program?

 33. Suppose you are given a problem to find all composite
numbers in range provided by users. Perform all the
phases of software development on this problem.

11011_Programming in C AICTE.indb 24 31/07/18 5:17 PM

© Oxford University Press. All rights reserved.

Oxfo
rd

 U
niversi

ty
 Pre

ss

Examples for Program Design Tools

Example 1 Swap Two Variables

To swap two variables we will use a temporary variable.
First, we copy the value of any one variable in the temporary
variable. Then, we copy the value of second variable in
first. Finally, the value of the temporary variable is copied
in the second variable. Look at Figure 1 given below to
understand this concept.

10

A B TEMP

20

10 10

A B TEMP

20

20 10

A B TEMP

20

20 10

A B TEMP

10

Figure 1 Steps involved in swapping two variables

Algorithm 1 and Flowchart 1 demonstrate the step-wise
solution for swapping two variables.

Algorithm 1
Step 1: Start

Step 2: Read the first number as A

Step 3: Read the second number as B

Step 4: SET TEMP = A

Step 5: SET A = B

Step 6: SET B = TEMP

Step 7: PRINT A, B

Step 8: End

Flowchart 1
START

Read first number as A
Read second number as B

SET TEMP = A
SET A = B

SET B = TEMP

Print A, B

STOP

ANNEXURE 1

Example 2 Circulate the Values of N Variables

Algorithm 2
Step 1: Start

Step 2: Enter the number of elements in the

list as n

Step 3: SET I = 0

Step 4: WHILE I < n

 Read an element

 Append the element to the list

 Print the list

 Calculate I = I + 1

Step 5: CALL CIRCULATE (list, n)

Step 6: End

CIRCULATE(list, n)

Step 1: Start

Step 2: Set I = 0

Step 3: WHILE I < n

 Pop the first element from the list

 Append it to the list (it now becomes

the last element)

 Print the list

 Calculate I = I + 1

Step 4: End

11011_Programming in C AICTE.indb 25 31/07/18 5:17 PM

© Oxford University Press. All rights reserved.

Oxfo
rd

 U
niversi

ty
 Pre

ss

26 Programming in C

Flowchart 2

START

STOP

STOP

START
Input number
of value

Input a value
as val

Set L=[]

Set I=0

Pop the first value
of the list and
set it as val

Set I=0

Append val
to the L

Append val to L

Print L

Call Circulate(L,N)No

Circulate(L,n)

No

Yes

Yes

Is I < n?

Is I < n?

Example 3 Test for Leap Year

Algorithm 3
Step 1: Start

Step 2: Enter a year as year

Step 3: Check IF((year%4==0 and year %100!=0)

or (year%400 == 0)),

 Then PRINT "Leap Year"

 ELSE

 PRINT "Not a Leap Year"

Step 4: End

Flowchart 3

START

STOP

Enter the year as y

Print "Not a Leap
Year"

Print "Leap
Year"

If((year%4==and
year %100!=0 or
(year%400==0))

No

Yes

Example 4 Square root of a number

Algorithm 4
Step 1: Start

Step 2: Input the number as num

Step 3: Calculate square as num ** num

Step 4: Print square as calculated in Step 3

Step 5: End

Flowchart 4

START

STOP

Calculate num_sqr = num ** num

Input number
as num

Print num_sqr

11011_Programming in C AICTE.indb 26 31/07/18 5:17 PM

© Oxford University Press. All rights reserved.

Oxfo
rd

 U
niversi

ty
 Pre

ss

27Annexure 1

Example 5 GCD of Two Numbers

Algorithm 5
Step 1: Start

Step 2: Enter the two numbers as num1 and num2

Step 3: Set larger of the two numbers as

dividend

Step 4: Set smaller of the two numbers as

divisor

Step 5: Repeat Steps 6-8 while divisor != 0

Step 6: Set remainder = dividend % divisor

Step 7: Set dividend = divisor

Step 8: Set divisor = remainder

Step 9: Print dividend

Step 10: End

Flowchart 5

START

STOP

Enter two numbers
as num1, num2

If num1>
num2

Divisor=0
No

No

Yes

Yes
Set remainder=

divident % divisor

Set dividend=num2
Set divisor=num1

Set dividend=num1
Set divisor=num2

Set dividend=divisor

Print dividend

Example 6 Sum an Array of Numbers

Algorithm 6
Step 1: Start

Step 2: Read a list of N numbers from the user

as L

Step 3: Set sum = 0, I = 0

Step 4: WHILE I < N

 Calculate sum = sum + L[I]

 Calculate I = I + 1

Step 5: Print sum

Step 6: End

Flowchart 6

START

STOP

Input N number in
a list as L

Print sum

Set sum = 0, I = 0

Calculate sum = sum + L(I)
Calculate I = I + 1

Is I < N?
No

Yes

Example 7 Counting Words in a File

We know that two consecutive words are separated from
each other with a space ‘ ’. So to count the number of
words written in the file, we will read the text from the
file and count the number of spaces. Number of spaces
+ 1 gives the count of words as illustrated below using
Algorithm 7, Flowchart 7, and Program 3.

HELLO ALL
 WELCOME TO THE WORLD OF PROGRAMMING

Here, number of spaces including the new line is 7 and
thus, the number of words is 8.

Algorithm 7
Step 1: Start

Step 2: SET WORD = 1

Step 3: READ the filename as FILENAME

Step 4: Open the file

Step 5: READ contents of the file in TEXT

Step 6: REPEAT Step 7 WHILE CHAR in TEXT

Step 7: IF CHAR == ' '

 THEN WORD = WORD + 1

Step 8: PRINT WORD

Step 9: End

Chap-01.indd 27 01/08/18 10:04 AM

© Oxford University Press. All rights reserved.

Oxfo
rd

 U
niversi

ty
 Pre

ss

28 Programming in C

Flowchart 7

START

STOPNO

NO

YES

YES

SET WORD = 1

SET WORD = WORD + 1

READ the filename
as FILENAME

Is CHAR IN
TEXT?

Is CHAR = ' '
?

PRINT WORD

Example 8 Copy a File

Algorithm 8
Step 1: Start

Step 2: Open the input file as file1

Step 3: Open the output file as file2

Step 4: WHILE End of file1 is not reached

 Read a line from file1 and write it in

file2

Step 5: End

Flowchart 8
START

STOP

Read a line of text
from file 1 as line

Write the line to file 2

Open the input file as file 1

Open the input file as file 2

Set flag =
False

EOF
reached

No Yes

While Flag = True

Example 9 Finding Roots of Equations

Algorithm 9
Step 1: Start

Step 2: Input three values as a, b and c

Step 3: Set D = (b X b) – (4 X a X c)

Step 4: If D < 0,

 Print “Imaginary Roots”.

 Else If D = 0,

 Set x = -b / (2a)

 Print x

 Else

 Set x1 = (-b + sqrt(D))/2a

 Set x2 = (-b - sqrt(D))/2a

 Print x1, x2

Step 5: End

Flowchart 9

START

STOP

Print "Two Real
Roots", x1, x2

Input a, b, c

Print "One Real
Roots", x

Is D < 0

Is D < 0

Calculate D = b * b –
(4 * a * c)

Calculate
x = -b/(2*a)

Calculate x1 =
(-b + sqrt(D))2a
Calculate x2 =

(-b - sqrt(D))2a

Print "Imaginary
Roots"

Yes

Yes

No

No

11011_Programming in C AICTE.indb 28 31/07/18 5:17 PM

© Oxford University Press. All rights reserved.

Oxfo
rd

 U
niversi

ty
 Pre

ss

