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PREFACE

Mathematics as a subject is used in a wide range of fields. A thorough knowledge of the subject is the
foundation on which engineers design solutions in all sectors of engineering, whether computer science,
electrical, information technology, civil, or mechanical. Applied Mathematics deals with the applica-
tion of mathematics to solve complex practical problems. It helps in explaining an observed scientific
phenomena as well as in predicting new and/or overlooked phenomena. Applied Mathematics provides
a balance between theory and practical aspects which helps engineers to overcome the challenges of
modern engineering. Its deep understanding helps them to develop their technical skills which enable
them to shape a technologically sound modern world.

ABOUT THE BOOK

Applied Mathematics I1 is specially designed for the first year engineering students of the University of
Mumbai. The book covers all the topics taught in Applied Mathematics II course offered in the second
semester and is written in a way to help students grasp the principles of important concepts clearly and
easily. Each chapter starts with learning objectives that throw light on the important topics covered in
the chapter. The book is written in a lucid manner where text is interspersed with necessary graphical
representation of important topics, notes summarizing difficult and complicated topics, and step-wise
solutions for problems.

With an aim to provide application-based learning, ample solved and unsolved problems have been
provided. A list of formulae have been provided for easy reference and recapitulation. Each chapter
ends with a bulleted summary to help students identify the important topics and study them thoroughly.
We hope that our endeavour will enable them to gain the required knowledge of the subject and in the
process move towards a better understanding of the field.

CONTENT AND COVERAGE
The book consists of 10 chapters and 2 model question papers. The model question papers have been
included to help students understand the marking scheme and the exam pattern.

Chapter 1 provides general methods for solving exact differential equations, equations reducible to
exact form, linear equations, and equations reducible to linear differential equations along with simple
applications of ordinary differential equations to electrical and mechanical engineering problems.

Chapter 2 focuses on how to solve linear differential equations with constant coefficients of ' order. It
discusses the commonly employed technique for finding complementary functions and particular integral,
and also explains the method for finding the solution of Cauchy’s and Legendre’s differential equations.

Chapter 3 discusses various numerical methods for finding the solution of ordinary differential
equations.

Chapter 4 focuses on special class of functions called Gamma and Beta functions and their uses in
integral calculus.

Chapter 5 explains the use of rule of differentiation under the integral sign in solving some special
class of integrals.

Chapter 6 discusses numerical integration and methods for rectifying the curve when the equation of
curve is given in Cartesian, polar, and parametric form.

© Oxford University Press. All rights reserved.



vi Preface

Chapter 7 details the concept of evaluation of double integrals in Cartesian and polar co-ordinates.

Chapter 8 explains the concept of evaluation of triple integrals in Cartesian co-ordinate system,
spherical polar co-ordinate system, and cylindrical polar co-ordinate system.

Chapter 9 focuses on simple applications of multiple integrals for finding area, mass, and volume.

Chapter 10 introduces the use of Scilab programming techniques for solving differential equations,
tracing of curves, intersection of solids, etc.
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CHAPTER

DIFFERENTIAL EQUATIONS OF FIRST
ORDER AND FIRST DEGREE

LEARNING OBJECTIVES

After reading this chapter, the readers will be able to

« identify the type of first-order and first-degree differential equations

« identify and solve exact differential equations

« identify and solve linear differential equations by the use of an integrating factor

1.1 INTRODUCTION

To represent mathematical models in the field of science and technology, we need first-order and
first-degree differential equations. Differential equations in which first-order derivative occurs only once,
whereas higher order derivatives do not occur, are called first-order and first-degree differential equations.
The variable to be differentiated is called a dependent variable, and the variable which differentiates the
dependent variable is called an independent variable.

If f(x, y) = ¢, where ¢ is an arbitrary constant, is a function of x and y, then by total differentiation

AG) A ) P
ox dy
Jf (x. ») f (x,»)
Let M(x,y)=T and N(x,y)=T

~ M(x, y)dx + N(x, y)dy =0

The above equation is a first-degree and first-order differential equation, and the function f(x, y) = ¢,

where ¢ is an arbitrary constant, is called a solution of the differential equation. As there is freedom to

take any arbitrary constant c, every first-order, first-degree differential equation has infinite solutions.
So f(x, y) = ¢, where ¢ is an arbitrary constant, is called a family of solutions.

In this module we are going to study the following types of first-order and first-degree differential

equations:

1. Exact differential equations

2. Equations reducible to exact form

3. Linear differential equations of first order and first degree
4. Equations reducible to linear equation form

1.2 EXACT DIFFERENTIAL EQUATIONS

Definition: A first-order differential equation of the form
Mdx + Ndy =0 (1.1)

© Oxford University Press. All rights reserved.



1-2  Applied Mathematics IT

where M and N are functions of x and y, is said to be exact if the left-hand side is the total or exact
differential of some function u(x, ), i.e.

duza—udera—udy (1.2)
ox dy
Then the differential equation (1.1) can be written as du = 0.
By integrating, we get
u(x,y)=c (1.3)
Comparing Eqgs (1.1) and (1.2), we get
@) “-m ) Loy (1.4)
dx dy
oM _ ¥ N _ v
"9y dyox ox dxdy
2 2
But 24— 9u (Assumption)
dyodx dxdy
oM oN
=>—=—
dy  ox

This condition is not only necessary but sufficient for Mdx + Ndy =0 to be exact.
From Eq. 1.4(a), on integration w.r.t. x, we get

u:Ide+k(y) (1.5)

where y is to be regarded as a constant, and k(y) plays the role of a constant of integration. To determine

the constant we derive i from Eq. (1.5), and use Eq. 1.4(b) to get %, and then integrate.
Instead of Eq. 1.4(a), we may use Eq. 1.4(b),

u=dey+l(x)

(1.6)
. . ou dl .
To determine /(x) we derive E from Eq. (1.6), and use Eq. 1.4(a) to get —, and then integrate.
X

Steps to Solve Exact Differential Equations

.. oM . . .
Check for the condition . = M to verify the exactness of the given equation.
Y X

Rule It
(1) Integrate M with respect to x keeping y constant.

(i1) Integrate with respect to y, only those terms of & which do not contain x.
(iii) The final solution is of the form

Mdx + J.Ndy =@

‘y’ constant Terms in ‘N’ free from x

© Oxford University Press. All rights reserved.



Differential Equations of First Order and First Degree

Rule IT:
(1) Integrate N with respect to y, keeping x constant.

1-3

(i1) Integrate with respect to x, only those terms in M which do not contain y.

(iii) The final solution is of the form

Ide + deyzc

Terms in ‘M’ free from y  ‘x’ constant

EXAMPLES

Example 1.1 Solve (¢" + 1) cos x dx + ¢’ sin x dy = 0.

Solution
This equation is of the form
Mdx+Ndy=0
Here M = (e + 1) cos x and N =¢’sin x
—=¢’cosx and 8_N =e’cosx
dy ox
oM ON
=5 —=—
dy  ox

The given differential equation is exact and its solution is
jM dx + I[Terms in N, which are free from x]dy =c

‘y’ constant
J.[(ey + l)cos x}dx+J‘ Ody=c

.. The solution is (ey + 1) sinx=c

Example 1.2 Solve [1 + e»"de +e’ [1 - f]dy =0. [MU 2000,15]
Y [4 Marks|
Solution
This equation is of the form
Mdx+Ndy=0
Here M =1+¢’ and Nze*(l—ij
y
i S (e
dy Vv ox y y) vy
oM x IN ¢ 1 Toox 5 °
=3 and = t—e¢ ——me =——e¢
ay v ox y oy Y
M _on
Jdy  ox

The given differential equation is exact and its solution is
JM dx + J[Terms in N, which are free from x|dy = ¢

‘y’ constant

© Oxford University Press. All rights reserved.



1-4  Applied Mathematics IT

j[l +ey]dx+J.0dy =c

.. The solution is x + ye; =c

Example 1.3 Solve (x2 — xtan’y +sec’ y)dy =(tany—2xy—y)dx.

Solution
We have (tany—2xy— y)dx— (xz —xtan’y+ seczy)dy =0
This equation is of the form

Mdx+Ndy=0
Here M =tany—-2xy—y and N =-x"+xtan’y—sec’y

M

a—=sec2y—2x—1 and a—N=—2x+tan2y
y dx

=tan’y - 2x
oM ON
==
Jdy  ox

The given differential equation is exact and its solution is
JM dx + I[Terms in N, which are free from x]dy =c
‘y’ constant
J.(tany —2xy— y)dx + J.—seczy dy=c
2
X
xtany—2y7—xy—tany= c
Xtany—x’y—xy—tany=c

.. The solution is (x - l)tany - xy(l + x) =c

Example 1.4 Solve L = y—+l
dx (y+2)e"’ —-Xx
Solution
We have ﬂ = y—+1
dx (y+2)e)' -Xx

d .
.'.d—i[(y+2)e}—x1=y+l
(y+l)dx—[(y+2)ey—x]dy=()
This equation is of the form
Mdx+Ndy=0

Here M=y+1  and N=—(y+2)e’ +x

© Oxford University Press. All rights reserved.

[MU 2001]
|4 Marks]

MU 2010]
|4 Marks]



Differential Equations of First Order and First Degree  1-5

aﬁ =1 and N =1
dy dx
oM _oN

=
ay T ox

The given differential equation is exact and its solution is
jM dx + J[Terms in N, which are free from x|dy = ¢

‘y’ constant
j(y+ l)dx +j—(y+ 2)6ydy =c
x(y+1)—- | (y+2)e’dy=c

x(y+1)- [(y +2)e’ - (l)e"'} =c [Integrating by parts]

x(y+1)-

(y+1)e’ =c
.. The solution is (y+1)( ) ¢

1 .
Example 1.5 Solve {y(l + —) + cosy}dx +(x+logx—xsiny)dy =0. [MU 2006, 15]
X
Solution |4 Marks]
This equation is of the form
Mdx+Ndy=0
Here M:y[1+l)+cosy and N =x+logx—xsiny
X
oM 1.
E=1+;—smy and aa—N—=1+l—siny
X X
oM oM ON
dy T oox

The given differential equation is exact and its solution is
JM dx + J[Terms in N, which are free from x|dy = ¢

‘y’ constant

ﬂy(l+%)+cosy}dx+]0dy:c

=, The solution is y[x +logx]+xcosy=c

Example 1.6 Solve [y sin(xy) + x)* cos(xy)]dx + [xsin(xy) +X7y cos(xy)]dy =0. [MU 1999, 2003]
Solution |4 Marks]
This equation is of the form

Mdx+Ndy=0

Here M = ysin(xy)+x)” cos(xy)
aa—M = xycos(xy)+sin(xy)+ x[y2 (—sinxy)x+ cos(xy)2y:|
’ = xycos(xy)+sin(xy) - x’y*sin(xy)+2xycos(xy)
=3xycos(xy)+ (1 - xzyz)sin(xy)

© Oxford University Press. All rights reserved.



1-6  Applied Mathematics IT

N = xsin(xy)+x’ycos(xy)

a—N = yxcos(xy)+sin(xy)+ y[x2 (—sinxy)y+ cos(xy)2x]
x

= xycos(xy)+sin(xy) - x’y”sin(xy) + 2xycos(xy)
=3xycos(xy)+ (1 - xzyz)sin(xy)
oM JN
=>—=—
dy  ox
The given differential equation is exact and its solution is

JM dx + J[Terms in N, which are free from x|dy = ¢

‘y’ constant
I[ysin(xy) +xy° cos(xy)]dx + IOdy =c

—yecos(xy) | x,. (—cosxy) o
- +y {;(smxy) - (1)—)}2 } =c
—cos(xy)+ xysin(xy) + cos(xy) = ¢

=, The solution is xysin(xy)=c

d +siny +
Example 1.7 Solve —y+w:0.
. dx sinx+xcosy+x

Solution
We have dy _ y.cosx+smy+y
dx sinx +Xxcosy+x

o (yeosx+siny+ y)dx +(sinx+xcosy+x)dy=0
This equation is of the form

Mdx+Ndy=0
Here M =ycosx+siny+y and N =sinx+xcosy+x
M N
—— =cosx+cosy+l1 and ——=cosx+cosy+1
dy ox
oM _oN
Jdy  ox

The given differential equation is exact and its solution is

jM dx + J[Terms in N, which are free from x]dy =c¢

‘y’ constant
j(ycosx+siny+y)dx+ J.O dy=c
ysinx+x(siny+y)=c

. The solution is ysinx+ xsiny+xy=c

Example 1.8 Solve [1 + log(xy)]dx + {1 + i}afy =0.
Solution 4
This equation is of the form

Mdx+Ndy=0

Here M :l+10g(xy) and N=1+2
y

© Oxford University Press. All rights reserved.
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oM 1 1 ON 1
—_—=—Xx=— and —=—
dy  xy oy x y
oM 9N

= —=—

Jdy  ox

The given differential equation is exact and its solution is

jde+

‘y’ constant
J‘[l + log(xy):|dx + Il dy=c

x+'[log(xy)-1dx+y=c

X+ {log(xy)x —ijx dx} +y=c
Xy

x+xlog(xy)—x+y=c
. The solution is y+ xlog(xy) =c

Solution

This equation is of the form
Mdx + Ndy =0

Here M =x*—4xy—2)’

and N =y"—4xy-2x°
8—M——4x—4y and a—N——4y—4x
ox
am_on
Jdy  ox

The given differential equation is exact and its solution is
jM dx +

J[Terms in N, which are free from x|dy = ¢
‘y’ constant

j(xz - 4xy—2y2)dx+-[y2dy =c

3 3
. The solution is *— —2x2y — 2y2x+y? =c
Example 1.10  Solve (x\lxz +y? —y)dx+(y~/x2 +y? —x)dy =0
Solution
This equation is of the form
Mdx+Ndy=0

Here M =xy/x*+)* -y and N=yx*+)* —x

M xy and N __ v
a  Ix+y ox  Ix*+)?
oM ON
=5 —=—
dy  ox

© Oxford University Press. All rights reserved.

J[Terms in N, which are free from x]dy =c¢

Example 1.9 Solve (x2 —4xy— 2y2)dx + (y2 —4xy— 2x2)dy =0

Differential Equations of First Order and First Degree
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The given differential equation is exact and its solution is

J.M dx + I[Terms in N, which are free from x]dy =c

‘y’ constant
J.(x\/xz +° —y)dx+dey =c

Ix x2+y2dx—jydx=c

(xz + yz )%
.. The solution is Ee—— yx=c
EXERCISES
Solve the following differential equations:
dy—yd.
dy _ Y 1.3 xdx+ydy:7a<x 2y ); )
dx 2ylogy+y—x X +y
[Ans: y*logy—xy=c] [Ans:x”+ > +2atan™ [xj:c] [MU 1999]
y
1.2 (yze*’-"z + 4x3)dx + (2):)/6"3"2 - 3y2)dy =0 1.4 4(x—=2e")dy+(y+xsinx)dx=0
[ Ans: e 4 xt = Y =c] [MU 1999] [Ans: xy—xcosx+sinx—2¢’=c¢] [MU 2013]

1.3 REDUCTION OF NON-EXACT DIFFERENTIAL EQUATIONS TO EXACT
DIFFERENTIAL EQUATIONS

. . . . . . . dM ON .
Sometimes the given differential equation Mdx + Ndy = 0 is not exact i.e. — # F but it becomes
y X
exact by multiplication of a suitable factor called the integrating factor.

Standard Rules for Finding Integrating Factors

Rule I: If the given differential equation Mdx + Ndy = 0 is not exact and if * s a function

of x only, say f(x).

Then the integrating factor is LF. = e/

The differential equation is then reduced to exact differential equation as
[(LF.)M Jdx+[(LF.)N ] dy=0
Its solution is given as

J.[(IF)M] dx + J[Terms in (I.F.) N, which are free from x] dy=c

‘y’ constant

© Oxford University Press. All rights reserved.



Differential Equations of First Order and First Degree  1-9

EXAMPLES
Example 1.11  Solve (4xy+3)” = x)dx + x(x +2y)dy =0. [MU 2006, 12]
Solution [6 Marks]
This equation is of the form
Mdx+Ndy=0
Here M =4xy+3)°—x  and N =x(x+2y)
aﬂ=4x+6y and a—N=2x+2y
ox
oM oN
—_— ¢ R
Jdy  ox
It is a non-exact differential equation. To find the integrating factor, we have
M _oN
dy odx _ 2x+4y
N x(x+2y)
2(x+2y) 2
== —|=—=f(x sa
x[x+2y] X f( ) ( y)
2
o LE. =00 2
— e2log.\’ — elug.x’2 — XZ
Now multiplying the given equation by I.F., we get
x? [4xy +3y” - x} dx + x* [x(x + 2y)]dy =0, which is exact
Here M’:x2[4xy+3y2—x] and N’ =x*(x+2y)
Its solution is given as
_[M’dx + J.[Terms in N, which are free from x] dy=c
‘y’ constant
Jx2 [4xy+ 3" - x]dx + dey =c
R E
T T T
4
. The solution is x*y + x*)* — XT =c
Example 1.12 Solve (x*e* = 2mxy”)dx +2mx’ydy =0. [MU 2003]
Solution |6 Marks]
This equation is of the form
Mdx+Ndy=0
Here M = x‘e* —2mx)’ and N =2mx’y
oM _ —4mxy and N =4mxy
dy )
oM N
Jdy  ox

© Oxford University Press. All rights reserved.
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It is a non-exact differential equation. To find the integrating factor, we have
oM OoN

dy ox —-8mxy 4
=S4
N 2mx"y X
I 7(x)d int[x
SLE =0 2oy

(say)

—4log logx™ -4
g\,:e gx =X :—4
X

=e

Now multiplying the given equation by I.F., we get

%(x“e" —2mxy’ )dx + %(mezy)dy =0, which is exact
X

X
2my? 2
[ _2my ]d“ﬂdy:o
3 =
2
Here M’ =¢" — 2m3/ and N’ = 2”?
X X

Its solution is given as
'[M “dx + j[Terms in N’, which are free from x| dy = ¢

‘y’ constant

2
J‘(e‘ - 2m3y )dx+j0 dy=c
X

e —2my’ il =c

- The solution is e* + ——=¢
X

Example 1.13 Solve (leogx - xy)dy +2ydx=0. [MU 2003]
Solution |6 Marks]
This equation is of the form

Mdx+Ndy=0
Here M =2y and N =2xlogx—xy
a—M:2 and a—]\]:2[x><l+logx}—y
dy dx X
=2(1+logx)—y=2+2logx—y

oM dN
>—
Jdy  ox

It is a non-exact differential equation. To find the integrating factor, we have

oM oN
9y ox _2-2-2logx+y
N B 2xlogx—xy

y—2logx :—l:f(x)

- x(2logx-y) x (sa)

f*ld,\' _
~ILF.=¢ © =l

© Oxford University Press. All rights reserved.
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L

x
Now multiplying the given equation by I.F., we get

l(2xlogx —xp)dy+ l(2y) dx =0, which is exact
X X

log X!

=e

(2logx—y)dy+27y dx=0
Here N'=2logx-y and M,:Z_y
Its solution is given as ~
J‘M’dx + J‘[Terms in N’, which are free from x] dy=c

‘y’ constant

j(%)dﬂj—ydy -

.. The solution is 2ylog x — y7 =c

3
Example 1.14 Solve (y + y? + %xzjdx + %(x + xyz)dy =0. [MU 2000, 08]
|6 Marks]

Solution
This equation is of the form
Mdx+Ndy=0
3 2
_ y X 1 s
Here M—y+?+7 and N—Z(x+xy)

oM 3)° ) oN 1 5
d —=—(1+
an ox 4( y)

It is a non-exact differential equation. To find the integrating factor, we have

oM oN 1
- 2 2
dy  ox _l+y _Z(1+y)

N ) %(x+xy2)
:i(1+y2);:%: f(x) (say)

4 %(l+yz)

(x Jldx

ALF.= /0 = o
— e}log,\‘ — elogx3 — X}

Now multiplying the given equation by L.F., we get

3 2 3

s VY ox X ) L

xX’| y+—+— |dx+—(x+ xy~ )dy =0, which is exact

(y 302 j g o)y

3

3 2
r_ 3 y X l_x 2
Here M’ =x (y+—3 +—2J and N vy (x+xy )
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Its solution is given as
'[M “dx + j[Terms in N’, which are free from x| dy = ¢

‘y’ constant

3L
Ix3[y+y?+%jdx+.[0dy=c

X y3 IR
y—+——+—=c
4 34 12

- The solution is 3x*y+x*y* +x° = ¢

Example 1.15  Solve xsinxdy +(xycosx — ysinx—2)dx=0. [MU 2015]
Solution |6 Marks]
This equation is of the form

Mdx+Ndy=0
Here M = xycosx — ysinx—2 and N = xsinx
M . N .
—— =Xxcosx—sinx and —— =xcosx+sinx
dy X
oM  dN
>—
dy  odx
It is a non-exact differential equation. To find the integrating factor, we have
M N
dy  0X _ XCOSX—SinX—XCOSX—sinx
N xsinx
—2sinx

- xsinx :_%: (x) (say)

X)dx J*E(/x
SIF =/ =g

—2log x 2

=¢ — elogx’ - x72
Now multiplying the given equation by I.F., we get

x7[xycosx — ysinx —2]dx + x~* [xsinx]dy = 0, which is exact

[ycosx_y51nx_i}dx+[s1nx}dy=0
X

X X
COSX sinx 2 sinx
Here M’=y——y—2——2 and N’ =
X X X X

Its solution is given as

IM'dx + J[Terms in N’, which are free from x] dy=c

‘y’ constant
i 2
[ 2o
X X X
i 2
yJ- cosx dx — yJ‘ sm;c dx— J.—7dx =c
X X x°
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Since JM “dx 1s difficult, we apply Rule 1T

J.N ‘dy + J.[Terms in M’ which are free from yldy =c

—J.%dx+J‘smxdy:c
X X
£+ ysinx _

X X

L. 2 sinx
.. The solution is —+ LY c
X X

EXERCISES
Solve the following equations:
L5 (xz +? +2x)dx+2ydy =0 1.8 (y—2x3)dx— x(1=xy)dy=0
Ans:e* (x> +))=c K 2
[Ans:e"(x+y7)=c] [Ans:—y—x2+y7:c] [MU 1995]
1.6 (x3e" —myz)dx+mxydy=0 \
[Ans:2x%e" + my” = cx’] 1.9 (x2+y2+1)dx—2xydy:0
B [Ans:x’—p —1=cx] [MU 2007]
1.7 (xyz —e* ]dx - x’ydy=0
Ly yz
[Ans:—e™ —=—=c] [MU 2004, 07]
3 2x
N oM
Rule IT: If the given differential equation M dx + N dy =0 is not exact and if % is a function

of y only, say f(y).

Then the integrating factor is I.F. = el
The differential equation is reduced to exact differential equation as

[(LF.)M Jdx+[(LF.)N ]dy=0
Its solution is given as

J[(IF)M] dx+ J[Terms in [ (LF.)N |, which are free from x} dy=c

) dy

‘y’ constant
EXAMPLES
Example 1.16 Solve (y4 + 2y) dx + (xy3 +2y* — 4x) dy=0. [MU 2003]
Solution |6 Marks]
This equation is of the form
Mdx+Ndy=0

© Oxford University Press. All rights reserved.
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Here M=(y4+2y) and N=(xy3+2y4—4x)
a—M:4y3+2 and a—N:y3—4
dy ox
oM oN
= —Ft—
dy  ox
It is a non-exact differential equation. To find the integrating factor, we have
IN _ oM
ox dy ¥ -4-4y'-2 -3y'-6
M Y2y Y2y
—3(y3 + 2) 3
22 ) ()
y(y3 + 2) y
J—%dy

SIF =70 =
1

:e—3logy :elogy’] _

Now multiplying the given equation by I.F., we get

L3(}’4 + Zy)dx + %(xﬁ +2y* = 4x)dy =0, which is exact
Y Y

[y+%jdx+(x+2y—4—fjdy:0
y y
4x

2 2
Here M’ =y+— and N =x+2y——
y y

Its solution is given as
IM'dx + J[Terms in N, which are free from x] dy=c

‘y’ constant

J[y+%)dx+'[2ydy:c
y

2
x[y+i,)+2izc
y° 2

. 2
.. The solution is xy + —)ZC +y'=c
y

Example 1.17  Solve (xp’ + y)dx+2(x"y* + x+ y*)dy =0. [MU 2009, 12|
Solution |6 Marks]
This equation is of the form

Mdx+Ndy=0
Here M =x)y’+y and N:2(x2y2+x+y4)
a—]V[:?)xyz+l and a—N:4xy2+2
Jdy dx
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oM oN
=
Jdy  ox
It is a non-exact differential equation. To find the integrating factor, we have
ON oM

ox dy _4xy’+2-3xy"-1

M xy3+y

_ xp*+1 _

1
Wi+x?)

N
SLE. =00 — gy
- logy

e =y
Now multiplying the given equation by L.F., we get

=) (say)

y(xy3 +y)dx + Zy(xzy2 +X+ y4)dy =0, which is exact

Here M’:y(xy3+y) and N’=2y(x2y2+x+y4)

Its solution is given as

IM'dx + j[Terms in N’, which are free from x] dy=c

‘y’ constant
jy(xy3 +y)dx +J.2y(y4)dy =c

2 6

4 X 2 2y
4yt =

I

2 4 6

Al +xy2+y?=c

.. The solution is

Example 1.18  Solve (3x°y* +2xy)dx +(2x°y’ - x*)dy =0. [MU 2010]

Solution [6 Marks]
This equation is of the form
Mdx+Ndy=0

Here M =3x7y* +2xy and N =2xy" - x*
a—M:3x2(4y3)+2x:12x2y3+2x and a—N:6x2y3—2x
dy dx
oM 0N
Jdy  ox
It is a non-exact differential equation. To find the integrating factor, we have
oM
dx dy _ | 6xX°y +4x
M

3x7pt +2xy

© Oxford University Press. All rights reserved.
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2
o LR =70 = eji;dy

— e*Zlogy — elogy"Z — =
y
Now multiplying the given equation by I.F., we get

! (3x2y4 + 2xy)dx + L2(2x3y3 - xz)dy =0, which is exact
Y

¥
y 52X . X
3x7y +—|dx+| 2x°y—— |dy=0
y y

2 2
Here M’ =3x*+=>  and N’=2x3y_x_2
Y
Its solution is given as

J.M’dx + J'[Terms in N’, which are free from x| dy = ¢

‘y’ constant
, 52X
3y +— |dx+ |0dy=c
y
3 2
3y2x—+%x—:c
3 y2
2
P L

. The solution is x’y* +x* =cy

Example 1.19  Solve (2xp‘e’ +2xp" + p)dx +(x’y*e’ = x’y* =3x)dy =0. [MU 2005, 10]
Solution |6 Marks]
This equation is of the form

Mdx+Ndy=0

Here M =2xy*e’ +2xy°+y and  N=x’p'¢’ —x’y*-3x

oM :
—=2x| y'e’ +e’4y’ [+2x[3)7 |+1
L N
=2xy'e’ +8xy’e’ + 6x)” +1
a—N =2xy'e’ —2x)y" =3
ax
oM 0N
Jdy  ox
It is a non-exact differential equation. To find the integrating factor, we have
oM
ox dy _2xp'e’ —2xy’—3-2xp'e’ —8xy'e’ —6xy” -1
M 2xpte’ +2xy° + y
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Differential Equations of First Order and First Degree

_ —8xy’ —8xy’e’ —4
2xpte’ +2xy° + y

—4(2xy* +2xp%e’ +1) 4
= ( 3y 2 ) == f(y) (Say)
y(2xy e’ +2xy +1) ¥y

[r()dy _ J_i’]y —4logy
~IF.=¢ T=e Vo=

_ L

4

y
Now multiplying the given equation by I.F., we get

— elog 7

! (nye +2xy° +y)dx+i(xye - x’y* =3x)dy =0
y y

2 1
(erv" +_x+_3jdx+[x23y ———):]dy 0, which is exact
yoy y
2 1 _
Here M’ =2xe’ + 2> +— and N’ =x% - x 3§
yoy Voy

Its solution is given as

.[M “dx + j[Terms in N’, which are free from x| dy = ¢

‘y’ constant

J.(er’” +2—X+L3de+J‘O dy=c
y oy

2 2
Zeyx—+£x—+%x=c
2 2y
x2
~. The solutionis x%¢” +—+
y oy

X
3

=c

Example 1.20 Solve y(xzy + ex)dx —e'dy=0.

Solution
This equation is of the form
Mdx+Ndy=0
Here M =x7y" + ye* and N=-¢"
oM _ 2xX°y+e” and N _ —e"
dy ox
oM dN
dy  ox

It is a non-exact differential equation. To find the integrating factor, we have
ON oM

dx ay __ex_zxzy_ex ~ _2(ex+x2y)

M X*p* + ye y(e“ + xzy)

© Oxford University Press. All rights reserved.
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(N J'—%dy
SIF=e/0 = v

—2logy __ elogy’z _
- L2

Y
Now multiplying the given equation by I.F., we get

=e

Lzy(xzy + ex)dx - Lze"dy =0, which is exact
y y

1,, x , 1
Here MI:_z(x—y2+y€X)=X2+e— and N’ =——¢"
y y

Its solution is given as
IM'dx + J[Terms in N, which are free from x] dy=c

‘y’ constant

J[xz + i]a’x +JO dy=c
Y

XS ex
—+—=c
3y
X e
. The solutionis —+—=¢
3y

Example 1.21 Solve (Zsec y—tan y)dx +(sec y log x —x)dy =0.
x
Solution

This equation is of the form

Mdx+Ndy=0
Herelesecy—tany and N =secylogx—x
X
oM 1 y ) ON sec
——=—secy+=—secytany—sec” y and —=—
Jdy x X ox X
oM  ON
=>—#F—
Jdy  ox

It is a non-exact differential equation. To find the integrating factor, we have

ON OM  secy secy y
— Sy {_5€CY Y ecytan v+ sec?
ox ay _ X X X g Y .

M Zsecy—tany
X

© Oxford University Press. All rights reserved.
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J

—~secytany+tan’ y
X

Xsecy—tany
X

—tany(ysecy - tanyj
= ad =—tany=/(y) (say)
Xsecy —tany
X

.'.I.F. — ejf(}")d}’ — eJ’*lanydy
— elogcosy =cosy
Now multiplying the given equation by I.F., we get

cosy(lsecy - tany)dx + cosy(secy logx — x)dy =0
X
(Z - sinyjdx +(logx — xcos y)dy =0, which is exact.
X

Here M’:Z—Siny and N’=logx—xcosy
x

Its solution is given as

JM’dx + J.[Terms in N’,which are free from x]dy =c
’y’constant

J[Z— siny)dx+'[0dy =c
X

ylogx—xsiny=c

. The solutionis ylogx—xsiny=c¢

EXERCISES
Solve the following equations:
1.10 y(xy+ex)dx—e"dy:0 1.12 (x+2y3)%=y
[Ans:x—2+e—x:c] [MU 1999] [Ans:x— )’ =cy]

2y

1.13 (2x2y+e“')ydx—(e“' +3y)dy=0

1.11 (2xy2 —y)dx+xdy=0
[Ans:x’y—x=cy ] [MU 1994]

[Ans:4x’y -3y’ +6e* =cy]
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Rule III: If the given differential equation Mdx + Ndy = 0 is not exact and is of the form f,(xy)y dx +

f(xy)x dy =0, where f, and f, are functions of the product of xy,

Then the integrating factor is

LE. = ;, where Mx— Ny # 0
Mx— Ny

Now multiplying the given equation by I.F., we get
[(LF.)M Jdx+[(1F)N ]dy=0

Its solution is given as

J[(I.F.)M]dx + J[Terms in [(I.F.)N], which are free from x]dy = ¢

‘y’ constant

EXAMPLES

Example 1.22 Solve y(1 + xy)dx + x(1 — xy)dy = 0.
Solution

This equation is of the form

Si(xy)y dx + f(xy)x dy =0
Here M = y(1 + xy) and N=x(1-xy)
1 1

~LF.= =
Mx— Ny xy(1+xy)—yx(l—xy)

1
(14 xy -1+ xp)
1
- 2x2y2

Now multiplying the given equation by I.F., we get

1 1
1+ xy)dx+——x(1—xy)dy =0, which is exact
2y Vet ooz x(l-xy)dy

1 1
%+L dx+ >—— |dy=0
2x7y  2x 2xy~ 2y

Here M’ = 12 +L and N’ = IZ—L
2x7y  2x 2xy~ 2y

Its solution is given as

J.M'dx + J[Terms in N’, which are free from x] dy=c

‘y’ constant
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J. 12 +L dx+J. _ L dy=c
2x7y  2x 2y

€ x_" +llo x—llo =c
T ST R

—L+llo x—llo =c
2xy 2 £ 2 &7

.. The solution is — € + log(i) =c
Xy y

Example 1.23 Solve y(l + xy)dx + x(l +xy+x°y° )dy =0.

Solution
This equation is of the form

Ji(xep) ydx + £, (xy) xdy =0

Here M =y(l+xy)  and N=x(l+xy+x2y2)

T B 1
T Mx-Ny xy(1+xy)—xy(1+xy+x2y2)

1
- xy(l+xy—1—xy—x2y2)

1
'y

Now multiplying the given equation by L.F., we get

1 1
3 3y(l+xy)a’x—wx(l+xy+x2y2)01y=0

[_ %1 2 _%de+(—%—%—ljdy=0, which is exact

Xy X7y Xy Xy y

Here M’ =— 212_% and N'- 213_%_1
Xynoxy Xy oxy oy

Its solution is given as

JM “dx + j[Terms in N’, which are free from x| dy = ¢

‘y’ constant

J.(—x%f—xizyjdﬁj(—ijdy: ¢

© Oxford University Press. All rights reserved.
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(X afxt “logy=c
vl )%

LWLL—IO =c
2xzy2 Xy gr=

.. The solution is % + 1 logy=c
2x7y

Example 1.24 Solve y(sin Xy + Xycos xy) dx + x(xycos Xy —sin xy) dy=0.

Solution
This equation is of the form

fi(xy)ydx+ £, (xy)xdy=0
Here M = y(sinxy + xycos xy) and N = x(xycos Xy — sinxy)

1

R B e —
Mx— Ny

1
~ xy(sinxy + xycos xp) — xy(xycos xy —sin xy)
1
xp(sinxy + xycos xy — xycosxy + sin xy)

1
 2xysinxy
Now multiplying the given equation by L.F., we get

y(sinxy + xycosxy)dx + x(xycosxy—sinxy)dy =0

2 xysinxy 2 xysinxy

1 1 S
— +2cot xy |dx+ Lot xy—— |dy =0, which is exact
2x 2 2 2y

1 1
Here M':—+Zcotxy and N’zﬁcotxy——
2x 2 2 2y
Its solution is given as
IM'dx + J[Terms in N’, which are free from x] dy=c

‘y’ constant
J L+Xcotxy dx+J.—Ldy:c
2x 2 2y

1 1 1
—logx +—log(sinxy)——logy=1o
Slogx+- g(sinxy) 5 logy =loge
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llog xsinxy _

loge
) g

X . ,
—sinxy=c
Y

R
.. The solution is — sinxy = ¢’
Y

2.3
Example 1.25 Solve ?: _XY +2y

X 2x=2x'y*

Solution

2.3
We have & = XV ¥V
dx 2x—-2x"y

(xzy3 + 2y)dx+(2x—2x3y2)dy =0
= y(2+xzyz)dx+x(2—2x2y2)dy= 0

This equation is of the form
A (xy)ydx + 1, (xy)xdy =0

Differential Equations of First Order and First Degree  1-23

[MU 1998]
[6 Marks]

Here M=(2y+x2y3) and N=(2x—2x3y2)

1 1

- LF.

B 1
3x’y?

- Mx— Ny - xy(2+x2y2)—xy(2—2x2y2)

Now multiplying the given equation by I.F., we get

3x’y? Y

2 1 2 2
[TJF—]‘{“(T——
3x7y” 3x 3x7y” 3y

2 ! and N’ = 2

’

Its solution is given as

=t — —_—
3x’y* 3x 3x%y’

(2 + xzyz)dx+ 3%)(?(2 - 2x2y2)dy =0, which is exact
Xy

]dyzc

i

'[M “dx + j[Terms in N’, which are free from x| dy = ¢

‘y’ constant
J. %+L dx+J.—idy:c
3xy” 3x 3y

2 x_—2 +llo x—zlo =c
37 2 ) 3R TR
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_—l+llo x—zlo =c
3 g 3 gy

3X2y2
.. The solution is 1 logi2 - % =c
3 ¥y 3x%y
Example 1.26 Solve [xysinxy+cosxy|ydx+[xysinxy—cosxy|xdy=0. [MU 2002, 16]
Solution |6 Marks]

This equation is of the form
5 (xy)ydx + 1, (xy)xdy =0
Here M = [xysin Xy +cos xy]y and N = [xysin Xy —cos xy]x

1

R B i —
Mx— Ny

1
~ xy(xysinxy +cosxp) - xy(xysinxy —cos x)

1
~ xy(xysinxy+cosxy — xy sin xy + cosxy)

1
- 2xycosxy

Now multiplying the given equation by L.F., we get

—— y(xysinxy + cos xy)dx + ————— x(xysinxy — cosxy)dy = 0
2 xycosxy 2 Xycosxy
1y X 1 Lo
—+=tanxy |dx+| —tanxy —— |dy =0, which is exact
2x 2 2 2y
,_ 1y ,_X 1
Here M’ =—+=tanxy and N’ =—tanxy——
2x 2 2 2y

Its solution is given as

J‘M’dx + J‘[Terms in N’, which are free from x] dy=c

‘y’ constant

J'(% + %tanxy]dx +J.(—%de =c

1 1 1
—1 +—log(sec ——logy=1lo
Slogx+- g(secxy) 5 logy=loge

1 log Xsecxy _

logc
) g
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xsecxy=c’y

.. The solution is xsecxy =c’y

Example 1.27 Solve (y—xp’)dx—(x +x°y)dy =0. [MU 2006, 15]
|6 Marks]

Solution
We have (y—xyz)dx—(x+x2y)dy =0
=(1-xy)ydx—(1+xy)xdy=0
This equation is of the form
K (xp)ydx+ f,(xy)xdy=0
Here M=y—x)° and N=-x-x7y

1

“IF=——
Mx— Ny

! __L
(y—xyz)x—[—(x+x2yﬂy 2xy

Now multiplying the given equation by I.F., we get

L(y— xy2)dx —ﬁ(x + xzy)dy =0, which is exact

2xy
L_Z dx — L.}.ﬁ dy:()
2x 2 2y 2

Here M’:L—Z and N’=_L_£
2x 2 2y 2

Its solution is given as

J.M “dx + J'[Terms in N’, which are free from x| dy = ¢

‘y’ constant

j 1 dx+J—Ldy=c
2x 2 2y
1 xy 1
—1 -——=—=1 =c
5 ogx 575 ogy=c

x 4
log(—) —-xy=c
Y

.. The solution is log[ﬁj —xy=c
y
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Example 1.28 Solve (x3y4 +X7 Y +xpt + y)dx + (x“y3 Xy =X’y + x)dy =0.

Solution
We have ()c3y4 +xy +xy? +y)dx+(x4y3 - X’y - x2y+x)dy =0
= (x3y3 +x°y? +xy+1)ydx+(x3y3 - X'y’ —xy+1)xdy =0
This equation is of the form
A (xy)ydx + 1, (xy)xdy =0

Here M =xy*+x*»+xy*+y and N=x"-x)"—x’y+x
1

“IF=—m«——
Mx— Ny

1
B X4y4 + X3y3 + X2y2 +X)y— X4y4 + )C3y3 + Xzyz — Xy

1
C2x%y (xp+)
Now multiplying the given equation by I.F., we get

(X3y4 + X2y3 + xy2 + y) (X4y3 - X3y2 - X2y+ X)

dy=0
2 el ()
(x2y3(xy+1)+y(xy+ 1)) (x3y2(xy—1)—x(xy—l))
2y 2.2 dy=0
2x7y (xy+1) 2x%y (xy+l)
3.2 1) 1
ly+ 12 d+(xy(xy22) x(xy=1))
2 2x 2x%y (xy+1)
3.2 1) - 1
Here M’ =—y+ 1 o N’=(xy (xy ) x(xy ))

2x7y 2x7y? (xy + 1)

Its solution is given as

_[M’dx + J‘[Terms in N, which are free from x] dy=c

‘y’ constant
1 1
J.—y+ > dx+JOdy=c
2 2x7y
»_ 1 _
2 2xy
xy——=c
Xy

’

.. The solution is xy — 1 =c
Xy

© Oxford University Press. All rights reserved.
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EXERCISES
Solve the following equations:
1.14 y(xy+2x2y2)dx+x(xy—xzyz)dy:0 1.16 y(2xy+1)dx+x(1+2xy—x3y3)dy:O
1 1
Ans:2logx——-logy=c MU 2012 Ans: —+1 =
[ g o gy=c] [ ] [ Ans x2y2+3x3y3+ ogy=c]

2.2 2.2 _
1.15 y(1+xy+x2y2)dx+x(l—xy+x2y2)dy=0 7 y(xy+2xy)dx+x(xy xy)dy 0

1
Xy

[Ans: —L+Elogx—llogy =c] [MU 2012]
3xy 3 3

[Ans:xy+log(xj— =c]
y

Rule I'V: If the equation Mdx + Ndy =0 is homogeneous in x and y
Then the integrating factor is

1
"~ Mx+N b%
Now multiplying the given equation by I.F., we get
[(I.F.)M]dx + [({.F.)N]dy =0

Its solution is given as

LIS , where Mx+ Ny #0

JT(IF) M]dx + J[Terms in [(IF) N], which are free from x] dy=c

‘y’ constant
EXAMPLES
Example 129 Solve (x*+ y*)dx—xy’dy=0. [MU 2002, 04]
Solution |6 Marks]

This equation is homogeneous in x and y.
Here M = x*+ y* and N=—-x)3
Mx+Ny=x(x*+y")—xp*=x" 20
Fe L1

Mx+ Ny x
Now multiplying the given equation by L.F., we get

%(x4 +y4)dx—%(xy3)dy =0

4 3
(l + y_sjdx - [y_4]dy =0, which is exact
X x X

1 y4 3
Here M’ =—+— and N =—=—
X X X

Its solution is given as

© Oxford University Press. All rights reserved.
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J‘M’dx + J‘[Terms in N’, which are free from x] dy=c

‘y’ constant

j[i+x—de+_[0dy_c

4
logx+)* X =

()
lo x—L =c
g i yt=

4x*logx —y* =cx*

- The solution is 4x*log x — y* = ex*

Example 1.30 Solve (3xy2 - y3)dx - (2x2y - xyz)dy =0.
Solution
This equation is homogeneous in x and y.

Here M =3xy*—)? and N==-2x% + x)?

Mx+ Ny = x[3xy* = y*1+ y[-2xy + x)°]

=3x7)" —xy’ =2x7y" + xp°

=x? y2 #0

1 1

SAF=s————=——
Mx+ Ny x7y

Now multiplying the given equation by I.F., we get
1 1
xz—yz[3xy2 - y3:|dx - x2—y2|:2x2y P~ | Xyz]dy =0

{E _ l} dx — {2 - l:|dy =0, which is exact

x X ¥y x

Here M’ :i—l and N’:_£+l

x X y X
Its solution is given as

_[M’dx + J.[Terms in N’, which are free from x] dy=c

‘y’ constant
J'(i——)dx+j——dy—c
X X
X!
3logx — y( ] 2logy=c
Y _
3logx+=-2logy=c
X

logx® —logy? + L = ¢
X

© Oxford University Press. All rights reserved.
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logX =
og—=c—=
X
x}
2 .
2
Y
3 y

. X -
- The solution is — =ce *

y
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c—ylx

Example 1.31 Solve y(x+y)dx—x(y—x)dy=0.

Solution

This equation is homogeneous in x and y.
Here M:y(x+y) and N:—x(y—x)

Mx+ Ny=xy(x+y)—xy(y—x)
=x*y+xy’ —xp’ +x%y
=2x"y#0

1 1

AIFs———— =
Mx+ Ny 2x7y

Now multiplying the given equation by L.F., we get

1
y(x+y)dx— 5

2x%y X'y

1

x(y—x)dy=0

L+L2 dx — o dy =0, which is exact
2x  2x 2x 2y

Here M’=L+L2 and
2x  2x

Its solution is given as

J.M’dx + J.[Terms in N’, which are free from x] dy=c

N’=_L+L
2x 2y

J[%+2—iz)dx+j[$Ja’y=c

Y

llo X+= ﬁ +llo =c
508 I gy

2 2

2

1
—logxy=c+—

2

1 y 1
—logx—=—+—=logy=c
gxX—o 508y

y
2x

.. The solution is log\/x_ = 2l +c
X

© Oxford University Press. All rights reserved.
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Example 1.32 Solve x’ydx— (x3 + y3)dy =0.
Solution

This equation is homogeneous in x and y.
Here M =x*y  and N:—(x3+y3)

Mx+Ny=x(xzy)+y(—x3 —y3)
=xXy-xy—yp'=—y"20
1 1
ALF=————=——
Mx+ Ny y

Now multiplying the given equation by I.F., we get

—%(x2y)dx+%(x3 + y3)dy =0

2 3
[—x—;j dx + (x—4 + l) dy =0, which is exact
v oy

2 3 1
Here M’ =->- and N =242

3 4

y yor
Its solution is given as

_[M’dx + J.[Terms in N, which are free from x] dy=c

‘y’ constant

X 1
J——3dx +j—dy =c
y y
3

-2 tlogy=c
3y gy

3
.. The solution is —% +logy=c
)

Example 1.33  Solve (x’y—2xp”)dx —(x" =3x°y)dy =0. [MU 2001, 16]
Solution |6 Marks]
This equation is homogeneous in x and y.

Here M = x?y — 2x)”? and N=-x3+3x%

Mx+Ny=x(x"y—2xp*)— p(x’ =3x7y)

=Xy -2x"p* —yx’ +3x7)°
=x*y*£0
1 1
T Mx+ N y % e
Now multiplying the given equation by I.F., we get

- LF.

x%yz[xzy - nyz]dx + szyzl:_x} + 3x2y:|dy =0

© Oxford University Press. All rights reserved.
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{l —g}dx + {—iz+ E}dy =0, which is exact
y X Y Y
Here M'=l—g and N’=_i+§

y X y Y

Its solution is given as

J.M’dx + J.[Terms in N’, which are free from x| dy = ¢

‘y’ constant

J.(l—gjdx +jzdy =c
y X y

i—210gx+310gy:c
y

3
R log(y—zJ =c
y x

3
. The solution is -~ + log(y—z) =c
y X

EXERCISES
Solve the following equations:
1.18 (xz +y2)dx—(x2 + xy)dy =0 120 x(x—y)dy+y’dx=0
.y = P
[Anszzzlog al ~+c] [Ans:cy=e]
x (x=y)

3 3 2
1.19 (xz—4xy—2y2)dx+(y2—4xy—2x2)dy=0 121 (x +y)dx—xy dy=0

X 5 [Ans:cx=c
[Ans:?—xzy—2y2x+?=c] [MU 2014]

SAVARS ]

1.4 LINEAR DIFFERENTIAL EQUATIONS

A differential equation is said to be linear if the dependent variable y and its derivatives occur only in
the first degree and both are not in multiple.
In other words, a differential equation is said to be linear if
1. Every term of its dependent variable and its derivatives occur with no degree higher than first.
2. In no term any two derivatives or a dependent variable are multiplied together.
3. The dependent variable and its derivatives do not appear either in radical sign or in the denominator.

2
For example, the terms like 1+(ﬂj and should not be present in the differential

1
equation. X 1+2 &
dx

© Oxford University Press. All rights reserved.
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Type I

A differential equation of the form %+ Py =0 is called a linear differential equation of the first
x

order, where P and Q are functions of x alone or constants. Here y is a dependent variable and x is

an independent variable.

Working Rule to Find the Solution of Z—y +Py=0
x
Step 1: Convert the given equation to standard form of linear differential equation i.e.

dy
—+Py=
o T =2
Step 2: Find the integrating factor as

Integrating Factor (LF.) = /™

Step 3: Then the general solution is given by
y(LF) = [Q(LF)dx+c

. dy . . . . .
Note: The coefficient of d_y in linear differential equation must be equal to one.
x

EXAMPLES
Example 1.34 Solve (x2 - l)sinxﬂ + [szinx + (x2 - l)cos x]y = (xz - l)cos X. [MU 2010]
dx
Solution |6 Marks]

We have (x2 —l)sinx%+|:2xsinx+ (x2 —l)cosx}y = (x2 —l)cosx

Dividing throughout by (x2 - l)sinx, we get

dy ( 2x cosx) CosX
e e =
x"—1 sinx

dx sinx
dy 2x
Jo——+| —Z—+cotx |y=cotx
dx -1
This is a linear differential equation of the form
dy
—+ Py=
o TPr=¢
2x
Here P=—; 1+cotx and Q=cotx
- Integrating factor (LF.) = ¢/
_ eI(Zx/(x 7l)+cotx)dx
_ el(’lx/(x —1)+cosx)dx

— elo,g(,\'z —])+log sinx
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_ el
= (x2 - l)sinx
Its general solution is given by
y(1F) = [O(LF )dv+e

y(x2 —l)sinx = jcotx(xz —l)sinx dx+c

y(x2 —l)sinx =J.cosx(x2 —1)dx+ c

= (x2 - l)sinx —2x(=cosx)+2(—sinx)+c
. The general solution is

y(x2 —l)sinx = (x2 - 1)sinx+ 2xcosx —2sinx+c

Example 1.35 Solve Z—ycoshx =2cosh’xsinh x — ysinh x.

. X
Solution

We have ﬂcoshx =2cosh’xsinhx — ysinhx
x
Dividing throughout by cosh x, we get

L my =2sinhxcoshx
dx coshx

This is a linear differential equation of the form

dy
—+Py=
PRy 0
Here P = sinh x and Q =2sinhx coshx
coshx

— ef Pdx erinh x/cosh xdx

. Integrating Factor (LF.)

__ logcoshx

e =coshx

Its general solution is given by

y(LF.) = IQ(I.F.)dx +c

. ycoshx = j2sinhxcosh2 xdx+c

Putting cosh x = ¢ .~.sinh x dx = dt

s.ycoshx = Ithdt = %f +c

2
ycoshx = Ecosh3 X+c¢

. 2
.. The general solution is ycosh x = gcosh3 xX+c

© Oxford University Press. All rights reserved.
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Example 1.36 Solve % +2ytanx=sinx at y=0,x = %
x

Solution

This is a linear differential equation of the form

dy
—+ Py=
Ty 0

Here P =2 tan x and Q=sinx
- Integrating Factor (LF.) = ¢/

— eZJtan.Y dx eZlogscc,\'

2.
— elogsec X _ SeC2X

Its general solution is given by

y(LF.)= J.Q(I.F.)dx +c

ooysecix = J.sinx(seczx)dx +c

sinx 1
=J-—~ dx+c¢
COSX COSX

= Jtanxsecx dx+c¢
s ysecix =secx +c [ Jsec xtanx dx = sec x}
) T .
Putting x = 3= 01in Eq.(1.7), we get

T
0O=sec—+c
3

c=-2
- ysec’x =secx —2
¥ =cosx —2cos’x
. The general solution is y = cos x — 2cos’x
dy

Example 1.37 Solve xlogx 7

—+y=2logx.
x

Solution
dy
We have xlogxd—+ y=2logx
X

Dividing throughout by x log x, we get

dy 1 2
dx xlogx X

© Oxford University Press. All rights reserved.
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This is a linear differential equation of the form

dy
—+Py=
o =0
2
Here P = and O=—
xlogx X

- Integrating Factor (LF.) = ¢/

l1 ¢ loglo,
clog x X
xlogx e glog

= =logx
Its general solution is given by

y(LF.) = jQ(I.F.)dx +c
2

- ylogx = j—logxdx +c
X

ylogx = (logx)2 +c

. The general solution is ylogx = (log x)2 +c

Example 138 Solve x(x—1) 2~ (x~2)y = ' (2x-1),
Solution
We have x(x—1) 2~ (x-2) = x*(2x-1)
Dividing throughout by x(x—1), we get
Ay x-2  x(2x-])

dx x(x—l)y x—1

This is a linear differential equation of the form

dy
“Zypy=
Rl 0
-2 2 1 . . *(2x -1
Here P=——— 2 =24 (By partial fraction) and QzM
x(x—l) x x-1 x—1

J(*g'*L)d,x
R Integl"ating FaCtOI‘(I. F) = eIPd,\' —e x x-1

—2log x+log(x—1
e og x+log(x-1)

Its general solution is given by

y(LF.)= jQ(I.F.)dx +c

© Oxford University Press. All rights reserved.
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._.y(x—ljzj'xz(Zx—l).x—ldx+c

x? x—1 x?

y(x_zl)zj(2x—1)dx+c=x2—x+c
X

2

3
=x’+
Y x—1

2
cX

x—1

. The general solution is y = x* +

Example 1.39 Solve Q+ le y= ! =
dx x +1 (xz +1)

Solution

4 1
We have ﬂ+ 2x y= 3
dx x +1 (x2+l)

This is a linear differential equation of the form

dy

—+ Py=
o Thr=2
Here P = ;lx and 0= ! 3
X+l (x2+1)

I%dx 2
- Integrating Factor (LF.) = /" = ¢ ¥+ = g2+
2
= (x2 + 1)
Its general solution is given by

y(LF.)= IQ(I.F.)dx +c

y(x2 +1)2 =J.

—(x*+1 Pdx+c
(x2+1)

y(x2 +l)2 = J-ﬁdx+c

X"+
2
y(x2 +1) =tan'x+c
o 2
- The general solution is y(x2 + 1) =tan'x+c

Example 1.40 Solve dr+(2rcot6+sin26)d6 = 0.

Solution

We have %+ 2cotf r=-sin26

© Oxford University Press. All rights reserved.
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This is a linear differential equation of the form

dy
= ipy=
o Py 0

Here P=2cotf and 0 =-sin20
- Integrating Factor (LF.) = '™
— echole]B

,2logsin®

=e =sin’6

Its general solution is given by

r(LF.) =JQ(I.F.)d0 +c
~.rsin*@ = —J. sin28 sin” 6d6 + ¢
= —J2 sin’0 cos@ d6 + ¢

Putting sin@=¢ ..cos6db=dt

= —jz rdt+c
2
=—=t"+c
4
.5 1.,
sorsin” @ =——sin"0+c¢
2
. . -2 1 -4
.. The general solution isrsin“0 = ——2~s1n O+c
Note: If the given differential equation is in the form d—; + Pr = Q then the equation is said to be linear in .

Type II

A differential equation of the form d_x+ P’x=Q’ is called a linear differential equation of the first
y
order, where P’ and Q’ are functions of y alone or constants. Here x is a dependent variable and y is

an independent variable.

d
Working Rule to Find the Solution of d—x +Px=0
y

Step 1: Convert the given equation to standard form of linear differential equation i.e.
d.
Eipix= 04
dy

Step 2: Find the integrating factor as

Integrating Factor (LF.)=¢' "

© Oxford University Press. All rights reserved.
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Step 3: Then the general solution is given by

x(LF)= J’ 0’ (LE)dy+c
EXAMPLES

Example 1.41 Solve (1 + yz)dx = (tan’ly - x) dy.
Solution:

We have (1 + yz)dx = (tan’ly - x)dy

Dividing throughout by 1+ 17, we get

-1
=tan y xd

dx
1+y?

dx 1 tan”'y
SL—t——Xx=
dy 1+’ 1+y’
This is a linear differential equation of the form

dax +P'x=0Q'
dy
_tan”'y

_1+y2

Here P’:1 ! > and [0

Ty

dy 4
tan” y

. Integrating Factor (LF.)=¢ '*’

Its general solution is given by

x(LF.)= JQ’(I.F.)dy +c

4
-1 tan 4
soxe™? ZJ-—;e“‘" ’dy + ¢
I+y

1

Putting tan™'y=¢r .. ~dy =di
1+y

e = J.te’dt +c

ot t .
=te —e +c¢ [Integration by parts]
xe =g (1=1)+c
= (tany 1) +e
ﬂan"y

sx=tan'y—l+ce

—tan™! ¥y

. The general solution is x =tan™'y —1+ce

© Oxford University Press. All rights reserved.
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Example 1.42 Solve L + _ylogy =0.
. dx x-logy
Solution

We have ﬂ+w=0

dx x-logy
On rearranging the equation
dy __ ylogy
dx x—logy
dx _x—logy
dy —ylogy
dx 1 1
+ =—

— X
dy ylogy y
This is a linear differential equation of the form

dax +P'x=0Q
dy
’ 1 ’
Here P’ = and Q' =—
ylogy y

—dy

. Integrating Factor (LF.)=¢ "

— eloglogy — 10gy

Its general solution is given by
*(1F)= [0/ (LF)dy+c
1
~.xlogy= J—logy dy+c
Y

(logy)2
2

xlogy= +c

.. The general solution is xlogy =

Example 1.43 Solve dx+xdy=e"sec’ydy.

Solution
We have dx+ xdy=esec’ydy

Dividing by dy
X x=eTsecty
dy
This is a linear differential equation of the form

ﬂ+P'x =0’
dy

© Oxford University Press. All rights reserved.
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Here P’ =1 and Q' =e7sec?y

Pldy
=eJ fy

- Integrating Factor (L. F.)

Its general solution is given by
x(LF.)= JQ'(I.F.)dy +c
xed =lesec’ye’ dy+e
xe’ =[sec’ydy+c
xe' =tany+c

.. The general solution is xe’ =tany +¢

Example 1.44 Solve (x + 2y3)dy = ydx.

Solution
We have (x+ 2y3)dy = ydx

On rearranging the equation

dx
—=x+2y
ydy y
@=£+2y2
dy y
.‘.£—1x=2y2
dy 'y

This is a linear differential equation of the form

ﬂ+ Px=0Q
dy

1

Here P,=__ and Q/=2y
Y

. Integrating Factor (I.F,) =olP

_ Jl dy
= e Y

Its general solution is given by

x(I.F.) = JQ'(I.F.)dy +c

x[l] = J.Zy2 vldy+c
y Y

© Oxford University Press. All rights reserved.
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x
—=y"+c

- The general solution is x = y* + ¢y

Example 1.45 Solve (1+ siny)? = [2ycosy — x(sec y+tan y)]. [MU 2010]
y
Solution |6 Marks]
We have (1+ siny);{—x = [2ycosy —x(secy+ tany)]
y

Dividing by (1+siny)
dx _2ycosy x(secy+tany)

dy l+siny l1+siny
@4_ secy+tany o 2ycosy
dy l+siny I+siny
d. 2
.'.—x+secyx=M
dy I+siny
This is a linear differential equation of the form
ﬁ + P/ — Q/
dy
Here P’ =secy and = M
1+siny

— eJP dy — erecyd)f

. Integrating Factor (I.F.)
— elog(secyﬂan)ﬂ) — SeCy + tany

Its general solution is given by
*(LF) = [Q/(LF)dy+c

x(secy+tany)= ﬁ%(secy +tany)dy+c

:ijdy+c

x(secy+tany) =y’ +c

. The general solution is x (sec y+tany) =y +¢

Example 1.46 Solve y log ydx+(x—logy)dy=0.
Solution

We have ylogydx+ (x - logy)dy =0

dx 1 1

—+ x——=0
dy ylogy vy

© Oxford University Press. All rights reserved.
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_dx 1

RCL U SN
dy ylogy
This is a linear differential equation of the form
dax +P'x=0
dy
’ b 1
Here P’'= and Q’'=—
y logy

. Integrating Factor (I. F.)=¢'"®

—e ylogy~ =eloglogy =10gy
Its general solution is given by

*(LF)= [Q/(LF)dy+c

x-logy:J.llogydy+c
y

2

=J‘tdt+c=%+c [Putting logy=t

la’y= dt]
y
_ (logy) e
2
2
. The general solutionis x-logy= (logzy) +c
Example 1.47 Solve (y+1)dx+(x—(y+2)e")dy=0 [MU 1992]
Solution |6 Marks]
We have (y+l)dx+(x—(y+2)ey)dy=0
dx ,
(y+1)d—y=—(x—(y+2)e))
A 1 (e
Tdy y+l B y+1

This is a linear differential equation of the form
dx

—+P'x=0Q
dy Q

1
Here P'=——

,_(y+2)ey
o and Q' =-——"—

y+1
~. Integrating Factor (L F.)= PP

[

+1d'
= —

= 0 = (y41)

© Oxford University Press. All rights reserved.
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Its general solution is given by

x(LF.)= JQ’(I.F.)dy +c

x(y+1)=j(y;%(y+l)dy+c

= J(y+ 2)e’dy+c
=(y+2)e’-1-¢’ +¢ [Integration by parts]
=(y+1)e’ +¢

(y+l)(x—e"') =c

. The general solution is (y + 1)(x - e"’) =c

Example 1.48  Solve y*dx =(x* - y’x)dy. [MU 2015]

Solution [6 Marks]
We have  y*dx = (x"”4 - y3x)dy
4ﬂ=x73/4 —yx
dy

syt dax +yx=x7"
dy

Dividing both the sides by )*, we get
dx x x
L=
dy 'y
Multiplying both the sides by x**, we get

dx x" 1
3/4_ +

4

dy y
Putting x"* =1 .. me ax & dr
4 dy dy
The equation becomes
ddr 11
Tdy y )
de 7 7
=>—+—t=—7p
dy 4y 4y
This is a linear differential equation of the form
dr +P't=Q
dy
Here P’'= 7 and Q= L4
4y 4y

, jldy
~Integrating Factor (LF.)= /" =¢ +

© Oxford University Press. All rights reserved.
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7/4 logy 7/4

Its general solution is given by

t(LF.)= J.Q’(I.F.)dy+c
t-ym =jl~y7/4dy+c
4y*

-y Z%J'yfm dy+e

—5/4

L
-3
._'x7/4 7/4=_% _5/4+C

.. 7
- The general solution is x”*y""* = —gy’m +c

Example 1.49 Solve (x +y+ 1)% =1.
x

Solution

@

We have (x+y+1)
X

On rearranging the equation

dy 1
dx x+y+1
dx
—=x+y+1
dy

dx

——-x=y+1

dy
This is a linear differential equation of the form

ﬂ+ P'x=0Q
dy

Here P'=-1 Q' =y+1

I Pdy

- Integrating Factor (IF) =e

= = oy

Its general solution is given by

x(LF.)= JQ’(I.F.)dy+c

xe ' = J(y + l)e'-"dy +c

© Oxford University Press. All rights reserved.
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= —(y+l)e'y —le+c
. x:—(y+1)—1+ce“‘
x=-y—-2+ce’

.. The general solution is x + y+2 =ce’.

EXERCISES
Solve the following equations:
1.22 @+(1_f“"jy=1 1.26
dx X
1
[Ans: y=x"+ce*-x"] MU 1990]
1.23 sin2x@=y+tanx 1.27
dx
[Ans: y =ctanx +tanx |
1.28
1.24 xdy—(y—x)dsz
[Ans: y+xlogx =cx]
dy ¥ _ o>
125 —+———=x"—-x
I 1—x 1.29

[Ans: 2y=(1—x)(c2 —xz)]

[Integration by parts]

x(l—xz)%+(2x2 —I)y:x3

1-45

[Ans: y=tanx+cxyl—x’ ]

d
cos’ x4y =tanx
dx

[Ans: y=tanx—1+ce

x(x—l)%—yzxz(x—l)2

[Ans:

(1+x+xy2)dy+(y+y3)dx=0
[Ans: xy+tan™ y=c]

1.5 EQUATIONS REDUCIBLE TO LINEAR DIFFERENTIAL EQUATIONS

Type I

—tanx ]

3
NI S
I-x 3

[MU 1993, 95]

The equation of the type f’(y) G +Pf ( y) =0, where P and Q are the functions of x, can be reduced

dx
to linear form by substitution.

Putting /() =u then f’(y)ﬂzﬁ

dx dx
. du

.. The equation reduces to o +Pu=0
X

dex

Integrating Factor (LF.)=e

The above equation is a linear differential equation in u. Its general solution is given by

u(LF.)= jQ(I.F.) dx+c

© Oxford University Press. All rights reserved.
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EXAMPLES

d W
Example 1.50 Solve D e (e" - e-").
dx
Solution
d . ,
We have & _ e (e“ - e})
dx
d et
.'.—y = ;(e” — 6)')
dx ¢’
yﬂ: 2x _exe‘
dx
d
@y e = o
dx
Putting ¢’ =u .. ¢’ L = du
dx dx
du X 2x
=>—+cu=e
dx
This equation is a linear differential equation in u.
du
—+Pu=
dx Q

Here P=¢* and Q=¢e™

I Pdx — efe"dx

- Integrating Factor (IF) =e

= eﬁ\'
Its general solution is given by

u(LF.)= JQ(I.F.)dx +c

souel = J’ez" e dx+c

Putting ¢* =¢ .. e'dx=dt
Sue’ = Jte'dt +c

=te’—e’+c=e’(t—l)+c

setet = (6" —1)+c

- The general solution is ¢’ =e* —1+ce™

Example 1.51 Solve secy;{—y +2xsiny =2xcos y.
x

Solution

d .
We have sec yd—y +2xsiny=2xcosy
x

Dividing throughout by cos y, we get

© Oxford University Press. All rights reserved.

[MU 2001, 02, 03, 11]
|6 Marks]
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d
secty 4 oxtany =2x
dx

. dy _di
Putting tan y =u seczy—y —au
dx dx

:@+2xu=2x
dx

This equation is a linear differential equation in u.
du

—+Pu=
dx 0
Here P=2x and 0=2x
~. Integrating Factor (LF.) = s
:eIZde — ex3

Its general solution is given by
u(LE)= jQ(I.F.)dx ‘e
sue = J2x e dx+c

Putting x* =t o 2xdx =dt
Sue = Je’dt +c

=e'+c
oo tanye” =e" +¢

. The general solution istany =1+ ce™

dy

Example 1.52 Solve I + ltan y= than ysiny.
X

. x X
Solution

dy 1 1 .
We have & +—tany=—tanysiny
dx x X

Dividing throughout by tan ysiny, we get

dy I 1
cot y cosec Yo +cosec y—=—
X X

X
. dy du
Putting cosecy=u s.—cosec ycot y— =—
dx dx
du 1 1
S-——t—u=—
dx x X
du 1 1
& =
dx x X

This equation is linear differential equation in u.

© Oxford University Press. All rights reserved.
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du
—+Pu=
dx u=0
1 1
Here P=—— and O=-—
X x

—Iltlx
X

- Integrating Factor (LF.) = /" =
1

—logx _ *

X

=e
Its general solution is given by

u(LE)= j O(LF)dx+c

1 1 1
.'.u~—=—J.—2-—dx+c
X xX° x
1
£=—J-—3dx+c
X X
1
cosecy:_2+c
X 2x

s 2xcosec y=1+c2x"

. The general solution is 2xcosec y =1+ c¢2x’

Example 1.53 Solve 3)’ ? +2y'x =4xe”.
X

Solution
We have 3y’ & +2y'x =4xle”
dx

L7 ]

Putting y’ =u -3y’ AN
X X

= ﬂ +2xu=4x’e”
dx

This equation is a linear differential equation in u.

du
—+ Pu=
dx u=0

Here P=2x and 0= dxe®
. Integrating Factor (LF.)= ol

=ej2xdx =ex2

Its general solution is given by

u(LF.)= IQ(I.F.)dx +c
u(ex2 ) = J.4x3€xze"'2 dx+c

Putting x’=¢  ..2xdx=dt

© Oxford University Press. All rights reserved.
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= ue’ = JZtez’dt +c

i oY oY
=2 t(;) - (1)[TJ +c [Integration by parts]
[, 2 21
=2 e e +c
| 2 4
[ 2 2x 2%
P E R
2 4
[h 2 20 2y
_5 2x’e e }LC
4
, e (2x2 —1)
e¥ = +c
Y 2
. . . e’lxz (2x2 _1)
. The general solution is y’e* = — +c
dy =
Example 1.54 Solve xd— —l=xe™.
x
Solution
We have xﬂ —l=xe™”
dx
Dividing throughout by xe™”
e’ Y _ ley =1
dx x
Putting e’ =u soet @ = L
dx  dx
du 1
o =
dx x
This equation is a linear differential equation in u.
du
—+Pu=
dx Q
1
Here P=—— and 0=1
X
. LN
~Integrating Factor (LF.) = elPix = o5
— e—logx — l
X

Its general solution is given by

u(LE) = jQ(I.F.)dx e

© Oxford University Press. All rights reserved.
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X
u
—=logx+c
b
e’
—=logx+c
X

we’=x (logx+c)

.. The general solution is ¢’ = x(logx +¢)

Example 1.55 Solve cosy—xsin y% =sec’x.
X

Solution

. d
We have cos y— xsmyd—y =sec’x
X

. d
- xsiny 2 4 cos y = secx
. . dy du
Putting cosy=u So—siny—=—
8 ey 7 dx dx
du )
= X—+u=sec’x
dx
Dividing throughout by x
du 1 sec’x
—+—u=
dx x X
This equation is a linear differential equation in .
du
—+Pu=
dx Q
1 2
Here P=— and 0= see X
X X

J L dx
x

- Integrating Factor (LF.)= /" = ¢
— elogx
Its general solution is given by

u(LF)= j O(LF.)dx+¢

=X

sec’x
= xdx+c
X

ux =tanx+c
JoXxcosy=tanx+c

.. The general solution is xcos y =tanx +¢

© Oxford University Press. All rights reserved.
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Example 1.56 Solve [x - e de —yx’dy =0.

Solution

We have [xy2 —e' ]dx —yx’dy =0

; d
xy2 _V¥ = yxzd_i’
xyz _el/x3 _ﬂ
yx* dx
dy y el/\3

Putting y* =u

ldu 1 e

2dx x x*

3
du 2 26"
=>——Zu=-"=

dx x X
This equation is a linear differential equation in u.

du

—+Pu=

dx Q

2 2 1/x°
Here P=—— and O=- e2
X X
= Integrating Factor (LF.)= ¢/
I*de 1
= X [
x2

Its general solution is given by

u(LF.)= IQ(I.F.)dx +c

1 J’ 20" 1
u—= |- —dx+c
X’ Xt X’
. 1 3
Putting — =1 so——pdx=dt
X X
Uu—= —Ie’dt+c ==e'+c
X
1 2,0
2_- _el/.\’ s
4 x* 3
o2 s
.. The general solution is y* — = §€ +c
X

© Oxford University Press. All rights reserved.
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Example 1.57 Solve ? +xsin2y = x’cos’y.
X
Solution
We have L +xsin2y = x’cos’y
dx
Dividing both the sides by cos? y

d
seczy—y +2xtan y=x’
dx

. , dy du
Putting tany =u SosecTy—=—
dx dx
d
S oxu=x
dx

This equation is a linear differential equation in u.

du

—+Pu=

dx 9

Here P=2x and Q=X
I pdx

. Integrating Factor (IF) =e

— e[l.xrlr — exz

Its general solution is given by

u(LF.)= J.Q(I.F.)dx +e
u(e"'2 ) = J.x3exzdx+ c

Putting x* =1¢ s 2xdx =dt

ue® = Jle’%+c = %[le’ —e’]+c
~tanye” = %e“’z [xz - 1] +c

. Y ER
.. The general solution is tanye™ = Ee" [x2 - 1]+ ¢

Type 11

[MU 2002, 05, 12, 14]
[6 Marks]

The equation of the type f ’(x)?ﬁL P’f(x)=0Q’, where P’ and Q" are the functions of y, can be

reduced to linear form by substitution.
dx du

Puttin =y then 7’ (x)— =—

utting f (x)=u f(x)dy 0

.. The equation reduces to % +Pu=0Q’
Y

= eJP'dx

Integrating Factor (LF.)

The above differential is a linear differential equation in u. Its general solution is given by

u(LF.)= [Q'(LF) dy+c

© Oxford University Press. All rights reserved.



Differential Equations of First Order and First Degree  1-53

EXAMPLES
3
Example 1.58 Solve L2 == ’y = [MU 2008]
dx e +y
Solution |6 Marks]
3
We have b = zvy 5
dx e +y
@ _ er +y2
dy Y
@_l_ 62‘(
dy y ¥
= 6—2‘(@_ 72,\’1 =L3
dy y oy
P t e—2x =u .o 26—2.\*@ _ @ = e—Z.xﬁ — _lﬂ
utting B dy dy dy 2 dy
ldu 1 1
_____ U=—
2dy y )
du 2 -2
—+—u= -
dy 'y vy
This equation is a linear differential equation in u.
du +Pu=0Q’
dy
Here P’ = 2 and Q' = _—3
y Y
I% dy

- Integrating Factor (LF.)=¢/"* = ¢

2logy log y* o)
=e =e " =y

Its general solution is given by
u(LF.)= JQ’(I.F.) dy+c
uy2=J._—§y2dy+c
y
=-2logy+c

ey +2logy=c

. The general solution is e ™"y +2log y = ¢

Example 1.59 Solve y? =x+yx’logy.
'y
Solution

We have yﬁ =x+yx’logy
dy

© Oxford University Press. All rights reserved.
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Dividing both the sides by yx?

Fd_y_; ;+logy
RIS R
x dy x y
Putting —lzu de_xzﬂ
X x“dy dy

du 1
=—+—u=logy
dy y

This equation is a linear differential equation in .
du +Pu=0Q’
dy
1
Here P’ =— and Q' =logy
y

o
- Integrating Factor (LF.)=¢/"* = ¢/

— elogy — y
Its general solution is given by

u(LF.)= J.Q’(I.F.)dy+c

.'.uy:Jylogydy+c

2
2 2
y oy
=logy—-=—+c
gy 4
2 2
—Zzlogyy——y—+c
by 2
v,y s
. The general solutionis —+-—logy——=c¢
x 2 4

. d
Example 1.60 Solve ysmxd—x —cosx =2y’cos’x.
v
Solution
. dx 3
We have ys1nxd— —Ccosx=2y°cos’x
Y

Dividing both the sides by ycos’x

dx secx )
tanxsecx—— =2
dy
. dx du
Putting secx=u soosecxtanx—=—
ly dy
ﬂ_ﬁzzjﬂ
dy 'y

© Oxford University Press. All rights reserved.
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This equation is a linear differential equation in u.
d
& Pu= o
dy

1
Here P’=-— and Q'=2)’
y

, “Lay
= Integrating Factor (LF.)=¢/" =¢ *

— e—logy —

< |

Its general solution is given by

u(LF)=[Q(LF)dy+c

ZZJ-ZyZ-ldy+c
y y

secx=" +cy

. The general solution is secx = y* +cy

Example 1.61 Solve ax =™ (e” - e*’).
dy
Solution

We have dx_ e’ (6"; - ex)

dy
ﬂ: ey (e}’ _e\)
dy e"
x?z 2y _eyex
Y
e”£+e}’eY =%
dy
Putting ¢" =u e"d—x:@
dy dy

du ,
= —+eu=e”

dy
This equation is a linear differential equation in u.
d
& Pu= o
dy

Here P’=¢’ and Q'=¢”

© Oxford University Press. All rights reserved.
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- Integrating Factor (LF.) = ey
— eJ-()"tly — ee"

Its general solution is given by
u(LE)= jQ'(I.F.)dy e
couet = Jezyeey dy+c
Putting ¢” =¢ soeddy=dt
ue’ = J.te’dt +c=te'—e' +c¢
=e'(t-1)+c
e‘e’ =e (ey - 1) +c
net=e’ —l+ce”
- The general solution is e* = ¢’ —1+ce™
Example 1.62 Solve e* (x + l)dx + (yze” —xe* )dy =0.

Solution

We have e (x+1)dx + (yzezf" - xe")dy =0

: d ’
e’ (X + 1)_X —xe’ = _yzez}
dy
Putting xe* =u
v, o\dx _du
.'.(xe +e )— = —
dy dy
‘ dx _ d
e’ (x + 1)_x =
dy dy
u 22y
= ——Uu=—ye
dy Y
This equation is a linear differential equation in u.
@ + P,u = Q’
dy
Here P’ =-1 and 0 =—y¥
<. Integrating Factor (LF.) = /"
— e*!dy — efy

Its general solution is given by
u(LF)=[Q(1F)dy+c

ue” = —J yeredy+c

= —J.yzeydy +c

© Oxford University Press. All rights reserved.
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= —{yzey —J.ey . Zydy:| +c
=—)ye’ + Z[e}'y - J.e*’dy} +c

=—y%e’ +2ye’ —2¢" +c

nxete” =—ye’ +2ye’ —2¢’ +c¢

. The general solution is xe*e™ = —y’e’ +2ye’ —2¢’ +¢

EXERCISES
Solve the following equations:
1.30 xcosy@—siny:xsinzy 1.33 tanyQ+tanx(l—cosy):0
dx dx
[Ans: cosec y+x(logx+c)=0] [Ans: secy=1+c-cosx]
, dy . dy - 3 2
1.31 sec’y——+2tanxtany =sinx 1.34 —+(2xtan y-x )(1+y<):0
dx dx
2 —_ 2
[Ans: sec’xtany =secx+c] [Ans: tan™'y =2 L yce ] [MU 2006]
dy 4x y2 dy 3.2 : 3
132 y—+——-—= 1.35 —+ + 2y=
Yt 3 T TSIy asin2y=x
[Ans: p*x P +2x* =¢] [MU 2002] [Ans: tany-e* = %e (¥*=1)+c] MU 1987]

Type I1I: Bernoulli’s Equation

A differential equation of the form Z—y + Py =0 y" iscalled a Bernoulli’s equation. Here P and Q are
ke

functions of x alone or constants and # is a real number.
The above equation can be made a linear differential equation by dividing both the sides by y".

7nd —-n
e pyr=g

dx
Putting y'™" =u
. dy du
s (1= =
(=n)y = 0
Ldy_ 1 de
dx l-ndx
1 du
= ——+Pu=
1-ndx u=9
.'.@+(1—n)Pu=(l—n)Q
dx

(1.8)
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It is a linear differential equation in u. Its general solution is given by

u(LF.)= IQ(I.F.) dx+c

- d. . . . .
Similarly d—x+ P’x=0Q’x" isalso called a Bernoulli’s equation. Here P” and Q’ are the functions of

y alone or constants. The above equation can be made linear by dividing throughout by x".

x—n @_}_Prxl—n — Q/
dy

Put x'" =u and proceed.

EXAMPLES

[MU 2007, 11]

Example 1.63 Solve Z—y =xy’ —xy.
X
|6 Marks]

Solution
We have L X'y —xy
dx

Dividing throughout by )3

L}Q + izx =x" [Bernoulii’s equation]
yodx y
Putting —=u
Y
_2dy_du
Y dx  dx
ldy ldu
V' dx 2 dx
1 du 5
———+xu=x
2 dx
du_ 2xu =-2x>
dx
This equation is a linear differential equation in u.
du
—+ Pu=
dx Q
Here P=-2x and Q=-2x
~. Integrating Factor (LF.) = elr
— efljxdx — efxz

Its general solution is given by

u(LF.)= '[Q(I.F.) dx+c

2 2
ue ™ = —2'[ Xedx+c
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Putting —x* =t oo =2xdx=dt

ue™ :—fte’dt+c = —[te’ —e’]+c
ue™ =—¢' (t=1)+c

" Lze""2 =—e" (—x2 - 1) +c

y
.. The general solution is —ze’*’Z = (xz + 1) +c
y

Example 1.64 Solve % = Zy(l - 2xy).
x

Solution

dy
We h —=2y(1-2
e have — y(1-2xy)

% —2y=-4xy> [Bernoulii’s equation]
x

1
Dividing both the sides by —
Y

. 1 1
Putting ——=u _zﬂzﬂ
y vy dx dx

=>Q+2u=—4x

dx
This equation is a linear differential equation in u.

du
—+Pu=
i =9

x
Q=-4x

Ide

Here P=2 and

. Integrating Factor (LF.) = ¢
— eIZ dx — e2x

Its general solution is given by
u(IF) = J.Q(IF) dx+c
ue™ = —J.4xez"dx +c

2x 2x
= —4{){ ¢ j_ 1. ( 64 H +c [Integration by parts]

2x 2x
xe e
4{ - } +c

2 4

© Oxford University Press. All rights reserved.
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=-2xe* +e* +c

—e™ =-2xe™ +e™ +c

y

= 2x+1+ce™

=2x—1-ce™

R N

.1 !
. The general solution is —=2x—1—ce™
y

n+l

d
Example 1.65 Solve xd—y+ y=yx""
X

Solution

n+l

d . .
We have xd—y +y=yx [Bernoulu’s equatlon]
X

Dividing both the sides by x)’
1y 1

2

yidx y

n

1
=y
x

Putting Lzzu
y
24y _du
Ty dx dx
1d__lau
Vidx  2dx
ldu 1

Here P = _2 and Q=-2x"
X

. *Igdx
. Integrating Factor (IF) =P

1

— 872 log x — R
X

Its general solution is given by

u(LF.) =IQ(I.F.) dx+c

© Oxford University Press. All rights reserved.

[MU 1992]

|6 Marks]



Differential Equations of First Order and First Degree  1-61

u-iz:—J.Zx” -dex+c
X X
= —J2x"’2dx +c
zxnfl
=- +c
n—1
1 2x"!
——=- +c
Xyt n-1
- _21 =2x" ex?
Y
... n—1
.. The general solution is " —=-2x""+ex?
dz =z z 5
Example 1.66 Solve — +—logz=—(logz)". [MU 2005]
dx x X
Solution |6 Marks]
We have &= +Zlogz = iz(log z)’  [Bernoulii’s equation|
dx x X

Dividing both the sides by z (logz)’
1 dz 1 1 1

2

7ot 2=
z(logz) dx (logz)" x «x

Putting ;zz
(logz)
2 & _de
" z(logz)® dx  dx
1 dz 1 du
25— =
z(logz)’ dx 2 dx
ldu 1 1
———+—1/l=—2
2dx x X
du 2 2
——Zu=-=
dx x X

This equation is a linear differential equation in u.
du
—+Pu=
dx Q
2
Here P=—— and O=-—
X x
_j2
= Integrating Factor (LF.)= ¢/’ * =¢ =
—2logx -

=e
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Its general solution is given by

u(LE.)= j O(LF.)dx+¢

1
—2 J — dx+c

11
(logz)® x°

.. The general solution is

dx )
Example 1.67 Solve yd— =X—)X COS)y.
y
Solution

We have y@ =x—yx’cosy
dy

Dividing both the sides by y

dx x
—=Z—x%cosy
dy y

Putting u=-

s _de
“x'dy dy
du

= —+—Uu=-Ccosy
dy y

This equation is a linear differential equation in u.

du
—+ P
dy u=0

Here P’ = 1 and Q' =-cosy
y

Lay
. Integrating Factor (1. F) L

log y

=y

© Oxford University Press. All rights reserved.
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Its general solution is given by
u(LF) = jQ'(I.F.)dy e
uyz—J-ycosydy+c

=—[ysiny—(I)(—cos y)]+¢

=—ysiny—cosy+c

—Z:—ysiny—cosy+c
X

Z=ysiny+cosy+c’
X
.. The general solution is 2 ysiny+cosy+c’
x
Example 1.68 Solve ydx+ x(l - 3x2y2)dy =0. [MU 2009]
Solution [6 Marks]

We have ydx + x(1—3x2y2)dy =0

The equation can be written as

dax +X =30y [Bernoulii’s equation |
dy y
Dividing both the sides by x’
x’3£+lx’2 =3y
dy 'y
Putting x> =u
() du
dy dy
ldu 1
=-——+—u=3y
2dy y
du _ zu =-0y
dy 'y
This equation is a linear differential equation in u.
du +Pu=0Q’
dy

Here P’ = 2 and Q' =-6y
y

. —1=dy
= Integrating Factor (LF.)= /" =¢ ~ '

1

—2logy _
-2

Y

=e
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Its general solution is given by

u(LF)= O (LF)dv+c

1 1
—2~—7=—6logy+c
X"y

1

7 +6logy=c

o1
.. The general solution is —— +6logy=c¢
Xy

Example 1.69 Solve xy(l +xy° )ﬂ =1.
dx
Solution
dy
We have xy(1+xp*)—=1
v+ x7)
dx 2.3
—=xp+x
dy Y Y
dx ) 3 . .
=y =xy [Bernoulii’s equation |
y
Dividing throughout by x*
dde 1 _ .5
X dy x
. 1
Putting —=u
x
v
T xtdy dy

:@+ u=1y>
dy yu=y

This equation is a linear differential equation in u.
% +Pu=0’
Here P'=y and 0=y
<. Integrating Factor (LF.) = ¢'"*
=l = o2

Its general solution is given by

u(lF)=[O'(LF)dy+c

noue’ = J‘y3ey“/2dy +c

© Oxford University Press. All rights reserved.
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2

.Y
Putting —=1¢
£

~ydy=dt

noue = IZte’dt+ ¢
:Z[te’ —e’]+c
=2¢'(1-1)+c

2
_leﬁ/z 226"2/2(L—l)+c
X 2

1 2
sm—=y"=2+4ce?
X

. . l "‘2
. The general solution is — =2 — y* +ce :
X

Example 1.70 Solve (x3 V- xy)dy =dx.

Solution
We have (x"y3 - xy)dy =dx

dx

(=)=

N d_x +yx=x"y [Bernoulii’s equation]
y

Dividing both the sides by x*, we get

. 1
Putting —=u
X

2 dx du 1 dx 1 du
S E— D= —
x dy dy x dy 2 dy

oLy
Ty T

du
s—=2yu=-2

dy V Y
This equation is a linear differential equation in .

du +Pu=0Q’

dy

3

Here P’ =:__2,V and §2/ =:“2JV3
~.Integrating Factor (LF.) = ¢/"*

—2[ydy

=e = ei}é

© Oxford University Press. All rights reserved.
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Its general solution is given by
u(LF.)= jQ’(I.F.)dy +c

e = —2J'y3£3’y2 dy+c

Putting —y* =1¢ S=2ydy =dt

e = —J te'dt + ¢

ue” =—te' —e'l+c
| 2 )
xze T=—e (—y —1)+c

2

R S :
. The general solutionis —e™ =e™’ ( s +1) +c
x

EXAMPLES ON EQUATIONS REDUCIBLE TO BERNOULI'S FORM

Example 1.71 Solve % =1-x(y-x)-x’ (y—x)z.
X

Solution

We have %z —)c(y—x)—x3(y—)c)2

Putting y—x=u

b _du
" dx dx
RN
dx

Dividing both the sides by —u’

This equation is a linear differential equation in z.

dt
—+Pt=
dx Q

Here P=—x and Q=X3
- Integrating Factor (LF.) = ¢!” * 7

2

:efjxdx —e

Its general solution is given by
((LF.)= J.Q(I.F.)dx +c

© Oxford University Press. All rights reserved.
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) X
Putting ——=u
£
xt=2u = xdx=—du

=te 2 :IZMe“ du+c

=2 [ue" —e"]+c

X2 2
=2e 2(—X——IJ+C
2
2 bl
t=2(—x——lj+ce2
2

Re-substituting the values of 7 and u, we get
2 1,2
l: 2(—x——1j+ce
u 2

1 '2
=—x"—2+ce
y—x

=

o

N‘*‘

X
- The general solution is =—x’—-2+ce?

y—Xx

Example 1.72  Solve % +x(x+y)=
Solution
We have %+x(x+y):—l+x3(x+y)2
Putting x+y=u
e % = %

dl .. .
= d—u +xu=xu>  [Bernoulii’s equation]
x
Dividing both the sides by u?, we get
1 du x

3
wtdx  u

.1
Putting —=¢
u

i
Wt dx dx

© Oxford University Press. All rights reserved.
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This equation is a linear differential equation in ¢.
dt

—+Pt=
dx 0
Here P=-x and 0=-x
= Integrating Factor (LF.)=e¢/"*
— e*jxdx — eT

Its general solution is given by

{(LF.)= j O(LF)dx+c

X° X
~te 2 =f—x3e 2dx+c

2
. X
Putting ——=u
£75
xP==2u = xdx =—du
.‘.te;7 = J.—Zue”du +c

=—2[ue“ —e"]+c

¥ 2
=-2¢ ? (—x——1]+c
2
S
tzZ[—+1J+ce2
2
Re-substituting the values of 7 and u, we get

2 ¥
l=2[x—+1j+cez
2

u
1 ) =
=Xx"+2+ce?
xX+y
. The general solution is =X 42+ce?
x+y
EXERCISES
Solve the following equations:
1.36 @(x2y3+xy):l 1.38
dx
2
[Ans: x(2—y2)+[cxe 2 ]: 1]
1.37 @+ytanx:yzsecx 1.39
dx

1
[Ans: —cosx=—-x+c¢]
Y

Z—y+ycosx =y’sin2x

[Ans: i’ =(1+2sinx)+ce™"]
e

b Xy = yzei[%] -logx

dx

[Ans: €7 = x(1-logx)+c] [MU 1998]

1
y
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1.40 x%+y=x3y" 1.41 (l—xz)%+xy=yssin'lx

[Ans: 1. §x3 +ex’] MU 2004, 13] [Ans: -2 [xsin'lx +4/1-x7 } +c]
y

1.6 APPLICATIONS OF FIRST-ORDER AND FIRST-DEGREE DIFFERENTIAL
EQUATIONS

In this section, we will apply the concept of first-order and first-degree differential equations to engi-
neering problems.

EXAMPLES BASED ON ELECTRICAL ENGINEERING

Example 1.73 Solve %+ —i=— for the case in which the circuit has initial current j, at time =0 and
—kt

the e.m.f. impressed is given by E = Eje™".

Solution
A E
We have ﬂ+—i=—
d L L
This equation is a linear differential equation in 7.
di
—+Pi=
dt 0

R E
Here P=— and 0=—
L L

. J=dt =}
- Integrating Factor(I.F.)=¢ = =e’
Its general solution is given by

i(LF.)= JQ(I.F.)dt +c
R R
el = jgeztdt +c
L

E R,
= —Oje'k’eL dt+c
L

R

= ﬂJ‘e(Lk}dt +c
L

E, [i+
__E_ i),
R-kL
Given thatat t=0, i=j,and E=E,

c

© Oxford University Press. All rights reserved.



1-70  Applied Mathematics 11

[%k} ; E,

e +ZO_R—kL

R
-t

="+, B et
R-kL R-kL

Example 1.74 A resistance of 100 Q and inductance of 0.5 H are connected in series with a battery of 20 V.

Find the current at any instant if the relation between L, R, E is L% +Ri=E.
Solution

We have L§+Ri=E
t

i R,_E
Cdt L L
This equation is a linear differential equation in 7.
di
—+ Pi=
dt Q
R E
Here P=— and 0=—
L L
R a R,
L

~. Integrating Factor (LF.)=¢ " =e’

Its general solution is given by
i(LF)= [o(LR)dr+c
R R
il = IE e d+e
L

R

R —t
1 ezt—E ef +c
- =— =
L Ry
R
-t
Si=—+ce
R

For R=100Q, L=0.5H, E=20V and i=0 when 1 =0
We get c=-1

;j:OQ@—(mj

Example 1.75 In a circuit containing inductance L, resistance R, and voltage E, the current / is given by
di . . .
L;; + Ri=E. Find the current T at time ¢if at =0, i =0, and L, R, and FE are constants.

Solution
E

We have £+§i:—
d L L
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This equation is a linear differential equation in 7.

di
—+Pi=
dt =0
Here P:E and Q:£
L L

[=dr R

R
~. Integrating Factor (LF.)=¢ = et

Its general solution is given by

i(LF)= [o(LR)dr+c

Whent=0,i=0

We have ¢ = —E

Example 1.76 The current in a circuit containing an inductance L, resistance R, and voltage E sin ot is given
di .
by Ld—;+Ri:Esmwt. Ifi=0atz=0, find .
Solution

We have L§+Ri = Esinwt
1

di R. E .
S —+—I1=—SsIwt
dt L L

This equation is a linear differential equation in 7.

di
—+Pi=
dt =0

Here P = R and 0= £sin wt
L L

15d1 51

~. Integrating Factor (LF.)=e © =e’
Its general solution is given by

iaf)=jgar)m+c
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R, E R,
soi-el =jz~sinwt-eL dt+c

E 1 2(R .
—— el | —sinwt—wcoswt |+c¢

LR
e
1 L
=E-————e’ (Rsinwt—oLcosot)+c
R +Lw
. . oL
Given that =0 when =0, wehavec=E - —5———
R +Lw
R R
- 1 - . wlL
ci-et' =E.——— et (Rsinwt—wLcoswt)+ E -

R+ ’o* R+ ’o?

Example 1.77 The charge g on the plate of a condenser of capacity Ccharged through a resistance R by a steady

voltage V satisfies the differential equation R% +% =V.1If g=0att=0, show that i = %e’” ke { i= ﬂ}

dt
Solution
We have R@+i =V
d C
The given equation can be written as
1
dg 1V
dt RC R
This equation is a linear differential equation in g.
dq
—+ Pt =
dt Q
1
Here P=—— and 0= N
RC R
| pdr

~. Integrating Factor (LF.)=e

Its general solution is given by

g(LE)= j O(LE)dr +¢

1 1

Ve
f]~e’“t:J‘EeR( 'di+c

1
V eﬁt

R Ire
1 1

—t —t
soq-eRC =VCeRC +c

+c
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Initially ¢ =0 whenz=0
0=VC+c
se=-VC

1 1

g eﬁl = VCeEl -Vc

1,
q:VC[l—e R(‘) (1.9)

Differentiating Eq. (1 .9) w.r.t. 7, we get

1
4yl oo (—Lj
dt RC

)7137('r
94yl
dt RC
1
.'.i:Ke RC ‘.‘izﬂ
R dt

Example 1.78 The equation of electromotive force in terms of current i for an electrical circuit having

resistance R and a condenser of a capacity C in series is E = Ri +j—dt . Find the current 7 at any time ¢,
when E = E sinot. ¢

Solution
We have Ri+ J.Ldt = E,sinwt
c

On differentiating both the sides, we get

Rﬂ+i =wkE, coswt
dt ¢
Dividing both the sides by R, we get
di i 0E,
—t—= coswt
dt  Rc
This equation is a linear differential equation in 7.
di
—+Pi=
dt Q

Here P = L and 0= wﬂcos wt
RC R

. La L
. Integrating factor (IF) =¢ RC" = gRC

Its general solution is given by

i(LF.)= j O(LF)dr +c

t t
. o ok, —
ieRC = J‘T"coswte’*cdt
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’

0E, ek

R'@

__9CE cos(wt—9)+¢,

J1+ R C*0®

cos(wt —tan™

where tan¢ = Re

The required current at time ¢ is

i

wCE, :

=—0 cos(wt—¢)+ce ¥

JI+RC’o’

w
+¢
1mc)

EXERCISES

Solve the following equations:

1.42

1.43

1.44

The equation of an L-R circuit is given by
di .
Ld—;+Ri:105mt if i=0ats=0. Expressias

a function of ¢.

10 &
Ans: | = ————|sin(f—¢)+singe -
s 1= o ) i |
An electric circuit contains an inductance of 6
H, resistance of 15 Q in series with an e.m.f. of
240cos 30¢V. Find the current at #=0.01, it is
zero at 1=0.

[Ans: i = 0.3894]
In a circuit of resistance R and self-inductance of
. di
L, the current 7 is given by LZ; + Ri = Ecoswt,

where E and w are constants. Find the current
i at time 1.

R,
[Ans: i = (Reoswr — wLsinwt)+ce ]

R+ ’0*

1.45

1.46

In a circuit of resistance R and self-inductance of

L, the current /is given by L% + Ri =100sin150z.

Find the current i at the end of 0.01 s if the current
is zero when t=0 and L=2H, R=20Q.

[Ans: 0.299 A]

When a resistance R ohms and a capacitance
C farads are connected in series with an e.m.f.
E volts, then the current i amperes is given by
R, 19 \When R=10000, C=50x 10 E,
d C dt

i=10A and 7 =0, find the current for = 1s and
E=100sin1207tV.

[Ans: 8.187 A]

EXAMPLES BASED ON MECHANICAL ENGINEERING

Example 1.79 The differential equation of a body falling from rest subjected to the force of gravity and air resis-

2

2

tance is given by vd—v + = g . Prove that the velocity is given by v* = g—,(l — e ) given thatat x=0,v=0.
x g n

Solution

2

d
We have v 2+ 2 = ¢

Putting v* =1¢

X g
2vﬂ:£
dx dx

S Lt
dx 2 dx
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This equation is a linear differential equation in ¢.

dt
—+ Pt=
dx 0

2
Here P=2i and 0=2g
g

fidx
= Integrating Factor (I F.)=¢/"* =¢ ¢

=e g
Its general solution is given by
t(LF.)=]Q(LF.)dx+c¢
te® =J2g-e® dx+c
202
o 8
=2gc —+c
g
2n7' 2 2n7'\
Vet =L et 4 (1.10)
n

Given thatat x=0,v=0

Ozg—;+c =e=-£
n

n

From Eq. (1.10) we get

2

27 2 2 2

Vet =2sef _g_2

n n

2 2 20’

2. & & ¢

v=="s—-2se ¢
noon

Example 1.80 A tank contains liquid of volume ¥{(r) with a concentration in percentage C(¢) at time z. To
reduce the concentration, an inflow of rate Q,, is injected into the tank. The inflow has the concentration C, .
Assume that inflow is perfectly mixing with the liquid in the tank instantaneously. The excess liquid outflow

with the rate Q,, is removed from tank. Suppose that at time 7 = 0, the volume of liquid is ¥, with concen-
tration C,, then the governing equation is

dC
[V +(Q0 = Qun )t]# +0,0(1)=0,C,
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. Lo Lit .
Find concentration in percentage C() for Q, =Q,, =t —, V, =2litres, C, =2mole
Solution 5e¢

The governing equation is

dC(t
|:I/0 + (Qin - Qout )IJ% + ch(t) = Qi Cin
, Lit .
For O, =0, =t"—,V, =2 litres, C;, =2mole
sec
() +°C(1)=2r
dt
This equation is a linear differential equation in C(z).
dC(t
0 p(icty=o)
t
Here P=¢ and Q=2r

~. Integrating Factor (L. F.) = = ol

B
=e 3
Its general solution is given by

C(r)(LF.)=]Q(LF.)dt +c

13

C(t)ej =23 di+c

2

=>C(t)e? =2¢3 +¢

)‘3

Hence the concentration at time 7is C(f)=2+ce

EXERCISES
Solve the following equations:
1.47 The differential equation of a moving body 1.48 A chain coiled up near the edge of a smooth table
opposed by a force per unit mass of value cx starts to fall over the edge. The velocity v when

and resistance per unit mass of value b, where

length x has fallen s given by xv- 2" +1” =
x and v are the displacement and velocity of the a length x has tallen 1s given by x VE ty=gx

particle at that time, is given by v? =—cx—by’. Showthat v =8vx /3 [Given g = 32.17ft / sec].
t

Find the velocity of the particle in terms of x, if
it starts from rest (1.e. when x=0,v=0),

c g\ CX
[Ans: V2:2—b2(1—€2b')—7]
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SUMMARY

1. A differential equation M(x, y)dx + N (x, y) dy
=0 is said to be exact if Eﬂ = B_N
Jdy  ox

The solution of the exact differential equation
is given by

J’de+ J‘ Terms in N, which dy=c
are free from x

‘y’ constant
OR

I Terms in M, which dx+J.Ndy _.
are free from y
‘x’ constant

2. If oM # v then M(x, y)dx+ N (x,y)dy=0is
Jdy  ox

NOT exact. We can convert non-exact differen-
tial equations into exact differential equations by

multiplying them with a suitable factor known as
integrating factor (I.F.). The following methods
enable us to identify integrating factor

v _an
Rule I: If w - f(X), then LF.= eJ,/ (x)ax
IN oM

Rllle II: If % = f(y), then I.F. — ejf(}')ll}'

Rule III: If y f| (x,y)dx+xf2 (x,y)dy =0 and

1

Mx—-Ny#0 then LF.=——
Mx— Ny

Rule IV: If M(x, y)dx+ N (x, y) dy =0 is homo-
_
Mx+ Ny

Then solve the resulting differential equation
using the method mentioned in Rule 1.

geneousand Mx+ Ny #0 then LF.=

3. A differential equation is called linear if the

dependent variable and its derivative appear in
the first degree.
The first-order linear differential equation is

given by %+Py = Q. This equation which
x

is linear in y can be solved by multiplying with

LF. = ¢/ 704, Thus, solution to linear differen-
tial equation is given by

y(LF.)= JQ(I.F.)dx +c

OR

y.eIde ZJ.eIPd,\'.de_,’_c

Similarly an equation which is linear in x is given

d . S
by d—x+ P’x =Q’ and its solution is given by
y

x(LF.)= J.Q’(I.F.)dy +c
OR

x-et® =J‘€jp'{y'Q'dy+c where LF.=¢/"®

. An equation of the type f’(y)Z—z+ Pf(y)=0

can be reduced to linear form by substitution

. Lo \dy  du
POV pr(3)=0 = %4 pu=0 whichis
dX dx
linear in u.

The solution to such linear equations is given by
u(LF)= [O(LF )dv+e

OR

u- el =Jejpdx-de+c

Similarly an equation of the type

d
S ’(x)d—;+Pf (x)=0 can be reduced to linear
form by substitution with f{x)=u, f* (x)ﬁ = @
dy dy
Thus,
fl(x)zz_;"'P’f(x) =0 = Z—z+ Pu=Q whichis

linear in u.
The solution to such linear equations is given by

u(LF.)= j 0 (LF)dy+¢
OR

u-elrY :J.e”'d)’~Q’dy+c
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Bernoulli’s equation dy

A differentialequation of the formE +Py=0)"
is called Bernoulli’s equation. Here P and Q are
functions of x alone or constants and 7 is a real
number.

The above equation can be made linear differen-
tial equation by dividing both sides by y".

—n d -n
Y E+Py1 =0 1

Putting y'" =u

(1 - n)y"’ L = du

dx dx
,,,@_ 1 @
dx 1—ndx
1 du
— 4t Pu=
1—ndx u=0

d
d—z+(1—n)Pu:(l—n)Q

Itis a linear differential equation in u. Its general
solution is given by

u(LF.)= jQ(I.F.) dx+c
.. dx ,on
Similarly o + P’x=Q’x" is also called
y

Bernoulli’s equation. Here P’ and Q’ are the
functions of y alone or constants.
The above equation can be made linear by divid-
ing throughout by x".

d.
xfn_x_*_P/xlfn — Q’

dy
Put x'™ = u and proceed.
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