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Preface
One of the most common questions on the minds of all first-year engineering students is ‘Why do we 
need to study Chemistry to become an engineer? A convenient answer to this question is, ‘Chemistry is 
everywhere: from the air we breath, to the food we eat.’ Moreover, engineering is a profession that requires 
knowledge of materials, mathematics, and fundamental sciences. 

Chemical engineers find direct correlation to chemistry as they are primarily involved in process design, 
mass–heat transfer reactions, optimizing chemical reactions in chemical industry, food engineering, etc. 
A closer relation of chemistry is found in civil and environmental engineering, where engineers work with 
various materials (cement, glass, concrete) and also study about environmental protection and pollution 
control. Environmental engineers need to understand the chemical reactions and mechanisms taking place 
in air, soil, and water. The year 2017 saw the introduction of artificial intelligence in chemistry, when IBM 
researchers developed an artificial neural network algorithm that could map the synthesis of molecules as 
well as predict bond energies and bond angles with utmost precision. Electronics engineers need to have 
knowledge of diodes, liquid crystals, semiconductors, etc. Thus, a deep understanding of chemicals, their 
properties and reaction mechanisms, will be an added advantage in today’s competitive world. 

ABOUT THE BOOK
This book Engineering Chemistry is primarily written for first-year engineering students keeping in 
mind the new AICTE curriculum. It will help them venture into the fascinating field of applications in 
chemistry for their chosen engineering field. It will also serve as a preliminary text students who have 
taken chemistry as a diploma course at the undergraduate level. 

The contents of this book are such that students can gradually move from one topic to another to obtain 
comprehensive knowledge of the subject. The text is written in a simple language and supported with 
numerous examples, figures, and tables. Moreover, the rich pedagogy enables quick assessment. Students 
preparing for competitive examinations will also benefit from this book. 

KEY FEATURES
	 ∑	 Provides comprehensive coverage of all important topics as per AICTE model curriculum and syllabi 

of various reputed universities
	 ∑	 Includes numerous self-explanatory figures, tables, and reactions that aid in the understanding of 

important topics
	 ∑	 Provides a large number of multiple-choice questions, review questions, and activity-based questions
	 ∑	 Includes simple as well as advanced solved numerical problems and check your progress questions 

interspersed in the text
	 ∑	 Includes summary and a list of key terms at the end of each chapter to enable recapitulation

CONTENTS AND COVERAGE
The contents of the book are arranged in 22 chapters and divided in to two parts: Part I: Basic Chemistry 
and Part II: Applied Chemistry. 
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vi   Preface

Part I Basic Chemistry
Chapter 1, Atomic and Molecular Structure, elucidates in detail the structure of atom and includes 
de-Broglie equation, Schrödinger equation, particle-in-a-box model, atomic orbitals, molecular orbital 
theory, band theory of solids and Hückel’s theory of aromaticity.
Chapter 2, Periodic Properties and Chemical Bonding, accounts for the periodic trends observed in Modern 
Periodic Table. The chapter includes a brief discussion on chemical bonding as well as a detailed account 
of various molecular interactions and hybridization with examples. 
Chapter 3, Thermodynamics and Chemical Equilibrium, outlines the three simple laws known as laws of 
thermodynamics and their potential in explaining each and every process at equilibrium. The chapter also 
details how to make a spontaneous process non-spontaneous and vice versa and how to shift the position 
of equilibrium to the product/reactant side. 
Chapter 4, Phase Rule, details Gibbs phase rule applied to one-, two- and multi-component systems. 
Iron–carbon phase diagram is discussed and illustrated with phase diagrams of all-component systems 
and congruent and incongruent systems.
Chapter 5, Electrochemistry, discusses cell potentials, EMF series, concentration cells, reference 
electrodes, pH determination using glass, hydrogen, and quinhydrone electrodes. Nernst equation is 
derived in a simple manner for easy understanding. A short account on potentiometric titrations and 
their various graphical representations are explained. Battery technologies ranging from acid-storage, 
alkali-storage to fuel cells are discussed.  
Chapter 6, Chemical Kinetics, describes the details of rates of reactions, their dependence on concentration, 
temperature, and other factors. Potential energy surface and transition state theory are introduced to 
explain the molecular picture of the rate of reaction.
Chapter 7, Surface Chemistry, deals with mechanism of adsorption, catalysis, emulsions, colloids, 
detergents and surfactants. The chapter also introduces the concept of friccohesity of surfactants.
Chapter 8, Solid State Chemistry, explains the laws of crystallography, lattice planes, Miller indices, 
structure of different crystal structures, X-ray diffraction studies. 
Chapter 9, Coordination Chemistry and Organometallic Compounds, discusses the nomenclature, Werner, 
valence bond and crystal field theory and stability of coordination compounds. The chapter also includes 
a discussion on HSAB principle, EAN rule, organometallic compounds and their use as catalyst in 
isomerization, polymerization, hydrogenation, and hydroformylation. 
Chapter 10, Organic Reactions and Synthesis of Drug Molecules, discusses nucleophilic, addition, elimination, 
oxidation, reduction, and pericyclic reactions with examples. It also details the preparation, properties, 
and uses of drug molecules. 
Chapter 11, Stereochemistry, deals with the representation of three-dimensional structures, concepts of 
chirality, isomers, and optical activity of organic compounds. It provides a comprehensive understanding of 
the relative and absolute configuration of organic molecules and conformational analysis of simple alkanes. 
Chapter 12, Instrumental Methods of Analysis, explains a variety of techniques used to separate 
atoms/molecules, determine their structure, and characterize them qualitatively and quantitatively. 
These techniques include spectroscopy, microscopy, electrochemical and thermal analyses, and 
chromatography.

Part II Applied Chemistry
Chapter 13, Water Chemistry, details the sources of impurities in water, boiler problems, water softening 
methods, and desalination methods. It also discusses the significance of dissolved oxygen in water. 
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vii  Preface

Chapter 14, Corrosion, explains the different forms of corrosion, their mechanisms and factors influencing 
them. The chapter also discusses various measures to control corrosion.
Chapter 15, Metals and Alloys, highlights the importance of metals and alloys and includes description of 
powder metallurgy, production of steel, metal ceramic powders and shape memory alloys. 
Chapter 16, Polymers, explains the classification of polymers, methods of polymerization, preparation, 
properties and applications of commercially important polymers, compounding, plastic fabrication, and 
vulcanization.  This chapter also includes the significance of specialty polymers in various applications.
Chapter 17, Important Engineering Materials, discusses the properties and applications of various types 
of materials such as cement, concrete, refractories, abrasives, adhesives, ceramics, glass, nanomaterials, 
liquid crystals, and composites. It also includes the manufacture of nanomaterials.
Chapter 18, Lubricants, discusses the types and properties of lubricants. The mechanism of lubrication is 
explained along with a note on selection of lubricants.
Chapter 19, Energy Resources, discusses the various renewable sources of energy, such as solar, tidal, wind, 
hydro, oceanic, biomass, nuclear, geothermal energy sources along with their advantages and limitations. 
It also includes a comprehensive account of the mechanism of nuclear fission and working of reactors. 
Chapter 20, Fuels and Combustion, discusses different types of fuels, calorific values and their determination, 
coal analsysis, cracking of oils, and refining processes.. It also includes a short account of explosives and 
propellants. 
Chapter 21, Pollution and its Control, discusses the causes and adverse effects of various types of pollution 
and their remedial measures. 
Chapter 22, Green Chemistry, elucidates the basic principles of green chemistry along with examples. 
The chapter discusses the synthesis of  adipic acid, indigo, ibuprofen, carbaryl, and acrylamide.
Appendix -Laboratory Experiments- includes the principle and procedure of a few laboratory experiments 
as prescribed by the AICTE syllabus. 

Online Resources
The online resources centre provides resources for faculty and students using this text:

For Faculty  For Students
	 ∑	 Solutions Manual 	 ∑	 Quizzes
 ∑	 PowerPoint Slides  ∑	 Extra Reading Material
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viii   Preface
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1.1  Structure of Atom — An Overview
Atoms and molecules are the fundamental building blocks of matter. We all have learnt about atoms in the 
beginning of secondary school science classes; despite this, our understanding of the structure of atom is 
surprisingly low. In the 19th century, scientists were facing a major challenge to reveal the structure of atoms 
and explain their behaviour and properties. This led to a series of postulates and experiments validating them. 
The earliest investigations revealed that atoms are not indivisible. Various experiments have proved that 
the atom consists of charged particles. An atom is composed of protons and electrons, mutually balancing 
their charges. Protons are in the interior of an atom surrounded by electrons. J. Dalton, J.J. Thompson,  
E. Rutherford, and Niels Bohr successfully postulated atomic models and described the properties of 
the atom. (Fig. 1.1).
Postulates of Bohr’s model
 (a) There is a small, positively charged nucleus surrounded by electrons that travel in circular orbits 

around the nucleus.
 (b) There is a presence of electrostatic forces between the electrons and the nucleus.
 (c) Electrons move in circular orbits of fixed sizes called stationary orbits (or energy levels) K, L, M, 

and N and the energy of electrons is quantized.
 (d) Atoms emit radiation: electrons jump from one orbit (allowed) to another and either absorb or 

emit light as electromagnetic radiation with a frequency as per Planck’s relation, DE = E2 – E1 = hn, 
where h is Planck’s constant. 

The limitations of Bohr’s model are: 
 (a) The assumption of structured ‘stationary fixed orbit’ seems unjustified.
 (b) It can only explain spectral lines of hydrogen atom, but after the first 20 elements in the periodic 

table, Bohr’s model becomes difficult to predict the spectral details of complex atoms.

C
H
A
P
T
E
R

1

Atomic and Molecular Structure

After reading this chapter, you will be able to:

▪	 explain	wave–particle	duality	of	matter.
▪	 deduce	de	Broglie	relation	and	Schrödinger	wave	equation.
▪	 understand	Heisenberg’s	Uncertainty	Principle	and	Born	interpretation	of	Schrödinger	wave	function.
▪	 apply	particle-in-a-box	model	in	conjugated	molecules	and	nanoparticles.
▪	 sketch	the	atomic	orbitals	and	radial	plots	of	hydrogen	atom.	
▪	 discuss	molecular	orbital	theory	for	diatomic	(homonuclear	and	heteronuclear)	molecules.
▪	 illustrate	band	theory	of	metals,	semiconductors,	and	insulators.	
▪	 introduce	the	concept	of	aromaticity	in	benzene	and	cyclobutadiene.

L E A R N I N G   O B J E C T I V E S

Part I: Basic Chemistry
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2   Engineering Chemistry

 (c) It cannot explain chemical bonding of atoms. 
 (d) There is no explanation of the distribution of electrons within an atom.

Sommerfeld attempted to improvize Bohr’s theory by postulating that electrons revolved around the 
nucleus in elliptical orbits and also introduced additional quantum numbers. 

Fig. 1.1 Various	models	describing	the	structure	of	atom

Further, in Bohr’s theory, an assumption was made that the position and momentum of an electron 
were precisely known. A highly advanced theory, called ‘wave mechanics’ put forth by Erwin Schrödinger 
explained the spectra of one-electron system and even multi-electron systems. It also gave a detailed 
interpretation of chemical bond vibrations and other chemical phenomena.

1.2  Dual Nature of Matter (Wave–Particle Dualism) 
Bohr’s theory was a giant step forward in 
understanding the atomic world; yet its 
limitations had to be broken down with 
the aid of quantum mechanics, which 
emerged very soon in the form of the 
dual nature concept. In 1905, Einstein 
put forth the photoelectric effect that 
described light as a photon. Scientists 
were yet debating the dual nature of light and also reluctant to accept it. Einstein further introduced the 
concept of light as a continuous field of waves in his paper on special relativity—a complete contradiction 
of light considered as a stream of particles. Experimental evidence was given by Thomas Young’s double-
slit experiment. 

As per this experiment (Fig.1.2), light travels away from a source as an electromagnetic wave. 
When it passes through the slits, it gets divided into two wavefronts. These wavefronts overlap and fall 
on to the screen and the entire wave field disappears and a photon appears. 

1.2.1 Davisson and Germer Experimental Evidence of Electron Waves 
The presence of matter waves was experimentally verified by C.J. Davisson and L.H. Germer at the 
Bell Telephone Laboratories. They showed that the beam of electrons reflected from a metal crystal 

Electron

Double slit
Screen

Interference pattern

Electron beam
gun

Fig. 1.2 Young’s	double	slit	experiment
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3  Atomic and Molecular Structure

produced a diffraction pattern. The wavelengths 
of electrons calculated from the experiments were 
found to be in agreement with de Broglie equation. 
G.P. Thompson demonstrated that an accelerated 
beam of electrons when passed through a thin gold 
film (~ 10-8 m) strikes on to a photographic plate, 
a diffraction pattern is obtained.

Figure 1.3 shows the experimental arrangement 
used by Davisson and Germer. It consisted 
of an electron gun comprising a tungsten 
filament (F), coated with barium oxide and 
heated with a low-voltage power supply. The 
electrons emitted by the tungsten filament were 
accelerated to a desired velocity by applying accurate voltage. The experiment was performed by varying 
the accelerating voltage from 44 V to 68 V. The entire apparatus (Fig. 1.3) was placed in an evacuated 
chamber. Electron beams were passed through a cylinder with fine holes along its axis that produced 
a fine collimated beam striking on to a nickel crystal. These electrons got scattered in all directions by 
atoms present in the solid crystal. The intensity of the scattered electron beam in a given direction was 
measured by a movable electron detector and galvanometer. 

The deflection of the galvanometer was found to be proportional to the intensity of the electron beam 
entering the collector. By moving the detector on the circular scale to different positions, the intensity of 
the scattered electron beam was measured for different values of angle of scattering q, that is, the angle 
between the incident and the scattered electron beams. The variation of intensity (I ) of scattered electrons 
with an angle of scattering q was obtained for different accelerating voltages. 

Davisson–Germer experiment, thus, strikingly confirms the wave nature of electrons and the de Broglie 
relation. In 1989, the wave nature of a beam of electrons was experimentally demonstrated in a double-slit 
experiment, similar to that used for the wave nature of light. Moreover, in 1994, interference fringes were 
obtained with beams of iodine molecules that are around million times more massive than the electrons. 

1.2.2 The de Broglie Equation and Derivation
In 1924, Louis de Broglie described the existence of matter waves. Already at that time, electromagnetic 
and sound waves were known. de Broglie suggested that wave–particle nature may exist even in material 
particles and electrons. He also derived an equation for the wavelength of photons (or particles) of light. 

According to Planck’s quantum theory, energy of a photon is given by E = hn (h is Planck’s constant, 
6.626 ¥ 10-34 Js, E = energy and n = frequency of light, s–1) and Einstein’s equation for mass–energy 
equivalence is E = mc2, where c is the velocity of light. 

\  hn = mc2 (1.1)
where m is the mass equivalent of photon. Further, it follows that

hc mc c
l

n
l

= =2 ∵
Ê
ËÁ

ˆ
¯̃

 l = h
mc

 (1.2)

The product mc is the momentum of photon. de Broglie assumed that an equation of this type is also 
applicable to material particles. If a particle of mass, say m, travels with a velocity v, then

l = h
mv

  (1.3)

A
F

�

q

Fig. 1.3 Davisson–Germer	electron	diffraction	
arrangement
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4   Engineering Chemistry

Equation (1.3) is the fundamental equation of 
de Broglie’s theory of wave–particle duality. The 
wavelength  of hypothetical matter waves that 
are called de Broglie waves is represented by Eq. 
(1.3) and is called de Broglie equation. de Broglie’s 
wavelengths for moving objects are given in 
Table 1.1. 

The de Broglie hypothesis has been the basis for the 
development of modern quantum mechanics leading 
to the field of electron optics. The wave properties of 
electrons have been utilized in the design of electron 
microscope used today. 

1.2.3 Bohr’s Theory Versus de Broglie Equation
Bohr (1913) postulated the atomic model in which nucleus of an atom is surrounded by particles 
known as electrons that revolve in defined shells or orbits. As per Bohr’s planetary model, 
angular momentum is an integral multiple of h/2p. de Broglie gave a valid explanation supporting 
Bohr’s model shown in Fig. 1.4. 

de Broglie put forth that if one uses the wavelength associated with 
an electron and assume that an integral number of wavelengths must 
fit in the circumference of an orbit, one can deduce the same quantized 
orbital angular momentum postulated by Bohr’s planetary model. 

Let us say, an electron behaves as a standing wave that goes around 
the nucleus in a circular orbit. If one condition that the circumference 
of electron orbit should be equal to the integral number of wavelength 
of an electron (de Broglie wavelength, l) is fulfilled, the electron will 
undergo constructive interference. If this condition is not satisfied, the 
electron may suffer destructive interference. As per this argument, if r 
is the radius of the circular orbit, then 2pr = nl.

We know that de Broglie equation, l =
h

mv
.

\ 2 =pr nh
mv

 or, mvr nh
=

2p
  

where n = 1, 2, 3, and so on. 
As mvr is the angular momentum of an electron, one can easily deduce that wave mechanical nature 

leads to Bohr’s postulate, that is, angular momentum is an integral multiple of h/2π and is quantized.  
Hence, it is clear that de Broglie concept supports Bohr’s planetary model. 

1.3 Heisenberg’s Uncertainty Principle
In 1927, Werner Heisenberg put forth the Principle of Uncertainty, according to which, ‘the simultaneous 
exact determination of position and momentum or any property related to momentum such as velocity is 
impossible’. If Δx is the uncertainty regarding position and Δp is the uncertainty about the momentum, then

Δx  ¥ Δp = h; where, h is Planck’s constant.           (1.4)
According to Uncertainty Principle, if the position of a particle such as an electron is known precisely, 

then there will be uncertainty about its momentum. If an electron with an exact known momentum strikes 
a fluorescent screen, a flash of light is emitted so that its position at that instant is known. However, 

Fig. 1.4 Bohr’s model of atom

Table 1.1 de Broglie wavelengths for moving objects

Object (moving) Mass (g) Wavelength (Å)
1 volt electron 9.11 ¥ 10–28 12.3

100 volt electron 9.11 ¥ 10–28 1.23

Helium atom (298 K) 6.65 ¥ 10–24 0.73

α-particle from radium 6.65 ¥ 10–24 6.6 ¥ 10–5

Dust particle ≈ 10–6 6.6 ¥ 10–13

Driven golf ball 45 4.9 ¥ 10–24

Chemistry professor 
(walking)!

8 ¥ 104 8.3 ¥ 10–26
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5  Atomic and Molecular Structure

continuous collisions of electron with the screen results in the loss of certain amount of energy and 
eventually the momentum of the electron will change. In an attempt to establish the precise position 
of the electron, an uncertainty is introduced regarding its momentum. Thus, the statements about the 
precise position and momentum will have no validity and shall be replaced by statements of probability 
that the electron has a given momentum and position. Heisenberg’s Uncertainty Principle brings out the 
fact that nature only imposes a limit to accuracy with which the position and momentum of a particle 
are determinable experimentally and mathematically, stated by the equation as,

Dx ¥ Dp ≥ h
4p

         (1.5)

Hence, it can be concluded that the product of uncertainties cannot be less than h
4p

.

1.4 Schrödinger Wave Equation
Erwin Schrödinger (1924) proposed and deduced the wave equation that forms the basis of the 
wave-mechanical behaviour of matter. It describes the particle motion and also its association to de Broglie 
wave. Schrödinger derived an equation for comparing the path taken by the particle with that of a ray of 
light and associated the wave with electromagnetic waves. 

Let us consider the following equation,
y = f (x) g(t) (1.6)

where, f (x) is a function of coordinate x and g(t) is a function of the time coordinate t. 
For a stationary wave, 

g(t) = A sin (2pvt)  (1.7)
On substituting Eq. (1.7) in Eq. (1.6), we get, 

 y = f (x) A sin (2pvt)  (1.8)

 
∂
∂

2

2

y
t

 = f(x)4p2v2 A sin (2pvt) = –4p2v2f  (x)g(t) (1.9)

Further, the one-dimensional classical wave equation is given as,
∂
∂

2

2

y
x

 = 1
2

2

2u
y

t
∂
∂

Similarly, it follows Eq. (1.8) as,
∂
∂

2

2

y
x

= ∂
∂

2

2

f x
x

g t
( )

( )  (1.10)

∂
∂

2

2

f x
x

( )
= -4 2 2

2

p v
u

f x( )  (1.11)

We know, velocity u can be expressed as, u = vl
∂

∂

2

2

f x
x

( )
= -4 2

2

p
l

f x( )  (1.12)

Check Your Progress
	 1.	 How	is	Heisenberg	principle	different	from	Bohr’s	postulates	about	electrons?
	 2.	 What	important	information	is	obtained	from	Davisson–Germer	experiment?
	 3.	 Justify	the	statement,	‘de-Broglie	relation	supports	Bohr’s	model	of	stationary	orbit.’
	 4.	 State	Heisenberg	Uncertainty	principle.	Write	its	expression.	
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6   Engineering Chemistry

Equation (1.12) for wave motion in three directions represented by the co-ordinates x, y, and z is given as,
d
d

d
d

d
d

2

2

2

2

2

2

Y Y Y
x y z

+ + = - 4
2

2

p
l

Y   (1.13)

where, Y is the amplitude function of the three co-ordinates. For simplicity, — is written for x, y, and z 
co-ordinates. Equation (1.13) can then be written as follows,  

—2Y = - 4
2

2

p
l

Y   (1.14)

where, — is Laplacian or differential operator given by,

—2 = d
d

d
d

d
d

2

2

2

2

2

2x y z
+ +  

The fundamental assumption of wave mechanics is that Eq. (1.14) is applicable to all microscopic 
particles such as electrons, protons, and atoms. On substitution of l in Eq. (1.14), de Broglie equation 
can be written as, 

—2Y = - 4
2 2 2

2

p m v
h

Y  (1.15)

The kinetic energy of a particle is equal to mv2/2 and this is equal to the difference between total energy 
E and potential energy U.

Hence,  E U mv- =
2

2
and substitution of mv2/2 in Eq. (1.15) gives,

—2Y = 8
2

2

p m
h

E U( )- Y

or, d
d

d
d

d
d

p2

2

2

2

2

2

2

2

8
0

Y Y Y Y
x y z

m
h

E U+ + + -( ) =  (1.16)

Equation (1.16) is called Schrödinger wave equation (time-independent). As per this equation, if a 
particle of mass m moving with a velocity v has total energy E and potential energy U, then the particle 
has an associated wave, whose amplitude is wave function Y. It is a second degree differential equation 
with several solutions, of which only some are valid. The functions  are satisfactory solutions of wave 
equation only for certain values of energy E and such values are called eigen values. The corresponding 
functions that are satisfactory solutions of Eq. (1.16) are called eigen functions. Eigen functions will be 
single value, finite, and continuous for all possible values of the three co-ordinates, that is, x, y, and z, 
including infinity (∞). 

On further solving Eq. (1.16) and introducing  =
h

2p
 we get,

- ∂
∂

+ ∂
∂

+ ∂
∂

Ê

Ë
Á

ˆ

¯
˜ +2 2

2

2

2

2

22m x y z
V E= y  (1.17)

We know that Laplacian operator is, — = + +2
2

2

2

2

2

2

d
d

d
d

d
dx y z

\  - — +
È

Î
Í
Í

˘

˚
˙
˙

=2
2

2m
V Ey y

Further, the Hamiltonian operator can be written as,

 H
m

V� �= - — +
È

Î
Í
Í

˘

˚
˙
˙

2
2

2
 (1.18)
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7  Atomic and Molecular Structure

On comparing Eqs (1.17) and (1.18) we get,
H y = Ey  (1.19)

Equation (1.19) is a compact from of Schrödinger equation.

1.4.1  Physical Significance of Wave Function
The function y is a mathematical function and is associated with moving particles and is not an 
observable quantity with any physical meaning. However, y2 has significance and can be evaluated. 
Max Born (1926) proposed the statistical interpretation of wave function of electrons, called Born 
interpretation. As per Born interpretation, the electron is considered as a particle, and the square of the 
wave function y at any point in space represents the probability of finding an electron at that point at 
a given instant. In simpler terms, if y is large, the probability of finding an electron is also high. Born 
interpretation is in agreement with the Uncertainty Principle. The function y2  is considered as a wave 
mechanical equivalent of the electron orbit of Bohr’s theory and hence, the wave function is referred to 
as an orbital. An orbital represents a definite region in three-dimensional space around the nucleus where 
there is high probability of finding an electron of a definite energy. 

1.4.2  Quantum Mechanical Model of Hydrogen Atom
For the hydrogen atom, Schrödinger wave equation is written as follows,

— + -
Ê

ËÁ
ˆ

¯̃
=2

2

2

28
0Y Yp m

h
E Ze

r
 (1.20)

where, U (potential energy) is replaced by - Ze
r

2
.

The solution of Schrödinger equation is a complicated one. It is sufficient to know that solution of the 
wave equation for an electron in a hydrogen atom involves 
certain integers that determine the energy and momentum of 
an electron. These integers correspond to quantum numbers 
of Bohr–Sommerfield theory. On solving the wave equation, 
energy E of an electron is,

E = -2
2 2p z me
n h

4

2 2
 (1.21)

Equation(1.21) is identical to the Bohr equation. The 
calculations of the values of wave functions corresponding to 
different values of quantum numbers have given probability 
distributions of an electron. These probability distributions 
have maxima and minima that signify that electron orbits 
have no significance. 

For hydrogen atom, the maximum probability of finding an 
electron in the ground state is at a distance of 0.529 Å from 
the nucleus (Fig. 1.5 (a)). This is in accordance with Bohr’s 
theory as the distance is similar to the radius of the first orbit. 
Figure 1.5 (b) shows the probability of finding an electron 
called electron cloud (see shaded portion). The density of 
electron cloud is proportional to the probability of finding 
an electron at that point in a given instant. 

Fig. 1.5 Probability	distribution	of	electron	
in	hydrogen	atom
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8   Engineering Chemistry

1.4.3 Particle in a One-dimensional Box
Let us consider a particle of mass m which is allowed to 
freely move in a one-dimensional box of length l as shown 
in Fig. 1.6. The particle can only move parallel to the x-axis 
without friction, that is, interval of x = 0 to x = l. This 
interval is called one-dimesional box or potential well. 

The potential energy, V of an electron at the bottom of 
the box is constant and taken as zero. Hence, inside the box 
V = 0. Let the width of the box be a. Also, potential energy 
V becomes infinity at the walls of the box. So, let the 
potential energy be infinite for x < 0 and x > l. 

The assumptions for particle-in-a-box are as follows:
 (a) It is assumed that the walls of the box possess infinite potential energy ensuring that the particle 

has zero probability of being at the walls or outside the box, called the boundary conditions. 
 (b) Further, the function  is considered zero at x = 0 and for all negative values of x, as the particle is 

not allowed over the walls of the box. 
 (c) The function  must necessarily be zero for all values of x > l. The boundary condition is hence 

set in such a way that the particle is strictly confined inside the box and cannot exist outside. 
Inside the box, Schrödinger equation is,

- +
È

Î
Í
Í

˘

˚
˙
˙

( ) = ( )2 2

22m
d
dx

V x E xx Y Y  (1.22)

As Vx, = 0, Eq. (1.22) becomes, 

- =2 2

22m
d
dx

E xY ( )  (1.23)

For solving E and wave function yx we will mathematically rewrite Eq. (1.23) as,

d
dx

mE2

2 2

2
0

Y Y+ Ê
ËÁ

ˆ
¯̃

=


On reducing the above equation as  k mE2
2

2=


, we get, 

 d
dx

k
2

2
2Y Y+ = 0  (1.24)

Now, a general solution of Schrodinger wave equation is,
Y(x) = a cos kx + b sin kx (1.25)

Considering boundary conditions,  Y(x) = 0 at x = 0 or  Y(0) = 0. Outside the box, Vx = •.

\ - +
È

Î
Í
Í

˘

˚
˙
˙

2 2

22m
d
dx

Vx xY = EY(x) (1.26)

Further, 

 d
dx

m2

2 2

2Y +


(E – •)Y = 0 (1.27)

When Y = 0 (outside the box), the particle cannot be found outside the box. Hence, Y = 0 is considered 
at the walls of the box and thus x = 0 and x = l. Figure 1.7 shows the wave functions of a one-dimensional 
particle in a box.

Fig. 1.6 Particle	in	a	1D	box	model
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9  Atomic and Molecular Structure

Fig. 1.7 Wave functions for one-dimensional particle in a box

From Eq. (1.25), we can say that if a = 0,
Y(x) = a sin kx + b cos kx (1.28)

As we know Y = 0 at x = 0 and x = l.
Hence, one can solve the equations as follows: b sin kl = 0

On rearranging, sin kl = 0 and also, kl = np and  k = n
l
p   

we can consider k = n
l
p , where, n = 0, 1, 2, 3 (1.29)

Hence, Y Y= = Ê
ËÁ

ˆ
¯̃n b n

a
sin p , where, n = 0, 1, 2, 3 (1.30)

The term Yn is called the eigen function. On considering Eqs (1.29) and (1.30) we can express, 

k2 = 2
2

mE


Hence, n
l

mE2 2

2 2

2p =


 E = n
l m

2 2 2

2 2

p   (1.31)

On solving the above expressions and we know that 
Total energy of an electron, E – Potential energy (U) = Kinetic energy of the electron

\  E n h
mln =
2 2

28
, where, n = 0, 1, 2, 3 … •  (1.32)

Equation (1.32) clearly depicts that the particle in a box consists of discrete sets of energy values (energy 
is quantized). Some of the energy levels, say E1, E2 and E3 can be written as follows:

E h
ml

E h
ml

E h
ml1

2

2 2

2

2 3

2

28

4

8

9

8
= = =; ; and  (1.33)

Hence, it is proven by the above equation that a bound particle possesses quantized energy, 
whereas a free particle has no quantized energy.  

1.5  Shapes of Atomic Orbitals and Probability Distribution 
The solution of wave function (Y ) of hydrogen atom led to three different types of quantum numbers that 
explain the spatial orientation of an electron relative to the nucleus. These solutions are called orbitals — 
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10   Engineering Chemistry

a term that sounds analogous to ‘orbits,’ in Rutherford’s planetary model. An orbital refers to the region 
around the nucleus that shows the maximum probability of finding electrons. An orbital is a mathematical 
function that possesses finite value anywhere in space. As discussed earlier, (Y 2) value at any place and 
instant is a measure of the probability of finding an electron of definite energy. 

Before explaining the shapes of various atomic orbitals, let us quickly glance through quantum number. 
Each atomic orbital is specified by three quantum numbers, specified as n, l, and m, and each electron 
can be designated by a set of four quantum numbers (n, l, m, and s). Quantum numbers provide complete 
details of the position of an electron in a given atom. The various quantum numbers are: principal quantum 
number (n), azimuthal quantum number (l     ), magnetic quantum number (m) and spin quantum number 
(s) explained as follows:
Principal quantum number (n) It indicates the main energy levels in which an electron is present. These 
energy levels are represented as 1, 2, 3, 4, etc., for K, L, M, N, etc., Bohr orbits respectively. It specifies the 
energy of an electron in the given level and can be given by, En = –1312/n2 kJ/mol. Hence, it is clear that 
energy of an electron is inversely proportional to square of the principal quantum number (i.e., energy 
of an electron increases with increasing (n). Further, maximum number of electrons that can be added 
in an energy level is 2n2. 
Azimuthal quantum number (l ) It is also known as angular quantum number and was proposed by 
Sommerfield. It signifies the number of subshells to which the electron belongs and also the shape of the 
subshells. Further, it can express energies of 
all subshells, that is, s < p < d < f and value 
of l is always (n – 1). The values of l depend 
directly on n value, and for a given value of 
n, l can assume values as follows,
The	origin	of	these	letters	designated	for	subshells	is	from	the	language	used	to	describe	the	lines	seen	in	
earlier	studies	of	atomic	spectra:	s	was	‘sharp,’	p	was	‘principal,’	d was	‘diffuse,’	and	f was	‘fundamental.’	
After	f,	an	alphabetical	order	follows	for	designating	subshells.	

Magnetic quantum number (m) It was proposed by Zeeman and denotes the number of permitted 
orientation of various subshells and also signifies the behaviour of electrons in a magnetic field. The 
values of m can vary from negative to positive through zero and can be calculated from l as per formula, 
m = +1, ….., 0, …….., 1. Hence, if l = 0, m = 0, if l = 1, m will be + 1, 0, 1 and if l = 2, m will be +2, +1, 0, 
1, 2, and so on.  
Spin quantum number (s) Quantum mechanics necessitates a fourth quantum number so as to uniquely 
designate an electron and is termed as spin quantum number. The spin quantum number was proposed 
by S. Goudsmit and G. Uhlenbeck. A spin quantum number can have only two values, +1/2  and –1/2. 
Pauli Exclusion Principle (1945) clearly expresses these theoretical restrictions and states that ‘only two 
electrons can be accommodated by a given atomic orbital.’ Further, the two electrons assigned to a specific 
atomic orbital must be of opposite spin quantum number, that is, their spins must be paired. This led to 
the development of the electronic configuration of atoms in the periodic table. 

Electronic Configuration of Atoms 
An electronic configuration is defined as the distribution of electrons among the orbitals and subshells. 
Electrons are assigned to a specific atomic orbital one at a time so as to fill the orbitals of one energy 
level, before proceeding to the next higher energy level. The electrons in an atom fill the principal energy 
levels in order of increasing energy (the electrons get farther from the nucleus) and the order of levels 
filled can be depicted as: 

1s, 2s, 2p, 3s, 3p, 4s, 3d, 4p, 5s, 4d, 5p, 6s, 4f, 5d, 6p, 7s, 5f, 6d, 7p

Value	of l 0 1 2 3

Subshell s p d f

Shapes Spherical Dumbbell Double	dumbbell Complex
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11  Atomic and Molecular Structure

We apply Aufbau principle to fill up the 
energy levels according to which a maximum of 
two electrons are put into orbitals in the order of 
their increasing orbital energy. Further, we also 
consider Hund’s rule which states that when 
electrons go into degenerate orbitals (i.e., orbitals 
of same energy), they occupy them singly before 
pairing begins. 

 An electron is commonly depicted by an 
upward (≠) and downward (Ø) arrow thereby 
showing the two possible spin states. The 
distribution of electrons in various quantum 
levels can be depicted as shown in Table 1. 2.

1.5.1 Forms of Hydrogen Atom and Wave Functions
The solution of wave function of a hydrogen atom with its electron in the lowest quantum energy level (principal 
quantum number = 1) depicts a spherical region as shown in Fig. 1.8 (a) of electron probability called 1s atomic 
orbital. The 1s atomic orbital has more than 95 per cent probability of finding an electron within a distance of 
1.7 Å (170 pm) of the nucleus. The solution of wave equation for an electron in the next higher energy level 
with principal quantum number 2, depicts two spherical 
regions of high electron probability called 2s atomic orbital. 
In the 2s orbital, one electron is nearer to the nucleus, 
similar to 1s atomic orbital, whereas the other electron is 
farther away from the nucleus. Similarly, the solution of 
wave equation depicting three spherical regions of high 
electron probability is called the 3s atomic orbital.

++

y

z

x

y

z

x�

S-orbital Px

+

y

z

x

�
Py

+

y

z

x

�

PzP-orbital

Fig. 1.8 (b)	Shapes	of	s	and	p	atomic	orbitals

The solution of wave equation for the second 
quantum energy level of hydrogen atom described 
three additional atomic orbitals. These orbitals 
are known to be symmetrical in shape about 
three mutually perpendicular axes with higher 
electron probability in regions called lobes 
present on either side of the nucleus, as shown in 
Fig. 1.8 (b). One should bear in mind that Y 2 
= 0 at the nucleus clearly represents that an 
electron cannot be present within the nucleus at 
any instant. When three orbitals of equal energy 
(but slightly higher than 2s) are oriented at right 
angles (90o) to each other, they are called p levels 

Table 1.2 Electron	distribution	in	orbitals

 n l m Atomic 
orbital

Orbitals in 
subshell

1 0 0 1s 1
2 0 0 2s 1
2 1 1,	0,	+1 2p 3
3 0 0 3s 1
3 1 1,	0,	+1 3p 3
3 2 1,	0,	+1,	+2 3d 5
4 0 0 4s 1
4 1 1,	0,	+1 4p 3
4 2 1,	0,	+1,	+2 4d 5
4 3 1,	0,	+1,	+2,	+3 4f 7

Fig. 1.8 (a)	1s,	2s,	and	3s	atomic	orbitals

Fig. 1.9 	Shapes	of	d	orbitals
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12   Engineering Chemistry

(see Fig. 1.8(b)). They are designated as 2px, 2py,  and 2pz, at the orbitals with x, y, and z representing 
the Cartesian co-ordinates in three-dimensional space. The p orbital can accommodate six electrons and 
have dumb-bell shape along the three axes. 

The five d orbitals that can accommodate 10 electrons as shown in Fig. 1.9 are designated as five orbitals 
namely d d d d( ) ( ) ( ), , ,xy yz x x yz 2 2-

and dz2. As shown in Fig. 1.10, the probable distances of an electron are 

given by radial probability distribution plots. Hence, a plot of electron probability against r (distance of 
electron from the nucleus) for hydrogen atom is given for 1s, 2s, 2p, 3p, and 3d orbitals in this figure.
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Fig. 1.10 Radial	probability	distribution	plots	for	hydrogen	atom

1.6  Applications of Schr�dinger Equation   
1.6.1  Conjugated Molecules
The chemical system that can best elucidate particle-in-a-box model is a pi- electron moving in a 
conjugated system of alternate single and double bonds; for example, 1, 3-butadiene. For simplicity, p 
bonding excluding sigma (s) bonds is considered as a rigid framework of the molecule. Ethene molecule 
has a p bond in a plane perpendicular to the molecular plane, whereas in 1, 3-butadiene, the s bonds and  
p bonds lie in a plane perpendicular to all the carbon and hydrogen atoms (see Fig 1.11). 

Check Your Progress
	 5.	 Distinguish	between	an	orbit	and	orbital.	
	 6.	 Express	Schrödinger	time-independent	wave	equation.
	 7.	 What	are	eigen	values	and	eigen	functions?
	 8.	 What	are	the	possible	values	of	eigen	function?
	 9.	 What	is	Born	interpretation?	
	10.	 Draw	the	radial	probability	distribution	plots	for	hydrogen	atom.
	11.	 Define	electronic	configuration.	State	Hund’s	rules	and	Aufbau	principle	for	writing	the	electronic	

configuration.
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13  Atomic and Molecular Structure

Fig. 1.11 (a)	Structure	of	1,3-butadiene	(b)	pi-molecular	orbitals	of	1,3-butadiene	 
(shaded	portion	represents	+	sign	on	the	lobes) 

The four p electrons move freely over the four-carbon atom framework of single bonds. One can neglect 
the zig-zag C – C bonds and assume a one-dimensional box. We will overlook that p electrons have a 
node in the molecular plane. Since the electron wave function extends beyond the terminal carbons, one 
can add approximately one-half bond length at each end. This will give a bond of length equal to the 
number of carbon atoms times the C – C bond length. Thus, for butadiene the length will be 4 ¥ 1.40 Å  
(1 Å = 10–10 m). In the lowest energy state of butadiene, four delocalized electrons will fill the two lowest 
molecular orbitals and the total p-electron density is given (as shown in Fig. 1.11) by,  r = +2 21

2
2
2Y Y . 

Further, equations for the four p orbitals can be written as follows.
p1 = 0.37 Y1 + 0.60 Y2 + 0.60 Y3 + 0.37 Y4
p2 = 0.60 Y1 + 0.37 Y2 + 0.37 Y3 + 0.60 Y4
p3

* = 0.60 Y1 + 0.37 Y2 + 0.37 Y3 + 0.60 Y4

p4
* = 0.37 Y1 + 0.60 Y2 + 0.60 Y3 + 0.60 Y4

The p-electron density is concentrated between carbon 
atoms 1 and 2, and between 3 and 4; the predominant 
structure of butadiene has double bonds between C1, C2 
and C3, C4. Each double bond consists of a  p bond, in 
addition to the underlying s  bond. Overall, butadiene can 
be described as a resonance hybrid with the contributing 
structures: major C C C CH H H H

2
1 2 3

2
4

== -- == and, 

minor ○CH2—CH==CH—CH2○. 
In the similar manner, one can understand benzene; 

a cyclic ring structure with six electrons each of 
which is present on carbon atoms in p orbitals 
perpendicular to the molecular plane. Benzene has six 
p orbitals and hence it has 6p  orbitals, named a to f, as 
depicted in Fig. 1.12. 

Fig. 1.12 pi	molecular	orbitals	of	benzene
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14   Engineering Chemistry

Let the orbitals be labelled as za, zb, zc, zd, ze, and zf as depicted in Fig. 1.12 and let the sign for each z 
orbital be either positive or negative (+ depicts p-wave function is upward and – depicts p- wave function 
is downward). 

p1
b

a b c d e fz z z z z z= + + + + +
p2 2 2b

a b c d e fz z z z z z= + - + - +
p3

b
b c e fz z z z= + - -

p1 2 2* = - - + - -z z z z z za b c d e f

p2
* = - + -z z z zb c e f

p3
* = - + - + -z z z z z za b c d e f

The dashed lines in the diagram indicate nodes with zero electron density and it is evident from the 
above equations that there are three bonding and three antibonding orbitals in benzene. Benzene is 
considered an ‘aromatic’ compound, the additional stability of the molecule is due to the presence of p 
orbitals throughout the six carbon atoms of the cyclic ring. 

Fig. 1.13 Canonical	structures	of	benzene	

The stabilization energy of benzene is about 36 kcal and can be represented as resonance structures 
as shown in Fig. 1.13. Benzene represents a combination of all the above structures with the first two 
contributing largely. 

1.6.2 Quantum Confinement in Nanoparticles
One of the major outcomes of size reduction of bulk materials to nanoscale levels is quantum confinement. 
Quantum confinement effect is a popular term in the nano world where the particle size ranges from 1–25 
nm. At nanoscale levels, electron tends to ‘feel’ the presence of particle boundaries and respond to changes 
in particle size by adjusting its energy. This leads to discrete energy levels depending on the size of the 
structure. According to Yoffe (1993), Bohr radius of a particle can be written as, aB = e m/m* ao; where e 
is the dielectric constant of the material, m* is the particle mass, m is the rest mass of an electron, and ao 
is the Bohr radius of H atom. When the particle size approaches Bohr radius, the quantum confinement 
effect causes increased transition energy and blue shift in the absorption spectra. 

As per Miller (1984), when the motion of electrons and holes is confined in one or more directions by 
potential barriers, they are called quantum confined structures. Quantum well, quantum wire, and quantum 
dots or nanocrystals are some examples of such structures and their SchrÖdinger equation can be written 
as follows:

Quantum dot: E h
m

n
L

m
L

l
L

z y xn m l
z y x

, , *
,= + +

È

Î
Í
Í

˘

˚
˙
˙

= ( ) ( ) ( )p f f f
2 2 2

2

2

2

2

22
Y  

Quantum wire: E k h
m

n
L

m
L

h k
m

z yn m x
z y

x
, * *

,( ) = +
È

Î
Í
Í

˘

˚
˙
˙

+ = ( ) ( )p f f
2 2 2

2

2

2

2 2

2 2
Y exp iik xx( )  

Quantum well: E k k h n
m L

h
m

k k z exp ik x ik yn x y
z

x y x y( ) = + +( ) = ( ) +( )p f
2 2 2

2

2
2 2

2 2* *
,Y
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15  Atomic and Molecular Structure

where n, m, l = 1, 2, … quantum confinement numbers, Lx, Ly and Lz, are the confining dimensions, 
exp(ikxx + ikyy) is called wave function that describes the electronic motion in x and y directions, same as 
electron wave functions.

1.7 Molecular Orbital (MO) Theory
F. Hund and R.S. Mulliken (1932) postulated the molecular orbital theory and its salient features are 
as follows: 
 (a) The electrons in a molecule are present in various molecular orbitals just like the electrons of atoms 

are present in various atomic orbitals.
 (b) The atomic orbitals of similar energies and symmetry combine to form molecular orbitals.
 (c) In an atomic orbital, an electron is influenced by one nucleus; it is not so in the case of molecular 

orbitals. As many atoms combine to form a molecule, electrons in a molecular orbital are under the 
influence of two or more nuclei depending on the number of combining atoms. Hence, an atomic 
orbital is monocentric, whereas a molecular orbital is polycentric in nature. 

 (d) When two atomic orbitals combine, two molecular orbitals are formed, namely bonding molecular 
orbital and antibonding molecular orbital.

 (e) The bonding molecular orbital possess lower energy with greater stability than the corresponding 
antibonding molecular orbital. Electrons fill up the molecular orbitals following Pauli’s, Aufbau, and 
Hund’s rules just like atomic orbitals.

1.7.1  Molecular Orbitals in Homonuclear Diatomic Molecules
Generally, there are two types of diatomic molecules: homonuclear and heteronuclear molecules. If a 
molecule consists of two or more atoms belonging to the same element, they are called homonuclear 
diatomic molecules, for example, H2, He2, Li2. The molecular orbital (MO) theory explains the formation 
of homonuclear diatomic molecules.  

As per molecular orbital theory, when two atoms combine to form a molecule, the two nuclei are 
positioned at an equilibrium distance and their atomic orbitals lose their identity to form molecular 
orbitals. The electrons are added to these molecular orbitals which are quite similar to atomic orbitals. 
The s, p, d, f orbitals in atoms are determined by various sets of quantum numbers, whereas in molecules, 
there are s, p, d molecular orbitals determined by quantum numbers. In a molecule, an electron can 
move in a field of more than one nucleus, hence molecular orbitals are polycentric in nature and follows 
Aufbau principle, Pauli Exclusion principle, and Hund’s rules. Just like an atomic orbital, a molecular 
orbital contains a maximum of two electrons with opposite spin.  

An approximate quantum mechanical picture of electrons in a chemical bond can be derived by 
combining hydrogen-like wave functions, namely Y1 and Y2 for two atoms. The new wave function is 
called the linear combination of atomic orbitals (also called LCAO method). As per LCAO, molecular orbitals 
are formed by combination of the atomic orbitals of the combining atoms. Similar to ripples formed at 
the water surface, the electronic wave function can interact in a constructive or destructive manner to 
form molecular orbitals. If there is a constructive combination of atomic orbitals, an increase in electron 
probability occurs between the nuclei of approaching atoms leading to the formation of energetically 
favourable bonding molecular orbitals denoted as YB. In destructive combination of atomic orbitals, 
there is a zero-electron probability between the nuclei of approaching atoms leading to the formation of 
energetically unfavourable antibonding molecular orbital denoted as YA. The bonding molecular orbitals are 
formed by adding wave functions of electrons in the two atomic orbitals, whereas antibonding molecular 
orbitals are formed by subtracting their wave functions as, 

Y Y Y Y Y Yb A B a A B= + º( ) = -1 34. and  (1.35)
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16   Engineering Chemistry

As explained above, two atomic orbitals combine to form two molecular orbitals; hence it means that the 
number of molecular orbitals must always be equal to the number of atomic orbitals that are combined. 
The electron distribution in a given molecular orbital is obtained by squaring their wave functions, thus 
on squaring Eqs (1.34) and (1.35), we get,

Y Y Y Y Yb A A B B
2 2 22= + +  (1.36) 

and; Y Y Y Y Ya A A B B
2 2 22= - +  (1.37)

Equations (1.36) and (1.37) depict the probability functions of bonding and antibonding molecular 
orbitals. The two equations differ by cross term 2Y YA B  and integral  ÚY YA B dt is the overlap integral, 
S, which is infinitesimally small and hence neglected. For bonding S > 0; antibonding S < 0 and for non-
bonding S = 0. 

1.7.2 Shapes of Molecular Orbitals
Molecular orbitals can be sigma or pi depending on the mode of overlap of atomic orbitals. If a head-on 
collision occurs between atomic orbitals, sigma molecular orbitals will be formed. When atomic orbitals 
overlap laterally, pi-molecular orbitals are formed. Let us take the example of hydrogen molecule. If there 
is a favourable interaction between 1s atomic orbitals of two hydrogen atoms, it produces a molecular 
orbital cylindrically symmetrical along the inter-nuclear axis. The bond formed when two electrons occupy 
such a molecular orbital is called sigma (s) bond and its associated antibonding orbital is called sigma star 
(s*). The electrons in such bonding orbitals are located nearer the inter-nuclear axis as shown in Fig. 1.14.

Fig. 1.14 1s	orbitals	leading	to	molecular	orbital

Two different types of atomic orbitals can also result in the formation of molecular orbital of a sigma 
bond. Combining 1s and 2p atomic orbitals leads to the formation of molecular orbital of somewhat 
different shapes as shown in Fig. 1.15.

Fig. 1.15 Atomic	orbital	overlap	leading	to	molecular	orbital

Another type of bonding that is generally seen in organic molecules is called the pi (p) bond that forms 
due to the interaction of parallel p orbitals located 
on adjacent atoms. Side-to-side interactions of p 
orbitals produce bonding pi (p) molecular orbital 
and an associated antibonding pi star (p*) molecular 
orbital. In case of such bonding orbitals, electrons 
usually have the greatest probability of being located 
above and below the inter-nuclear axis as shown in 
Fig. 1.16. 

The following conditions must be met for effective atomic orbital overlap:
 (a) Atomic orbitals involved in linear combination must possess similar energies. Hence, no combination 

is possible between 1s and 2s orbitals in a homonuclear diatomic molecule. 
 (b) There must be a considerable overlap between two atomic orbitals so as to form a molecular orbital.

Fig. 1.16 Formation	of	pi	bonding	molecular	orbital
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17  Atomic and Molecular Structure

 (c) Atomic orbitals must have same symmetry about the molecular axes, that is, a 2pz orbital will not 
combine with an atomic orbital due to varying symmetries, but a 2px orbital will combine with an 
s orbital to form a sigma molecular orbital. Further, a pz  orbital of one atom will not combine with 
a  px or a py orbital of another atom.  

 (d) When px orbitals combine, bonding and antibonding molecular orbitals that are symmetrical about 
the inter-nuclear axis are denoted as sp and s*p, respectively. The combining py orbitals produces 
molecular orbitals of different shapes and do not remain symmetrical along the internuclear axis. They 
are usually denoted as p2py and p*2py for bonding and antibonding molecular orbitals, respectively. 
Similarly, when pz atomic orbitals combine, p2pz and p*2pz molecular orbitals are formed. 

 (e) The wave functions that refer to two or more orbitals of same energy are called degenerate. So, 
p2p orbitals are doubly degenerate as there are two orbitals of equal energy; p2py = p2pz and their 
antibonding molecular orbitals are also doubly degenerate; p*2py = p*2pz.

The sequence of energy levels in the increasing order of energy that helps in predicting the electronic 
structure of simple molecules is as follows: 

s1s < s*1s < s2s < s*2s < s2px < p2py = p2pz < p*2py = p*2pz < s*2px

1.7.3 Bond Order
The difference between the number of bonding and antibonding electrons that is divided by 2 is called 
bond order. 

Bond order = Number of bonding electrons Number of antibonding electron- ss
2

The reason for dividing the total number of electrons by 2 is because we always assume bonds as a pair 
of electrons. Hence, for a simple molecule such as hydrogen that has two electrons, its bond order will 
be,  2 – 0/2 = 1.

This indicates that H2 molecule has one bond. 
However, it is not necessary that bond order will 
always be a whole number. 
Dihydrogen (H2) The simplest homonuclear 
diatomic molecule is formed when atomic orbitals 
of two hydrogen atoms combine. The electrons 
occupy the molecular orbital of the lowest energy, 
the s1s bonding orbital. A molecular orbital 
can hold two electrons, so both electrons in the 
dihydrogen molecule are in s1s bonding orbital and 
the electron configuration is (s1s)2.

Bond order of dihydrogen molecule = 1
2

[Nb – Na] = 2 0

2
1

- =

Nitrogen (N2) The ground state electronic configuration of nitrogen atom is 1s2, 2s2, 2p3 and the 
electronic configuration of nitrogen molecule is,

2N (1s2, 2s2, 2p3) = N2 [KK (s2s)2 (s*2s)2 (s2px)
2 (p2py = p2pz)

4]
The 1s electrons from both the nitrogen atoms are referred to as K shell electrons (closed shell electrons); 

they do not participate in bonding as they are in the inner shell and denoted as KK in the electronic 
configuration. 

Atomic

orbital of H

1s

s *1s

1s

s 1s

Molecular orbitals of H2

Atomic

orbital of H

Fig. 1.17 Molecular	orbital	energy	level	diagram	of	
dihydrogen	H2	molecule	
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18   Engineering Chemistry

                 
 Fig. 1.18 Molecular orbital energy level Fig. 1.19 Molecular orbital energy level
 diagram of N2 molecule diagram of O2

The bond order (i.e., number of covalent bonds) is given as: 1
2

[Nb – Na] = 8 2
2

3
- =

Hence, nitrogen is a triple bond molecule (N∫N) with one sigma and two pi bonds with diamagnetic 
properties. 
Oxygen (O2) The ground state electronic configuration of oxygen atom is 1s2, 2s2, 2p4 and electronic 
configuration of oxygen molecule is,

2O (1s2, 2s2, 2p4) = O2 [KK (s2s)2 (s*2s)2 (s2px)
2 (π2py = π2pz)

4 (π*2py = p*2pz)
2] 

The 1s electrons from both oxygen atoms are referred to as K shell electrons as they do not take part in 
bonding since they are in the inner shell and denoted as KK in the electronic configuration. 

The bond order is given as: 1
2

[Nb – Na] = 8 4

2

-  = 2

Hence, oxygen molecule has a double bond with two unpaired 
electrons, and thus it exhibits paramagnetism.  
Fluorine (F2) The ground state electronic configuration 
of flourine atom is 1s2, 2s2, 2p5, and the electronic 
configuration of fluorine molecule is, 2F (1s2, 2s2, 2p5)
   = F2 [KK (s2s)2 (s*2s)2 (s2px)

2 (π2py = π2pz)
4 (p*2py = p*2pz)

4] 
The 1s electrons from both flourine atoms are referred to 

as K shell electrons since they do not take part in bonding as 
they are in the inner shell and denoted as KK in the electronic 
configuration. 

The bond order is given as: 1/2[Nb – Na] = 8 – 6/2 = 1 
Thus, fluorine molecule has a single bond with no unpaired 
electrons, and thereby exhibits diamagnetism.  

1.7.4 Molecular Orbitals in Heteronuclear Diatomic Molecules
If two bonded atoms in a molecule are of different elements, they are called heteronuclear diatomic molecules, 
for example, CO, HCl, NO. The principles of chemical bonding in heteronuclear diatomic molecule 

Fig. 1.20 Molecular orbital energy level 
diagram of F2
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19  Atomic and Molecular Structure

are the same as those of the homonuclear diatomic molecules studied in the earlier section. However, 
some differences naturally appear in heteronuclear diatomic molecules, such as: (a) loss of symmetry and 
(b) unequal electron cloud due to different participating nuclei (or elements). As seen earlier, in homonuclear 
diatomic molecules, only the combination of atomic orbitals of equal energy and like-symmetry can form 
molecular orbitals. But such a limitation is not observed in heteronuclear diatomic molecules. When atomic 
orbitals of different elements combine, the following two factors affect the formation of molecular orbital.
Differing electronegativities The two atomic orbitals of the combining elements are at different energies 
due to differing electronegativities between atoms. When a more electronegative atom approaches a 
strongly electropositive atom, electron density in such molecules is significantly polarized towards the 
more electronegative atom.  

Let us consider carbon monoxide molecule, where C and O atoms (on Pauling scale, electronegativity 
= 2.6 and 3.5 respectively) combine, the atomic orbitals of oxygen will be lower in energy. When such 
atomic orbitals overlap, the resulting bonding molecular orbitals will resemble more like atomic orbitals 
of oxygen, whereas the antibonding molecular orbitals will resemble the atomic orbitals of carbon. Due 
to differing electronegativities, the electron cloud in the molecule will be drawn towards the atom with 
higher electronegativity and hence the heteronuclear diatomic molecule (CO) has an unsymmetrical 
electron distribution. 

Further, the combining atomic orbitals in a heteronuclear diatomic molecule do not contribute equally 
to the bonding and antibonding molecular orbitals. Say, if a heteronuclear molecule AB has a more 
electronegative atom B, the atomic orbitals of atom B will be lower in energy than those of atom A. 
Thus, bonding molecular orbitals will be closer to atomic orbitals of atom B, whereas atomic orbitals 
will be contributing more to antibonding molecular orbitals. Hence, molecular orbitals of heteronuclear 
diatomic molecules can be written as: 

Yb = xYA + yYB;  and Ya = yYA – xYB

where x and y are coefficients of atomic orbitals and y > x. 
Reduced covalent bond energy In a heteronuclear diatomic molecule, bonds formed from atomic 
orbitals of differing energies have reduced covalent bond energy. As the bonding MO will have lower 
energy than the atomic orbitals from which it is formed, the difference is called exchange energy (ΔE). 

As shown in Fig. 1.21(c), the exchange 
energy in a heteronuclear molecule is 
reduced as the atomic orbitals do not 
match. It is evident from Fig. 1.21(a), 
that there is weakening in covalent 
bonding, but this is not true. Whenever 
there is loss of covalent character, it 
is compensated by an increase in the 
ionic character of bonds. If one adds 
up the ionic and covalent bonding, it 
results in a much stronger bonding as 
in Fig. 1.21(b). 
Carbon monoxide (CO) The electronic configuration of carbon and oxygen atoms are: 
6C = 1s2, 2s2, 2p2 and 8O = 1s2, 2s2, 2p4. The number of electrons available for bonding from carbon and oxygen 
are 4 and 6, respectively; thereby ten electrons need to be accommodated in the molecular energy levels. Carbon 
monoxide can be considered isoelectronic with nitrogen molecule and the electronic configuration of CO 

� E

s *

s
A B A

B

s *

� E

s
s *

� E

s
B

A

(a)

(b)

(c)

Fig. 1.21 (a)	Covalent	energy	in	a	homonuclear	diatomic	molecule,	
(b)	covalent	energy	in	a	heteronuclear	diatomic	molecule	and 

(c)	heteronuclear	diatomic	molecule	with	higher 
electronegativity	difference
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20   Engineering Chemistry

molecule can be expressed as, CO [KK (s2s)2 (s*2s)2 (s2px)
2 

(p2py = p2pz)
4].

As shown in Fig. 1.22, the bonding resulting from s2s2 is 
effectively cancelled by antibonding s*2s2. This leaves s2px

2 to 
provide the bonding in CO molecule. As all the six electrons 
are present in the bonding molecular orbitals and none of it is 
in the antibonding molecular orbitals, hence just like nitrogen 
molecule, CO molecule also shows the bond order as,

1
2

8 2
2

3[N N ]b a- = - =

Thus, in a CO molecule, there is a triple bond C ∫ O with 
one s and two p bonds with diamagnetic properties. With a 
high bond order of 3, CO is a stable molecule. All the electrons 
are paired and hence CO is a diamagnetic molecule. 
Nitric oxide (NO) The electronic configuration of nitrogen and oxygen atoms are, 7N = 1s2, 2s2, 2p3 
and 8O = 1s2, 2s2, 2p4. The molecular energy level diagram of nitric oxide will be quite similar to nitrogen 
molecule (refer to Fig. 1.23). In nitric oxide, there are 11 electrons to be filled in molecular orbitals. Thus, 
the configuration of NO molecule can be written as
NO [KK (s2s)2 (s*2s)2 (s2px)

2 (p2py)
2 p2pz)

2, p*2py
1, p*2pz

0 ].
The four electrons of the two 2s orbitals fill up the bonding 

molecular orbitals, s2s2 and antibonding molecular orbital, 
s*2s2. Out of the remaining seven electrons: three 2p 
electrons of nitrogen and four 2p electrons of oxygen, only six 
electrons will fill up the remaining higher molecular orbitals. 

The only remaining electron will occupy the antibonding 
orbital, p*2py

1 and due to the presence of this single electron 
in the energy diagram, NO molecule exhibits paramagnetism. 
The presence of unpaired electron in nitric oxide molecule 
makes it similar to oxygen molecule that also shows 
paramagnetism. The bond order of NO molecule is

1

2

6 1

2
2 5[ ] .N Nb a- = - =

As the bond order of NO is low, bonding in NO is considerably weaker than in nitrogen molecule. The 
single unpaired electron occupying the p*2py orbital is easier to be removed forming NO+ (nitrosonium) 
ion having a stronger bond than NO molecule. The bond length in nitric oxide is greater than nitrogen 
molecule. In spite of the presence of an unpaired electron, nitric oxide molecule shows stability as this 
electron is well distributed over both nitrogen and oxygen atoms. The fact that nitrosonium ion can 
be easily obtained from nitric oxide clearly proves that NO+ ion can exist as a stable species such as 
NO+HSO4

– and NO+BF4
–.

Hydrogen chloride (HCl) The electronic configuration of hydrogen and chlorine atoms are: 1H = 1s1 
and 17Cl = 1s2, 2s2, 2p6, 3s2, 3p5. During the formation of hydrogen chloride, only three electrons of 
chlorine atom can combine with 1s1 electron of hydrogen. As the 3py and 3pz orbitals of chlorine atom 

Fig. 1.22 Molecular	orbital	energy	diagram	
of	CO	molecule

Fig. 1.23 Molecular	energy	level	diagram	of	
NO	molecule
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21  Atomic and Molecular Structure

have no matching symmetry with 1s hydrogen orbital, 
there cannot be any overlap of these orbitals. The molecular 
energy level diagram is depicted in Fig. 1.24 considering 
no hybridization. 

The electronic configuration of hydrogen chloride can be 
written as: HCl [KK, 2s2, 2p6, 3s2, 3py

2, 3py
2].

The shape of hydrogen chloride molecule clearly 
indicates the presence of a polar bond with a bond order of 
1

2

2 0

2
1[N N ]b a- =

-
= . Since both the electrons are paired, 

hydrogen chloride is a diamagnetic molecule.

1.8 Metallic Bond
Metals exhibit crystalline properties possessing either body-centred cubic, 
face-centred cubic, or close-packed hexagonal lattices (Fig. 1.25). Each atom 
in the crystal lattice exhibits a high coordination number. Hence, bonding 
in such metallic crystalline structures cannot be explained using simple 
theories of bonding due to insufficient number of electrons.

It is observed that the metal atoms are closely packed in a crystal structure, 
which represents extensive overlap of electron orbitals such that the valence 
electrons are no longer associated with a particular nucleus; rather they are 
completely delocalized over all atoms in the crystal structure. An electrostatic 
attraction between metal atoms and valence electrons within its sphere of 
influence is called metallic bond. Metals are arrangements of positive ions 
as spheres of identical radii packed so as to completely fill the space. The 
theories put forth to explain bonding in metals are discussed here.

1.8.1 Free Electron Theory
Paul Drude (1900) put forth the free electron theory in which he considered 
metals as a lattice with electrons moving through it just similar to the 
movement of gaseous molecules. The theory was further improvized by 
Lorentz (1923) who stated that as metals have lower ionization potential, 
they easily lose valence electrons and hence are made of only a lattice of 
rigid spheres of positive ions and electrons delocalized in the lattice. Hence, 
one can model that metal behaves as an assembly of positive ions immersed 
in a sea of mobile, delocalized electrons as shown in Fig. 1.26.

As valence electrons in a metallic bond are spread over the crystal 
lattice, metallic bond is non-directional in nature. Free electron 
theory can explain the following properties of metals.   
High strength The metallic bonds are very strong; hence metals 
can maintain a regular crystal structure. 
Electrical and thermal conductivity The high electrical 
conductivity of metals can be attributed to the presence of free valence 
electrons as they can easily move under the influence of an electric 

Atomic

orbital of H

Molecular

orbitals of HCl

Atomic orbital

of Cl

s *

s

1s

E 3px

Fig. 1.24 Molecular	energy	level	diagram	of	
HCl	molecule

(a) Body-centred cubic

(b) Face-centred cubic

(c) Close packed hexagonal

Fig. 1.25 Crystal	structures

Fig. 1.26 Metal	lattice	showing	
delocalized	electrons	floating	among	

positive	ions	
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22   Engineering Chemistry

field. Higher the number of free electrons, higher will be its electric conductivity. In a similar way, metals also 
possess higher thermal conductivities. 
Malleability and ductility Metallic bond is non-directional in character; hence on application of shear 
stress, metals are known to change their shape, this property of metals is called malleability. Further, the 
ease with which metal ions can glide from one lattice site to another is called ductility. Electrons in the 
metal lattice simply flow to follow any change in shape of the metallic crystal lattice. 
Boiling and melting point Due to the presence of strong electrostatic attractive force between the 
positively charged metal ions and the surrounding valence electrons, metals exhibit higher boiling and 
melting points. 
Demerits of free electron theory
 (a) It fails to explain specific heat of metals, marginally lower molar heat capacity of metals as compared 

to non-metals.
 (b) It also fails to distinguish between metals, insulators, and semiconductors.

The oversimplified assumption that electron is free to move anywhere within the metal crystal lattice 
led to the failure of this theory. In order to explain all these characteristics, band theory was postulated.

1.8.2 Band Theory
Felix Bloch (1928) put forth a quantum mechanical model theory to explain metal bonding. The following 
are the assumptions of this theory. 
 (a) All electrons present in completely filled energy levels of atoms are considered to be localized, that 

is, bound to the atoms with which they are associated. 
 (b) The valence electrons in the outermost energy level of atoms are free to move; however, they move 

in a potential field that extends over all the atoms present in the crystal lattice. 
 (c) The atomic orbitals of these free electrons can overlap with the atomic orbitals of electrons in other 

atoms, thereby forming delocalized molecular orbitals. Such molecular orbitals of free electrons are 
called conduction orbitals of a metal. 

It is obvious that band theory is merely an extension of molecular orbital concept applicable to diatomic 
molecules. Let us illustrate the above concept with the example of lithium (Li) metal. 

The electronic configuration of lithium atom is 1s2, 2s1 and if Li2 molecule is considered, bonding 
occurs using 2s atomic orbitals. There are three vacant 2p atomic orbitals in the valence shell and this is a 
prerequisite for exhibiting metallic properties. MO theory can elucidate the formation of Li2 molecule. 
Each lithium atom has two electrons in its inner shell, and one in its outermost shell, making a total of 
six electrons in its molecule. Hence, the electronic configuration of lithium molecule can be written as: 
Li2: s1s2, s*1s2, s2s2 and bonding will occur, as the s2s bonding molecular orbital is full and its 
corresponding antibonding orbital is vacant. If one ignores the innermost electrons, the 2s atomic 
orbitals from each lithium atom can combine to give two molecular orbitals, one bonding and the other 
antibonding MOs with valence electrons occupying the bonding orbitals. 

If we consider Li3 molecule, three 2s atomic orbitals will combine forming three molecular orbitals, 
namely one bonding, one non-bonding, and one antibonding. The energy of non-bonding MO lies in 
between the bonding and antibonding molecular orbitals. Hence, three valence electrons from three 
lithium atoms tend to occupy bonding molecular orbital (2 electrons) and non-bonding molecular orbital 
(1 electron). 

When four lithium atoms combine to form Li4, four 2s atomic orbitals with one electron each overlap, 
forming four molecular orbitals; two bonding and two antibonding orbitals. The presence of two non-
bonding molecular orbitals between the bonding and anti-bonding molecular orbitals tends to reduce 
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23  Atomic and Molecular Structure

the energy band gap between these orbitals. Hence, the four valence electrons will occupy the two lowest 
energy bonding molecular orbitals. 

Fig. 1.27 Development	of	molecular	orbitals	into	bands	in	metals

If n number of lithium atoms combine forming Lin, there will be n number of 2s atomic orbitals with 
one electron each that will overlap forming n MOs; out of which half of them will be bonding and the 
remaining half will be antibonding. The electrons in n orbitals will only be enough to fill the n/2 number 
of bonding molecular orbitals, whereas antibonding molecular orbitals will remain vacant. Hence, as the 
number of lithium atoms increases, the spacing between the energy levels of molecular orbitals decreases, 
such that it virtually forms a band as in Fig. 1.27 (d). The band so formed is called the molecular orbital 
energy band. 

Explanation of Electrical and Thermal Conduction (Band Theory Concept)
Metals contain either half-filled or partially-filled valence molecular orbital energy band because of 
the overlap with unoccupied molecular energy band. As there is only one valence electron per atom of 
lithium and a molecular orbital can hold up to two electrons, it follows that only half of the molecular 
orbitals in the 2s valence band are occupied, namely bonding molecular orbitals (Fig. 1.28 (a). Hence, it 
requires only an infinitesimal amount of energy to displace an electron to an unoccupied molecular orbital. 
This clearly elucidates that metals exhibit high thermal and electrical conductivities. 

Atomic orbitals

2s

Molecular orbitals

Vacant

energy levels

Occupied

energy levels

2p

2s

Atomic orbitals

Molecular orbitals

Vacant

energy levels

Occupied

energy levels

2s band

(a)

(b)

Fig. 1.28 (a)	Metallic	molecular	orbitals	of	lithium	showing	half-filled	band	and	 
(b)	metallic	molecular	orbitals	of	beryllium	showing	overlapping	bands
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24   Engineering Chemistry

Beryllium has an electronic configuration 1s2, 2s2 with two valence electrons that can fill the 2s band 
of molecular orbitals. Similarly, 2p atomic orbitals form a 2p band of molecular orbitals. As shown in 
Fig. 1.28, the upper part of 2s band overlaps with the lower portion of 2p band and due to this overlap, 
some part of the 2p band is occupied, whereas some part of 2s band remains vacant. Due to overlapping 
of bands, energy gap is removed, thereby enabling free movement of electrons from the valence band to 
the vacant conduction band. Thus, beryllium behaves as a metal. 

Band Theory of Conductors, Insulators, and Semiconductors
According to band theory, the electronic structure of metals is considered to possess bands of 
electrons which are distinctly separated from each other. These bands may be completely or 
partially filled with free electrons whose molecular orbitals extend over the entire crystal structure. 
Figure 1.29 depicts the energy bands of sodium, magnesium, carbon, and germanium. 

3p

3s

3p

3s

1s

3p

3s

2p

3s

1s

3d
(Na)

(Mg)

(C)
(Ge)

2pz

2s

1s

2pxy

3p

3d

4s

4p

4d

Fig. 1.29 Band	models	of	(a)	conductors	(Na	and	Mg),	(b)	insulator	(C),	and	(c)	semiconductor	(Ge)

Metals (conductors) In metals, electrical conductivities depend on the movement of electrons 
throughout the crystal structure under the influence of applied potential. This is possible only if electrons 
can be energized and jump to higher vacant band levels. As both the valence and conduction bands in 
metals are very close to each other, they exhibit excellent conductivity. 
Non-metals (insulators) In this case, valence bands are fully occupied by electrons and there is a large 
energy gap between the valence and conduction bands. Hence, it is very difficult to excite an electron and 
a large amount of energy needs to be supplied for conductivity. Hence, non-metals are insulating materials. 
Semiconductors These are materials that behave as insulators at lower temperatures and act as con-
ductors at normal or higher temperatures. Silicon and germanium are classic examples of semiconductor 
materials. They have four electrons in their 
outermost shell and a filled  band that lies 
below an empty px – y band. As these two 
bands are closer to each other, on thermal 
activation, electrons in the pz band acquire 
sufficient energy and jump to the higher 
px – y band. On applying heat some covalent 
bonds break, thereby ejecting electrons 
from their regular sites which migrate, 
leaving behind a hole. Electrical conduc-
tion occurs due to electrons migrating in 
one direction and positive holes in the 
opposite direction; this is called intrinsic 

Conduction band
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�E
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impurity level
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semiconductor

Fig. 1.30 Energy	levels	in	n-type	and	p-type	semiconductors
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25  Atomic and Molecular Structure

conduction. When trace impurities are added to such materials to further enhance the conductivity it is 
called extrinsic conductivity. 

When arsenic possessing five valence electrons is doped with silicon or germanium, the four electrons 
of arsenic atom form a bond with four electrons of silicon, and the fifth electron is free to move. This 
extra electron occupies the donor impurity level just below the empty conduction band of silicon crystal. 
On applying thermal energy, the free electron can easily jump to the conduction band, thereby exhibiting 
conductivity and is termed as n-type semiconductor.

When indium or gallium having three valence electrons is added as an impurity, only three electrons of 
silicon are covalently bonded to the atoms of the dopant. Certain sites occupied by electrons are vacant 
called positive holes and occupy acceptor impurity level that lies closer to the filled valence band of silicon. 
On applying thermal energy, electrons get excited and jump from filled valence band to empty acceptor 
impurity conduction band consisting of positive holes. If a potential is applied, electrons from an adjacent 
atom jump and occupy the hole and in turn is replaced by an electron from another atom. It seems the 
positive holes are migrating and such materials are called p-type semiconductors. 

1.9  Concept of Aromaticity
Benzene (1825) was first isolated by Michael Faraday who extracted the compound from liquid residue 
obtained after heating whale oil under pressure. Eilhard Mitscherlich (1834) provided the molecular 
formula of benzene as C6H6 and called it ‘benzin’ due to its relationship to benzoic acid, but later was 
renamed as benzene. Alchemists called such compounds aromatic, because of their pleasing odour. 
However, today the term ‘aromatic compound’ signifies some chemical structures that fulfil certain criteria.

Benzene is a planar, cyclic compound with 
a cyclic cloud of delocalized electrons above 
and below the plane of the ring (Fig. 1.31). 
As p electrons are delocalized, all the C – C 
bonds have the same length. Further, it is 
also known that benzene is quite a stable 
compound with large resonance energy of 
36 kcal/mol. The criteria to be fulfilled for 
a compound to be classified as aromatic are 
the following.
 (a) It should have an uninterrupted cyclic cloud of p electrons (also called p cloud) above and below 

the plane of the molecule. 
 (b) For a p-electron cloud to be cyclic and remain uninterrupted, the molecule must also be cyclic with 

every atom in the ring possessing a p orbital. 
 (c) To form an uninterrupted p-electron cloud, each p orbital must overlap with the p orbitals on either 

side of it, thus the molecule must essentially be planar with p-electron cloud containing an odd 
number of pair of electrons. 

Erich Hückel (1931) was the first to recognize that an aromatic compound must possess an odd 
number of π electrons; this came to be called Hückel’s rule or the 4n + 2 rule. Hückel’s rule is a 
mathematical way of expressing that an aromatic compound should have an odd number of pairs of π 
electrons. According to the Rule, for a planar, cyclic compound to be aromatic, its uninterrupted p cloud 
must contain (4n + 2) p electrons, where n is any whole number. An aromatic compound must have 
2(n = 0), 6(n = 1), 10(n = 2), 14(n = 3), and so on number of p electrons. As there are two electrons in 
a pair, Hückel’s rule necessitates that an aromatic compound have 1, 3, 5, 7, etc. as pairs of p electrons.  

Fig. 1.31 Structure	of	benzene:	(a)	p	orbitals	on	carbon	atoms	 
(b)	p-electron	cloud	above	and	below	benzene	ring
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26   Engineering Chemistry

Antiaromatic compounds Some compounds fulfil the first criterion of Hückel’s rule (listed above), 
but fail to satisfy the second criterion, that is, they possess an even number of pairs of π electrons. 
Cyclobutadiene is a planar molecule with two pairs of π electrons. Such compounds are called antiaromatic 
compounds. They are quite unstable and difficult to isolate. Figure 1.32 depicts the distribution of electrons 
in benzene and cyclobutadiene. 

Fig. 1.32 Frost	diagrams	of	(a)	benzene	and	(b)	cyclobutadiene

Arthur Frost proposed a simpler method to depict the distribution of electrons in aromatic systems 
called Frost diagram. In a Frost diagram, one needs to first draw the cyclic compound with one of its 
vertices pointed down. The molecular orbitals below the midpoint of the cyclic compound will be bonding 
molecular orbitals, whereas those above the midpoint are considered antibonding molecular orbitals. The 
midpoint of the cyclic structure in the Frost diagram will be considered as nonbonding molecular orbitals. 
The electrons are filled in the molecular orbitals as per Pauli Exclusion Principle and Hund’s Rule, which 
states that if electrons are left over after filling up the bonding orbitals, they occupy non-bonding orbitals. 
It is evident from the diagram that in aromatic compounds such as benzene, all the bonding molecular 
orbitals are completely filled, whereas in a non-aromatic compound like cyclobutadiene, the presence of 
unpaired electrons explains its instability. 

Check Your Progress
	12.	 Distinguish	between	conductors	and	semiconductors.
	13.	 State	the	features	of	molecular	orbital	theory.	
	14.	 What	is	aromaticity?	Give	an	example	of	aromatic	compound.
	15.	 What	are	the	criteria	for	a	molecule	to	be	aromatic?
	16.	 State	Hückel’s	rule	of	aromaticity.	
	17.	 List	the	assumptions	of	MO	theory	to	explain	metallic	bond.	
	18.	 What	are	Frost	diagrams?	Illustrate	Frost	diagram	of	benzene	and	cyclobutadiene.
	19.	 Draw	the	molecular	energy	level	diagrams	of	
	 	 (a) HCl	 (b)	NO				(c)	O2					(d)	N2					(e)	H2					(f)	CO (g)	F2 
	20.	 List	the	merits	and	demerits	of	free	electron	theory	put	forth	to	explain	metallic	bond.

SOLVED EXAMPLES

 1. Calculate the wavelength of (a) a ball weighing 250 g and (b) an electron moving with a velocity of 50 m/s 
(Given: electron rest mass, me = 9.109 ¥ 10-31 kg). 
 Solution: (a) According to de Broglie equation, l = h

mv
 

   l = 6 626 10

2 50 10 50

34

1

.

.

¥
¥ ¥

-

- -
J.s

m.s 1
 (as 1 kg = 1000 g)

Hence, l = 5.3 ¥ 10–35 m or 5.3 ¥ 10–25 Å.
 It is known that radius of an atom is in the order of 10–11 m; the above value is very small and is difficult to 
determine by any device. 
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27  Atomic and Molecular Structure

 (b) For electron, 

	 	 	 l = 6 626 10

9 109 10 50

34

31 1

.

.

¥
¥ ¥

-

- -
J.s

m.s
=1.46 ¥ 10–5 m (1.46 ¥ 105 Å)

The wavelength obtained as above falls in the infrared region of EMR spectrum.
 2. Calculate the kinetic energy of a moving electron of wavelength of 5.3 pm. (Given: mass of an electron = 
9.11 ¥ 10-31 kg and h = 6.6 ¥ 10-34 J.s).
Solution: The velocity of an electron can be expressed as (on rearranging de Broglie relation),

   v = 
h

ml
 = 6 6 10

9 11 10 5 3 10

34

31 12

.
. .

¥
¥ ¥ ¥

-

- -
J.s

kg m
 (as 1 pm = 10–12 m)

    = 1.3682 ¥ 108 ms–1

  As, K.E of an electron is 1
2

 mv2, thus, 

    = 9 11 10 1 3682 10
2

8 524 10
31 8 1 2

15 2 2. ( . )
. .

¥ ¥ ¥
¥

- -
- -kg ms

kg m s=

 3. If an electron moves with a velocity of 3.3 ¥ 107 m/s, calculate the smallest possible uncertainty in its 
position. (Given: mass of an electron = 9.11 ¥ 10–31 kg and h = 1.05 ¥ 10-34 J.s). 
Solution: As per Heisenberg’s Uncertainty Principle, Δx ¥ Δp = h

Hence, Δx = h/mv = 1 05 10

9 11 10 3 3 10

34

31 7 1

.

. . .

¥
¥ ¥ ¥

-

- -
J.s

m s
 = 3.492 ¥ 10–12 m (or, 0.0349 Å)

 4. What is the wavelength of an electron moving at 5.31 ¥ 106 m/s? (Given: mass of electron = 9.11 ¥ 10-31 kg 
and h = 6.626 ¥ 10-34 J·s)
Solution: According to de Broglie’s equation, 

l = h
mv

= 6 626 10

9 11 10 5 31 10

34

31 6

. .

. .

¥
¥ ¥ ¥

-

-
J s

kg m s/

   = 6 626 10

4 84 10

1 37 10 1 37

34

24

10. .

. .

. .
¥

¥
= ¥

-

-
-J s

kg m s

m or Å

/

 5. Calculate the kinetic energy and de Broglie wavelength (nm) of C60 molecule moving at a speed of 100 
m/s. (Given: atomic weight of C = 12.011 g, Avogadro’s number = 6.022 ¥ 1023 molecules/mol.
Solution: Molar mass of one C60 molecule = 60 ¥ 12.011 = 720.66 g/mol

Mass of one molecule will be = 720 66

6 022 10
1 1967 10

23
21.

.
.

g/mol

molecules/mol
g/mol

¥
¥ -=

   =  1 1967 10
1000

1 1967 10
21

24.
.

¥
¥

-
-g/mol

kg=

Kinetic energy, E = 1
2

1
2

1 1967 10 100 5 9835 102 24 2 21mv = =¥ ¥ ¥ ¥- -. ( ) . J

According to de Broglie equation, l = h
mv

   = 6 626 10

1 1967 10 100
5 5369 10 5 537

34

24
12.

.
. .

¥
¥ ¥

¥
-

-
-Js

m or= ¥¥ -10 3 nm  (as 1 m = 109 nm)

6. Determine the minimum uncertainty in the velocity of a particle having a mass 1.1 ¥ 10–27 kg if uncertainty 
in its position is 3 ¥ 10–10 cm. (Given: h = 6.6 ¥ 10–34 Js) 
Solution: According to Heisenberg’s Uncertainty principle, 

   Dx ¥ Dp ≥ h
4p

 or, Dx ¥ mDv = h
4p
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28   Engineering Chemistry

On rearranging the above expression we get, 

      Dv = h
m x4

6 6 10

4 3 143 1 1 10 3 10
1

10

34

27 10
2

p D
=

.

. .

¥

¥ ¥ ¥ ¥ ¥ ¥
Ê

Ë
Á
Á

ˆ

¯
˜

-

- - cm
m

cm ˜̃

 

   = 1.59 ¥ 104

Thus, the uncertainty in velocity of the particle = 1.59 ¥ 104 ms–1

7. Calculate the energy of an electron in ground state confined to a box of 3Å in width and moving in one-
dimension (x-axis only).
Solution:  According to particle-in-a-box model,

 E n h
ml

= =
¥ ¥

¥ ¥ ¥ ¥

-

- -

2 2

2

2 34 2

31 10 28

1 6 6 10

8 9 1 10 3 10

( . )
. ( )

  On solving the above we get, 
\ Eground state = 6.648 ¥ 10–19 J

SUMMARY

	 	Atomic	and	molecular	structure	forms	the	basis	of	
chemistry.	 Learning	 about	 various	postulates	put	
forth	by	various	atomic	models	helps	us	understand	
the	structure	of	atoms.	

	 All	sub-atomic	particles	have	a	wave-like	nature	called	
matter	waves	or	de	Broglie	waves.	 	The	Davisson–
Germer	experiment	practically	 demonstrated	 the	
wave	nature	of	particles.	

	 According	to	Heisenberg’s	Uncertainty	Principle,	it	is	
impossible	to	simultaneously	determine	the	position	
and	momentum	of	an	electron.	

	 Schrödinger	 derived	 an	 equation	 for	 comparing	
the	path	 taken	by	 the	particle	with	 that	 of	 a	 ray	
of	 light	 and	 the	 associated	de	Broglie	wave	with	
electromagnetic	waves.	

	 The	quantum	mechanical	model	of	hydrogen	atom	
and	particle-in-a-box	are	deduced	using	Schrödinger	
equation.	

	 The	 solution	of	Y	 led	 to	 three	different	 types	of	
quantum	numbers.	As	per	Pauli	Exclusion	Principle,	
only	two	electrons	can	be	accommodated	by	a	given	
atomic	orbital.

	 Schrödinger	equation	 is	well	 studied	 for	hydrogen	
atom.	It	can	be	applied	to	study	conjugated	systems	
and	nanoparticles.

	 According	to	the	MO	theory,	atomic	orbitals	of	similar	
energies	and	symmetry	combine	to	form	molecular	
orbitals,	 one	 of	which	 is	 bonding	 and	 the	 other	
antibonding.	Also,	in	an	atomic	orbital,	an	electron	

is	influenced	by	one	nucleus;	whereas	in	a	molecular	
orbital,	electrons	are	under	the	influence	of	two	or	
more	nuclei	depending	on	the	number	of	combining	
atoms.		

	 MO	 theory	finds	application	 in	understanding	 the	
structures	 of	 homo	 and	 heteronuclear	 diatomic	
molecules.	

	 Hydrogen,	 nitrogen,	 and	oxygen	are	 examples	of	
elements	 forming	homonuclear	molecules,	while	
carbon	monoxide,	nitric	oxide,	and	hydrogen	chloride	
are	heteronuclear	molecules.	

	 Theories	 put	 forward	 to	 explain	metallic	 bonds	
include	the	free	electron	theory	and	the	molecular	
orbital	or	band	theory.

	 Though	the	free	electron	theory	could	account	for	
most	of	the	properties	of	metals	such	as	their	high	
strength,	 electrical	 and	 thermal	 conductivity,	 and	
malleability	 and	ductility,	 it	 failed	 to	 explain	 the	
specific	 heat	 of	metals	 and	 distinguish	 between	
metals,	insulators,	and	semiconductors.

	 Band	 theory	 of	 solids	 proposed	 by	 Felix	 Bloch	
addressed	 the	 shortcomings	of	 the	 free	 electron	
theory.	

 Hückel’s	 rule	 is	a	mathematical	way	of	expressing	
that	 an	 aromatic	 compound	 should	have	 an	odd	
number	of	 pairs	 of	p	 electrons.	According	 to	 the	
Rule,	for	a	planar,	cyclic	compound	to	be	aromatic,	
its	uninterrupted	p	 cloud	must	 contain	 (4n	 +	2)	p 
electrons,	where	n	is	any	whole	number.
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29  Atomic and Molecular Structure

GLOSSARY

Antibonding molecular orbital:	 A	molecular	 orbital	
whose	 occupation	by	 electrons	 decreases	 the	 total	
energy	of	a	molecule.	Energy	 level	of	an	antibonding	
MO	lies	higher	than	the	average	of	the	valence	atomic	
orbitals	of	the	atoms	in	a	molecule.
Aufbau principle:	A	maximum	of	two	electrons	are	put	
into	orbitals	in	the	order	of	increasing	orbital	energy.
Bond order:	 The	 number	 of	 chemical	 bonds	 in	 a	
molecule.	
Crystal lattice:	The	3D	arrangement	of	atoms,	ions,	or	
molecules	in	a	crystalline	solid.

Hückel’s rule:	 The	mathematical	expression	denoting	
that	an	aromatic	compound	should	have	an	odd	number	
of	pairs	of	p	electrons.	
Hund’s rule:	 Rule	 for	 building	 up	 the	 electronic	
configuration	of	 atoms	and	molecules.	 It	 states	 that	
when	electrons	go	into	degenerate	orbitals,	they	occupy	
them	singly	before	pairing	begins.
Orbital (atomic or molecular):	A	wave	 function	 that	
depends	on	the	spatial	coordinates	of	a	single	electron.
Pauli Exclusion principle:	A	maximum	of	two	electrons	
can	occupy	an	orbital	and	their	spins	must	be	paired	or	
opposed	to	each	other.	

KEY FORMULAE

 • de	Broglie	relation:	 l = h
mv

 • Heisenberg	Uncertainty	relation:	Δ	x Δp = h

 • Schrödinger	equation:	
d
d

d
d

d
d

p
l

2

2

2

2

2

2

2

2
4Y Y Y Y

x y z
+ + = -

 • Hückel’s	rule:	4n	+	2p	electrons,	where	n	is	any	whole	
number.	

 • Schrödinger	equation	(for	hydrogen	atom):	

 — + -
Ê

ËÁ
ˆ

¯̃
=2

2

2

28
0Y Yp m

h
E

Ze
r

 • Bond	order:	
1
2

[N N ]b a- ,	where	b	and	a	are	bonding	

and	antibonding	molecular	orbitals.

EXERCISES

Multiple Choice Questions
 1. Bohr’s model of atom is supported by
 (a) Dalton’s theory 
 (b) de Broglie equation 
 (c) Uncertainty principle 
 (d) None of these
 2. Bohr’s model of atom is contradicted by
 (a) Planck’s quantum theory             
 (b) Pauli Exclusion principle 
 (c) Heisenberg Uncertainty principle  
 (d) All of the above
 3. Uncertainty principle was stated by
 (a) de Broglie  (b) Heisenberg
 (c) Einstein (d) Schrödinger 
 4. The region around the nucleus where the probability 

of finding an electron is maximum is 
 (a) orbit   (b) energy level  
 (c) shell  (d) orbital

 5. Which orbital has dumb–bell shape?
 (a) s orbital (b) p orbital 
 (c) d orbital (d) f orbital
 6. The mass of an electron (me) is
 (a) 9.109 × 10-32 g (b) 8.1 × 10-31 kg 
 (c) 9.1 × 10-31 kg (d) 9.1 × 10-31 mg
 7. The atomic orbitals that possess same energy are.
 (a) degenerate orbitals 
 (b) hybrid orbitals 
 (c) valence orbitals 
 (d) molecular orbitals
 8. The size of the nucleus is approximately
 (a) 1/100th of the atom 
 (b) 1/1000th of the atom 
 (c) 1/10000th of the atom 
 (d) 1/l00000th of the atom
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30   Engineering Chemistry

 9. Eigen values correspond to 
 (a) definite wave function values 
 (b) quantum numbers 
 (c) definite values of total energy 
 (d) definite angular momentum of electrons
 10. Which of the following statements is NOT correct 

about wave functions?
 (a) It is infinite is most cases. 
 (b) It is single valued. 
 (c) It is continuous. 
 (d) It has a continuous slope.
 11. In Schrödinger wave equation Y represents 
 (a) orbit (b) wave function 
 (c) wave  (d) radial probability
 12. Uncertainty Principle is applicable to 
 (a) measuring radii of particles 
 (b) all moving particles 
 (c) only stationary particles 
 (d) all small and fast moving particles  
 13. In the ground state of an atom, the electron is present
 (a) in the nucleus 
 (b) in the second shell 
 (c) nearest to the nucleus 
 (d) farthest from the nucleus
 14. The radial nodes present in 3s and 2p orbitals are
 (a) 0, 2 (b) 2, 0
 (c) 2, 1 (d) 1, 2
 15. Quantum number denoted by symbol ‘m’ is 
 (a) magnetic quantum 
 (b) principal quantum 
 (c) spin quantum 
 (d) azimuthal quantum
 16. A spinning electron creates
 (a) electric field  (b) quantum field 
 (c) magnetic field (d) atom structure
 17. The quantum number that describes the shape of an 

electron in an atom is:
 (a) principal quantum 
 (b) azimuthal quantum 
 (c) magnetic quantum 
 (d) spin quantum
 18. The value of Planck’s constant ‘h’ is
 (a) 6.625 ¥ 10–34 J s 
 (b) 6.625 ¥ 10–34 cal 
 (c) 6.625 ¥ 10–34 kJ 
 (d) 6.625 ¥ 10–34 k cal
 19. Stabilization energy of benzene is
 (a) 35 kcal (b) 36 kcal
  (c) 37 kcal (d) 38 kcal

 20. The region where there is probability of finding an 
electron is 

 (a) node  
 (b) particle-in-a-box model 
 (c) electron cloud 
 (d) orbit
 21. The bond order of carbon monoxide molecule is 
 (a) 2 (b) 2.5 
 (c) 1.5 (d) 3
 22. Antibonding molecular orbitals are formed by
 (a) destructive overlap of atomic orbitals 
 (b) constructive overlap of atomic orbitals
 (c) overlap of excess negative ions 
 (d) none of these
 23. Band theory of solids can satisfactorily explain
 (a) nature of insulators 
 (b) semiconducting behaviour 
 (c) conduction in metals
 (d) All of these
 24. A vacant or partially filled band is termed as
 (a) valence band  (b) conduction band 
 (c)  forbidden band (d) molecular band
 25. The highest energy band gap is exhibited by 
 (a) semiconductor  (b) conductor 
 (c) insulator (d) metals
 26. On increasing the temperature, conductivity of an 

intrinsic conductor 
 (a) increases 
 (b)  decreases 
 (c) remains constant
 (d) initially decreases and then increases
 27. ‘No two electrons in an atom can have the same set 

of quantum numbers.’ This statement is called 
 (a) Bohr’s theory 
 (b) Pauli Exclusion principle 
 (c) Hückel’s rule
 (d) Hund’s rule
 28. Wave nature of electrons was first experimentally 

verified by 
 (a) Davisson–Germer  (b) Planck 
 (c) de Broglie  (d) Pauli
 29. The qantum number that determines the shape of 

the subshell is
 (a) magnetic (b) principal 
 (c) spin (d) azimuthal
 30. The number of orientations of each subshell is given 

by
 (a) magnetic quantum number 
 (b) principal quantum number 
 (c) azimuthal quantum number 
 (d) spin quantum number
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31  Atomic and Molecular Structure

 31. de Broglie equation has significance in explaining
 (a) subatomic particles  (b) molecules 
 (c) only electrons  (d) electron pairing
 32. The bond order of HCl molecule is 
 (a) 3 (b) 2  
 (c) 1 (d) 0.5
 33. The bond order and magnetism of dinitrogen 

molecule are
 (a) 3 and paramagnetic, respectively 
 (b) 3 and diamagnetic, respectively 

 (c) 2 and paramagnetic, respectively 
 (d) 2.5 and diamagnetic, respectively
 34. An example of antiaromatic compound is
 (a) benzene (b) naphthalene 
 (c) cyclobutadiene (d) none of these
 35. Bond order of NO is 
 (a) 2.5 (b) 2 
 (c) 1.5  (d) 0.5

Review Questions
 1. What is wave–particle dualism?
 2. State and derive de Broglie equation. 
 3. State and explain Heisenberg’s Uncertainty 

principle. 
 4. What is Bohr’s frequency rule? State the difference 

between an orbit and an orbital. 
 5. How does Pauli Exclusion principle help in 

understanding the electronic configuration of atoms?
 6. Discuss Heisenberg Uncertainty principle and Born 

approximation. 
 7. Descr ibe  Dav i s son–Germer  exper iment 

demonstrating the wave nature of electrons. 
 8. Explain the significance of Y and Y 2. 
 9. What are atomic orbitals? Draw the s, p, d orbitals 

with clear descriptions.
 10. Deduce Schrödinger time-independent wave 

equation. Explain the terms involved in the 
expression and state its significance.

 11. Explain Schrödinger equation for quantum model 
of hydrogen atom.

 12. Describe the physical significance of Schrödinger 
wave functions.

 13. Justify the statement, ‘It is impossible to measure 
simultaneously the position and velocity of a fast 
moving body like an electron.’

 14. Apply Schrödinger wave equation for a particle-in-
a-box illustrating quantization of energy. Draw the 
radial plots for hydrogen atom.

 15. Express Schrödinger wave equation for 1,3-butadiene 
and benzene using particle-in-a-box model. 

 16. Discuss the application of particle-in-a-box solution 
to conjugated butadiene and benzene systems and 
write the wave equations.

 17. Write a short note on ‘applications of particle-box 
model to nanoparticles.’

 18. What is a metallic bond? Describe free electron 
theory to describe metal bonding. List their merits 
and demerits.

 19. Discuss band theory to explain bonding in metals 
citing suitable examples. 

 20. With a neat labelled MO diagram, explain the 
bonding in F2 molecule.

 21. Explain the electrical conductivities of conductors, 
insulators, and semiconductors. 

 22. With a neat labelled MO diagram, explain the 
bonding in CO molecule. State the various features 
of CO molecule.

 23. Draw a neat labelled MO diagram of dinitrogen 
and explain the bonding citing its electronic 
configuration. 

 24. What is bond order of a molecule? How is it 
calculated? Explain bonding in HCl molecule with 
an MO diagram and state its characteristics. 

 25. What is a Frost diagram? Draw Frost diagrams for 
benzene and cyclobutane and show their molecular 
orbital configurations. 

 26. Draw the molecular orbital diagram for oxygen 
molecule and explain its paramagnetic behaviour. 

 27. With a neat labelled MO diagram, explain the 
bonding in NO molecule.  

 28. What is aromaticity? Explain aromaticity of 
benzene. 

 29. Discuss aromaticity of compounds. Explain the 
criteria for a compound to be considered as aromatic. 

 30. Write a short note on Hückel’s rule for aromaticity 
and Frost diagrams.
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32   Engineering Chemistry

NUMERICAL PROBLEMS
 1. Calculate the wavelength (in metres) of a proton travelling at a velocity of 2.55 ¥ 108 m, assuming the proton 

mass as 1.673 ¥ 10–27 kg. (Ans: 1.533 ¥ 10–15 m)
 2. Determine the wavelength (in metres) of a wave associated with a 1 kg object moving at a speed of 1 km/h.    

 (Ans: 2.38 ¥ 10–33 m)
 3. What will be the wavelength (in pm) associated with an electron having a mass of 9.11 ¥ 10–31 kg and travelling 

at a speed of 4.19 ¥ 10–6 ms–1 (Ans: 174 pm)
 4. Calculate the kinetic energy and de Broglie wavelength (in nm) of C60 molecule moving at a speed of 200 ms–1. 

(Given: atomic weight of carbon = 12.011 g, Avogadro’s number = 6.022 ¥ 10–23 molecules/mol. 
   (Ans: KE = 2.393 ¥ 10-20J, 2.768 ¥ 10–12 m)
 5. What is the wavelength (in angstrom) of an electron moving at 5.31 ¥ 106 m/s?  (Ans: 1.37 Å)
 6. Determine the uncertainty in position of a dust particle of mass 1 mg if uncertainty in its velocity is 

5.5 ¥ 10–20 m/s. (assume h = 6.623 ¥ 10–34 Js) (Ans: 9.58 ¥ 10–10 m)
 7. Calculate de Broglie wavelength (in m) of dinitrogen molecule moving at a speed of 2800 ms–1. (assume h =  

6.626 ¥ 10–34 Js)  (Ans: 5 ¥ 10–12 m) 
 8. If uncertanties in position and velocity of a particle are 10–10 m and 5.27 ¥ 10–24 ms–1 respectively, what is the 

mass of the particle? (assume h = 6.625 ¥ 10–34 Js)  (Ans: 0.1 kg or 100 g)
 9. If an electron is bound in a one-dimensional box of size 4 ¥ 10–10 m, what will be its minimum energy? (assume 

h = 6.6 ¥ 10–34 Js) (Ans: E = 3.739 ¥ 10–19 J)
 10. If an electron is bound in a one-dimensional box of size 8 ¥ 10–10 m, what will be its minimum energy? (assume 

h = 6.6 ¥ 10–34 Js)  (Ans: E = 9.349 ¥ 10–20 J)

FURTHER READING
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 2. de Broglie, L., (1924) XXXV. A Tentative Theory of Light Quanta’, Philosophical Magazine, 47, 446-458. 

https://www. tandfonline com/doi/abs/10.1080/14786442408634378
 3. Griffith, D.J. Introduction to Quantum Mechanics, Benjamin Cummings, 2004.
 4. Kragh, H. Niels Bohr and the Quantum Atom: The Bohr Model of Atomic Structure 1913–1925, Oxford University 

Press, 2012.
 5. Liboff, R. Introductory Quantum Mechanics,  Addison–Wesley, 2002. 
 6. Scientific Reports, https://www.nature.com/srep/  Nature Publishing.
 7. Vollhardt, K., C. Peter, and Neil E. Schore. Organic Chemistry: Structure and Function. W.H. Freeman and 

Company, 2007.

ANSWERS

Check Your Progress 
 1. According to Bohr’s postulate, an electron travels a definite orbit around the nucleus, that is, the position and 

velocity of an electron in an atom is always known. The contradicting point by Heisenberg Uncertainty principle 
is that it is impossible to simultaneously determine both the position and velocity of an electron.

 2. Davisson–Germer practically demonstrated that particles (i.e., electrons) possess wave nature. 
 3. According to de Broglie equation, l = h/mn. We know that for a stationary orbit, its circumference must be an 

integer multiple of l, such that 2pr = nl or l = 2pr/n. Thus, h m r
n

/ n p= 2  or, mr = n h/2p . 
  This is in accordance with Bohr’s postulate, that is, J = n h/2p and hence the statement is justified.
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33  Atomic and Molecular Structure

 4. The simultaneous exact determination of position and momentum or any property related to momentum such 
as velocity is impossible, D Dx p h¥ ≥ /4p

Orbit Orbital
(a) 	They	 are	definite	 circular	 paths	present	 at	 definite	

distances	from	the	nucleus	where	electrons	revolve.
(b) 	They	are	regions	around	the	nucleus	that	show	

the	probability	of	finding	electrons	is	maximum.

(b)	Shape	of	orbit	is	circular.	 (b) 	Shape	of	an	orbital	can	be	spherical	(s	orbital),	
dumb-bell	 (p	 orbital),	 or	 double	 dumb-bell 
(d	orbital).	

(c) 	It	 represents	 a	 2-dimensional	model	with	electrons	
moving	 in	 circular	motion	 in	one	plane	 around	 the	
nucleus.

(c) 	It	 represents	 a	 3-dimensional	 model	 with	
spherical	movement	 of	 electrons	 around	 the	
nucleus.

(d) 	It	can	have	2n2	number	of	electrons,	where	n is	 the	
number	of	the	orbits.	

(d) 	It	can	accommodate	a	maximum	of	two	electrons	
with	opposite	spins.

 6. d
d

d
d

d
d

p2

2

2

2

2

2

2

2

8
0

Y Y Y Y
x y z

m
h

E U+ + + -( ) =

 7. The functions  are satisfactory solutions of Schrödinger time-independent wave equation only for certain values 
of energy E. Such values are called eigen values. The corresponding functions that are satisfactory solutions of 
Schrödinger equation are called eigen functions. 

 8. Eigen function is single value, finite, and continuous for all possible values of the three co-ordinates, that is, x, 
y and z, including infinity ∞. 

 9. An electron is considered as a particle and the square of the wave function  at any point in space represents the 
probability of finding an electron at that point at a given instant.

 10. Refer to Section 1.5.1;  Fig. 1.10
 11. Refer to Section 1.5
 12. The differences between conductors and semiconductors are as follows:

Conductor Semiconductor
(a) 	No	energy	gap	between	valence	and	conduction	

band.
(a) 	Small	energy	gap	between	valence	and	conduction	

band.
(b) 	Valence	band	is	either	half-filled	or	partially-filled. (b) 	Valence	band	is	completely	filled.
(c) 	Electrical	 conductivity	decreases	with	 increasing	

temperatures.
(c) 	Electrical	 conductivity	 increases	with	 increasing	

temperatures.
(d) 	Impurities	decrease	electrical	conductivity. (d) 	Doping	impurities	enhance	electrical	conductivity.	

 13. Refer to Section 1.7
 14. A compound possessing additional stability due to the presence of planar cyclic ring with uninterrupted  

(4n + 2) p electrons is called aromaticity. Benzene is an example of aromatic compound.
 15. Refer to Section 1.9
 16. For a planar, cyclic compound to be aromatic, its uninterrupted p–cloud must contain (4n + 2) π electrons, 

where n is any whole number.
 17. Refer to Section 1.8.2
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 18. Frost diagrams are used to illustrate the distribution of electrons in aromatic systems. For illustration refer to 
Section 1.9

 19. Refer to Figs 1.14 (H2), 1.15 (N2), 1.16 (O2), 1.19 (CO), 1.20 (NO), 1.21 (HCl), 1.17 (F2)
 20. Refer to Section 1.7

Multiple Choice Questions 

  1. (b) 2. (c)  3. (b) 4. (d) 5. (b) 6. (c) 7. (a)
 8. (d) 9. (d) 10. (c) 11. (b) 12. (d) 13. (c) 14. (b)
  15. (a) 16. (c) 17. (b) 18. (a) 19. (b) 20. (c) 21. (d)
 22. (a) 23. (d) 24. (b) 25. (c) 26. (a) 27. (b) 28. (a)
 29. (b) 30. (a) 31. (a) 32. (c) 33. (b) 34. (c) 35. (a)
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